WO2015152228A1 - 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置 - Google Patents

半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置 Download PDF

Info

Publication number
WO2015152228A1
WO2015152228A1 PCT/JP2015/060101 JP2015060101W WO2015152228A1 WO 2015152228 A1 WO2015152228 A1 WO 2015152228A1 JP 2015060101 W JP2015060101 W JP 2015060101W WO 2015152228 A1 WO2015152228 A1 WO 2015152228A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plane
semiconductor light
light emitting
growth
Prior art date
Application number
PCT/JP2015/060101
Other languages
English (en)
French (fr)
Inventor
川上 養一
充 船戸
研 片岡
真典 山口
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US15/129,181 priority Critical patent/US20170110630A1/en
Priority to JP2016511928A priority patent/JP6278285B2/ja
Publication of WO2015152228A1 publication Critical patent/WO2015152228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device including a nitride semiconductor. Moreover, this invention relates to the manufacturing method of the said semiconductor light-emitting device, the electron beam excitation light source device provided with the said semiconductor light-emitting device, and the LED element.
  • a semiconductor light-emitting device composed of a nitride semiconductor has a problem that the light emission efficiency is reduced due to an internal electric field, and measures for such a problem are currently being studied.
  • Nitride semiconductors such as GaN and AlGaN have a wurtzite crystal structure (hexagonal crystal structure).
  • FIG. 11 schematically shows a unit cell of a GaN crystal. Note that the crystal of Al x Ga y In 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) shows a state in which at least a part of Ga atoms shown in FIG. 11 is substituted with Al or In.
  • FIG. 12 is a diagram for explaining the plane orientation of the wurtzite crystal structure.
  • the plane orientation of the wurtzite crystal structure is represented using basic vectors represented by a1, a2, a3, and c in the four-index notation (hexagonal crystal index).
  • the basic vector c extends in the [0001] direction, and this direction is called “c-axis”.
  • a plane perpendicular to the c-axis is called “c-plane” or (0001) plane.
  • c-plane growth means epitaxial growth along a direction perpendicular to the c-plane, that is, along the c-axis.
  • Ga atoms and N atoms are asymmetrically arranged in the c-axis direction.
  • the Ga atom surface containing only Ga atoms is slightly charged positively, while the N atom surface containing only N atoms is slightly charged negatively.
  • Spontaneous polarization occurs in the c-axis direction.
  • the active layer generally has a quantum well structure.
  • the above heteroepitaxial growth is required. Therefore, when a semiconductor layer including an active layer is grown using the c-plane as a growth surface, an internal electric field due to spontaneous polarization or piezoelectric polarization is generated in the c-axis direction in the quantum well. As a result, the recombination probability of electrons and holes decreases, and the light emission efficiency decreases.
  • Patent Document 1 discloses side facets of a GaN layer, specifically, ⁇ 1-101 ⁇ crystal plane, ⁇ 11-20 ⁇ crystal plane, ⁇ 1-100 ⁇ crystal plane, or ⁇ 11-22 ⁇ crystal.
  • optoelectronic component on which a quantum well structure is grown.
  • FIG. 13 is a diagram for explaining the influence of the internal electric field on the energy band of the active layer.
  • FIG. 13A schematically shows an energy band diagram of an active layer grown on the c-plane
  • FIG. 13B shows an m-plane ( ⁇ 10-10 ⁇ plane that is a nonpolar plane. ) Schematically shows an energy band diagram of the active layer grown in (1).
  • FIG. 13 illustrates the case where the active layer is configured by a barrier layer configured by an AlN layer and a light emitting layer configured by an AlGaN layer. Such an active layer emits light in the ultraviolet region.
  • an optical device electrons and holes are combined in an active layer and light is emitted by releasing energy as light.
  • an internal electric field is generated in the active layer. Since electrons and holes are electrically opposite, this internal electric field acts as a force in the direction of spatially separating the electrons and holes. That is, under the influence of this internal electric field, the wave function 103 of electrons and the wave function 104 of holes are separated, and the coupling probability is lowered (see FIG. 13A). This also appears in the shapes of the conduction band 101 and the valence band 102.
  • the active layer grown on a nonpolar surface such as m-plane no internal electric field is generated in the active layer. For this reason, as shown in FIG. 13B, the overlapping portion of the electron wave function 103 and the hole wave function 104 is larger than that in FIG. 13A, and is higher than that in the c-plane growth. Indicates the joint probability.
  • FIG. 14 is a graph showing the relationship between the tilt angle and the magnitude of the internal electric field in the active layer when the growth surface during epitaxial growth is tilted from the c-plane.
  • the angle of the growth surface with respect to the c-plane is synonymous with the angle of the growth direction with respect to the c-axis.
  • the active layer was composed of Al 0.8 Ga 0.2 N / AlN.
  • the positive / negative sign which shows the value of the internal electric field which a vertical axis
  • the internal electric field in the active layer during the (0001) plane (c plane) growth is the largest, and the magnitude of the internal electric field gradually decreases as the growth plane is tilted from the c plane.
  • the internal electric field becomes zero, and when the growth surface is further tilted, an internal electric field whose direction is reversed as compared with that during c-plane growth starts to be generated.
  • the tilt angle is further increased, the magnitude of the internal electric field increases to a certain tilt angle and then starts decreasing.
  • the growth surface is tilted by 90 ° from the c-plane, that is, when a ⁇ 10-10 ⁇ plane (m-plane) is grown, the internal electric field in the active layer becomes zero.
  • the active layer is grown with the plane inclined from the c-plane as the growth plane. If possible, the internal electric field can be reduced to improve the recombination probability.
  • Patent Document 1 after GaN is grown on the upper surface of the c-plane of the growth substrate, GaN is further epitaxially grown in a state where a mask made of silicon oxide or silicon nitride is formed at a predetermined position on the GaN. Yes. This describes that a GaN layer having the side facets described above is formed.
  • a technique for epitaxially growing a nitride semiconductor such as GaN on a surface other than the c-plane of the growth substrate has been developed.
  • a GaN layer is grown on the c-plane of the growth substrate, a GaN layer having a growth plane other than the c-plane is formed on the GaN layer, and then an active layer is formed on the growth plane. Is growing. This is considered to have the aim of realizing a semiconductor light emitting device having an active layer in which the influence of the internal electric field is reduced while ensuring crystal quality during c-plane growth.
  • GaN is cited as a material to be regrown after mask formation.
  • the absorption edge of GaN is about 366 nm. Therefore, when an attempt is made to realize a semiconductor light emitting device that emits light with a wavelength shorter than 366 nm (for example, ultraviolet light) by the method described in Patent Document 1, ultraviolet light emitted from the active layer is absorbed by GaN. As a result, the light extraction efficiency is extremely lowered.
  • AlN is known as a nitride semiconductor having an absorption edge on the shorter wavelength side than GaN.
  • the absorption edge of AlN is about 200 nm.
  • the absorption edge is located between GaN and AlN according to the ratio of Al to Ga. Therefore, if the nonpolar surface or the semipolar surface can be used as a growth surface when epitaxial growth is performed by the method described in Patent Document 1 using AlN or AlGaN, an active layer is formed on the surface. Therefore, it is considered that an ultraviolet light emitting element with high luminous efficiency can be realized.
  • GaN is epitaxially grown in a state where a mask is formed in a predetermined region on the upper surface. This is intended to realize a growth surface other than the c-plane by limiting the direction of epitaxial growth by limiting the deposition region of the source gas with a mask.
  • FIG. 15 is a graph defining the magnitude of the overlap integral between the electron wave function and the hole wave function (hereinafter referred to as “overlap integral value”) in relation to the width of the light emitting layer constituting the active layer. It is.
  • the active layer has a multi-period structure of a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN, and the horizontal axis corresponds to the film thickness of the Al 0.8 Ga 0.2 N layer.
  • the probability of electron-hole recombination is proportional to the magnitude of the overlap integral of the electron wave function and the hole wave function.
  • an internal electric field exerts a force in a direction in which the wave function of electrons and the wave function of holes are separated. Therefore, if the width of Al 0.8 Ga 0.2 N constituting the light emitting layer, that is, the film thickness is made thin and the room where the two wave functions are separated is suppressed, the degree to which the recombination probability decreases can be suppressed. .
  • the phenomenon that the luminous efficiency decreases as the current density is increased is known, which is an obstacle to realizing a high output device.
  • the cause of this phenomenon has various arguments and has not been identified at the present time, but it has been found that the expression of the droop phenomenon is suppressed by lowering the carrier density in the light emitting layer.
  • the width (film thickness) of the light-emitting layer is increased, the region in which carriers can be injected into the light-emitting layer is increased, so that the carrier density can be lowered and an effect of suppressing the droop phenomenon is expected.
  • the width of the light emitting layer is widened, there is a problem that the recombination probability of electrons and holes is lowered and the light emission efficiency is lowered.
  • an object of the present invention is to realize a semiconductor light-emitting element including an active layer made of a nitride semiconductor containing Al and having a surface other than the c-plane as a growth surface, and a method for manufacturing the same.
  • Another object of the present invention is to realize an LED element and an electron beam excitation type light source device including such a semiconductor light emitting element.
  • a method for manufacturing a semiconductor light emitting device includes: A step (a) of preparing a growth substrate; A step (b) of growing a first layer made of Al x1 Ga y1 In 1 -x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) in the ⁇ 0001> direction on the growth substrate; Forming a groove extending along the ⁇ 11-20> direction of the first layer to the first layer at a depth that does not expose the surface of the growth substrate; After the step (c), at least a second layer made of Al x2 Ga y2 In 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1) is formed on at least ⁇ 1 A step (d) of growing a ⁇ 101 ⁇ plane as a crystal growth plane; And a step (e) of growing an active layer on the second layer.
  • the ⁇ 1-101 ⁇ plane is a (1-101) plane and a plane that is crystallographically equivalent to the (1-101) plane, that is, a (10-11) plane, (01-11) ) Plane, (0-111) plane, ( ⁇ 1101) plane, and ( ⁇ 1011) plane.
  • the ⁇ 11-20> direction refers to the [11-20] direction and a crystallographically equivalent direction to the [11-20] direction, that is, the [1-210] direction, [ ⁇ 2110] direction, [ ⁇ 1-120] direction, [-12-10] direction, and [2-1-10] direction.
  • the second layer is crystal-grown after the above steps (a) to (c) are performed, at least ⁇ 1-101] is formed on the upper layer of the first layer grown in the ⁇ 0001> direction. ⁇ It has been found that the crystal can be grown with the plane as the crystal growth plane. This will be described later in the section “DETAILED DESCRIPTION”.
  • crystal growth is performed on the upper layer of the first layer made of Al x1 Ga y1 In 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) grown in the ⁇ 0001> direction.
  • the second layer having the ⁇ 1-101 ⁇ plane as the crystal growth plane can be grown. Therefore, by growing an active layer on this surface, a semiconductor light emitting device having an active layer grown on a surface other than the c-plane can be realized while ensuring a high crystal quality of c-plane growth. Thereby, it is possible to realize a semiconductor light emitting device in which the internal electric field is suppressed regardless of the width of the light emitting layer.
  • the inclined surface with respect to the main surface of the growth substrate is used as a crystal growth surface above the region where the groove is formed and above the region where the groove is not formed. It may be a process for growing two layers.
  • the period of unevenness of the second layer can be narrowed as compared to the case where the second layer is grown only from above the region where the groove is not formed using the inclined surface as the crystal growth surface.
  • the light extraction efficiency is improved.
  • the second layer can be grown using the inclined surface as the crystal growth surface, so that the growth time of the second layer can be shortened and the manufacturing efficiency is improved.
  • the second layer can be grown not only above the region where the groove is not formed but also above the region where the groove is formed, using the inclined surface as the crystal growth surface.
  • Al is contained in the second layer. If this second layer is made of GaN, a lateral growth mode is likely to occur. As a result, the inner surface of the groove and the groove are formed before the growth starts from the region where the groove is formed. Priority is given to growth from the top surface of the unfinished region. As a result, it is difficult to grow GaN using the inclined surface as the crystal growth surface above the region where the groove is formed.
  • the second layer is a nitride layer containing Al as described above, the mode of lateral growth can be made difficult to develop, so even on the upper surface of the region where the groove is formed. Crystal growth is easy. As a result, the second layer can be grown above the region where the groove is formed and above the region where the groove is not formed using the inclined surface as the crystal growth surface.
  • the first layer can be configured by Al ratio of 50% or more, that is, Al x1 Ga y1 In 1-x1-y1 N (0.5 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1).
  • the first layer can also be made of AlN.
  • the first layer and the second layer may have an In composition of 1% or less.
  • the second layer may be made of AlN or Al x2 Ga 1-x2 N (0 ⁇ x2 ⁇ 1).
  • the crystal growth surface of the second layer may be composed of a ⁇ 1-101 ⁇ plane and a ⁇ 0001 ⁇ plane.
