JP2013239718A - 半導体光素子アレイおよびその製造方法 - Google Patents

半導体光素子アレイおよびその製造方法 Download PDF

Info

Publication number
JP2013239718A
JP2013239718A JP2013132114A JP2013132114A JP2013239718A JP 2013239718 A JP2013239718 A JP 2013239718A JP 2013132114 A JP2013132114 A JP 2013132114A JP 2013132114 A JP2013132114 A JP 2013132114A JP 2013239718 A JP2013239718 A JP 2013239718A
Authority
JP
Japan
Prior art keywords
semiconductor optical
fine columnar
semiconductor
optical device
device array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013132114A
Other languages
English (en)
Other versions
JP5687731B2 (ja
JP2013239718A5 (ja
Inventor
Katsumi Kishino
克巳 岸野
Akihiko Kikuchi
昭彦 菊池
Hiroto Sekiguchi
寛人 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia School Corp
Original Assignee
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia School Corp filed Critical Sophia School Corp
Priority to JP2013132114A priority Critical patent/JP5687731B2/ja
Publication of JP2013239718A publication Critical patent/JP2013239718A/ja
Publication of JP2013239718A5 publication Critical patent/JP2013239718A5/ja
Application granted granted Critical
Publication of JP5687731B2 publication Critical patent/JP5687731B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

【課題】基板上に形成された微細柱状結晶の位置および形状を高精度に制御して微細柱状結晶の発光波長あるいは光吸収波長を制御し得る構造を有する半導体光素子アレイおよびその製造方法を提供する。
【解決手段】複数の凹部が形成された主面を有する半導体基板と、前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ複数の開口部を有するマスクパターンと、前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、前記複数の微細柱状結晶上にそれぞれ成長した活性層と、前記各活性層を被覆する半導体層と、を備える半導体光素子アレイが提供される。
【選択図】図1

