KR100720101B1 - 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법 - Google Patents

나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법 Download PDF

Info

Publication number
KR100720101B1
KR100720101B1 KR1020050072527A KR20050072527A KR100720101B1 KR 100720101 B1 KR100720101 B1 KR 100720101B1 KR 1020050072527 A KR1020050072527 A KR 1020050072527A KR 20050072527 A KR20050072527 A KR 20050072527A KR 100720101 B1 KR100720101 B1 KR 100720101B1
Authority
KR
South Korea
Prior art keywords
layer
nitride
type
light emitting
ohmic contact
Prior art date
Application number
KR1020050072527A
Other languages
English (en)
Other versions
KR20050086390A (ko
Inventor
송준오
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050072527A priority Critical patent/KR100720101B1/ko
Publication of KR20050086390A publication Critical patent/KR20050086390A/ko
Priority to JP2006216773A priority patent/JP4764283B2/ja
Priority to TW095129244A priority patent/TWI361500B/zh
Priority to CN2006101592505A priority patent/CN1917245B/zh
Priority to US11/501,360 priority patent/US7427785B2/en
Application granted granted Critical
Publication of KR100720101B1 publication Critical patent/KR100720101B1/ko
Priority to US12/192,360 priority patent/US7820463B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Abstract

본 발명은 질화물계 탑에미트형 발광소자 및 그 제조방법에 관한 것으로서 질화물계 탑에미트형 발광소자는 기본적으로 기판, n형 질화물계 클래드층, 질화물계 활성층, p형 질화물계 클래드층, 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)이 순차적으로 적층되어 있고, 이 다기능성 오믹컨택트층은 단층(Single Layer), 이중층 (Bi-layer), 또는 3중층(Tri-layer)으로 구성되며 나노구조의 형상으로 아연산화물이 최상위층에 적층되어있다. 이러한 다기능성 오믹컨택트층의 최상위층은 10 나노미터 이상의 두께를 지닌 나노기둥(Nano-columnar), 나노라드(Nanorod), 또는 나노와이어(Nanowire) 등의 1차원 나노구조의 투명 전도성 아연산화물(Nano-structured Transparent Conducting Zinc Oxide)을 포함한다. 상기한 다기능성 p형 또는 n 형 오믹컨택트층을 사용한 탑에미트형 질화물계 발광소자 및 그 제조방법에 의하면 다기능성 오믹컨택트층과 계면 특성이 개선되어 우수한 전류-전압 특성을 나타낼 뿐만 아니라, 본 발명에서 도입된 나노구조의 투명한 전도성 아연산화물을 이용하기 때문에 발광소자의 외부발광효율(External Quantum Efficiency : EQE)을 높일 수 있을 것으로 기대된다.
다기능성 오믹컨택트층, 나노기둥, 나노라드, 나노와이어