  • the crystal growth surface of the second layer may be composed of only the ⁇ 1-101 ⁇ plane.
  • the growth surface of the second layer can be only the ⁇ 1-101 ⁇ plane without having the ⁇ 0001 ⁇ plane completely, and an active layer can be formed on the second layer.
  • an active layer can be formed on the second layer.
  • a semiconductor light emitting device having both an active layer formed on the ⁇ 0001 ⁇ plane and an active layer formed on the ⁇ 1-101 ⁇ plane is realized. These active layers can generate light having different wavelengths from the respective active layers depending on the growth conditions and the magnitude of the internal electric field. Therefore, according to this method, a light emitting element having a plurality of peak wavelengths can be realized.
  • the step (c) may be a step of forming the groove extending in two or more different directions belonging to the ⁇ 11-20> direction.
  • the semiconductor light emitting device is A first layer composed of Al x1 Ga y1 In 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) having a ⁇ 0001 ⁇ plane as a crystal plane; A second layer formed on the first layer and made of Al x2 Ga y2 In 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1); An active layer formed on the second layer, The first layer has a recess extending along the ⁇ 11-20> direction on the surface on the second layer side; At least a part of the active layer is formed on the ⁇ 1-101 ⁇ plane of the second layer.
  • a semiconductor light emitting device as a short wavelength light source with high luminous efficiency is realized regardless of the width of the light emitting layer.
  • the second layer is an upper layer of the first layer, and a crystal growth surface is a main surface of the growth substrate above the region where the recess is formed and above the region where the recess is not formed. It does not matter even if it is comprised by the inclined surface with respect to.
  • the first layer may be made of Al x1 Ga y1 In 1-x1-y1 N (0.5 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1).
  • the first layer may be made of AlN.
  • the second layer may be made of AlN.
  • the second layer may be made of Al x2 Ga 1-x2 N.
  • the active layer may be formed on the ⁇ 1-101 ⁇ plane of the second layer and the ⁇ 0001 ⁇ plane of the second layer. According to such a configuration, it is possible to realize a light emitting element with a short wavelength having high luminous efficiency and having a plurality of peak wavelengths.
  • the active layer may be formed only on the ⁇ 1-101 ⁇ plane of the second layer. According to such a configuration, it is possible to realize a light emitting element having a short wavelength with extremely high luminous efficiency.
  • an electron beam excitation light source device includes: A semiconductor light emitting device having any of the above characteristics, and an electron beam source, The active layer emits light when an electron beam emitted from the electron beam source is incident thereon.
  • the LED element according to the present invention is A semiconductor light emitting device having any one of the above characteristics;
  • a third layer made of Al x4 Ga y4 In 1-x4-y4 N (0 ⁇ x4 ⁇ 1, 0 ⁇ y4 ⁇ 1) of either n-type or p-type conductivity is formed on the active layer.
  • the second layer is made of Al x2 Ga y2 In 1-x2-y2 N having a conductivity type different from that of the third layer.
  • the second layer can be an n-type and the third layer can be a p-type.
  • the first electrode constitutes the “n-side electrode” and the second electrode constitutes the “p-side electrode”.
  • a short-wavelength semiconductor light-emitting element with high luminous efficiency, an LED element including the same, and an electron beam excitation light source device are realized.
  • Example 2 is a SEM photograph of the device of Example 1.
  • 3 is a SEM photograph of the element of Example 2.
  • 4 is a SEM photograph of the device of Comparative Example 1.
  • 4 is a SEM photograph of each element of Example 3 and Comparative Example 2.
  • 4 is a SEM photograph of each element of Example 4 and Example 5.
  • It is sectional drawing in 1 process of the manufacturing method of the semiconductor light-emitting device which concerns on 1st embodiment. It is sectional drawing which shows typically another structure of the semiconductor light-emitting device which concerns on 1st embodiment. It is typical sectional drawing of what implement
  • FIG. 1 is a drawing schematically showing the structure of the semiconductor light emitting device according to the first embodiment.
  • the semiconductor light emitting device 1 includes a growth substrate 11, a first layer 13, a second layer 15, and an active layer 17. 1 corresponds to a cross-sectional view of the semiconductor light emitting device 1 taken along a plane formed in the [0001] direction and the [1-100] direction.
  • the depth direction in FIG. 1 is the [11-20] direction.
  • the growth substrate 11 is made of, for example, a sapphire substrate, and the growth surface is a (0001) plane (c-plane).
  • the growth surface is a (0001) plane (c-plane).
  • SiC or the like can be used.
  • the first layer 13 is composed of an AlN layer.
  • it can be composed of a nitride semiconductor layer defined by the general formula Al x1 Ga y1 In 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1).
  • the In composition is preferably 1% or less.
  • the composition of Al is appropriately selected according to the emission wavelength.
  • the first layer 13 has a recess 14 extending along the [11-20] direction.
  • the extending direction of the recess 14 is the [11-20] direction.
  • the extending direction is a crystallographically equivalent direction to the [11-20] direction, that is, ⁇ 11-20>. It does not matter as being the direction.
  • the second layer 15 is composed of an AlN layer.
  • it can be composed of a nitride semiconductor layer defined by the general formula Al x2 Ga y2 In 1 -x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1).
  • the In composition is preferably 1% or less.
  • the composition of Al is appropriately selected according to the emission wavelength.
  • the second layer 15 has a growth surface 15a parallel to the ⁇ 1-101 ⁇ plane and a growth surface 15b parallel to the ⁇ 0001 ⁇ plane.
  • a configuration is realized by manufacturing by a manufacturing method described later.
  • the active layer 17 has a configuration in which Al x3 Ga 1-x3 N (0 ⁇ x3 ⁇ 1) / AlN is laminated in one cycle or multiple cycles.
  • a light emitting layer made of Al 0.8 Ga 0.2 N and a barrier layer made of AlN are configured to be repeated multiple times.
  • the configuration of the active layer 17 is appropriately selected according to the emission wavelength.
  • the active layer 17 has a growth surface 17a parallel to the ⁇ 1-101 ⁇ plane and a growth surface 17b parallel to the ⁇ 0001 ⁇ plane, like the second layer 15.
  • the second layer 15 is an upper layer of the first layer 13 above the region where the recess 14 is formed and in the region where the recess 14 is not formed. Both the upper sides have a growth surface 15a parallel to the ⁇ 1-101 ⁇ plane.
  • the second layer 15 included in the semiconductor light emitting element 1 is not limited to this configuration.
  • the active layer 17 is also located above the region where the recess 14 is formed and above the region where the recess 14 is not formed, in the upper layer of the second layer 15. Both have the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane, but it is not limited to this configuration.
  • FIG. 2 is a drawing schematically showing a configuration of an electron beam excitation light source device including the semiconductor light emitting element 1 shown in FIG.
  • FIG. 2A is a side sectional view
  • FIG. 2B is a top plan view.
  • FIG. 2B shows a state in which a light transmission window 45 described later is removed.
  • the electron beam excitation type light source device 90 includes a vacuum container 40 having a rectangular parallelepiped shape whose inside is sealed in a negative pressure state.
  • the vacuum container 40 includes a container base 41 having an opening on one surface, and the container base.
  • the light transmission window 45 is disposed in the opening 41 and hermetically sealed to the container base 41.
  • the semiconductor light emitting device 1 shown in FIG. 1 is opposite to the growth substrate 11, that is, the active layer 17 side constituting the light extraction surface is the light transmission window 45. It arrange
  • a plurality of (two in the illustrated example) electron beam sources 60 each having a rectangular planar electron beam emitting portion 62 formed on a rectangular support substrate 61 are provided.
  • the semiconductor light emitting device 1 is disposed at a position sandwiching it.
  • FIG. 3 is an enlarged schematic view of the electron beam source 60.
  • the electron beam emitting portion 62 is formed by supporting a large number of carbon nanotubes on a support substrate 61, and the support substrate 61 is fixed on a plate-like base portion 63.
  • a net-like extraction electrode 65 is disposed above the electron beam emitting portion 62 so as to face the electron beam emitting portion 62 while being spaced apart from the electron beam emitting portion 62.
  • the extraction electrode 65 is disposed on the base portion 63 via the electrode holding member 66. It is fixed.
  • the support substrate 61 and the extraction electrode 65 are connected to an electron beam emission power source (not shown) provided outside the vacuum vessel 40 via a conductive wire (not shown) drawn from the inside of the vacuum vessel 40 to the outside. Electrically connected.
  • each base portion 63 is fixed to the inner surfaces of two side walls facing each other in the container base 41, so that each of the electron beam sources 60 has electrons at positions sandwiching the semiconductor light emitting element 1.
  • the line emission parts 62 are arranged so as to face each other.
  • the electron beam excitation light source device 90 when a voltage is applied between the electron beam source 60 and the extraction electrode 65, electrons are emitted from the electron beam emission unit 62 toward the extraction electrode 65, and the electrons are Due to the acceleration voltage applied between the semiconductor light emitting element 1 and the electron beam source 60, the electron beam proceeds while being accelerated toward the semiconductor light emitting element 1, and is incident on the surface of the active layer 17 of the semiconductor light emitting element 1 as an electron beam. As a result, electrons in the active layer 17 are excited, and light such as ultraviolet rays is emitted from the surface on which the electron beam is incident, and is emitted to the outside of the vacuum vessel 40 through the light transmission window 45.
  • the active layer 17 since the active layer 17 has the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane, the influence of the internal electric field is suppressed, and the electron beam excitation type light source device with high luminous efficiency. Is realized. Further, in the present embodiment, since the active layer 17 has the growth surface 17b parallel to the ⁇ 0001 ⁇ plane in addition to the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane, a plurality of peak wavelengths different from each other. There is also an effect that it is possible to emit light.
  • FIGS. 4A to 4D A method for manufacturing the semiconductor light emitting device 1 will be described with reference to process cross-sectional views in FIGS. 4A to 4D.
  • Each process cross-sectional view corresponds to a cross-sectional view when the element at each time point is cut along a plane formed in the [0001] direction and the [1-100] direction, as in FIG.
  • Step S1 A growth substrate 11 is prepared (see FIG. 4A).
  • this growth substrate 11 a sapphire substrate having a (0001) plane can be used as an example.
  • the growth substrate 11 is cleaned.
  • the growth substrate 11 is placed in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen having a flow rate of, for example, 10 slm is placed in the processing furnace. While flowing the gas, the temperature in the furnace is raised to, for example, 1150 ° C.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • This step S1 corresponds to the step (a).
  • a first layer 13 made of, for example, AlN is formed on the (0001) plane of the growth substrate 11.
  • the temperature in the furnace of the MOCVD apparatus is set to a temperature of 900 ° C. or higher and 1600 ° C. or lower, and trimethylaluminum (TMA) and ammonia are treated as source gases while flowing nitrogen gas and hydrogen gas as carrier gases. Supply into the furnace.
  • TMA trimethylaluminum
  • V / III ratio the flow rate ratio of TMA and ammonia
  • the growth pressure to a value of 10 to 500 torr, and appropriately adjusting the supply time
  • AlN having a desired film thickness is formed.
  • the first layer 13 made of AlN having a thickness of 600 nm was formed.
  • trimethylgallium (TMG), And trimethylindium (TMI) may be supplied at a predetermined flow rate corresponding to the composition.
  • the thickness of the first layer 13 may be set to a thickness sufficient to obtain good crystallinity, for example, 400 nm or more.
  • This step S2 corresponds to the step (b).
  • Step S3 As shown in FIG. 4C, a groove (concave portion) 14 is formed in the first layer 13 along the ⁇ 11-20> direction.
  • the wafer obtained by executing up to step S2 is taken out of the processing furnace, and ⁇ 11-20> of the first layer 13 by the photolithography method and the reactive ion etching method (RIE method).
  • RIE method reactive ion etching method
  • a plurality of grooves parallel to the direction are formed at predetermined intervals.
  • the grooves 14 are extended in the [11-20] direction, which is one direction crystallographically equivalent to the ⁇ 11-20> direction.
  • the groove part 14 is controlled to be formed at a depth within a range where the growth substrate 11 is not exposed on the bottom surface of the groove part 14.
  • the first layer 13 is preferably formed with a thickness of 200 nm or more between the bottom surface of the groove 14 and the growth substrate 11.
  • This step S3 corresponds to the step (c).
  • Step S4 As shown in FIG. 4D, the second layer 15 is formed on the upper surface of the first layer 13 in which the grooves 14 along the ⁇ 11-20> direction are formed.
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. or higher and 1600 ° C. or lower, and nitrogen gas and While flowing hydrogen gas, TMA and ammonia are supplied into the processing furnace as source gases.
  • the second layer 15 made of AlN having a thickness of 3000 nm was formed.
  • TMG and TMI May be supplied at a predetermined flow rate according to the composition.
  • Example 1 A first layer 13 made of AlN having a thickness of 600 nm was grown in the [0001] direction on a growth substrate 11 composed of a c-plane sapphire substrate, and then along the [11-20] direction. A groove portion 14 having a depth of 300 nm was formed, and a second layer 15 made of AlN was grown thereon to produce the device of Example 1. In the element of Example 1, since the depth of the groove 14 is shallower than the film thickness of the first layer 13, the surface of the growth substrate 11 is not exposed even when the groove 14 is formed.