Description

本発明は、半導体光素子アレイおよびその製造方法に関する。
近年、窒化ガリウム(GaN)などのIII族窒化物半導体は、高品質の短波長発光を出力し得る発光ダイオードやレーザダイオードなどの半導体発光素子を実現できる半導体材料として注目されている。半導体発光素子は、有機金属化学気相堆積(MOCVD:Metal Organic Chemical Vapor Deposition)法や分子線エピタキシ(MBE:Molecular Beam Epitaxy)法などの結晶成長技術を用いて、基板上にIII族窒化物半導体からなる積層構造を形成することで作製される。
MOCVDやMBEなどの公知の結晶成長技術は、積層構造を生成する際にその積層方向に良好な制御性を有している。基板の面内方向に沿った構造を形成するためには、結晶加工技術を使用して積層構造を加工する必要がある。結晶加工技術は、大別して、トップダウン型とボトムダウン型とがある。トップダウン型は、結晶成長後に結晶を加工して構造を形成する技術であり、これに対してボトムアップ型は、結晶成長前に下地基板を予め加工しておき、この下地基板上に結晶を成長させることで結晶成長と同時に構造を形成する技術である。トップダウン型のプロセスには、加工により結晶がダメージを受けやすく、特に、微細構造を形成したときにその微細構造の表面積が大きくなるという問題がある。一方、ボトムアップ型のプロセスでは、微細構造と良好な結晶品質とが共に得られやすい。
特許文献1(特開2008−108924号公報)には、ボトムアップ型のプロセスを用いて、基板上にナノメータスケールの微細柱状結晶(ナノコラム)を形成する方法が開示されている。この方法は、スピネル基板上に多数の島状のFe粒を形成し、各Fe粒から基板の上方にGaNナノコラムを成長させるというものである。ナノコラムの形成方法に関する先行技術文献は、特許文献1の他に、たとえば、非特許文献1(M. Yoshizawa et al., Jpn. J. Appl. Phys., Vol.36, No.4B (1997) pp.L459-L462)や非特許文献2(H. Sekiguchi et al., Journal of Crystal Growth, 300 (2007) pp.259-262)が挙げられる。
特開2008−108924号公報
M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita and K. Kishino, "Growth of Self-Organized GaN Nanostructures on Al2O3 (0001) by RF-Radical Source Molecular Beam Epitaxy", Jpn. J. Appl. Phys., Vol.36, No.4B (1997) pp.L459-L462. H. Sekiguchi, T. Nakazato, A. Kikuchi and K. Kishino, "Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy", Journal of Crystal Growth, 300 (2007) pp.259-262.
特許文献1に開示されている方法で形成されたGaNナノコラムの各々は、n型層、発光層およびp型層が積層された発光構造を有している。これらGaNナノコラムの集合体により半導体発光素子が構成される。
しかしながら、各GaNナノコラムは、基板上の島状のFe粒を核として形成されるので、GaNナノコラムの位置および形状にバラツキが生じやすく、GaNナノコラムを規則的に配列させることが難しい。このようなバラツキは、半導体発光素子の特性のバラツキを生じさせ得る。たとえば、GaNナノコラムの発光波長にバラツキが生じて所望の発光色が得られないという問題がある。
上記に鑑みて本発明は、基板上に形成された微細柱状結晶の位置および形状を高精度に制御して微細柱状結晶の発光波長あるいは光吸収波長を制御し得る構造を有する半導体光素子アレイおよびその製造方法を提供するものである。
本発明者らは、III族窒化物半導体からなるナノメータオーダーの微細柱状結晶(「ナノコラム」、「ナノロッド」あるいは「ナノピラー」と呼ばれる。)の位置制御および形状制御に関し、複数の開口部を有するマスクパターンを基板上に形成した後に、これら開口部から微細柱状結晶を選択的に成長させる工程に着目した。本発明者らは、かかる工程を鋭意研究して微細柱状結晶の発光波長あるいは光吸収波長を制御できることを見出し、本発明を完成するに至った。
本発明によれば、複数の凹部が形成された主面を有する半導体基板と、前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ設けられた複数の開口部を有するマスクパターンと、前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、前記複数の微細柱状結晶上にそれぞれ成長した活性層または光吸収層と、前記各活性層または光吸収層を被覆する半導体層と、を備える半導体光素子アレイが提供される。
本発明の半導体光素子アレイは、半導体基板の凹部からマスクパターンの開口部を介してマスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶を備えている。このような構成とすることで、微細柱状結晶の径を制御することができ、所望の発光波長あるいは吸収波長の半導体光素子アレイを得ることができる。
特に、発光波長のピーク波長は、前記各微細柱状結晶の径が大きいほど長波長側にシフトし、前記各微細柱状結晶の径が小さいほど短波長側にシフトするように定めることができる。
ここで、微細柱状結晶は、径が10nm以上、1000nm以下であることが好ましい。
また、本発明によれば、半導体基板上に複数の開口部を有するマスクパターンを形成する工程と、前記マスクパターンをエッチングマスクとして前記半導体基板をエッチングすることにより前記半導体基板の主面に複数の凹部を形成する工程と、各凹部から各開口部を介して前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる工程と、前記微細柱状結晶上に活性層または光吸収層を成長させる工程と、前記活性層または光吸収層を被覆する半導体層を形成する工程と、を含む半導体光素子アレイの製造方法も提供できる。
本発明によれば、半導体基板上に形成された微細柱状結晶の位置を、マスクパターンの開口部の位置を調整することで制御することができる。また、各開口部の直下の凹部の径を調整することで微細柱状結晶の径を制御し、これにより、活性層から放出される光のピーク波長、あるいは光吸収層で吸収される光の波長を所望の波長に定めることが可能である。したがって、基板上に形成された微細柱状結晶の位置および形状を高精度に制御して微細柱状結晶の発光波長、あるいは光の吸収波長を制御し得る構造を持つ半導体光素子アレイおよびその製造方法を提供することができる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
(A)〜(D)は、本発明に係る一実施形態の半導体素子の製造工程を概略的に示す断面図である。 マスクパターンに形成される開口部のパターンの一例を示す図である。 ナノコラムのパターンの一例を示す図である。 (A),(B)は、微細柱状結晶の先端部の中心軸に沿った断面形状を概略的に示す図である。 テンプレート基板に形成された凹部の径とナノコラムの発光波長との間の関係を示すグラフである。 PL発光波長と光強度との間の関係を示すグラフである。 ナノコラム径(Nanocolumn Size)と検出されたピーク波長(Peak Wavelength)との関係を表すグラフである。 FIB法を用いてテンプレート基板に凹部を形成した場合のドーズ量(Doze)と凹部の深さ(Nanohole depth)との関係を示すグラフである。 ドーズ量(Doze)と凹部の径(Nanohole size)との関係を示し、ドーズ量(Doze)とナノコラムの径(Nanocolumn size)との関係を示すグラフである。 正方格子状に規則的に配列されたナノコラムの走査型電子顕微鏡像を示す図である。 正方格子状に規則的に配列されたナノコラムの走査型電子顕微鏡像を示す図である。 ナノコラムから放出されたCL(カソードルミネッセンス)光のスペクトルの測定結果を示すグラフである。 (A)は、ナノコラムの上面視からのSEM像を示し、(B),(C)は、それぞれ異なる波長のCL像(カソードルミネッセンス像)の上面視図である。 (A)は、ナノコラムを横方向から撮像したSEM像を示し、(B),(C),(D)は、それぞれ異なる波長の断面CL像を示す図である。 (A)は、図12と同じCLスペクトルを示すグラフであり、(B)は、ナノコラムの先端部の構成を模式的に示す図である。 ナノコラムの径とナノコラムの表面積との関係を示し、ナノコラムの径と発光ピーク波長との関係を示すグラフである。 ナノコラムのPL発光波長に関する光強度分布を示すグラフである。 ナノコラムの先端部の高さと発光ピーク波長との関係を示すグラフである。 (A)〜(F)は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。 図19(A)〜(F)のナノコラム群のPL発光波長に関する光強度分布の測定結果を示すグラフである。 コラム周期と図20の光強度分布の発光ピーク波長との関係を示すグラフである。 三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。 (A),(B)は、それぞれ、第2の実施形態の半導体発光素子の構成の一部を概略的に示す図である。 本発明に係る第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。 本発明に係る第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。
以下、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
図1(A)〜(D)は、本発明に係る一実施形態の半導体光素子アレイ10の製造工程を概略的に示す断面図である。図1(D)には、本実施形態の半導体光素子アレイ10の構造が概略的に示されている。
図1(D)に示されるように、半導体光素子アレイ10は、テンプレート基板、複数の開口部を有するマスクパターン13P、および複数のナノコラム23を有している。テンプレート基板は、サファイア基板などの下地基板11上にIII族窒化物半導体層12Pをエピタキシャル成長させてなる半導体基板である。たとえば、有機金属化学気相堆積(MOCVD:Metal-Organic Chemical Vapor Deposition)法やMBE法により、下地基板11上に窒化ガリウムや窒化アルミニウムなどのバッファ層(図示せず)を低温プロセスで成長させ、このバッファ層上にIII族窒化物半導体層を成長させることでテンプレート基板が形成される。
III族窒化物半導体層12Pの表面側の主面には複数の凹部14,...,14(図1(C))が形成されている。
マスクパターン13Pは、このIII族窒化物半導体層12Pの主面上に形成されており、複数の凹部14,...,14の直上にそれぞれ開口部(以下、マスク開口部と呼ぶ。)を有している。すなわち、開口部が凹部14にかさなりあい、開口部から凹部14が露出するように凹部14が形成される。
半導体光素子アレイ10は、微細柱状結晶20と、この微細柱状結晶20上に設けられた活性層21と、活性層21を被覆する半導体被覆層22とを含んで構成される半導体素子(ナノコラム23)を複数備えるものである。
複数の細柱状結晶20,...,20は、III族窒化物半導体層12Pの凹部14,...,14からマスク開口部を介してマスクパターン13Pの上方に向けて成長したIII族窒化物半導体からなる。微細柱状結晶20上には活性層21が形成され、さらに活性層21を被覆する半導体被覆層22が形成されている。微細柱状結晶20、活性層21および半導体被覆層22によってナノコラム23が構成される。
微細柱状結晶20および半導体被覆層22は、窒化ガリウム(GaN)などのIII族窒化物半導体からなる。あるいは、微細柱状結晶20および半導体被覆層22は、一般式AlGaIn1−x−yN(0≦x≦1、0≦y≦1、かつ0≦x+y≦1)で表される4元混晶材料やボロン窒化物で構成されてもよい。4元混晶材料は、組成比x,yに応じて、室温で0.63eV〜6.2eVの広いバンドギャップを有するので、4元混晶を使用すれば、紫外域から可視光域を含み、赤外光域までをカバーする発光ダイオードやレーザダイオードを作製することができる。
微細柱状結晶20は、径が10nm以上、1000nm以下であることが好ましい。なかでも、700nm以下、さらには、650nm以下、より好ましくは600nm以下であることが好ましい。700nm以下、特に600nm以下とすれば、貫通転位の発生を抑制しやすくなる。
微細柱状結晶20の径とは、マスク開口部から露出した柱状部201の径である。柱状部201の径は、柱状部201が円柱形状の場合には、その径である。円柱形状以外の場合には、柱状部201を半導体基板の基板面側から平面視した際の重心点(平面中心)を通るとともに、柱状部201と2点で交差する直線のうち、交点間の距離が最も長い直線の長さをいう。
微細柱状結晶20は、柱状部201と、この柱状部201の先端に設けられたファセット構造202とを備える。柱状部201の形状は、特に限定されないが、たとえば、円柱形状、四角柱形状、六角柱形状等とすることができる。
また、微細柱状結晶20は、製造安定性の観点から、結晶構造が六方晶の材料で構成されていることが好ましい。