Description

나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계 발광소자 및 그 제조방법{Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof}
도 1은 본 발명의 탑에미트형 질화물계 발광소자의 실시예에 적용되는 나노구조의 다기능성 오믹컨택트층을 형성하기 위한 1차원 형상의 나노구조 투명 전도성 아연산화물이 성장된(Grown) 모습을 보여주고,
도 2는 본 발명의 탑에미트형 질화물계 발광소자의 실시예에 적용되는 나노구조의 다기능성 오믹컨택트층을 형성하기 위한 1차원 형상의 나노구조 투명 전도성 아연산화물이 에칭(Etching)공정을 거쳐 만들어진 모습을 보여주고,
도 3은 본 발명의 제 1실시예에 적용되는 나노구조를 갖는 다기능성 오믹컨택트이 적용된 메사 구조(MESA Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이고,
도 4는 본 발명의 제 2실시예에 따른 다기능성 p형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이고,
도 5는 본 발명의 제 3실시예에 따른 다기능성 p형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이고,
도 6은 본 발명의 제 4실시예에 따른 다기능성 n형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이다.
본 발명은 탑에미트형 질화물계 발광소자 및 그 제조방법에 관한 것으로서, 상세하게는 나노기둥(Nano-columnar), 나노라드(Nanorod), 또는 나노와이어(Nanowire) 등의 1차원 형상의 나노구조를 갖는 투명 전도성 아연산화물(ZnO)을 모체로 하는 나노구조의 다기능성 오믹층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)을 이용하여 투명 전도성 오믹컨택트층과 질화물계 반도체간의 향상된 계면 특성을 통한 전기적 특성 향상과 동시에 외부발광효율(External Quantum Efficiency : EQE)이 개선된 탑에미트형 질화물계 발광소자 및 그 제조방법에 관한 것이다.
일반적으로, 탑에미트형 질화물계 발광소자(Top-emitting Nitride-based Light Emitting Devices)는 발광소자의 발광 구조체 성장에 이용되는 기판과 발광소자 제조 공정에 따라서 하기와 같이 3종류 형태로 분류시킬 수 있다.
우선 먼저, 가장 일반적인 발광소자 형태로서 절연성 사파이어(Sapphire) 기판 상부에 질화물계 반도체 발광 구조체를 적층하고, n형 질화물계 클래드층이 에칭(Etching)공정을 통해서 공기중으로 노출되고 단결정 질화물계 반도체에서 생성된 빛을 p형 클래드층을 통해서 발광시키는 메사구조의 탑에미트형 발광소자(MESA-structured Top-emitting Light Emitting Device), 실리콘 카바이드(SiC) 등과 같은 전도성 기판 상부에 질화물계 반도체 발광 구조체를 적층하여 질화물계 클래드층의 에칭공정 없이 제작한 수직구조의 탑에미트형 발광소자(Vertical Top-emitting Light Emitting Device), 절연성 사파이어 기판 상부에 질화물계 발광 구조체를 적층하고 레이저 리프트 오프(Laser Lift-Off ; LLO) 기술과 본딩(Bonding) 기술을 접목하여 n형 또는 p형 클래드층을 통해서 빛을 발광하는 또 다른 수직구조의 탑에미트형 질화물계 발광소자로 제작되어 진다.
메사구조의 탑에미트형 질화물계 발광소자는 절연성 사파이어 기판 상부에 적층된 메사구조나 전도성 실리콘 또는 실리콘 카바이드와 같은 전도성 기판 상부에 적층된 질화물계 발광 구조체에서 최상층인 p형 질화물계 클래드층과 접촉하고 있는 p형 오믹컨택트층을 통해 질화물계 활성층에서 생성된 빛이 출사되게 만들어진다. 이러한 구조에서 대면적 및 대용량의 고휘도의 탑에미트형 질화물계 발광소자를 구현하기 위해서는 p형 질화물계 클래드층의 낮은 홀 농도로부터 유발되는 높은 면적항값을 보상하기 위한 양질의 오믹컨택트층인 커런트 스프레딩 층(Current Spreading Layer)이 절대적으로 필요하다. 따라서 낮은 면저항(Sheet Resistance) 및 비접촉 저항(Specific Contact Resistance)을 동시에 갖고 높은 빛투과도(Light Transmittance)를 지닌 커런트 스프레딩 층을 형성하여 원활한 전류퍼짐(Current Spreading), 홀주입(Hole Injection), 및 우수한 빛방출(Light Emission)의 역할을 동시에 제공할 수 있는 고품위 p형 오믹컨택드층이 절대적으로 요구된다.
현재까지 알려진 탑에미트형 질화물계 발광소자의 p형 오믹컨택트층으로 니켈(Ni)과 금(Au)층을 순차적으로 10 나노미터 이하의 두께로 적층한 구조가 가장 많이 이용되고 있다. 상기한 니켈-금으로 형성된 얇은 이중층(Bi-layer)은 산소(O2) 성분을 포함하고 있는 개스 분위기에서 열처리하면 10의 -4승 ㎠ 정도의 낮은 비접촉 저항을 갖는 반투명 오믹컨택트층(Semi-transparent Ohmic Contact Layer)을 형성하게 된다.