  • Example 2 The element of Example 2 was produced in the same manner as in Example 1 except that the depth of the groove 14 was set to 400 nm. Similarly to the element of Example 1, in the element of Example 2, the depth of the groove 14 is shallower than the film thickness of the first layer 13, so that the surface of the growth substrate 11 is not exposed even when the groove 14 is formed. .
  • Comparative Example 1 An element of Comparative Example 1 was fabricated in the same manner as in Example 1 except that the depth of the groove 14 was 600 nm. That is, in the element of Comparative Example 1, the groove layer 14 is formed so that the upper surface of the growth substrate 11 is exposed, and then the second layer 15 is grown.
  • FIG. 5A is a SEM (Scanning Electron Microscope) photograph of the element of Example 1.
  • 5B is an SEM photograph of Example 2
  • FIG. 5C is an SEM photograph of Comparative Example 1.
  • 5A, FIG. 5B, and FIG. 5C (a) is a cross-sectional SEM photograph when each element is cut along a plane formed by the [0001] direction and the [1-100] direction.
  • b) is an SEM photograph obtained by photographing each element from the upper surface, that is, a plane formed by the [11-20] direction and the [1-100] direction.
  • the second layer 15 is formed having a growth surface 15a parallel to the [1-101] plane and a growth surface 15b parallel to the [0001] plane. It is confirmed that Further, according to FIG. 5B, also in the element of Example 2, the second layer 15 has the growth surface 15a parallel to the [1-101] plane and the growth surface 15b parallel to the [0001] plane. It is confirmed that it is formed.
  • the second layer 15 cannot confirm the growth surface 15a parallel to the [1-101] plane, and the growth surface 15b parallel to the [0001] plane. Only confirmed.
  • the element of Comparative Example 1 is formed so as to expand in the direction parallel to the plane formed by the [11-20] direction and the [1-100] direction as it proceeds in the [0001] direction. It is confirmed that This suggests that the growth mode of the second layer 15 is in the horizontal direction (plane direction). When such a growth mode appears, the growth surface 15a parallel to the [1-101] plane cannot appear.
  • the groove portion 14 is formed so that the depth of the groove portion 14 is shallower than the film thickness of the first layer 13 and the surface of the growth substrate 11 is not exposed. It is suggested that the second layer 15 is formed in a state having a growth surface other than the [0001] plane.
  • Example 3 On a growth substrate 11 composed of a c-plane sapphire substrate, a first layer 13 made of AlN with a thickness of 1000 nm was grown in the [0001] direction, and then along the [11-20] direction. A groove portion 14 having a depth of 500 nm was formed, and a second layer 15 made of AlN was grown thereon to produce the element of Example 3. In addition, since the depth of the groove 14 is shallower than the film thickness of the first layer 13 in the element of Example 3 similarly to the elements of Example 1 and Example 2, the growth substrate 11 is formed even when the groove 14 is formed. The surface of is not exposed.
  • Comparative Example 2 The device of Comparative Example 2 was fabricated in the same manner as in Example 3, except that the direction of the groove 14 was changed to the [1-100] direction rotated 90 ° from the device of Example 2. Also in the element of Comparative Example 2, since the depth of the groove 14 is shallower than the film thickness of the first layer 13 as in the element of Example 3, the surface of the growth substrate 11 is exposed even when the groove 14 is formed. Absent.
  • FIG. 6 is an SEM photograph of each element of Example 3 and Comparative Example 2, and is a plane formed by the [0001] direction and the [1-100] direction as in FIG. 5A (a). It is a cross-sectional SEM photograph when each element is cut
  • the second layer 15 is formed having a growth surface 15a parallel to the [1-101] plane and a growth surface 15b parallel to the [0001] plane. It is confirmed that
  • the element of Comparative Example 2 only the growth surface 15b parallel to the [0001] plane is confirmed in the second layer 15.
  • the direction parallel to the plane formed by the [11-20] direction and the [1-100] direction as it proceeds in the [0001] direction It is confirmed that the film is formed with a spread. This suggests that the growth mode of the second layer 15 is in the horizontal direction (plane direction). When such a growth mode appears, a growth plane that is not parallel to the [0001] plane cannot appear.
  • the extending direction of the groove portion 14 is the [11-20] direction in relation to the crystal.
  • a crystallographically equivalent direction is required for this direction.
  • Example 4 On a growth substrate 11 composed of a c-plane sapphire substrate, a first layer 13 made of AlN having a thickness of 600 nm was grown in the [0001] direction, and then along the [11-20] direction. A plurality of groove portions 14 having a depth of 400 nm and a width of 5 ⁇ m were formed at intervals of 5 ⁇ m, and a second layer 15 made of AlN was grown thereon to produce the device of Example 4. In the element of Example 4, since the depth of the groove portion 14 is shallower than the film thickness of the first layer 13, the surface of the growth substrate 11 is not exposed even when the groove portion 14 is formed.
  • Example 5 The element of Example 5 was produced in the same manner as in Example 4 except that a plurality of grooves 14 having a depth of 500 nm and a width of 2 ⁇ m were formed at intervals of 2 ⁇ m. Similarly to the element of Example 4, in the element of Example 5, the depth of the groove 14 is shallower than the film thickness of the first layer 13, so that the surface of the growth substrate 11 is not exposed even when the groove 14 is formed. .
  • FIG. 7 is a SEM photograph of each element of Example 4 and Example 5, and is a plane formed by the [0001] direction and the [1-100] direction as in FIG. 5A (a). It is a cross-sectional SEM photograph when each element is cut
  • the fifth embodiment is more in comparison with the fourth embodiment. It can be seen that the ratio of the growth surface 15a is high. That is, the appearance ratio of the growth surface 15a parallel to the [1-101] plane is increased when the second layer 15 is grown as the depth of the groove portion 14 is increased and the width and interval of the groove portion 14 are decreased. be able to.
  • the inventor appropriately sets the depth and interval of the groove portion 14 so that only the growth surface 15a parallel to the [1-101] plane is provided without having the growth surface 15b parallel to the [0001] plane. It confirmed that the 2nd layer 15 which has could be formed.
  • step S3 after forming the groove 14 along the [11-20] direction at a depth that does not expose the surface of the growth substrate 11, the second layer 15 is grown in step S4. It can be seen that the growth surface 15a parallel to the [1-101] plane and the growth surface 15b parallel to the [0001] plane can appear. Furthermore, the second layer 15 having only the growth surface 15a parallel to the [1-101] plane can be formed by growing the second layer 15 with the depth, width, and interval of the groove portions 14 appropriately adjusted.
  • the groove portion 14 is set in the [11-20] direction.
  • the crystallographically equivalent direction to the [11-20] direction that is, the [1-210] direction, the [-2110] direction, [ The same phenomenon is also exhibited when the [1-120] direction, [-12-10] direction, and [2-1-10] direction are used.
  • This step S4 corresponds to the step (d).
  • the second layer 15 having only the growth surface 15a parallel to the ⁇ 1-101 ⁇ plane can be formed by appropriately adjusting the depth, width, and interval of the groove 14. (See FIG. 8A). Therefore, after the second layer 15 is grown, the active layer 17 is grown to manufacture the semiconductor light emitting device 1 including the active layer 17 having only the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane. (See FIG. 8B). Since the process after the state of FIG. 8B has already been described above, it is omitted.
  • the active layer 17 does not have the growth surface 17b parallel to the ⁇ 0001 ⁇ plane, but has only the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane. Composed. For this reason, since the semiconductor light emitting device 1 including the active layer 17 which is not affected by the internal electric field at all or almost is realized, the light emission efficiency is significantly improved as compared with the conventional case. In particular, even when used as a short-wavelength high-current driving light source including the ultraviolet region, high luminous efficiency is exhibited.
  • Step S5 The active layer 17 is continuously grown on the upper surface of the second layer 15 having the growth surface 15a parallel to the ⁇ 1-101 ⁇ plane and the growth surface 15b parallel to the ⁇ 0001 ⁇ plane (see FIG. 1).
  • the furnace temperature of the MOCVD apparatus is set to a temperature of 900 ° C. to 1600 ° C., and nitrogen gas and hydrogen gas are allowed to flow as carrier gases, while TMA and ammonia are used as source gases in the processing furnace.
  • the step of supplying a predetermined time according to the thickness and the step of supplying TMA, TMG and ammonia as source gases into the processing furnace for a predetermined time according to the film thickness are repeated a predetermined number of times according to the number of cycles. As a result, an active layer 17 made of multi-period Al x3 Ga 1-x3 N (0 ⁇ x3 ⁇ 1) / AlN is formed.
  • TMA, ammonia, TMG, and TMI may be supplied as raw material gases at a predetermined flow rate according to the composition.
  • step S4 since the second layer 15 having the growth surface 15a parallel to the ⁇ 1-101 ⁇ plane and the growth surface 15b parallel to the ⁇ 0001 ⁇ plane is formed, epitaxial growth is performed in this step S5 in this state.
  • the active layer 17 having the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane and the growth surface 17b parallel to the ⁇ 0001 ⁇ plane is formed.
  • This step S5 corresponds to the step (e).
  • the semiconductor light emitting element 1 is used as the electron beam excitation light source device 90, the semiconductor light emitting element 1 is disposed at a predetermined position in the vacuum container 40 as described above with reference to FIGS. Further, this is realized by arranging an electron beam source 60 and a light transmission window 45.
  • the semiconductor light emitting device 1 shown in FIG. 1 can also be used as an LED device.
  • a configuration and a manufacturing method thereof when the semiconductor light emitting element 1 is used as an LED element will be described.
  • FIG. 9 is a schematic cross-sectional view of the semiconductor light emitting device 1 shown in FIG. 1 realized as an LED.
  • the second layer 15 is configured as a first conductivity type (for example, n-type) semiconductor layer.
  • the second layer 15 is made of n-type Al x2 Ga 1 -X2 N (0 ⁇ x2 ⁇ 1).
  • the semiconductor light emitting device 1 shown in FIG. 9 includes a p-type cladding layer 18 made of, for example, p-type Al x4 Ga 1 -X4 N (0 ⁇ x4 ⁇ 1), and a p-type cladding on the active layer 17.
  • a p-type contact layer 19 made of p + -type GaN formed on the layer 18 is provided.
  • an n - side electrode 25 made of, for example, Ti / Al is formed on the partially exposed surface of the second layer 15 made of n-type Al x2 Ga 1 -X2 N (0 ⁇ x2 ⁇ 1).
  • a p-side electrode 26 made of, for example, Ni / Au is formed on the p-type contact layer 19.
  • a bonding wire (not shown) is applied to the n-side electrode 25 and the p-type electrode 26.
  • the p-type cladding layer 18 and the p-type contact layer 19 correspond to the “third layer”
  • the n-side electrode 25 corresponds to the “first electrode”
  • the p-side electrode 26 corresponds to the “second electrode”.
  • the active layer 17 has the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane, the influence of the internal electric field is suppressed, and an LED with high luminous efficiency is realized. Is done. Further, in the present embodiment, since the active layer 17 has the growth surface 17b parallel to the ⁇ 0001 ⁇ plane in addition to the growth surface 17a parallel to the ⁇ 1-101 ⁇ plane, a plurality of peak wavelengths different from each other. There is also an effect that it is possible to emit light.
  • steps S1-S3 are executed as described above. Thereafter, in step S4, as a source gas, in addition to ammonia, TMA, and TMG, methylsilane, tetraethylsilane, and the like for forming n-type impurities are included.
  • the second layer 15 composed of an n-type semiconductor layer is formed.
  • the second layer 15 can be composed of n-type Al x2 Ga 1 -X2 N (0 ⁇ x2 ⁇ 1).
  • the second layer 15 is also formed having a growth surface 15a parallel to the ⁇ 1-101 ⁇ plane and a growth surface 15b parallel to the ⁇ 0001 ⁇ plane.
  • step S5 biscyclopentadienyl magnesium (Cp 2 Mg) for forming a p-type impurity is further included as a source gas in addition to ammonia, TMA and TMG. Grow.
  • Cp 2 Mg biscyclopentadienyl magnesium
  • a source gas in addition to ammonia, TMA and TMG.
  • a p-type cladding layer 18 composed of p-type Al x4 Ga 1 -X4 N (0 ⁇ x4 ⁇ 1) is formed on the active layer 17.
  • the p-type contact layer 19 made of p + -type GaN is formed by changing the flow rate of the source gas.
  • the laminated body of the p-type contact layer 19, the p-type cladding layer 18 and the active layer 17 in a partial region is scraped to remove a partial upper surface of the second layer 15 composed of the n-type semiconductor layer Expose.
  • an n-side electrode 25 made of Ti / Al, for example, is formed on the exposed second layer 15, and a p-side electrode 26 made of Ni / Au, for example, is formed on the p-type contact layer 19.
  • each element is isolate
  • the groove portion 14 parallel to the ⁇ 11-20> direction of the first layer 13 is formed in step S3.
  • the extending direction of the groove 14 has been described as the [11-20] direction.
  • FIG. 10 is a top view in one step of the method for manufacturing the semiconductor light emitting device 1 according to another embodiment, schematically showing the state of the device after step S3 when viewed from the [0001] plane. It is.
  • step S3 three directions that are equivalent to and different from ⁇ 11-20 direction>, that is, the [11-20] direction (or [-1-120] direction), [1- 210] direction (or [-12-10] direction) and [-2110] direction (or [2-1-10] direction) may be formed.
  • the number of the groove parts 14 is set as appropriate.
  • Al has a highly reactive property.
  • a surface other than the c-plane (0001) surface can be used as a growth surface in the case of GaN, but such a growth surface can be obtained in AlN or AlGaN. Absent.
  • the first layer 13 and the second layer 15 are both made of AlN, but the second layer 15 has a growth surface 15a parallel to the ⁇ 1-101 ⁇ plane. I was able to grow it. This suggests that even in a nitride semiconductor layer containing highly reactive Al in a high composition, it can be grown with the growth surface 15a parallel to the ⁇ 1-101 ⁇ plane according to this method. To do. That is, even if the second layer 15 is made of AlGaN or AlInGaN in addition to AlN, the same effect can be realized. The same applies to the first layer 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