活性層21は、微細柱状結晶20のファセット構造202を覆うように設けられている。この活性層21は、たとえば、InGaN、GaN、AlGaN、AlInGaN、InGaAsN、InNからなる。より具体的には、活性層21は、たとえば、InGaN/GaN(障壁層:InGaN、井戸層:GaN)、InGa1−xN/InGa1−yN(0≦x≦1,0≦y≦1)、GaN/AlGaN(障壁層:AlGaN、井戸層:GaN)、またはAlGa1−xN/AlGa1−yN(0≦x≦1,0≦y≦1)からなる多重量子井戸(MQW)構造または単一量子井戸(SQW)構造を有していればよい。ここで、量子井戸構造とは、量子井戸層と、この量子井戸層を挟み込む障壁層とを含むものである。障壁層のバンドギャップは、量子井戸層のそれよりも大きい。
半導体被覆層22は、活性層21上に設けられており、活性層21を完全に被覆している。
本実施形態では、活性層21から放出される光のピーク波長を、活性層21が形成される直前の微細柱状結晶20の径Δに応じた波長に定めることができる。活性層21から放出される光のピーク波長は、各微細柱状結晶20の径Δが大きいほど長波長側にシフトし、各微細柱状結晶20の径Δが小さいほど短波長側にシフトするように定めることが可能である。すなわち、径Δが大きな微細柱状結晶20上の活性層21から放出される光のピーク波長は、径Δが小さな微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長である。
よって、微細柱状結晶20の径Δを制御することで所望の発光波長を得ることができる。後述するようにこの微細柱状結晶20の径Δは、テンプレート基板のIII族窒化物半導体層12Pに形成された各凹部14の径δ(図1(C))を調整することで所望の値にすることができる。凹部14の径δは、マスク開口部の大きさに依存するので、予めマスク開口部の大きさを定めておけば、この大きさに応じた径δを得ることができる。
さらに、活性層21から放出される光のピーク波長は、各ナノコラム23の微細柱状結晶20の先端部(ファセット構造202)の表面積に応じた波長に定めることができる。活性層21から放出される光のピーク波長は、ファセット構造の表面積が大きいほど長波長側にシフトし、ファセット構造の表面積が小さいほど短波長側にシフトするように定めることができる。すなわち、ファセット構造の表面積が大きな微細柱状結晶20上の活性層21から放出される光のピーク波長は、ファセット構造の表面積が小さな微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長である。
よって、微細柱状結晶20の先端部におけるファセット構造の表面積を制御することで所望の発光波長を得ることが可能である。
また、図2に示されるように、マスクパターン13Pに形成される開口部13g,...,13gは、マスクパターン13Pの面内方向において周期的に配列されている。
ここで、マスクパターンには、複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とを形成した場合、開口部の配置密度が高い領域にある複数の微細柱状結晶20上の活性層21から放出される光のピーク波長は、開口部の配置密度が低い領域にある複数の微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長となる。
すなわち、活性層21から放出される光のピーク波長は、微細柱状結晶20,...,20の面内密度が高いほど長波長側へシフトし、かつ微細柱状結晶20,...,20の面内密度が低いほど短波長側へシフトするように定めることができる。面内密度は、微細柱状結晶20,...,20の空間的な周期が短いほど高くなり、あるいは、微細柱状結晶20の径が大きいほど高くなる。
次に、図1(A)〜(D)を参照して、本実施形態における半導体光素子アレイ10の好適な製造方法を以下に説明する。
先ず、MOCVD法やMBE法により、下地基板11上に窒化ガリウムや窒化アルミニウムなどのバッファ層(図示せず)を低温プロセスで成長させ、このバッファ層上に窒化ガリウムや窒化アルミニウムなどのIII族窒化物半導体層12を成長させる(図1(A))。この結果、基板11とIII族窒化物半導体層12とを含むテンプレート基板が作製される。次に、テンプレート基板の主面の所定領域に、チタン(Ti)を含む金属マスク層13を形成する(図1(B))。この金属マスク層13は、チタンの自然酸化膜でもよいし、あるいは、酸化チタン膜でもよい。
なお、金属マスク層13の構成材料は、微細柱状結晶20を選択成長させる点でチタンが好適であるが、これに限らず、チタン(Ti)、タンタル(Ta)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、金(Au)、コバルト(Co)、タングステン(W)、モリブデン(Mo)よりなる群から選択された1種または2種以上の金属を含むものでもよい。
次に、金属マスク層13をパターニングして、図1(C)に示すように、III族窒化物半導体層12Pの表面を露出させる複数の開口部を有するマスクパターン13Pを形成する。このパターニングは、リソグラフィ工程により実行できる。すなわち、金属マスク層13上にレジストパターンを形成し、このレジストパターンをエッチングマスクとするエッチングを実行することでマスクパターン13Pを形成できる。あるいは、FIB(Focused Ion Beam)法を用いて集束イオンビームを金属マスク層13に所定のドーズ量(単位面積当たりの照射イオン量)で照射することでマスクパターン13Pを形成することができる。
金属マスク層13をパターニングする際に、金属マスク層13だけでなく、開口部の直下にあるIII族窒化物半導体層12も加工されるので、図1(C)に示すようにマスクパターン13Pの開口部の直下にドット状の凹部(ホール)14,...,14が形成される。マスクパターン13Pの開口部の上面視形状(すなわち、凹部14の上面視形状)は、特に限定されるものではなく、図2に示した正方形状のほか、円形状や多角形状などの軸対称形状でもよい。
その後、MOCVD法やMBE法により、複数の凹部14からマスク開口部を介してマスクパターン13Pの上方へ微細柱状結晶20、活性層21および半導体被覆層22を連続的に成長させる(図1(D))。微細柱状結晶20は、マスクパターン13Pの上方に成長すると同時に、テンプレート基板の面内方向に沿った横方向にも成長する。それ故、ナノコラム23の径Δは、凹部14の径δよりも大きくなる。また、半導体被覆層22は活性層21を完全に被覆するように形成されるので、活性層21は外部空間への露出部を持たない。言い換えれば、活性層21は、ナノコラム23の先端部の中に完全に埋め込まれた状態にある。それ故、その露出部に起因する非発光再結合準位の形成が抑制され、高い内部量子効率を実現することが可能となる。
また、微細柱状結晶20を横方向成長させることで、以下のような効果がある。
マスク開口部径を小さくすることで、微細柱状結晶20の成長初期での貫通転位の発生が抑制される。その後に横方向成長で径を太くすれば貫通転位のない比較的、径の大きな微細柱状結晶(例えば、直径1000nm)を得ることが可能となる。
なお、微細柱状結晶20を横方向成長させるためには、相対的に窒素供給量を増加する方法や、Alを添加する方法(たとえば、AlGaNとする方法)等がある。
ウルツ鉱型結晶構造のIII族窒化物半導体を、c面(=(0001)面)と呼ばれる極性面の方向に成長させて微細柱状結晶20を形成した場合、ナノコラム23(または微細柱状結晶20)の上面視形状は、図3に示されるように六角形となる。図4(A),(B)は、微細柱状結晶20の先端部の中心軸に沿った断面形状を概略的に示す図である。図4(A)に示される先端部は、ファセット構造となっており、斜め上方を向いたファセット面として、ウルツ鉱型結晶構造の半極性面20aからなる傾斜面を有している。
この先端部の形状は六角錐形状である。ここで、半極性面20aとしては、たとえば、(10−1−1)面、(10−1−3)面、(11−22)面、(11−24)面、(10−12)面が挙げられる。一方、図4(B)に示される先端部もファセット構造となっているが、斜め上方を向いたファセット面、および、直上方を向いた面として、ウルツ鉱型結晶構造の半極性面20aからなる傾斜面と平坦な極性面20bとを有している。結晶の成長条件に応じて、図4(A)の先端部形状あるいは図4(B)の先端部形状のいずれかが形成される。
なお、ファセット構造とは、下地基板11水平面に対して斜めに位置するファセット面を側面とする多面体構造のことである。
微細柱状結晶20の径が小さければ、図4(A)に示す六角錐形状を持つ先端部が形成されやすく、微細柱状結晶20の径が大きくなれば、図4(B)に示すような先端部が形成されやすい。結晶の成長条件にもよるが、微細柱状結晶20の径を約300nm以上にすると、微細柱状結晶20の先端部に平坦な極性面20bを明確に出現させることができる。また、微細柱状結晶20の径が約300nmを超えて大きくなるほど平坦な極性面20bの面積は拡大する。
MBE法を用いて微細柱状結晶20を成長させる場合、高周波プラズマ励起により生成された活性窒素とIII族金属とを含む原料ガスをテンプレート基板の表面上に導入して微細柱状結晶20を成長させる。この際の成長条件は、III族金属に比べて活性窒素の実効的な供給量比を大きくして微細柱状結晶20が成長する条件とすればよい。たとえば、窒化ガリウム(GaN)からなる微細柱状結晶20を成長させる場合は、結晶成長温度を600℃以下とするとマスク開口部以外の成長抑制領域にもGaN結晶が成長することが多い。一方、成長温度を高くするほど成長抑制領域に成長するGaN結晶の空間密度が減少する。温度をある一定温度以上にすることにより、成長抑制領域にGaNを成長させないことも可能である。成長抑制領域にGaNを成長させない温度は、III族金属と活性窒素の供給量や比率にも依存するが、一例として、850℃以上である。
微細柱状結晶20を成長させるために、MBEは以下の条件で行うことが望ましい。温度は、成長させるIII族窒化物半導体の種類に応じて適宜選択されるが、350℃以上、1200℃以下の範囲である。たとえば、GaN結晶を成長させる場合は400℃以上1000℃以下であり、AlN結晶を成長させる場合は500℃以上1200℃以下であり、InNを成長させる場合は350℃以上600℃以下であることが好ましい。上記の温度範囲で、窒素リッチの条件下でMBEを行うことにより、III族窒化物半導体の微細柱状結晶20を成長させることができる。
本実施形態では、マスク開口部が形成されていないマスクパターン13P上の領域は、微細柱状結晶20の成長が抑制される領域(成長抑制領域)である。成長抑制領域で横方向の結晶成長が抑制される理由は、必ずしも明らかではなく、推測の域を出ないが、マスクパターン13Pの表面におけるガリウム(Ga)などの離脱がテンプレート基板の露出表面上よりも促進されるため、横方向成長が抑制されると推測される。あるいは、TiおよびPtの物性に着目した場合、これらは他の金属に比べて融点や沸点が高く、共有結合あたりの結合エネルギーが高く、また、熱伝導率が他の金属に比べて低い。TiおよびPtは、共有結合の強さから、表面における未結合の手が少ない。このことから、結合のしやすさが期待できず、III族窒化物微細柱状結晶の成長開始を抑制したと推測することもできる。
また、結晶成長工程において、金属膜表面には活性窒素が単独またはIII族金属と同時に照射される。窒化物形成能を有する金属の場合には、金属窒化物(たとえば、TiN、WN)が形成されると推測される。これらの金属窒化物は化学的に安定、すなわち表面には活性な未結合手が少ないので、GaやGaNなどとの結合が弱い。したがって、GaやGaNなどが表面から脱離するに十分な成長温度の場合、供給されたGaやGaNなどが結晶成長を持続するに足る十分な大きさとなる前に脱離してしまい、GaNなどの成長が抑制されるとも考えられる。
以上より、成長抑制領域で横方向の結晶成長が抑制される理由としては、特に、成長抑制領域における温度が基板表面に比べて高い点と、成長抑制領域上にGaNの成長核が形成されにくい点との相乗効果が予想される。
一方、テンプレート基板のIII族窒化物半導体層12Pの露出表面上では、結晶成長の抑制が生じない。テンプレート基板およびマスクパターン13Pの表面上に形成される微細柱状結晶20は、テンプレート基板やマスクパターン13Pの材質、マスクパターン13Pの膜厚あるいは成長条件に依存して変化し得るが、テンプレート基板の主面またはマスクパターン13Pの表面に対して略垂直方向に起立して成長する。
本実施形態の方法によって成長するIII族窒化物半導体からなる微細柱状結晶20は、ナノメータオーダーの径Δを有する柱状構造の単結晶である。微細柱状結晶20の直径は、たとえば、10nm以上1000nm以下の範囲内の大きさに定められる。微細柱状結晶20の高さは、マスクパターン13Pの厚さや結晶の成長条件によっても変動し得るが、たとえば、0.2μm以上5μm以下の範囲内である。マスクパターン13Pの膜厚は、特に限定されないが、好ましくは、2nm以上100nm以下の範囲内である。ただし、微細柱状結晶20の直径および高さは、結晶の成長条件により変動し得る。
その後、各微細柱状結晶20上に活性層21を設け、さらに、活性層21上に半導体被覆層22を形成する。活性層21、半導体被覆層22は、MOCVD法や、MBE法により形成することができる。
なお、活性層21や、半導体被覆層22を構成する材料は、マスクパターン13P上にも堆積することとなる。
また、半導体被覆層22を形成する際には、横方向成長させて、活性層21上面のみならず、側面を被覆することが好ましい。
(発光波長の結晶径依存性)
図5は、III族窒化物半導体層12Pに形成された凹部14の径(以下「ホール径」と呼ぶ。)δとナノコラム23の発光波長との間の関係を示すグラフである。
図5のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期(開口部の中心間の距離):400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