 Alを含む窒化物半導体で構成され、c面以外の面を成長面とする活性層を有する半導体発光素子及びその製造方法を実現する 本発明の製造方法は、成長基板を準備する工程(a)、成長基板の上層に、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)よりなる第一層を<0001>方向に成長させる工程(b)、第一層に対して、当該第一層の<11-20>方向に沿って延伸する溝部を、成長基板の面が露出しない深さで形成する工程(c)、工程(c)の後、第一層の上層に、Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)よりなる第二層を、少なくとも{1-101}面を結晶成長面として成長させる工程(d)、及び第二層の上層に活性層を成長させる工程(e)を有する。

Description

半導体発光素子、半導体発光素子の製造方法、LED素子、電子線励起型光源装置
 本発明は、半導体発光素子に関し、特に窒化物半導体を含む半導体発光素子に関する。また、本発明は、前記半導体発光素子の製造方法、及び前記半導体発光素子を備えた電子線励起型光源装置及びLED素子に関する。
 窒化物半導体で構成された半導体発光素子においては、内部電界に起因して発光効率が低下するという課題があり、現在かかる課題への対策が検討されているところである。
 GaNやAlGaNなどの窒化物半導体は、ウルツ鉱型結晶構造(六方晶構造)を有している。図11は、GaN結晶の単位格子を模式的に示したものである。なお、AlxGayIn1-x-yN(0≦x≦1,0≦y≦1)の結晶は、図11に示すGa原子の少なくとも一部がAlやInに置換された状態を示す。
 図12は、ウルツ鉱型結晶構造の面方位を説明するための図である。ウルツ鉱型結晶構造の面方位は、図12に示すように、四指数表記(六方晶指数)にて、a1、a2、a3及びcで示される基本ベクトルを用いて表される。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面は「c面」又は(0001)面と呼ばれる。
 従来、窒化物半導体を用いて半導体発光素子は、c面成長によって作製されていた。ここで「c面成長」とは、c面に垂直な方向、すなわちc軸に沿ってエピタキシャル成長させることを意味する。
 図11及び図12に示すように、c軸方向に関しては、Ga原子とN原子が非対称的に配置されている。このとき、GaN層の成長面となるc面においては、Ga原子のみを含むGa原子面が僅かにプラスに帯電する一方、N原子のみを含むN原子面が僅かにマイナスに帯電し、結果としてc軸方向に自発分極が発生する。また、GaN結晶層上に異種半導体層をヘテロエピタキシャル成長させた場合、両者の格子定数の違いによって、GaN結晶に圧縮歪や引っ張り歪が生じ、GaN結晶内でc軸方向に圧電分極(ピエゾ分極)が発生する。
 活性層は、一般的には量子井戸構造を有している。量子井戸構造を形成するに際しては上記のヘテロエピタキシャル成長が必要となる。よって、c面を成長面として活性層を含む半導体層を成長した場合、量子井戸内に自発分極やピエゾ分極に起因した内部電界がc軸方向に発生する。この結果、電子と正孔の再結合確率が下がって発光効率が低下してしまう。
 かかる課題を受け、窒化物半導体において内部電界による発光効率の低下を改善する手段として、c面に対して直交する面(無極性面)や、c面に対して傾きを有する面(半極性面)を成長面とする半導体発光素子の開発が検討されている。例えば、特許文献1には、GaN層の側部ファセット、具体的には{1-101}結晶面、{11-20}結晶面、{1-100}結晶面、又は{11-22}結晶面上に、量子井戸構造体を成長させてなるオプトエレクトロニック構成素子についての開示がある。
 なお、本明細書では、ミラー指数を示すカッコ内の数字の直前に付された符号「-」はその指数の反転を示しており、図面内における「バー」と同義である。
特開2006-74050号公報
 図13は、活性層のエネルギーバンドに対する内部電界の影響を説明するための図である。図13(a)は、c面で成長させた活性層のエネルギーバンド図を模式的に示したものであり、図13(b)は、無極性面であるm面({10-10}面)で成長させた活性層のエネルギーバンド図を模式的に示したものである。
 なお、図13では、活性層が、AlN層で構成された障壁層と、AlGaN層で構成された発光層とで構成されている場合を例示している。かかる活性層は紫外領域の光を発光する。
 光デバイスでは、活性層において電子と正孔が結合し、エネルギーを光として放出することで発光する。ところで、上述したように、c面成長させて活性層を形成すると当該活性層内に内部電界が発生する。電子と正孔は電気的に逆であるため、この内部電界は電子と正孔を空間的に離す方向に係る力として作用する。すなわち、この内部電界の影響を受けて、電子の波動関数103と正孔の波動関数104が分離され、結合確率が低下してしまう(図13(a)参照)。このことは、伝導帯101と価電子帯102の形状にも現れている。
 これに対し、m面などの非極性面で成長させた活性層によれば、活性層内に内部電界が発生しない。このため、図13(b)に示すように、電子の波動関数103と正孔の波動関数104の重なり部分が図13(a)に比べて大きくなり、c面成長時と比較して高い再結合確率を示す。
 図14は、エピタキシャル成長時の成長面をc面から傾けたときの、傾き角度と活性層内の内部電界の大きさの関係を示すグラフである。c面に対する成長面の角度とは、c軸に対する成長方向の角度と同義である。なお、活性層はAl0.8Ga0.2N/AlNで構成した。また、縦軸が示す内部電界の値を示す正負の符号は、内部電界の向きを示している。
 図14によれば、(0001)面(c面)成長時における活性層内の内部電界が最も大きく、成長面をc面から傾けるに連れ、内部電界の大きさは徐々に小さくなっている。そして、成長面をある角度まで傾けたときに内部電界が0になり、更にそれよりも傾けると、c面成長時と比べて向きの反転した内部電界が発生し始める。傾き角度を更に上昇させると、ある傾き角度まで内部電界の大きさは上昇した後、低下を開始する。そして、成長面をc面から90°傾けたとき、すなわち、{10-10}面(m面)成長させた場合には、活性層における内部電界は0となる。
 このように、c面成長時に活性層内に発生する内部電界に起因して、電子と正孔の再結合確率が低下することから、c面から傾けた面を成長面として活性層を成長させることができれば、内部電界を小さくして前記再結合確率を向上することができる。
 特許文献1は、成長基板のc面の上層にGaNを成長させた後、このGaN上の所定の箇所に酸化シリコン又は窒化シリコンで構成されるマスクを形成した状態で、更にGaNをエピタキシャル成長させている。これにより、上述した側部ファセットを有するGaN層が形成されると記載されている。
 現在、成長基板のc面以外の面(例えば上述したm面など)上に、GaNなどの窒化物半導体をエピタキシャル成長させる技術も開発されている。しかし、成長基板のc面上で成長させる場合と比較して、転位密度が高い、結晶表面のモフォロジーが悪化する等の課題があり、良好な結晶品質を有する半導体層を形成するまでには至っていない。そこで、特許文献1においても、成長基板のc面上にGaN層を成長させ、このGaN層の上層に、c面以外の成長面を有するGaN層を形成した後、かかる成長面上に活性層を成長させている。これは、c面成長時の結晶品質を確保しながらも、内部電界による影響が低減された活性層を有する半導体発光素子を実現する狙いがあると考えられる。
 特許文献1において、マスク形成後に再成長させる材料としては、GaNが挙げられている。GaNの吸収端は約366nmである。このため、特許文献1に記載の方法で、366nmより短波長の光(例えば紫外光)を発光する半導体発光素子を実現しようとした場合、活性層から射出される紫外光がGaNで吸収されてしまい、光取り出し効率が極めて低下してしまう。
 GaNよりも短波長側に吸収端を有する窒化物半導体として、AlNが知られている。AlNの吸収端は約200nmである。また三元混晶であるAlGaNや低In組成のAlInGaNについては、AlとGaの比率に応じて、その吸収端はGaNとAlNの間に位置する。よって、もし、AlNやAlGaNを用いて特許文献1に記載の方法でエピタキシャル成長させた場合に、無極性面又は半極性面を成長面とすることができれば、かかる面上に活性層を形成することができるため、発光効率の高い紫外光発光素子が実現できると考えられる。
 しかし、本発明者の鋭意研究により、GaNに代えてAlNやAlGaNを用いた場合には、特許文献1に記載の方法を用いても、c面以外の面を成長面とすることができなかった。この理由として、本発明者は以下のように推定している。
 特許文献1に記載の方法は、上面の所定の領域にマスクを形成した状態でGaNをエピタキシャル成長させている。これは、マスクによって原料ガスの付着領域を限定することにより、エピタキシャル成長の方向を限定して、c面以外の成長面を実現することを意図したものである。
 この方法を採用するに当たっては、マスク上には原料ガスの付着による成長が起きないことが前提となる。つまり、マスク上には成長させずに、マスクで覆われていない露出面上に原料ガスを付着させて選択的に成長させることで、c面とは異なる成長面が実現できる。マスク上に成長が生じないのは、マスクが形成されている領域とマスクが形成されていない領域の間で反応速度に差異が生じるためである。
 ここで、GaNに代えてAlNやAlGaNの原料ガスを供給した場合、Alは反応性が高いため、マスクが形成されていない領域に加えて、マスク上面にも結晶成長が進行してしまう。このため、特許文献1のように、選択成長を利用してc面以外の成長面を形成するという方法を採用することができない。
 発光効率を向上させる方法としては、c面以外の面に活性層を形成する方法とは別に、活性層の発光層の幅を狭くするという方法がある。図15は、電子の波動関数と正孔の波動関数の重なり積分の大きさ(以下、「重なり積分値」と呼ぶ。)を、活性層を構成する発光層の幅との関係で規定したグラフである。活性層は、Al0.8Ga0.2Nからなる発光層とAlNからなる障壁層の多周期構造であり、横軸はAl0.8Ga0.2N層の膜厚に対応する。電子と正孔の再結合確率は、電子の波動関数と正孔の波動関数の重なり積分の大きさに比例する。
 図15によれば、活性層内に内部電界が存在しない場合は、発光層の幅に関係なく高い重なり積分値を示している。これに対し、活性層内に内部電界が存在する場合には、発光層の幅が狭い領域においては、重なり積分値は内部電界がない場合とほぼ同程度の高い値を示しているが、発光層の幅が2.5nm程度になると内部電界がない場合の1/2程度の重なり積分値を示している。発光層の幅が2.5nmより更に厚くなると、重なり積分値は更に低下する。
 図13を参照して上述したように、内部電界によって、電子の波動関数と正孔の波動関数が引き離される方向に力が働く。従って、発光層を構成するAl0.8Ga0.2Nの幅、すなわち膜厚を薄く構成して前記2つの波動関数が離れる余地を抑えておけば、再結合確率が低下する程度を抑制することができる。
 ところで、LEDにおいては、電流密度を上げていくと発光効率が低下するという現象(ドループ現象)が知られており、高出力デバイスを実現するときの障害となっている。この現象の原因は、種々議論があり、現時点では特定できるに至っていないが、発光層中のキャリア密度を下げることでドループ現象の発現が抑制されることが分かっている。
 ここで、発光層の幅(膜厚)を拡げれば、発光層内にキャリアが注入できる領域が拡大するため、キャリア密度を低下させることができ、ドループ現象の抑制効果が期待される。しかし、上述したように、活性層内に内部電界が存在する場合には、発光層の幅を拡げると、電子と正孔の再結合確率が低下して発光効率が低下するという課題がある。
 以上の課題に鑑み、本発明は、Alを含む窒化物半導体で構成され、c面以外の面を成長面とする活性層を有する半導体発光素子及びその製造方法を実現することを目的とする。また、本発明は、このような半導体発光素子を備えるLED素子及び電子線励起型光源装置を実現することを別の目的とする。
 本発明に係る半導体発光素子の製造方法は、
 成長基板を準備する工程(a)、
 前記成長基板の上層に、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)よりなる第一層を<0001>方向に成長させる工程(b)、
 前記第一層に対して、当該第一層の<11-20>方向に沿って延伸する溝部を、前記成長基板の面が露出しない深さで形成する工程(c)、
 前記工程(c)の後、前記第一層の上層に、Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)よりなる第二層を、少なくとも{1-101}面を結晶成長面として成長させる工程(d)、
 及び、前記第二層の上層に活性層を成長させる工程(e)を有することを特徴とする。
 本明細書において、{1-101}面とは、(1-101)面、及びこの(1-101)面と結晶学的に等価な面、すなわち(10-11)面、(01-11)面、(0-111)面、(-1101)面、及び(-1011)面を含む概念である。また、本明細書において、<11-20>方向とは、[11-20]方向、及びこの[11-20]方向と結晶学的に等価な方向、すなわち[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向、及び[2-1-10]方向を含む概念である。
 本発明者の鋭意研究により、上記工程(a)-(c)の実行後に前記第二層を結晶成長させると、<0001>方向に成長させた第一層の上層に、少なくとも{1-101}面を結晶成長面として結晶成長させることができることを見出した。この内容は、「発明を実施するための形態」の項で後述される。
 かかる方法によれば、<0001>方向に成長させたAlx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)よりなる第一層の上層に結晶成長させることで、{1-101}面を結晶成長面とする第二層を成長させることができる。よって、この面上に活性層を成長させることで、c面成長の高い結晶品質を担保しながらも、c面以外の面上に成長した活性層を有する半導体発光素子が実現できる。これにより、発光層の幅に関わらず、内部電界が抑制された半導体発光素子を実現することができる。
 ここで、前記工程(d)は、前記溝部が形成されている領域の上方、及び前記溝部が形成されていない領域の上方に、前記成長基板の主面に対する傾斜面を結晶成長面として前記第二層を成長させる工程であるものとしても構わない。
 この方法によれば、溝部が形成されていない領域の上方のみから傾斜面を結晶成長面として第二層を成長させる場合と比較して、第二層の凹凸の周期を狭くすることができる。これにより、光取り出し効率が向上する。また、第二層の膜厚が薄くても傾斜面を結晶成長面として第二層を成長させることができるため、第二層の成長時間を短くすることができ、製造上の効率が向上する。
 このように、溝部が形成されていない領域の上方のみならず、溝部が形成されている領域の上方においても、傾斜面を結晶成長面として第二層を成長させることができる理由の一つとしては、第二層にAlが含まれることが挙げられる。もし、この第二層をGaNで構成しようとすると、横方向成長のモードが発現しやすく、この結果、溝部が形成されている領域からの成長が始まる前に、溝部の内側面及び溝部が形成されていない領域の上面からの成長が優先される。この結果、溝部が形成されている領域の上方において、傾斜面を結晶成長面としてGaNを成長させることが困難である。
 これに対し、上記のように、第二層をAlを含む窒化物層とすることで、横方向成長のモードを発現させにくくすることができるため、溝部が形成されている領域の上面においても結晶成長がしやすくなる。この結果、溝部が形成されている領域の上方、及び溝部が形成されていない領域の上方に、傾斜面を結晶成長面として第二層を成長させることができる。
 ここで、前記第一層は、Al比率が50%以上、すなわちAlx1Gay1In1-x1-y1N(0.5≦x1≦1,0≦y1≦1)で構成することができる。また、前記第一層はAlNで構成することもできる。これらの構成とすることで、発光効率の高い短波長の半導体発光素子が実現される。
 前記第一層及び前記第二層は、In組成を1%以下とすることができる。
 前記第二層をAlN又はAlx2Ga1-x2N(0<x2≦1)で構成しても構わない。
 また、上記方法において、前記工程(d)の実行後、前記第二層の結晶成長面が{1-101}面及び{0001}面で構成されていても構わない。
 また、上記方法において、前記工程(d)の実行後、前記第二層の結晶成長面が{1-101}面のみで構成されていても構わない。
 本発明者の鋭意研究によれば、工程(c)において形成される溝部の幅(成長基板の面に平行な方向の長さ)、深さ(成長基板の面に直交する方向の長さ)、及び隣接する溝部との間隔を調整することで、前記第二層の成長面として{0001}面を出現させる割合を制御できることを見出した。より具体的には、溝部の幅及び隣接溝部間の間隔を狭くし、深さを深くすることで、{0001}面の出現割合を低下させることができる。
 よって、第二層の成長面として、{0001}面を完全に有さずに、{1-101}面のみとすることも可能であり、かかる第二層の上層に活性層を形成することで、内部電界がほとんど又は全く存在しない半導体発光素子が実現できる。
 また、上記方法によれば、{0001}面上に形成された活性層と、{1-101}面上に形成された活性層の両者を有する半導体発光素子が実現される。これらの活性層は、成長条件や内部電界の大きさの相違により、それぞれの活性層から異なる波長の光が発生させることが可能となる。よって、この方法によれば、複数のピーク波長を有する発光素子を実現することができる。
 また、前記工程(c)を、<11-20>方向に属する異なる2方向以上に延伸する前記溝部を形成する工程としても構わない。
 本発明に係る半導体発光素子は、
 {0001}面を結晶面とするAlx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)で構成された第一層と、
 前記第一層の上層に形成され、Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)で構成された第二層と、
 前記第二層の上層に形成された活性層とを有し、
 前記第一層が、前記第二層側の面上に<11-20>方向に沿って延伸する凹部を有し、
 前記活性層は、少なくとも一部が前記第二層の{1-101}面上に形成されていることを特徴とする。
 上記半導体発光素子によれば、発光層の幅に関わらず、発光効率の高い短波長光源としての半導体発光素子が実現される。
 前記第二層は、前記第一層の上層であって、前記凹部が形成されている領域の上方、及び前記凹部が形成されていない領域の上方において、結晶成長面が前記成長基板の主面に対する傾斜面で構成されているものとしても構わない。
 上記構成に加えて、前記第一層がAlx1Gay1In1-x1-y1N(0.5≦x1≦1,0≦y1≦1)で構成されるものとしても構わない。また、前記第一層がAlNで構成されるものとしても構わない。
 上記構成に加えて、前記第二層がAlNで構成されるものとしても構わない。また、前記第二層が、Alx2Ga1-x2Nで構成されるものとしても構わない。
 上記構成に加えて、前記活性層は、前記第二層の{1-101}面上及び前記第二層の{0001}面上に形成されているものとしても構わない。かかる構成によれば、発光効率が高く、複数のピーク波長を有する短波長の発光素子を実現することができる。
 また、前記活性層は、前記第二層の{1-101}面上にのみ形成されているものとしても構わない。かかる構成によれば、発光効率が極めて高い短波長の発光素子を実現することができる。
 また、本発明に係る電子線励起型光源装置は、
 上記いずれかの特徴を有する半導体発光素子と、電子線源とを備え、
 前記活性層は、前記電子線源から放出された電子線が入射されることで発光することを特徴とする。
 また、本発明に係るLED素子は、
 上記いずれかの特徴を有する半導体発光素子と、
 前記活性層の上層に、n型又はp型のいずれか一方の導電型のAlx4Gay4In1-x4-y4N(0<x4≦1,0≦y4≦1)で構成された第三層と、
 前記第二層に対して電気的に接続された第一電極と、
 前記第三層に対して電気的に接続された第二電極とを備え、
 前記第二層が、前記第三層とは異なる導電型のAlx2Gay2In1-x2-y2Nで構成されていることを特徴とする。
 より具体的には、第二層をn型、第三層をp型で構成することができる。この場合、第一電極が「n側電極」を構成し、第二電極が「p側電極」を構成する。
 本発明によれば、発光効率の高い短波長の半導体発光素子並びに、これを備えたLED素子及び電子線励起型光源装置が実現される。
第一実施形態に係る半導体発光素子の構造を模式的に示す断面図である。 半導体発光素子を備える電子線励起型光源装置の構成を模式的に示す図面である。 電子線源の部分を拡大した模式図である。 第一実施形態に係る半導体発光素子の製造方法の一工程における断面図である。 第一実施形態に係る半導体発光素子の製造方法の一工程における断面図である。 第一実施形態に係る半導体発光素子の製造方法の一工程における断面図である。 第一実施形態に係る半導体発光素子の製造方法の一工程における断面図である。 実施例1の素子のSEM写真である。 実施例2の素子のSEM写真である。 比較例1の素子のSEM写真である。 実施例3及び比較例2の各素子のSEM写真である。 実施例4及び実施例5の各素子のSEM写真である。 第一実施形態に係る半導体発光素子の製造方法の一工程における断面図である。 第一実施形態に係る半導体発光素子の別構造を模式的に示す断面図である。 半導体発光素子をLEDとして実現したものの模式的な断面図である。 別実施形態の半導体発光素子の製造方法の一工程における上面図である。 GaN結晶の単位格子を模式的に示した図である。 ウルツ鉱型結晶構造の面方位を説明するための図である。 活性層のエネルギーバンドに対する内部電界の影響を説明するための図である。 エピタキシャル成長時の成長面をc面から傾けたときの、傾き角度と内部電界の大きさの関係を示すグラフである。 電子の波動関数と正孔の波動関数の重なり積分の大きさを、発光層の幅との関係で規定したグラフである。
 [第一実施形態]
 本発明の第一実施形態につき、説明する。
 (半導体発光素子の構造)
 図1は、第一実施形態に係る半導体発光素子の構造を模式的に示す図面である。半導体発光素子1は、成長基板11、第一層13、第二層15、及び活性層17を備える。なお、図1は、半導体発光素子1を[0001]方向及び[1-100]方向で形成される平面で切断したときの断面図に相当する。図1における奥行き方向は[11-20]方向である。
 成長基板11は、例えばサファイア基板で構成され、成長面を(0001)面(c面)としている。なお、サファイア基板の他には、SiCなどが利用可能である。
 第一層13は、本実施形態ではAlN層で構成される。なお、AlNの他、一般式Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)で規定される窒化物半導体層で構成することができる。なお、この場合、In組成は1%以下とするのが好ましい。また、Alの組成は、発光波長に応じて適宜選択される。
 第一層13は、[11-20]方向に沿って延伸する凹部14を有している。なお、本実施形態では、凹部14の延伸方向を[11-20]方向とするが、延伸方向は、[11-20]方向に対して結晶学的に等価な方向、すなわち<11-20>方向であるものとして構わない。
 第二層15は、本実施形態では、AlN層で構成される。なお、AlNの他、一般式Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)で規定される窒化物半導体層で構成することができる。なお、この場合、In組成は1%以下とするのが好ましい。また、Alの組成は、発光波長に応じて適宜選択される。
 第二層15は、本実施形態では、{1-101}面に平行な成長面15aと、{0001}面に平行な成長面15bを有する。後述する製造方法によって製造することで、このような構成が実現される。
 活性層17は、本実施形態では、Alx3Ga1-x3N(0<x3≦1)/AlNが一周期又は多周期で積層された構成である。一例として、Al0.8Ga0.2Nからなる発光層とAlNからなる障壁層が多周期繰り返されて構成されている。なお、活性層17の構成は、発光波長に応じて適宜選択される。
 活性層17は、本実施形態では、第二層15と同様に、{1-101}面に平行な成長面17aと、{0001}面に平行な成長面17bを有する。
 図1に開示された本実施形態の構成においては、第二層15は、第一層13の上層のうち、凹部14が形成されている領域の上方、及び凹部14が形成されていない領域の上方の双方において、{1-101}面に平行な成長面15aを有している。ただし、半導体発光素子1が備える第二層15は、この構成に限定されるものではない。なお、活性層17についても、図1に示された構成においては、第二層15の上層のうち、凹部14が形成されている領域の上方、及び凹部14が形成されていない領域の上方の双方において、{1-101}面に平行な成長面17aを有しているが、この構成に限定されるものではない。
 (電子線励起型光源装置の構成)
 次に、図1に示す半導体発光素子1を、電子線励起型光源装置に利用した場合について説明する。
 図2は、図1に示す半導体発光素子1を備える電子線励起型光源装置の構成を模式的に示す図面である。図2(a)が側面断面図であり、図2(b)が上面視平面図である。なお、図2(b)では、後述する光透過窓45を取り外した状態を示している。