このような製造条件で、50nm〜265nmの範囲内の異なるホール径δを持つ半導体発光素子のサンプルを13個作製し、各サンプルについて、凹部14の深さ(以下「ホール深さ」と呼ぶ。)と、PL(photoluminescence)発光波長と、ナノコラム23の径(以下「ナノコラム径」と呼ぶ。)とを測定した。この測定結果を示すグラフが図5である。
図5のグラフから、ホール径δが大きいほど、ホール深さが深く、ホール径が大きく、発光波長が長くなる傾向が確認された。逆に、ホール径が小さいほど、ホール深さが浅く、ナノコラム径が小さく、発光波長が短くなる傾向が確認された。
次に、図6は、166nm,192nm,203nm,226nm,242nm,298nm,236nmというナノコラム径をそれぞれ持つ半導体素子について測定されたPL発光波長(単位:nm)と光強度(単位:任意単位)との間の関係を示すグラフである。このグラフを得るために作製されたナノコラム23の製造条件は、図5のグラフを得るために作製されたナノコラム23の製造条件と同じである。
図6の光強度分布から各ナノコラム径についてピーク波長を検出した。図7は、ナノコラム径(Nanocolumn Size)と検出されたピーク波長(Peak Wavelength)との関係を表すグラフである。ナノコラム径が大きいほどピーク波長が長くなり、ナノコラム径が小さいほどピーク波長が短くなることが分かる。
以上、光を放出する活性層21の構造が微細柱状結晶20の先端形状に依存することを考慮すれば、図5乃至図7のグラフから明らかなように、活性層21から放出される光のピーク波長は、活性層21が形成される直前の微細柱状結晶20の径Δが大きいほど長波長側にシフトし、微細柱状結晶20の径Δが小さいほど短波長側にシフトすることが理解される。
次に、図8は、FIB法を用いてテンプレート基板に凹部(ホール)14を形成した場合のドーズ量(Doze(cm−2))と凹部14の深さ(Nanohole depth(nm))との関係を示すグラフである。また、図9は、ドーズ量(Doze(cm−2))と凹部14の径(Nanohole size(nm))δとの関係を示し、ドーズ量(Doze(cm−2))とナノコラム23の径(Nanocolumn size(nm))との関係を示すグラフである。
図8および図9のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、複数のマスク開口部を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
このような製造条件と、異なるドーズ量とで半導体発光素子のサンプルを14個作製し、各サンプルについて、凹部14の深さ、凹部14の径δおよびナノコラム23の径を測定した。その測定結果を示すグラフが図8および図9である。
図8のグラフに示されるように、金属マスク層13に集束イオンビームを照射したときのドーズ量が多くなるほど凹部14の深さも大きくなる。また、図9のグラフに示されるように、ドーズ量が多くなるほど、凹部14の径(nanohole size)が大きくなるとともにナノコラム23の径(nanocolumn size)も大きくなることが分かる。したがって、凹部14の径の増大とともに微細柱状結晶20の径Δも増大することが理解される。
図10および図11は、正方格子状に規則的に配列された、異なる径を持つナノコラム23,...,23の走査型電子顕微鏡像(SEM像)を示す図である。図10は、ナノコラム23,...,23の上面視からのSEM像を示し、図11は、これらナノコラム23,...,23を斜めから俯瞰したときのSEM像である。図10および図11に示すナノコラム群は、凹部14,...,14の径を個別に制御することにより作製された。
(発光波長の先端形状依存性)
次に、図12は、ナノコラム23から放出されたCL(カソードルミネッセンス)光のスペクトルの測定結果を示すグラフである。このグラフの横軸は発光波長に対応し、グラフの縦軸はCL強度(任意単位)に対応している。図13(A)は、ナノコラム23の上面視からのSEM像を示し、図13(B),(C)は、それぞれ異なる波長405nm,510nmのCL像(カソードルミネッセンス像)の上面視図である。図14(A)は、ナノコラム23を横方向から撮像したSEM像を示し、図14(B),(C),(D)は、それぞれ異なる波長365nm,435nm,500nmの断面CL像(図14(A)のナノコラム23の断面CL像)を示す図である。
図12、図13(A)〜(C)および図14(A)〜(D)を得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ1.8μm、径180〜495nm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:3nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
図12のグラフに示されるように、CL強度分布には、GaNからの発光のピークと、InGaNからの2つの発光のピーク(波長:404nm、510nm)とがある。
図13(B)に示される波長405nmのCL像は、ナノコラム23の活性層21の全体からの発光を示している。このCL像は、微細柱状結晶20の先端部の側面(半極性面)20a(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。これに対し、図13(C)に示される波長510nmのCL像は、ナノコラム23の活性層21のうち頂上付近のみからの発光を示している。このCL像は、微細柱状結晶20の先端部の平坦面(極性面)20b(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。
さらに、図14(B)に示される波長365nmの断面CL像は、ナノコラム23の全体に分布するGaNからの発光を示している。図14(C)に示される波長435nmの断面CL像は、ナノコラム23の先端部全体のInGaNからの発光を示している。この断面CL像は、主に、微細柱状結晶20の先端部の側面(半極性面)20a(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。また、図14(D)に示される波長500nmの断面CL像は、ナノコラム23の頂上付近のInGaNからの発光を示している。この断面CL像は、主に、微細柱状結晶20の先端部の平坦面(極性面)20b(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。
図12、図13(A)〜(C)および図14(A)〜(D)から理解される通り、微細柱状結晶20の先端部の側面(半極性面)20a上に形成されたInGaNの発光波長と、当該先端部の平坦面(極性面)20b上に形成されたInGaNの発光波長とは異なる。その理由は、以下のように考えられる。
図15(B)に示されるように、微細柱状結晶20の側面20a上に形成されたInGaN結晶21sと平坦面20b上に形成されたInGaN結晶21tとでは、InGaN結晶中へのInの取り込みやすさが異なるので、平坦面20bに形成されたInGaN結晶21t中のIn組成比は比較的高く、側面20aに形成されたInGaN結晶21s中のIn組成比は比較的低いと考えられる。このため、図15(A)に示されるCLスペクトル(図12と同じCLスペクトル)が形成される。また、キャリアは、先端部付近のバンドギャップの狭いInGaN結晶21tに閉じ込められるので、先端部付近のInGaN結晶21tが量子ドットを形成し得る。これが、側面20aに形成されたInGaNの発光波長と、平坦面20bに形成されたInGaNの発光波長との差を生じさせていると考えられる。
図12のCL強度分布を得るために作製されたサンプルを用いてPL(フォトルミネッセンス)強度を測定した。励起光として波長405nmのCW(Continuous Wave)光を使用した。また、励起光密度は0.29kW/cmであった。PL強度分布のピーク波長は、4Kの低温条件で486.2nm、300Kの高温条件で486.7nmであり、PL強度分布の半値全幅(FWHM:Full Width at Half Maximum)は、4Kの低温条件で151.3meVに相当し、300Kの高温条件で187.2meVに相当した。したがって、低温条件と高温条件との間のPL積分強度比すなわち内部量子効率は、波長486nmに対して約77%であり、非常に良好な結晶性が確認された。このような高い内部量子効率が実現された1つの理由は、活性層21(21s,21t)の外部空間への露出部が無くなり、非発光再結合による注入キャリアの損失が抑制されたからだと考えられる。図15(B)に示されるように、狭いバンドギャップを持つInGaN結晶21s,21tは広いバンドギャップを持つGaNにより完全に被覆されてナノコラム23中に埋め込まれた状態にある。それ故、InGaN結晶21s,21tの外部空間への露出部が無くなるので、非発光再結合準位の形成が抑制されたと考えることができる。仮に露出部が存在すれば、この露出部の表面のバンドギャップ内に非発光再結合準位が形成され、この非発光再結合準位を介して電子と正孔とが再結合することにより発光効率が低下する。
なお、ここでは、InGaN結晶21s,21tを有するナノコラム23について言及したが、InGaN結晶21tはなくてもよい。
このようなナノコラムであっても、ナノコラムの径により、発光波長を制御することができることが確認されている。すなわち、径が小さなナノコラムの活性層から放出される光のピーク波長は、径が大きなナノコラム上の活性層から放出される光のピーク波長よりも低波長となることが確認されている。
図16は、ナノコラム23の径(コラム径)とナノコラム23の先端部のファセット構造の表面積との関係を示すとともに、コラム径と発光ピーク波長との関係を示すグラフである。発光ピーク波長は、PL光の強度分布から検出された波長である。グラフ中、記号「○」が発光ピーク波長の測定値を、記号「●」がナノコラム23の先端部の平坦面(SurfaceC)の面積を、記号「▲」がナノコラム23の先端部の傾斜側面(SurfaceSemi)の面積を、記号「■」がナノコラム23の先端部の平坦面の面積と傾斜側面の面積との合計を、それぞれ示している。
この図16のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
このような製造条件で、135nm〜350nmの範囲内の異なるコラム径を持つナノコラム群のサンプルを複数個作製し、各サンプルについて、ナノコラム23の先端部の表面積と、発光ピーク波長とを測定した。この測定結果を示すグラフが図16である。
図16のグラフに示されるように、コラム径の増大とともに、ナノコラム23の先端部のファセット構造の表面積(傾斜側面(ファセット面)と平坦面の合計面積)は増大する。また、コラム径が約135nm〜約288nmの範囲内では、コラム径の増大とともに発光ピーク波長の値も単調に増大している。よって、ナノコラム23の先端部のうち上方を向いたファセット面の合計面積の増大とともに、発光ピーク波長の値が増大する。活性層21の膜厚と半導体被覆層22の膜厚は薄いので、実質的に、微細柱状結晶20の先端部のうち上方を向いたファセット面の面積の増大とともに発光ピーク波長が長くなるということができる。したがって、微細柱状結晶20の先端部のうち上方を向いたファセット面の面積を制御することで、所望の発光ピーク波長を得ることが可能である。
また、図16のグラフに示されるように、コラム径が約135nm〜約260nmの範囲では、ナノコラム23の先端部の傾斜側面(SurfaceSemi)の面積の増大とともに発光ピーク波長の値も増大するという正の相関関係が成立するが、コラム径が約260nmを超えると、この相関関係が成立しなくなる。この代わりに、コラム径が約260nm〜約288nmの範囲では、ナノコラム23の先端部の平坦面(SurfaceC)の面積の増大とともに発光ピーク波長の値が増大する。
次に、図17は、200nmのコラム径を持つナノコラム23のPL発光波長に関する光強度分布(単位:任意単位)を示すグラフである。グラフ中、実線は、ナノコラム23の先端部の傾斜側面の高さhが2.1μmの場合の測定曲線を、破線は、ナノコラム23の先端部の傾斜側面の高さhが1.25μmの場合の測定曲線を、それぞれ示している。図18は、同じナノコラム23についての高さhと発光ピーク波長との関係を示すグラフである。図18のグラフの横軸は高さhに対応し、縦軸は発光ピーク波長に対応している。
図17および図18のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
図17に示されるようにナノコラム23の先端部の傾斜側面の高さhが1.25μmから2.1μmに変化すると、光強度分布のピークも長波長側にシフトしている。図18にもその傾向が示されている。
(発光波長の面内密度依存性)
図19(A)〜(F)は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。図19(A),(B),(C),(D),(E),(F)は、それぞれ、空間周期(各微細柱状結晶20の中心間の距離)400nm,600nm,800nm,1μm,2μm,4μmの場合の配列を示している。また、空間周期400nm,600nm,800nm,1μm,2μm,4μmの配列に対応するPL発光のピーク波長は、それぞれ、508nm,500nm,490nm,480nm,480nm,479nmと測定された。
図19のSEM像を得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数のマスク開口部(各マスク開口部の径:167nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF−MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ1.5μm、径190nm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:3nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
図19(A)〜(F)に示されるように、ピーク波長は、ナノコラム23,...,23の空間周期(コラム周期、配置密度)が短いほど長波長側へシフトし、かつナノコラム23,...,23の空間周期が長いほど短波長側へシフトしている。
図20は、図19(A)〜(F)のナノコラム群のPL発光波長に関する光強度分布(単位:任意単位)の測定結果を示すグラフである。また、図21は、コラム周期と図20の光強度分布の発光ピーク波長との関係を示すグラフである。ここで、各ナノコラム23のコラム径は160nmにされた。
図21に示されるように、コラム周期が約1μm以下の範囲では、コラム周期の増大とともに発光ピーク波長の値が減少している。コラム径が一定のままコラム周期を長くすると、ナノコラム23,...,23の面内密度が小さくなるので、面内密度の減少とともに発光ピーク波長が短くなり、面内密度の増大とともに発光ピーク波長が長くなる。
図22は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。図22(A),(B),(C),(D)は、それぞれ、空間周期242nm,269nm,298nm,336nmの場合の配列を示している。また、空間周期242nm,269nm,298nm,336nmの配列に対応するPL発光のピーク波長は、それぞれ、607nm,643nm,649nm,650nmと測定された。
図22(A)〜(D)のSEM像を得るために作製されたナノコラム23の製造条件は、マスク開口部の径を除いて、図19のSEM像を得るために作製されたナノコラム23の製造条件と同じである。図22のSEM像を得るために作製されたナノコラム23の径は、空間周期の増大とともに大きくなるように設定された。
図22(A)〜(D)に示されるように、ナノコラム23の径の増大とともに、ピーク波長の値が増大している。ナノコラム23の径の増大とともに、ナノコラム23,...,23の面内密度(配置密度)が大きくなるので、面内密度の増大とともに発光ピーク波長が長くなり、面内密度の減少とともに発光ピーク波長が短くなる。
各ナノコラム23の半導体被覆層22の膜厚は薄く、横方向の結晶成長が抑制されることを考慮すれば、活性層21から放出される光のピーク波長は、微細柱状結晶20,...,20の面内密度が高いほど長波長側へシフトし、かつ微細柱状結晶20,...,20の面内密度が低いほど短波長側へシフトする。したがって、微細柱状結晶20の径を制御することで所望の発光波長を得ることが可能である。
以上説明した通り、第1の実施形態の半導体光素子アレイ10は、テンプレート基板上に形成された微細柱状結晶20の位置を、マスクパターン13Pの開口部の位置を調整することで制御することができる。また、各開口部の直下の凹部14の径を調整することで微細柱状結晶20の径を制御し、これにより、活性層21から放出される光のピーク波長を所望の波長に定めることが可能である。また、各微細柱状結晶20の径を大きくしてピーク波長を長波長側にシフトさせ、各微細柱状結晶20の径を小さくしてピーク波長を短波長側にシフトさせることができる。
また、微細柱状結晶20の先端部のファセット構造の表面積を制御することで、活性層21から放出される光のピーク波長を所望の波長に定めることが可能である。ファセット構造の表面積を大きくしてピーク波長を長波長側にシフトさせ、ファセット構造の表面積を小さくしてピーク波長を短波長側にシフトさせることができる。
さらに、周期的に配列された微細柱状結晶20,...,20の面内密度を高くすることでピーク波長を長波長側へシフトさせ、微細柱状結晶20,...,20の面内密度を低くすることでピーク波長を短波長側へシフトさせることができる。面内密度の制御は、微細柱状結晶20,...,20の空間周期(すなわち、マスクパターン13Pに形成される開口部の空間周期)の調整、あるいは、各微細柱状結晶20の径(すなわち、マスクパターン13Pに形成される開口部の径)の調整により高精度で行うことが可能である。
(第2の実施形態)
次に、本発明に係る第2の実施形態について説明する。図23(A),(B)は、それぞれ、第2の実施形態の半導体発光素子の構成の一部を概略的に示す図である。図23(A),(B)に示される構造は、上記第1の実施形態の半導体光素子アレイ10の構造を含むものである。
図23(A)を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13Pは、n側電極(図示せず)と接続されている。このIII族窒化物半導体層12P上には、n型AlGaNなどのn型クラッド層を含む微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型半導体層24とからなるナノコラムが形成されている。これらナノコラム間の空間には、酸化珪素などの絶縁膜30が埋め込まれている。そして、p型半導体層24,...,24に電気的に接続されるように、Ni/Au多層膜やITO(Indium Tin Oxide)などのp側電極31が成膜されている。p側電極から注入された正孔とn側電極からの電子とが活性層21で再結合することにより活性層21は光を放出する。
微細柱状結晶20は、n型半導体層で構成されており、たとえば、GaN/AlGaN/GaNの3層構成であってもよい。
一方、図23(B)を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13Pは、n側電極(図示せず)と接続されている。このIII族窒化物半導体層12P上には、n型AlGaNなどのn型クラッド層を含む微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型半導体層25とからなるナノコラム23が形成されている。p型半導体層25は、横方向の結晶成長の促進により横方向に連続的に形成されている。
p型半導体層25を横方向成長を促進させるためには、Mgをドープする方法、成長温度を下げる方法、Alを添加する方法等がある。そして、p型半導体層25に電気的に接続されるように、Ni/Au多層膜やITO(Indium Tin Oxide)などのp側電極32が成膜されている。p側電極から注入された正孔とn側電極からの電子とが活性層21で再結合することにより活性層21は光を放出する。
図23(A)および図23(B)の構造をレーザダイオードとして構成する場合には、活性層21から放出された光を閉じ込める光共振器を形成すればよい。たとえば、活性層21よりも上方と下方とにそれぞれ多層膜反射鏡を形成して、これら多層膜反射鏡で光共振器を構成することができる。
なお、p型半導体層25に光導波路を形成することもできる。
また、図23(A)または図23(B)の構造を、太陽電池などの光電変換素子に変形することも可能である。たとえば、各ナノコラム23において、活性層21の代わりにpin構造(光吸収構造)を形成すればよい。このpin構造では、i型半導体層を量子ドット構造とすることができる。複数の量子ドット層を中間層を介して積層してi型半導体層を構成することにより、変換効率を向上させることができる。上述の通り、微細柱状結晶20の径、微細柱状結晶20,...,20の面内密度あるいは微細柱状結晶20の先端形状を制御することにより、pin構造を所望の吸収波長に適合させることが可能である。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。図24および図25は、それぞれ、第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。第3の実施形態の半導体発光素子は、上記第1の実施形態の半導体光素子アレイ10の構造を含むものである。
図24を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13P上にはn側電極40が形成されている。このIII族窒化物半導体層12P上には、発光波長の異なる複数種のナノコラム群23R,23G,23Bが形成されている。これらナノコラム群23R,23G,23Bを構成するナノコラムは、図23(B)に示したような、n型AlGaNなどのn型クラッド層を含むn型(第1導電型)の微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型(第2導電型)の半導体層25とからなるナノコラムと同じ構造を有していればよい。ナノコラム群23R,23G,23Bは、それぞれ、R(赤色),G(緑色),B(青色)の3原色の波長の光をそれぞれ放出する結晶構造を有している。
さらに、図25に示すように、ナノコラム群23R,23G,23B上には、それぞれ、p型半導体層25R,25G,25Bが成膜されている。そして、これらp型半導体層25R,25G,25Bには、それぞれ、p側電極42R,42G,42Bが接続されている。p側電極42R,42G,42Bは、Ni/Au多層膜やITO(Indium Tin Oxide)で構成すればよい。
p側電極42R,42G,42Bから注入された正孔とn側電極からの電子とがナノコラム群23R,23G,23Bの活性層で再結合することにより活性層は光を放出することができる。
図25の構造をレーザダイオードとして構成する場合には、活性層から放出された光を閉じ込める光共振器を形成すればよい。たとえば、活性層よりも上方と下方とにそれぞれ多層膜反射鏡を形成して、これら多層膜反射鏡で光共振器を構成することができる。
第3の実施形態の半導体発光素子は、3原色の波長の光を放出する発光体を同一の基板11上に集積することができる。さらに、R、G、Bの光をそれぞれ放出するナノコラム群23R,23G,23Bの面内密度を個別に調整することで光強度分布を制御して、全体のスペクトル分布を太陽光のスペクトル分布に近似することが可能である。この結果、理想的な白色発光ダイオードを作製することができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上記実施形態では、下地基板11としてサファイア基板が使用されるが、これに限定されず、たとえば、シリコン基板やSiC基板を使用してもよい。テンプレート基板の代わりに、窒化ガリウム基板などのIII族窒化物半導体基板を使用してもよい。
本発明に係る半導体光素子アレイは、電子デバイスおよび光デバイスの分野において応用可能である。微細柱状結晶は優れた発光特性を持ち、発光デバイスへの応用が期待される。本発明に係る半導体光素子アレイは、たとえば、蛍光体、発光ダイオード、レーザダイオードあるいは光電変換素子に適用することができる。
10 半導体光素子アレイ
11 下地基板
12,12P III族窒化物半導体層
13 金属マスク層
13P マスクパターン
13g 開口部
14 凹部
20 微細柱状結晶
20a 半極性面
20b 平坦面
21 活性層
22 半導体被覆層
23 ナノコラム
24,25 p型半導体層
31,32 p側電極
40 n側電極
本発明に係る半導体光素子アレイは、電子デバイスおよび光デバイスの分野において応用可能である。微細柱状結晶は優れた発光特性を持ち、発光デバイスへの応用が期待される。本発明に係る半導体光素子アレイは、たとえば、蛍光体、発光ダイオード、レーザダイオードあるいは光電変換素子に適用することができる。
以下、参考形態の例を付記する。
(1)
複数の凹部が形成された主面を有する半導体基板と、
前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ設けられた複数の開口部を有するマスクパターンと、
前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、
前記複数の微細柱状結晶上にそれぞれ成長した活性層と、
前記各活性層を被覆する半導体層と、
を備える半導体光素子アレイ。
(2)
(1)に記載の半導体光素子アレイであって、
異なる径の前記微細柱状結晶を含み、
径が小さな前記微細柱状結晶上の活性層から放出される光のピーク波長は、径が大きな前記微細柱状結晶上の活性層から放出される光のピーク波長よりも短波長である半導体光素子アレイ。
(3)
(1)または(2)に記載の半導体光素子アレイであって、
前記マスクパターンには、前記複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とがあり、
複数の開口部の配置密度が高い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長は、複数の開口部の配置密度が低い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長よりも長波長である、半導体光素子アレイ。
(4)
(1)に記載の半導体光素子アレイであって、
前記各微細柱状結晶は、先端部にファセット構造を有するとともに、各微細柱状結晶における前記ファセット構造の表面積は異なっており、
ファセット構造の表面積が小さな前記微細柱状結晶から放出される光のピーク波長は、ファセット構造の表面積が大きな前記微細柱状結晶から放出される光のピーク波長よりも短波長である半導体光素子アレイ。
(5)
(4)に記載の半導体光素子アレイであって、
前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
前記ファセット構造を構成するファセット面は、前記ウルツ鉱型結晶構造の半極性面を含む、
半導体光素子アレイ。
(6)
(5)に記載の半導体光素子アレイであって、前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、半導体光素子アレイ。
(7)
(4)に記載の半導体光素子アレイであって、
前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、
半導体光素子アレイ。