 電子線励起型光源装置90は、内部が負圧の状態で密閉された外形が直方体状の真空容器40を有し、この真空容器40は、一面に開口を有する容器基体41と、この容器基体41の開口に配置されて当該容器基体41に気密に封着された光透過窓45とによって構成されている。
 図2に示すように、容器基体41の底壁の内面に、図1に示す半導体発光素子1が、成長基板11とは反対側、すなわち光取り出し面を構成する活性層17側が光透過窓45に離間して対向するよう配置される。そして、半導体発光素子1の周辺領域には、それぞれ矩形の支持基板61上に矩形の面状の電子線放出部62が形成されてなる複数(図示の例では2つ)の電子線源60が、半導体発光素子1を挟んだ位置に配置されている。
 図3は、電子線源60の部分を拡大した模式図である。電子線放出部62は、多数のカーボンナノチューブが支持基板61上に支持されることによって形成されており、支持基板61は板状のベース部63上に固定されている。また、電子線放出部62の上方には網状の引き出し電極65が当該電子線放出部62に離間して対向するよう配置され、この引き出し電極65は、電極保持部材66を介してベース部63に固定されている。支持基板61及び引き出し電極65は、真空容器40の内部から外部に引き出された導電線(不図示)を介して、真空容器40の外部に設けられた、電子線放出用電源(不図示)に電気的に接続されている。
 図2に示す構成では、各ベース部63が、容器基体41における互いに対向する2つの側壁の内面に固定されることにより、電子線源60の各々が、半導体発光素子1を挟んだ位置において電子線放出部62が互いに対向するよう配置されている。
 電子線励起型光源装置90においては、電子線源60と引き出し電極65との間に電圧が印加されると、電子線放出部62から引き出し電極65に向かって電子が放出され、この電子は、半導体発光素子1と電子線源60との間に印加された加速電圧によって、半導体発光素子1に向かって加速されながら進み、電子線として半導体発光素子1の活性層17の表面に入射される。これにより、活性層17の電子が励起され、電子線が入射された表面から紫外線などの光が放射され、光透過窓45を介して当該真空容器40の外部に出射される。
 本構成によれば、活性層17が、{1-101}面に平行な成長面17aを有しているため、内部電界の影響が抑制されており、発光効率の高い電子線励起型光源装置が実現される。更に、本実施形態においては、活性層17が、{1-101}面に平行な成長面17aに加えて{0001}面に平行な成長面17bを有しているため、ピーク波長の異なる複数の光を発光することができるという効果もある。
 (製造方法)
 半導体発光素子1の製造方法につき、図4A~図4Dの工程断面図を参照しながら説明する。なお、各工程断面図は、図1と同様に、各時点における素子を[0001]方向及び[1-100]方向で形成される平面で切断したときの断面図に相当する。
  (ステップS1)
 成長基板11を準備する(図4A参照)。この成長基板11としては、一例として(0001)面を有するサファイア基板を用いることができる。
 準備工程として、成長基板11のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板11を配置し、処理炉内に流量が例えば10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。
 本ステップS1が工程(a)に対応する。
  (ステップS2)
 図4Bに示すように、成長基板11の(0001)面上に、例えばAlNからなる第一層13を形成する。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてトリメチルアルミニウム(TMA)及びアンモニアを処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を10torr以上500torr以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が600nmのAlNからなる第一層13を形成した。
 第一層13として、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)を形成する場合には、TMA、アンモニアに加えて、トリメチルガリウム(TMG)、及びトリメチルインジウム(TMI)を組成に応じた所定の流量で供給すればよい。
 第一層13の厚みは、良好な結晶性が得られる十分な厚さを設定すれば良く、例えば400nm以上とすることができる。
 本ステップS2が工程(b)に対応する。
  (ステップS3)
 図4Cに示すように、第一層13に対して、<11-20>方向に沿った溝部(凹部)14を形成する。具体的な方法の一例としては、ステップS2まで実行することで得られたウェハを処理炉から取り出し、フォトリソグラフィ法及びリアクティブイオンエッチング法(RIE法)によって第一層13の<11-20>方向に平行な複数の溝を所定の間隔で形成する。なお、図4Cでは、<11-20>方向と結晶学的に等価な一の方向である[11-20]方向に溝部14を延伸させている。
 本ステップS3では、溝部14の底面に成長基板11が露出しない範囲内の深さで溝部14を形成するように制御される。好ましくは、溝部14の底面から成長基板11までの間に、第一層13が200nm以上の厚みで形成されているのが好ましい。
 本ステップS3が工程(c)に対応する。
  (ステップS4)
 図4Dに示すように、<11-20>方向に沿った溝部14が形成された第一層13の上面に対して、第二層15を形成する。具体的な方法の一例としては、ステップS3の実行完了後のウェハを再びMOCVD装置の炉内に入れ、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA及びアンモニアを処理炉内に供給する。TMAとアンモニアの流量比(V/III比)を10以上4000以下の値とし、成長圧力を10torr以上500torr以下の値とし、供給時間を適宜調整することで、所望の膜厚のAlNが形成される。ここでは、膜厚が3000nmのAlNからなる第二層15を形成した。
 なお、第二層15として、Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)を形成する場合には、TMA、アンモニアに加えて、TMG、及びTMIを組成に応じた所定の流量で供給すればよい。
 成長基板11の上面が露出しない深さを有する溝部14が形成された第一層13上に対して結晶を成長させることで、{1-101}面に平行な成長面15a、及び{0001}面に平行な成長面15bを有する第二層15を形成することができる。以下、この点につき、実施例及び比較例を参照して説明する。
  <検証1>
 まず、溝部14の好ましい深さについて、下記の実施例1、実施例2及び比較例1を参照して検証する。
 (実施例1) c面サファイア基板で構成された成長基板11上に、膜厚600nmのAlNからなる第一層13を[0001]方向に成長させた後、[11-20]方向に沿った深さ300nmの溝部14を形成し、その上層にAlNからなる第二層15を成長させて実施例1の素子を作製した。実施例1の素子は、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (実施例2) 溝部14の深さを400nmとした以外は実施例1と同様の方法で実施例2の素子を作製した。実施例2の素子も、実施例1の素子と同様に、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (比較例1) 溝部14の深さを600nmとした以外は実施例1と同様の方法で比較例1の素子を作製した。つまり、比較例1の素子は、成長基板11の上面が露出するように溝部14を形成した後、第二層15を成長させている。
 (結果分析) 図5Aは、実施例1の素子のSEM(Scanning Electron Microscope:走査型電子顕微鏡)写真である。また、図5Bは実施例2のSEM写真であり、図5Cは比較例1のSEM写真である。図5A、図5B及び図5Cの各図において、(a)が、[0001]方向と[1-100]方向とで形成される平面で各素子を切断したときの断面SEM写真であり、(b)が、上面すなわち[11-20]方向と[1-100]方向とで形成される平面から各素子を撮影したSEM写真である。
 図5Aによれば、実施例1の素子では、第二層15は、[1-101]面に平行な成長面15aと、[0001]面に平行な成長面15bとを有して形成されていることが確認される。また、図5Bによれば、実施例2の素子も、第二層15は、[1-101]面に平行な成長面15aと、[0001]面に平行な成長面15bとを有して形成されていることが確認される。
 これに対し、図5Cによれば、比較例1の素子では、第二層15は、[1-101]面に平行な成長面15aが確認できず、[0001]面に平行な成長面15bのみが確認される。そして、比較例1の素子では、[0001]方向に進むに連れて、[11-20]方向と[1-100]方向とで形成される平面に平行な方向に拡がりを有して形成されていることが確認される。これは、第二層15の成長モードが横方向(平面方向)になっていることを示唆するものである。かかる成長モードが発現すると、[1-101]面に平行な成長面15aを出現させることはできない。
 以上により、ステップS3において溝部14を形成する際に、溝部14の深さを第一層13の膜厚よりは浅くして、成長基板11の面を露出させないように溝部14を形成することで、第二層15が[0001]面以外の成長面を有した状態で形成されることが示唆される。
 この理由として考えられる点は、比較例1の素子のように成長基板11の面(すなわちサファイア)が露出した状態で第二層15(ここではAlN)を成長させた場合、実施例1及び実施例2の素子のように成長基板11の面が露出していない状態で第二層15を成長させた場合と比べて、反応状態が変化して安定した面が形成しにくい成長モードになっていることが考えられる。
 図5A(b)、図5B(b)及び図5C(b)を参照すれば、比較例1の素子には、溝部(凹部)14において表面状態が荒れていることが確認される。この理由としては、比較例1の素子では、溝部14において成長基板11(サファイア)が露出しているため、かかる領域において、AlNがエピタキシャル成長できずに多結晶状態で存在しているためであると推察される。
  <検証2>
 次に、溝部14が延伸する好ましい方向について、下記の実施例3及び比較例2を参照して検証する。
 (実施例3) c面サファイア基板で構成された成長基板11上に、膜厚1000nmのAlNからなる第一層13を[0001]方向に成長させた後、[11-20]方向に沿った深さ500nmの溝部14を形成し、その上層にAlNからなる第二層15を成長させて実施例3の素子を作製した。なお、実施例3の素子は、実施例1及び実施例2の各素子と同様に、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (比較例2)
 溝部14の方向を実施例2の素子から90°回転させた[1-100]方向とした以外は、実施例3と同様の方法で比較例2の素子を作製とした。比較例2の素子においても、実施例3の素子と同様に、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (結果分析) 図6は、実施例3及び比較例2の各素子のSEM写真であり、図5A(a)と同様に、[0001]方向と[1-100]方向とで形成される平面で各素子を切断したときの断面SEM写真である。
 図6によれば、実施例3の素子では、第二層15は、[1-101]面に平行な成長面15aと、[0001]面に平行な成長面15bとを有して形成されていることが確認される。
 これに対し、比較例2の素子では、第二層15は[0001]面に平行な成長面15bのみが確認される。比較例2の素子においても、比較例1の素子と同様に、[0001]方向に進むに連れて、[11-20]方向と[1-100]方向とで形成される平面に平行な方向に拡がりを有して形成されていることが確認される。これは、第二層15の成長モードが横方向(平面方向)になっていることを示唆するものである。かかる成長モードが発現すると、[0001]面に対して非平行な成長面を出現させることはできない。
 実施例3の素子のように[11-20]方向に延伸する溝部14を形成して第二層15を成長させると[1-101]面に平行な成長面15aが得られることに鑑みれば、比較例2の素子のように[1-100]方向に延伸する溝部14を形成して第二層15を成長させると、例えば[11-22]面が成長面として得られるとも思える。しかし、比較例2の素子では、このように[0001]面に対して非平行な成長面は確認されていない。
 この結果からは、第二層15を成長させた際に[0001]面に対して非平行な成長面を得るためには、結晶との関係で溝部14の延伸方向が[11-20]方向並びにこの方向に対して結晶学的に等価な方向であることが要求されると考えられる。
 <検証3>
 溝部14の幅([1-100]方向に係る長さ)と深さ([0001]方向に係る長さ)の関係性について検証する。
 (実施例4) c面サファイア基板で構成された成長基板11上に、膜厚600nmのAlNからなる第一層13を[0001]方向に成長させた後、[11-20]方向に沿った深さ400nm、幅5μmの溝部14を5μm間隔で複数形成し、その上層にAlNからなる第二層15を成長させて実施例4の素子を作製した。実施例4の素子は、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (実施例5) 深さ500nm、幅2μmの溝部14を2μm間隔で複数形成した点を除いては実施例4と同様の方法で実施例5の素子を作製した。実施例5の素子も、実施例4の素子と同様に、溝部14の深さが第一層13の膜厚より浅いため、溝部14を形成した状態でも成長基板11の面は露出していない。
 (結果分析) 図7は、実施例4及び実施例5の各素子のSEM写真であり、図5A(a)と同様に、[0001]方向と[1-100]方向とで形成される平面で各素子を切断したときの断面SEM写真である。
 図7によれば、[1-101]面に平行な成長面15aと[0001]面に平行な成長面15bとの面積の割合を比較すると、実施例4に比べて実施例5の方が成長面15aの割合が高くなっていることが分かる。つまり、溝部14の深さを深くし、且つ溝部14の幅及び間隔を狭くするほど、第二層15を成長させたときに[1-101]面に平行な成長面15aの出現割合を高めることができる。
 なお、本発明者は、溝部14の深さと間隔を適宜設定することによって、[0001]面に平行な成長面15bを有さずに、[1-101]面に平行な成長面15aのみを有する第二層15が形成できることを確認した。
 <検証のまとめ>
 以上の検証により、ステップS3において、[11-20]方向に沿った溝部14を、成長基板11の面が露出しない深さで形成した後に、ステップS4において第二層15を成長させることで、[1-101]面に平行な成長面15aと、[0001]面に平行な成長面15bとを出現させることができることが分かる。更に、溝部14の深さ、幅、間隔を適宜調整した状態で第二層15を成長させることで、[1-101]面に平行な成長面15aのみを有する第二層15を形成できる。
 なお、上記の検証では、溝部14を[11-20]方向としたが、[11-20]方向と結晶学的に等価な方向、すなわち[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向、及び[2-1-10]方向とした場合においても、同じ現象が発現される。
 本ステップS4が工程(d)に対応する。
 なお、ステップS4において上述したように、溝部14の深さ、幅、及び間隔を適宜調整することで、{1-101}面に平行な成長面15aのみを有する第二層15の形成が可能である(図8A参照)。よって、かかる第二層15を成長させた後、活性層17を成長させることで、{1-101}面に平行な成長面17aのみを有する活性層17を備えた半導体発光素子1を製造することができる(図8B参照)。図8Bの状態の後の工程については、既に上述したため割愛する。
 図8Bに示す半導体発光素子1によれば、活性層17は、{0001}面に平行な成長面17bを有さずに、{1-101}面に平行な成長面17aのみを有して構成される。このため、内部電界の影響を全く又はほとんど受けることのない活性層17を備えた半導体発光素子1が実現されるため、従来よりも発光効率が極めて向上する。特に、紫外領域を含む短波長の高電流駆動用光源として利用した場合においても、高い発光効率が示される。
  (ステップS5)
 {1-101}面に平行な成長面15a、及び{0001}面に平行な成長面15bを有する第二層15の上面に、引き続き活性層17を成長させる(図1参照)。具体的な方法の一例としては、MOCVD装置の炉内温度を900℃以上1600℃以下の温度とし、キャリアガスとして窒素ガス及び水素ガスを流しながら、原料ガスとしてTMA及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程と、原料ガスとしてTMA、TMG及びアンモニアを処理炉内に膜厚に応じて所定時間供給する工程とを、周期数に応じて所定回数繰り返す。これにより、多周期のAlx3Ga1-x3N(0<x3≦1)/AlNからなる活性層17が形成される。
 なお、活性層17として、Alx3Gay3In1-x3-y3N(0<x3≦1,0≦y3≦1)/Alx4Gay4In1-x4-y4N(0<x4≦1,0≦y4≦1)を形成する場合には、原料ガスとして、TMA、アンモニア、TMG、及びTMIを組成に応じた所定の流量で供給すればよい。
 ステップS4において、{1-101}面に平行な成長面15a、及び{0001}面に平行な成長面15bを有する第二層15が形成されているため、この状態で本ステップS5においてエピタキシャル成長させることで、{1-101}面に平行な成長面17a及び{0001}面に平行な成長面17bを有する活性層17が形成される。
 本ステップS5が工程(e)に対応する。
  (以下のステップ)
 半導体発光素子1を電子線励起型光源装置90として利用する場合には、図2及び図3を参照して上述したように、真空容器40内の所定の位置に半導体発光素子1を配置し、更に電子線源60、光透過窓45を配置することで実現される。
 (LED素子の構成及び製造方法)
 図1に示す半導体発光素子1は、LED素子として用いることもできる。以下、半導体発光素子1をLED素子として利用する場合における構成とその製造方法につき説明する。
 図9は、図1に示す半導体発光素子1をLEDとして実現したものの模式的な断面図である。半導体発光素子1をLEDとして実現する場合には、第二層15を第一導電型(例えばn型)の半導体層として構成する。一例として、第二層15はn型Alx2Ga1-X2N(0<x2≦1)で構成される。
 また、図9に示す半導体発光素子1は、活性層17の上層に、例えばp型Alx4Ga1-X4N(0<x4≦1)で構成されたp型クラッド層18と、p型クラッド層18の上層に形成されたp+型GaNで構成されたp型コンタクト層19を備える。そして、n型Alx2Ga1-X2N(0<x2≦1)で構成された第二層15の一部露出面上に、例えばTi/Alで構成されるn側電極25が形成されており、p型コンタクト層19の上層に例えばNi/Auで構成されるp側電極26が形成されている。そして、n側電極25及びp型電極26に対して、不図示のボンディングワイヤが施される。この実施形態では、p型クラッド層18及びp型コンタクト層19が「第三層」に対応し、n側電極25が「第一電極」に対応し、p側電極26が「第二電極」に対応する。
 図9に示す半導体発光素子1において、n側電極25とp側電極26の間に電圧が印加されると、活性層17に電流が流れ、電子と正孔が再結合して所定波長の光が発光する。このとき、本構成によれば、活性層17が、{1-101}面に平行な成長面17aを有しているため、内部電界の影響が抑制されており、発光効率の高いLEDが実現される。更に、本実施形態においては、活性層17が、{1-101}面に平行な成長面17aに加えて{0001}面に平行な成長面17bを有しているため、ピーク波長の異なる複数の光を発光することができるという効果もある。
 次に、半導体発光素子1をLED素子として利用する場合の製造方法につき説明する。
 まず、上記と同様にステップS1-S3を実行する。その後、ステップS4において、原料ガスとして、アンモニア、TMA及びTMGに加えて、n型不純物を構成するためのメチルシランやテトラエチルシランなどを含める。これにより、n型半導体層で構成される第二層15を形成する。例えば第二層15としてはn型Alx2Ga1-X2N(0<x2≦1)で構成することができる。上記と同様の理由により、この第二層15においても、{1-101}面に平行な成長面15a、及び{0001}面に平行な成長面15bを有して形成される。
 その後、ステップS5において活性層17を成長させた後、原料ガスとして、アンモニア、TMA及びTMGに加えて、p型不純物を構成するためのビスシクロペンタジエニルマグネシウム(Cp2Mg)を含めて更に成長させる。これにより、図9に示すように、活性層17の上層にp型Alx4Ga1-X4N(0<x4≦1)で構成されたp型クラッド層18が形成される。更に、原料ガスの流量を変更して、p+型GaNで構成されたp型コンタクト層19を形成する。
 次に、ICPエッチングにより、一部領域におけるp型コンタクト層19、p型クラッド層18、及び活性層17の積層体を削ってn型半導体層で構成される第二層15の一部上面を露出させる。そして、露出した第二層15の上層に例えばTi/Alで構成されるn側電極25を、p型コンタクト層19の上層に例えばNi/Auで構成されるp側電極26をそれぞれ形成する。そして、各素子同士を例えばレーザダイシング装置によって分離し、電極に対してワイヤボンディングを行う。
 [別実施形態]
 本発明の別実施形態につき、説明する。
 〈1〉 第一実施形態では、ステップS3において、第一層13の<11-20>方向に平行な溝部14を形成するものとして説明した。特に、実施例及び比較例では、溝部14の延伸方向を[11-20]方向として説明した。
 しかしながら、この溝部14の延伸方向を、<11-20>方向、すなわち[11-20]方向及びこの[11-20]方向に結晶学的に等価な方向とすることで、同じ原理によって上記の効果が実現される。
 図10は、別実施形態の半導体発光素子1の製造方法の一工程における上面図であり、ステップS3の実行後の素子を、[0001]面から見たときの状態を模式的に示したものである。このように、例えば図10に示すように、ステップS3において、<11-20方向>と等価で異なる3方向、すなわち[11-20]方向(又は[-1-120]方向)、[1-210]方向(又は[-12-10]方向)、及び[-2110]方向(又は[2-1-10]方向)に延伸する溝部14を形成しても構わない。なお、溝部14の本数は適宜設定される。
 〈2〉 「発明が解決しようとする課題」の項で上述したように、Alは反応性が高い性質を有している。このため、特許文献1に記載の方法で製造した場合、GaNであればc面(0001)面以外の面を成長面とすることができるが、AlNやAlGaNではそのような成長面は得られない。
 これに対し、実施例の各素子は、第一層13及び第二層15をいずれもAlNで構成したが、{1-101}面に平行な成長面15aを有して第二層15を成長させることができた。このことは、反応性の高いAlを高組成で含む窒化物半導体層においても、本方法によれば、{1-101}面に平行な成長面15aを有して成長させることができることを示唆するものである。つまり、第二層15としては、AlNの他、AlGaNやAlInGaNで構成しても、同様の効果が実現される。第一層13においても同様である。
 〈3〉 半導体発光素子1を用いたアプリケーションとして、LED及び電子線励起型光源装置を上述したが、半導体発光素子1の利用態様はこれらに限定されるものではない。また、各図面に示した構成は、あくまで一例であり、本発明はこれらの図面に示される構造に限定されるべきものではない。
       1     :    半導体発光素子
      11     :    成長基板
      13     :    第一層
      14     :    凹部(溝部)
      15     :    第二層
      15a    :    {1-101}面に平行な第二層の成長面
      15b    :    {0001}面に平行な第二層の成長面
      17     :    活性層
      17a    :    {1-101}面に平行な活性層の成長面
      17b    :    {0001}面に平行な活性層の成長面
      18     :    p型クラッド層
      19     :    p型コンタクト層
      25     :    n側電極
      26     :    p側電極
      40     :    真空容器
      41     :    容器基体
      45     :    光透過窓
      60     :    電子線源
      61     :    支持基板
      62     :    電子線放出部
      63     :    ベース部
      65     :    引き出し電極
      66     :    電極保持部材
      90     :    電子線励起型光源装置
     101     :    伝導帯
     102     :    価電子帯
     103     :    電子の波動関数
     104     :    正孔の波動関数
 