Claims (21)

  1. 複数の凹部が形成された主面を有する半導体基板と、
    前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ設けられた複数の開口部を有するマスクパターンと、
    前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、
    前記複数の微細柱状結晶上にそれぞれ成長した活性層または光吸収層と、
    前記各活性層または光吸収層を被覆する半導体層と、
    を備える半導体光素子アレイ。
  2. 請求項1に記載の半導体光素子アレイにおいて、
    前記各微細柱状結晶上には活性層が形成されている半導体光素子アレイ。
  3. 請求項2に記載の半導体光素子アレイにおいて、
    前記各微細柱状結晶の径は、10nm以上、1000nm以下である半導体光素子アレイ。
  4. 請求項2または3に記載の半導体光素子アレイであって、
    異なる径の前記微細柱状結晶を含み、
    径が小さな前記微細柱状結晶上の活性層から放出される光のピーク波長は、径が大きな前記微細柱状結晶上の活性層から放出される光のピーク波長よりも低波長である半導体光素子アレイ。
  5. 請求項2乃至4のいずれかに記載の半導体光素子アレイであって、
    前記マスクパターンには、前記複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とがあり、
    複数の開口部の配置密度が高い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長は、複数の開口部の配置密度が低い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長よりも長波長である、半導体光素子アレイ。
  6. 請求項2に記載の半導体光素子アレイであって、
    前記各微細柱状結晶は、先端部にファセット構造を有するとともに、各微細柱状結晶における前記ファセット構造の表面積は異なっており、
    ファセット構造の表面積が小さな前記微細柱状結晶から放出される光のピーク波長は、ファセット構造の表面積が大きな前記微細柱状結晶から放出される光のピーク波長よりも低波長である半導体光素子アレイ。
  7. 請求項6記載の半導体光素子アレイであって、
    前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
    前記ファセット構造を構成するファセット面は、前記ウルツ鉱型結晶構造の半極性面を含む、
    半導体光素子アレイ。
  8. 請求項7に記載の半導体光素子アレイであって、前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、半導体光素子アレイ。
  9. 請求項6に記載の半導体光素子アレイであって、
    前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
    前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、
    半導体光素子アレイ。
  10. 請求項6乃至9のいずれかに記載の半導体光素子アレイであって、
    前記マスクパターンには、前記複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とがあり、
    複数の開口部の配置密度が高い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長は、複数の開口部の配置密度が低い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長よりも長波長である、半導体光素子アレイ。
  11. 請求項2から10のうちのいずれか1項に記載の半導体光素子アレイであって、
    前記活性層は、前記半導体層により完全に被覆されている、半導体光素子アレイ。
  12. 請求項2から11のうちのいずれか1項に記載の半導体光素子アレイであって、
    前記微細柱状結晶の導電型は、第1導電型であり、
    前記半導体層は、前記第1導電型とは逆の第2導電型のIII族窒化物半導体層を含む、
    半導体光素子アレイ。
  13. 請求項2から12のうちのいずれか1項に記載の半導体光素子アレイであって、
    前記複数の微細柱状結晶は、発光波長の異なる複数の柱状結晶群からなる、半導体光素子アレイ。
  14. 請求項13に記載の半導体光素子アレイであって、
    前記複数の柱状結晶群は、少なくとも、3原色の波長の光をそれぞれ放出する3つの柱状結晶群を含む、半導体光素子アレイ。
  15. 請求項2から14のうちのいずれか1項に記載の半導体光素子アレイであって、前記活性層は、量子井戸層と、前記量子井戸層よりも大きなバンドギャップを有し前記量子井戸層を挟み込む障壁層とを含む量子井戸構造を有する、半導体光素子アレイ。
  16. 請求項2から15のうちのいずれか1項に記載の半導体光素子アレイであって、前記マスクパターンの構成材料は、チタン(Ti)、タンタル(Ta)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、金(Au)、コバルト(Co)およびタングステン(W)、モリブデン(Mo)からなる群より選択された1種または2種以上の金属である、半導体光素子アレイ。
  17. 請求項2から16のうちのいずれか1項に記載の半導体光素子アレイであって、前記III族窒化物半導体は窒化ガリウムを含む、半導体光素子アレイ。
  18. 請求項2から17のうちのいずれか1項に記載の半導体光素子アレイであって、前記III族窒化物半導体はAlGaIn1−x−yN(0≦x≦1、0≦y≦1、かつ0≦x+y≦1)を含む、半導体光素子アレイ。
  19. 半導体基板上に複数の開口部を有するマスクパターンを形成する工程と、
    前記マスクパターンをエッチングマスクとして前記半導体基板をエッチングすることにより前記半導体基板の主面に複数の凹部を形成する工程と、
    前記各凹部から前記各開口部を介して前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる工程と、
    前記微細柱状結晶上に活性層または光吸収層を成長させる工程と、
    前記活性層または光吸収層を被覆する半導体層を形成する工程と、
    を備える半導体光素子アレイの製造方法。
  20. 請求項19に記載の半導体光素子アレイの製造方法であって、前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる前記工程と同時に、前記微細柱状結晶を前記半導体基板の面内方向に沿った横方向へ成長させる工程をさらに備える半導体光素子アレイの製造方法。
  21. 請求項19または20に記載の半導体光素子アレイの製造方法であって、
    前記微細柱状結晶の導電型は、第1導電型であり、
    前記半導体層は、前記第1導電型とは逆の第2導電型のIII族窒化物半導体層を含む
    半導体光素子アレイの製造方法。
JP2013132114A 2008-09-01 2013-06-24 半導体光素子アレイおよびその製造方法 Active JP5687731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013132114A JP5687731B2 (ja) 2008-09-01 2013-06-24 半導体光素子アレイおよびその製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008224129 2008-09-01
JP2008224131 2008-09-01
JP2008224129 2008-09-01
JP2008224131 2008-09-01
JP2013132114A JP5687731B2 (ja) 2008-09-01 2013-06-24 半導体光素子アレイおよびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010526554A Division JP5547076B2 (ja) 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法

Publications (3)

Publication Number Publication Date
JP2013239718A true JP2013239718A (ja) 2013-11-28
JP2013239718A5 JP2013239718A5 (ja) 2014-01-30
JP5687731B2 JP5687731B2 (ja) 2015-03-18

Family

ID=41721104

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010526554A Active JP5547076B2 (ja) 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法
JP2013132114A Active JP5687731B2 (ja) 2008-09-01 2013-06-24 半導体光素子アレイおよびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010526554A Active JP5547076B2 (ja) 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法

Country Status (7)

Country Link
US (1) US9224595B2 (ja)
EP (1) EP2333847B1 (ja)
JP (2) JP5547076B2 (ja)
KR (1) KR101567121B1 (ja)
CN (1) CN102187479B (ja)
TW (1) TWI470828B (ja)
WO (1) WO2010023921A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206860A (ja) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP2019064873A (ja) * 2017-10-02 2019-04-25 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法
WO2019151508A1 (ja) * 2018-02-01 2019-08-08 日立化成株式会社 ナノ結晶膜の製造方法
EP3719857A1 (en) 2019-04-01 2020-10-07 Seiko Epson Corporation Light emitting device, method of manufacturing light emitting device, and projector
US10816884B2 (en) 2018-08-06 2020-10-27 Seiko Epson Corporation Light emitting device and projector
US11177316B2 (en) 2019-02-27 2021-11-16 Seiko Epson Corporation Method of manufacturing light emitting device, light emitting device, and projector
WO2021261494A1 (ja) * 2020-06-22 2021-12-30 京セラ株式会社 半導体デバイスの製造方法、半導体デバイス、電子機器、半導体エピタキシャル基板の製造方法および半導体エピタキシャル基板
JP2022026490A (ja) * 2020-07-31 2022-02-10 セイコーエプソン株式会社 発光装置およびプロジェクター
US11380820B2 (en) 2019-02-28 2022-07-05 Seiko Epson Corporation Light emitting device and projector
JP7272412B1 (ja) 2021-12-03 2023-05-12 信越半導体株式会社 接合型半導体ウェーハの製造方法
TWI834979B (zh) 2020-06-22 2024-03-11 日商京瓷股份有限公司 半導體裝置之製造方法、半導體基板及電子機器

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012711A1 (de) * 2010-03-25 2011-09-29 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements
KR101710159B1 (ko) 2010-09-14 2017-03-08 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
CN103190005A (zh) * 2010-11-04 2013-07-03 皇家飞利浦电子股份有限公司 基于结晶弛豫结构的固态发光器件
GB201020843D0 (en) * 2010-12-09 2011-01-19 Univ Nottingham Solar cells based on InGaN
FR2983639B1 (fr) * 2011-12-01 2014-07-18 Commissariat Energie Atomique Dispositif optoelectronique comprenant des nanofils de structure coeur/coquille
EP2815423B1 (en) * 2012-02-14 2017-05-24 Hexagem AB Gallium nitride nanowire based electronics
SE537434C2 (sv) 2012-06-26 2015-04-28 Polar Light Technologies Ab Grupp III-nitridstruktur
TWI476953B (zh) 2012-08-10 2015-03-11 Univ Nat Taiwan 半導體發光元件及其製作方法
JP2014060198A (ja) * 2012-09-14 2014-04-03 Oki Electric Ind Co Ltd 窒化物半導体発光ダイオードの製造方法、及び窒化物半導体発光ダイオード
JP6060652B2 (ja) * 2012-11-28 2017-01-18 富士通株式会社 太陽電池及びその製造方法
WO2014102512A1 (fr) * 2012-12-28 2014-07-03 Aledia Dispositif optoelectronique a microfils ou nanofils
FR3000612B1 (fr) 2012-12-28 2016-05-06 Commissariat Energie Atomique Dispositif optoelectronique a microfils ou nanofils
US11502219B2 (en) * 2013-03-14 2022-11-15 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and devices for solid state nanowire devices
DE102013104273A1 (de) * 2013-04-26 2014-10-30 Osram Opto Semiconductors Gmbh Anordnung mit säulenartiger Struktur und einer aktiven Zone
JP6227128B2 (ja) * 2013-06-07 2017-11-08 グロ アーベーGlo Ab マルチカラーled及びその製造方法
KR102190675B1 (ko) * 2013-10-10 2020-12-15 삼성전자주식회사 반도체 소자의 미세 패턴 형성 방법
FR3023410A1 (fr) * 2014-07-02 2016-01-08 Aledia Dispositif optoelectronique a elements semiconducteurs et son procede de fabrication
FR3026564B1 (fr) 2014-09-30 2018-02-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a elements semiconducteurs tridimensionnels
KR102212557B1 (ko) 2014-11-03 2021-02-08 삼성전자주식회사 나노구조 반도체 발광소자
DE102014116999A1 (de) * 2014-11-20 2016-05-25 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
FR3029015B1 (fr) * 2014-11-24 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a elements semiconducteurs tridimensionnels et son procede de fabrication
DE102016104616B4 (de) * 2016-03-14 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterlichtquelle
FR3050322B1 (fr) * 2016-04-18 2019-01-25 Centre National De La Recherche Scientifique (Cnrs) Dispositif photorecepteur multicouche, a parametres de maille differents
JP6873409B2 (ja) * 2016-04-21 2021-05-19 富士通株式会社 発光素子及びその製造方法
FR3053434B1 (fr) * 2016-06-30 2019-06-28 Valeo Vision Module d'emission de lumiere blanche a spectre enrichi
EP3522240B1 (en) * 2016-09-29 2021-06-30 Nichia Corporation Light emitting element
JP7090861B2 (ja) * 2017-02-28 2022-06-27 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP7333666B2 (ja) * 2017-02-28 2023-08-25 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP7147132B2 (ja) * 2017-05-31 2022-10-05 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP6947386B2 (ja) * 2017-06-29 2021-10-13 学校法人 名城大学 半導体発光素子および半導体発光素子の製造方法
FR3068517B1 (fr) * 2017-06-30 2019-08-09 Aledia Dispositif optoelectronique comportant des structures semiconductrices tridimensionnelles en configuration axiale
US10263151B2 (en) * 2017-08-18 2019-04-16 Globalfoundries Inc. Light emitting diodes
CN107482094A (zh) * 2017-09-21 2017-12-15 山西飞虹微纳米光电科技有限公司 基于GaN基轴向纳米棒阵列的LED及其制备方法
CN109148651B (zh) * 2018-08-06 2019-10-15 复旦大学 基于GaN条纹模板的多色发光InGaN量子阱外延片的制备方法
JP7188690B2 (ja) * 2018-08-22 2022-12-13 セイコーエプソン株式会社 プロジェクター
KR102652501B1 (ko) * 2018-09-13 2024-03-29 삼성디스플레이 주식회사 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치
JP7320770B2 (ja) * 2018-09-28 2023-08-04 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7312997B2 (ja) * 2018-11-09 2023-07-24 学校法人 名城大学 半導体発光素子
EP3696300A1 (de) 2019-02-18 2020-08-19 Aixatech GmbH Verfahren zur herstellung eines verbundmaterialkörpers insbesondere für die verwendung bei der herstellung von elektronischen oder optoelektronischen bauelementen
JP7232464B2 (ja) 2019-03-26 2023-03-03 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7232465B2 (ja) 2019-03-26 2023-03-03 セイコーエプソン株式会社 発光装置およびプロジェクター
FR3098019B1 (fr) * 2019-06-25 2022-05-20 Aledia Dispositif optoélectronique comprenant des éléments semi-conducteurs tridimensionnels et procédé pour sa fabrication
JP7392426B2 (ja) 2019-11-28 2023-12-06 セイコーエプソン株式会社 発光装置およびプロジェクター
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n
US11923398B2 (en) 2019-12-23 2024-03-05 Lumileds Llc III-nitride multi-wavelength LED arrays
US11404473B2 (en) 2019-12-23 2022-08-02 Lumileds Llc III-nitride multi-wavelength LED arrays
JP2022040676A (ja) * 2020-08-31 2022-03-11 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
US11094846B1 (en) 2020-08-31 2021-08-17 4233999 Canada Inc. Monolithic nanocolumn structures
US11631786B2 (en) 2020-11-12 2023-04-18 Lumileds Llc III-nitride multi-wavelength LED arrays with etch stop layer
WO2022190353A1 (ja) * 2021-03-12 2022-09-15 シャープ株式会社 量子ドット、量子ドット層、発光素子、及び太陽電池
JP7320794B2 (ja) * 2021-03-15 2023-08-04 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
JP2022190630A (ja) * 2021-06-14 2022-12-26 豊田合成株式会社 半導体発光素子の製造方法
WO2023282177A1 (ja) * 2021-07-08 2023-01-12 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
JP2023065945A (ja) * 2021-10-28 2023-05-15 セイコーエプソン株式会社 発光装置およびプロジェクター
US11799054B1 (en) 2023-02-08 2023-10-24 4233999 Canada Inc. Monochromatic emitters on coalesced selective area growth nanocolumns