Claims (19)

  1.  成長基板を準備する工程(a)、
     前記成長基板の上層に、Alx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)よりなる第一層を<0001>方向に成長させる工程(b)、
     前記第一層に対して、当該第一層の<11-20>方向に沿って延伸する溝部を、前記成長基板の面が露出しない深さで形成する工程(c)、
     前記工程(c)の後、前記第一層の上層にAlx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)よりなる第二層を、少なくとも{1-101}面を結晶成長面として成長させる工程(d)、
     及び、前記第二層の上層に活性層を成長させる工程(e)を有することを特徴とする半導体発光素子の製造方法。
  2.  前記工程(d)は、前記溝部が形成されている領域の上方、及び前記溝部が形成されていない領域の上方に、前記成長基板の主面に対する傾斜面を結晶成長面として前記第二層を成長させる工程であることを特徴とする請求項1に記載の半導体発光素子の製造方法。
  3.  前記第一層が、Alx1Gay1In1-x1-y1N(0.5≦x1≦1,0≦y1≦1)で構成されることを特徴とする請求項1又は2に記載の半導体発光素子の製造方法。
  4.  前記第一層が、AlNで構成されることを特徴とする請求項3に記載の半導体発光素子の製造方法。
  5.  前記第二層が、AlNで構成されることを特徴とする請求項1~4のいずれか1項に記載の半導体発光素子の製造方法。
  6.  前記第二層が、Alx2Ga1-x2Nで構成されることを特徴とする請求項1~4のいずれか1項に記載の半導体発光素子の製造方法。
  7.  前記工程(d)の実行後、前記第二層の結晶成長面が{1-101}面及び{0001}面で構成されていることを特徴とする請求項1~6のいずれか1項に記載の半導体発光素子の製造方法。
  8.  前記工程(d)の実行後、前記第二層の結晶成長面が{1-101}面のみで構成されていることを特徴とする請求項1~6のいずれか1項に記載の半導体発光素子の製造方法。
  9.  前記工程(c)は、<11-20>方向に属する異なる2方向以上に延伸する前記溝部を形成する工程であることを特徴とする請求項1~8のいずれか1項に記載の半導体発光素子の製造方法。
  10.  {0001}面を結晶面とするAlx1Gay1In1-x1-y1N(0<x1≦1,0≦y1≦1)で構成された第一層と、
     前記第一層の上層に形成され、Alx2Gay2In1-x2-y2N(0<x2≦1,0≦y2≦1)で構成された第二層と、
     前記第二層の上層に形成された活性層とを有し、
     前記第一層が、前記第二層側の面上に<11-20>方向に沿って延伸する凹部を有し、
     前記活性層は、少なくとも一部が前記第二層の{1-101}面上に形成されていることを特徴とする半導体発光素子。
  11.  前記第二層は、前記第一層の上層であって、前記凹部が形成されている領域の上方、及び前記凹部が形成されていない領域の上方において、結晶成長面が前記成長基板の主面に対する傾斜面で構成されることを特徴とする請求項10に記載の半導体発光素子。
  12.  前記第一層が、Alx1Gay1In1-x1-y1N(0.5≦x1≦1,0≦y1≦1)で構成されることを特徴とする請求項10又は11に記載の半導体発光素子。
  13.  前記第一層が、AlNで構成されることを特徴とする請求項10又は11に記載の半導体発光素子。
  14.  前記第二層が、AlNで構成されることを特徴とする請求項10~13のいずれか1項に記載の半導体発光素子。
  15.  前記第二層が、Alx2Ga1-x2Nで構成されることを特徴とする請求項10~13のいずれか1項に記載の半導体発光素子。
  16.  前記活性層は、前記第二層の{1-101}面上及び前記第二層の{0001}面上に形成されていることを特徴とする請求項10~15のいずれか1項に記載の半導体発光素子。
  17.  前記活性層は、前記第二層の{1-101}面上にのみ形成されていることを特徴とする請求項10~15のいずれか1項に記載の半導体発光素子。
  18.  請求項10~17のいずれか1項に記載の半導体発光素子と、電子線源とを備え、
     前記活性層は、前記電子線源から放出された電子線が入射されることで発光することを特徴とする電子線励起型光源装置。
  19.  請求項10~17のいずれか1項に記載の半導体発光素子と、
     前記活性層の上層に、n型又はp型のいずれか一方の導電型のAlx4Gay4In1-x4-y4N(0<x4≦1,0≦y4≦1)で構成された第三層と、
     前記第二層に対して電気的に接続された第一電極と、
     前記第三層に対して電気的に接続された第二電極とを備え、
     前記第二層が、前記第三層とは異なる導電型のAlx2Gay2In1-x2-y2Nで構成されていることを特徴とするLED素子。
     
PCT/JP2015/060101 2014-03-31 2015-03-31 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置 WO2015152228A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/129,181 US20170110630A1 (en) 2014-03-31 2015-03-31 Semiconductor light emitting element, production method therefor, led element and electron-beam-pumped light source device
JP2016511928A JP6278285B2 (ja) 2014-03-31 2015-03-31 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-074165 2014-03-31
JP2014074165 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152228A1 true WO2015152228A1 (ja) 2015-10-08

Family

ID=54240548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060101 WO2015152228A1 (ja) 2014-03-31 2015-03-31 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置

Country Status (3)

Country Link
US (1) US20170110630A1 (ja)
JP (1) JP6278285B2 (ja)
WO (1) WO2015152228A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154964A (ja) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 結晶基板、紫外発光素子およびそれらの製造方法
JP2018006687A (ja) * 2016-07-07 2018-01-11 国立大学法人京都大学 半導体発光素子及びその製造方法
JP2019029536A (ja) * 2017-07-31 2019-02-21 Dowaホールディングス株式会社 Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置
JP2019036608A (ja) * 2017-08-10 2019-03-07 国立大学法人京都大学 半導体発光素子
CN109923661A (zh) * 2016-11-03 2019-06-21 应用材料公司 用于图案化的膜的沉积与处理
JP2023519983A (ja) * 2020-03-30 2023-05-15 プレッシー・セミコンダクターズ・リミテッド Led前駆体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088441A1 (ja) * 2016-11-08 2018-05-17 旭化成株式会社 窒化物半導体基板とその製造方法
FR3077680B1 (fr) * 2018-02-07 2020-02-28 Aledia Emetteur, dispositif emetteur et ecran d'affichage et procede de fabrication associes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218389A (ja) * 2002-01-18 2003-07-31 Sony Corp 半導体発光素子及びその製造方法
JP2009054780A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP2010521059A (ja) * 2006-10-18 2010-06-17 ナイテック インコーポレイテッド 深紫外線発光素子及びその製造方法
JP2011091251A (ja) * 2009-10-23 2011-05-06 Nichia Corp 窒化物半導体発光素子
JP2011096885A (ja) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd 半導体素子およびその製造方法
JP2011134948A (ja) * 2009-12-25 2011-07-07 Nichia Corp 窒化物半導体の成長方法
JP2011146637A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物半導体発光素子、iii族窒化物半導体発光素子を作製する方法、及び、窒化ガリウム単結晶基板
US20120145994A1 (en) * 2008-10-09 2012-06-14 Nitek, Inc Stable high power ultraviolet light emitting diode
JP2013165261A (ja) * 2012-01-13 2013-08-22 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板および該基板を用いた深紫外発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595198B2 (ja) * 2000-12-15 2010-12-08 ソニー株式会社 半導体発光素子及び半導体発光素子の製造方法
JP5307100B2 (ja) * 2010-09-24 2013-10-02 日本電信電話株式会社 半導体発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218389A (ja) * 2002-01-18 2003-07-31 Sony Corp 半導体発光素子及びその製造方法
JP2010521059A (ja) * 2006-10-18 2010-06-17 ナイテック インコーポレイテッド 深紫外線発光素子及びその製造方法
JP2009054780A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
US20120145994A1 (en) * 2008-10-09 2012-06-14 Nitek, Inc Stable high power ultraviolet light emitting diode
JP2011091251A (ja) * 2009-10-23 2011-05-06 Nichia Corp 窒化物半導体発光素子
JP2011096885A (ja) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd 半導体素子およびその製造方法
JP2011134948A (ja) * 2009-12-25 2011-07-07 Nichia Corp 窒化物半導体の成長方法
JP2011146637A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物半導体発光素子、iii族窒化物半導体発光素子を作製する方法、及び、窒化ガリウム単結晶基板
JP2013165261A (ja) * 2012-01-13 2013-08-22 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板および該基板を用いた深紫外発光素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154964A (ja) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 結晶基板、紫外発光素子およびそれらの製造方法
JP2018006687A (ja) * 2016-07-07 2018-01-11 国立大学法人京都大学 半導体発光素子及びその製造方法
CN109923661A (zh) * 2016-11-03 2019-06-21 应用材料公司 用于图案化的膜的沉积与处理
JP2019029536A (ja) * 2017-07-31 2019-02-21 Dowaホールディングス株式会社 Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置
JP7000062B2 (ja) 2017-07-31 2022-01-19 Dowaホールディングス株式会社 Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置
JP2019036608A (ja) * 2017-08-10 2019-03-07 国立大学法人京都大学 半導体発光素子
JP2023519983A (ja) * 2020-03-30 2023-05-15 プレッシー・セミコンダクターズ・リミテッド Led前駆体
JP7407303B2 (ja) 2020-03-30 2023-12-28 プレッシー・セミコンダクターズ・リミテッド Led前駆体

Also Published As

Publication number Publication date
US20170110630A1 (en) 2017-04-20
JP6278285B2 (ja) 2018-02-14
JPWO2015152228A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6278285B2 (ja) 半導体発光素子、半導体発光素子の製造方法、led素子、電子線励起型光源装置
JP4475358B1 (ja) GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ
CN101322292B (zh) 氮化镓半导体发光元件
US8835902B2 (en) Nano-structured light-emitting devices
JP5048236B2 (ja) 半導体発光素子、および半導体発光素子を作製する方法
US8228963B2 (en) Gallium nitride-based semiconductor optical device, method of fabricating gallium nitride-based semiconductor optical device, and epitaxial wafer
JP2008218746A (ja) Iii族窒化物系半導体発光素子
JP2013239718A (ja) 半導体光素子アレイおよびその製造方法
US20140103292A1 (en) Gallium nitride-based compound semiconductor light-emitting device and light source apparatus using the device
JP5861947B2 (ja) 半導体発光素子及びその製造方法
JP2007019277A (ja) 半導体発光素子
JP2008288397A (ja) 半導体発光装置
JP6128138B2 (ja) 半導体発光素子
US20120126283A1 (en) High power, high efficiency and low efficiency droop iii-nitride light-emitting diodes on semipolar substrates
JP5182407B2 (ja) GaN系半導体光素子、GaN系半導体光素子を作製する方法、エピタキシャルウエハ及びGaN系半導体膜を成長する方法
JP4924498B2 (ja) 窒化物系半導体発光素子、エピタキシャルウエハ、及び窒化物系半導体発光素子を作製する方法
JP5261313B2 (ja) 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法
JP2008118048A (ja) GaN系半導体発光素子
WO2017077917A1 (ja) 半導体発光素子及びその製造方法
WO2006106928A1 (ja) 窒化ガリウム系化合物半導体レーザ素子の製造方法及び窒化ガリウム系化合物半導体レーザ素子
JP5375392B2 (ja) 窒化ガリウム系半導体光素子、及び窒化ガリウム系半導体光素子を作製する方法
WO2020090814A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子および半導体成長用基板の製造方法
JP2007324421A (ja) 窒化物半導体素子
JP6927481B2 (ja) Led素子
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15774258

Country of ref document: EP

Kind code of ref document: A1