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252421A (ja) * 2001-02-27 2002-09-06 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002261394A (ja) * 2001-03-01 2002-09-13 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
WO2006025407A1 (ja) * 2004-08-31 2006-03-09 Akihiko Kikuchi 発光素子及びその製造方法
JP2006270125A (ja) * 2000-10-04 2006-10-05 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2006339534A (ja) * 2005-06-03 2006-12-14 Sony Corp 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
JP2007027298A (ja) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
JP2008034483A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008034482A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008108757A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008135778A (ja) * 2000-09-18 2008-06-12 Mitsubishi Cable Ind Ltd 半導体発光素子
JP2008182275A (ja) * 2002-09-18 2008-08-07 Sanyo Electric Co Ltd 窒化物系半導体発光素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504851B1 (en) * 1991-03-22 1997-07-16 Hitachi, Ltd. Semiconductor optical device
JP3556916B2 (ja) 2000-09-18 2004-08-25 三菱電線工業株式会社 半導体基材の製造方法
JP3863720B2 (ja) 2000-10-04 2006-12-27 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
WO2003019678A1 (fr) * 2001-08-22 2003-03-06 Sony Corporation Element semiconducteur au nitrure et procede de production de cet element
DE10213643A1 (de) 2002-03-27 2003-10-09 Geka Brush Gmbh Kosmetikeinheit
US6936851B2 (en) * 2003-03-21 2005-08-30 Tien Yang Wang Semiconductor light-emitting device and method for manufacturing the same
JP2004354617A (ja) 2003-05-28 2004-12-16 Sharp Corp フォトニック結晶とその製造方法
US7132677B2 (en) * 2004-02-13 2006-11-07 Dongguk University Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
KR101019941B1 (ko) * 2006-03-10 2011-03-09 에스티씨. 유엔엠 Gan 나노선의 펄스 성장 및 ⅲ 족 질화물 반도체 기판 물질과 디바이스에서의 어플리케이션
GB2439973A (en) * 2006-07-13 2008-01-16 Sharp Kk Modifying the optical properties of a nitride optoelectronic device
US8178403B2 (en) * 2006-09-18 2012-05-15 Qunano Ab Method of producing precision vertical and horizontal layers in a vertical semiconductor structure
JP2008108924A (ja) 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
US8030108B1 (en) * 2008-06-30 2011-10-04 Stc.Unm Epitaxial growth of in-plane nanowires and nanowire devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135778A (ja) * 2000-09-18 2008-06-12 Mitsubishi Cable Ind Ltd 半導体発光素子
JP2006270125A (ja) * 2000-10-04 2006-10-05 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002252421A (ja) * 2001-02-27 2002-09-06 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002261394A (ja) * 2001-03-01 2002-09-13 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
JP2008182275A (ja) * 2002-09-18 2008-08-07 Sanyo Electric Co Ltd 窒化物系半導体発光素子
WO2006025407A1 (ja) * 2004-08-31 2006-03-09 Akihiko Kikuchi 発光素子及びその製造方法
JP2006339534A (ja) * 2005-06-03 2006-12-14 Sony Corp 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
JP2007027298A (ja) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
JP2008034483A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008034482A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008108757A (ja) * 2006-10-23 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239390B2 (en) 2017-05-31 2022-02-01 Seiko Epson Corporation Light emitting apparatus, projector, method for manufacturing light emitting apparatus
JP2018206860A (ja) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP2019064873A (ja) * 2017-10-02 2019-04-25 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法
JP7053209B2 (ja) 2017-10-02 2022-04-12 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法
WO2019151508A1 (ja) * 2018-02-01 2019-08-08 日立化成株式会社 ナノ結晶膜の製造方法
JP7329798B2 (ja) 2018-02-01 2023-08-21 株式会社レゾナック ナノ結晶膜の製造方法
JPWO2019151508A1 (ja) * 2018-02-01 2021-03-11 昭和電工マテリアルズ株式会社 ナノ結晶膜の製造方法
US10816884B2 (en) 2018-08-06 2020-10-27 Seiko Epson Corporation Light emitting device and projector
US11177316B2 (en) 2019-02-27 2021-11-16 Seiko Epson Corporation Method of manufacturing light emitting device, light emitting device, and projector
US11380820B2 (en) 2019-02-28 2022-07-05 Seiko Epson Corporation Light emitting device and projector
US11063171B2 (en) 2019-04-01 2021-07-13 Seiko Epson Corporation Light emitting device, method of manufacturing light emitting device, and projector
EP3719857B1 (en) * 2019-04-01 2022-07-20 Seiko Epson Corporation Light emitting device, method of manufacturing light emitting device, and projector
EP3719857A1 (en) 2019-04-01 2020-10-07 Seiko Epson Corporation Light emitting device, method of manufacturing light emitting device, and projector
WO2021261494A1 (ja) * 2020-06-22 2021-12-30 京セラ株式会社 半導体デバイスの製造方法、半導体デバイス、電子機器、半導体エピタキシャル基板の製造方法および半導体エピタキシャル基板
JP7444984B2 (ja) 2020-06-22 2024-03-06 京セラ株式会社 半導体デバイスの製造方法、半導体基板、半導体デバイス、電子機器
TWI834979B (zh) 2020-06-22 2024-03-11 日商京瓷股份有限公司 半導體裝置之製造方法、半導體基板及電子機器
JP2022026490A (ja) * 2020-07-31 2022-02-10 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7176700B2 (ja) 2020-07-31 2022-11-22 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7272412B1 (ja) 2021-12-03 2023-05-12 信越半導体株式会社 接合型半導体ウェーハの製造方法

Also Published As

Publication number Publication date
EP2333847B1 (en) 2018-02-14
CN102187479B (zh) 2014-06-18
TW201027800A (en) 2010-07-16
EP2333847A4 (en) 2015-02-25
CN102187479A (zh) 2011-09-14
JP5687731B2 (ja) 2015-03-18
JPWO2010023921A1 (ja) 2012-01-26
TWI470828B (zh) 2015-01-21
WO2010023921A1 (ja) 2010-03-04
EP2333847A1 (en) 2011-06-15
KR101567121B1 (ko) 2015-11-06
KR20110063799A (ko) 2011-06-14
US20110169025A1 (en) 2011-07-14
US9224595B2 (en) 2015-12-29
JP5547076B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5687731B2 (ja) 半導体光素子アレイおよびその製造方法
EP2731151B1 (en) Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP5162016B1 (ja) 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法
US20110220871A1 (en) Nitride semiconductor light-emitting device and semiconductor light-emitting device
KR20070046161A (ko) 발광소자 및 그 제조방법
US8791025B2 (en) Method of producing microstructure of nitride semiconductor and photonic crystal prepared according to the method
JP2003092426A (ja) 窒化物系化合物半導体発光素子およびその製造方法
WO2015152228A1 (ja) 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置
JP2003101069A (ja) Iii族窒化物量子ドットおよびその製造方法
JP2006245162A (ja) 窒化物半導体発光素子
TW200924031A (en) Group-III nitride structure, method for manufacturing same
JP2008117902A (ja) 窒化物半導体素子の製造方法
TWI828945B (zh) 氮化物半導體紫外線發光元件
US20230307578A1 (en) Nitride Semiconductor Ultraviolet Light Emitting Element
US10995403B2 (en) Method of forming aluminum nitride film and method of manufacturing semiconductor light-emitting element
KR20220066948A (ko) 물질의 조성물
JP5227870B2 (ja) エピタキシャル基板、半導体素子構造、およびエピタキシャル基板の作製方法
TW202107734A (zh) 發光二極體及其製造方法
JP2009224704A (ja) 窒化物系半導体発光素子、エピタキシャルウエハ、及び窒化物系半導体発光素子を作製する方法
JP2020077832A (ja) 半導体素子及び半導体レーザダイオード
Kishino et al. Molecular beam epitaxial growth of GaN nanocolumns and related nanocolumn emitters
WO2024029553A1 (ja) 半導体光素子アレイ
JP2011187993A (ja) 半導体発光素子および半導体発光素子の製造方法
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP2009253047A (ja) Iii族窒化物発光素子及びエピタキシャルウエハ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5687731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250