그러나 상당히 얇은(10 나노미터 이하) 니켈-금으로 형성되는 반투명 p형 오믹컨택트층을 이용한 탑에미트형 질화물계 발광소자는 빛의 투과도를 저해하는 금(Au)을 포함하고 있어 외부발부효율(EQE)이 상당히 낮음과 동시에 얇은 두께로 인해서 열적 불안성을 갖기 때문에 차세대 대용량, 대면적, 및 고휘도 질화물계 발광소자를 구현할 수가 없다.
현재까지, 세계의 많은 선진 연구그룹에서 상기한 탑에미트형 질화물계발광소자의 외부발광효율(EQE)을 향상시키고자 기존의 p형 오믹컨택트층인 반투명 니켈-금 구조보다 휠씬 우수한 빛투과도를 갖도록 금(Au)을 완전하게 배제한 투명 전도성 산화물, 즉 일 예로 인듐 주석산화물(ITO) 및 아연산화물(ZnO) 전극물질을 이용 한 연구내용이 여러 문헌(IEEE PTL, Y. C. Lin, etc. Vol. 14, 1668, IEEE PTL, Shyi-Ming Pan, etc. Vol. 15, 646)을 통해 보고되고 있다. 최근 인듐 주석산화물(ITO) 또는 아연산화물(ZnO) 투명 전도성 전극물질을 단독 또는 다른 금속 및 산화물과의 접목을 통해 제작된 질화물계 발광소자와 반투명 니켈-금 오믹 전극구조를 갖는 것과 비교하면, 상당하게 향상된 출력(output power)을 나타내는 탑에미트형 질화물계 발광소자를 구현할 수 있음을 여러 문헌(Semicond. Sci. Technol., C S Chang, etc. 18(2003), L21)을 통해 알 수 있다.
하지만, 상기한 인듐 주석산화물(ITO) 또는 아연산화물(ZnO) 등의 투명 전도성 전극물질을 이용한 p형 오믹컨택트층은 발광소자의 외부발광효율을 증대시킬 수 있는 반면, 상대적으로 계면의 전압강하(Voltage Drop)가 크게 걸리는 쇼키접촉(Schottky Contact) 형성과 높은 면저항(Sheet Resistance)으로 인해서 높은 발광소자 동작전압(Operating Voltage)을 갖는 문제점을 여전히 지니고 있어 대용량, 대면적, 및 고휘도 발광소자로의 응용에는 한계점가 있다.
또한, 상기한 바와 같이 p형 질화물계 클래드층을 통해서 빛이 외부로 발광되는 탑에미트형 질화물계 발광소자와는 달리 또 다른 구조의 탑에미트형 질화물계 발광소자는 빛의 발광효율과 발광소자 작동 시 발생되는 열을 원활하게 외부로 방출시키고자 레이저 리프트 오프(Laser Lift Off : LLO) 기술 및 본딩(Bonding)기술을 접목하여 질화물계 활성층보다 하층부에 있는 고반사성 p형 오믹컨택트층과 상층부에 있는 좁은 접촉면적을 갖는 n형 오믹컨택트층 및 전극패드를 동시에 적용하여 p형 질화물계 클래드층보다는 n형 질화물계 클래드층을 통해서 빛을 외부로 축 출하는 수직구조의 탑에미트형 질화물계 발광소자를 구현하고 있다. 하지만, 이러한 수직구조의 발광소자는 소자 작동 시 발생되는 열로 인해서 최상층부인 n형 질화물계 클래드층의 표면이 산화(Oxidation))되는 소자의 신뢰성을 급격하게 저하시키는 문제점을 유발할 수 있다. 이처럼 산화로 발생되는 문제점을 극복하기 위해서는 빛투과성이 우수하면서 n형 질화물계 클래드층과의 좋은 오믹접촉을 형성하면서 낮은 면저항을 지닌 투명 전도성 오믹컨택트층이 절대적으로 필요하다.
상기한 바와 같이, 현재까지 널리 알려진 투명한 전도성 박막층으로 사용되고 있는 ITO, In2O3, SnO2, 또는 ZnO 등의 투명 전도성 산화물들(Transparent Conducting Oxides : TCOs)과 타이티늄 질화물(TiN)등과 같은 투명 전도성 질화물(Transparent Conducting Nitrides : TCNs)을 이용하여 양질의 질화물계 오믹컨택트층을 형성하는데 많은 문제점을 갖고 있는데, 이들을 기술해보면 :
첫째, 상기한 투명 전도성 박막들은 스퍼터링(Sputtering), 이빔 증착기 또는 열 증착기(E-beam or Heat Evaporator) 등과 같은 PVD 및 상온, 저온, 고온 등에서 화학 반응을 이용한 CVD(Chemical Vapor Deposition)방법에 의해서 박막 형성 시, 대체적으로 100 / 값에 가까운 큰 면저항을 지님과 동시에 쇼키장벽의 높이 및 폭(Schottky Barrier Height and Width)에 결정적인 영향을 미치는 이들 투명 전도성 박막들의 일함수(Workfunction)을 자유롭게 조절하기가 어렵기 때문에 발광소자의 수평 방향(층간 경계면과 나란한 방향)으로의 전류 퍼짐(Current Spreading)을 어렵게 할 뿐만 아니라 수직 방향으로의 원활한 캐리어 주입(Carrier Injection)을 어렵게 함으로써 대면적, 대용량, 및 고휘도 질화물계 발광소자를 구 현하는데 많은 어려움을 유발하고 있다.
일 예로, 대면적 및 고휘도의 고신뢰성 탑에미트형 질화물계 발광소자를 구현하기 위해서는 p형 질화물계 클래드층인 상부에 증착하는 투명 전도성 박막층은 적어도 n형 질화물계 클래드층의 면저항 값인 20 / 갖고 p형 질화물계 클래드층과 쇼키성이 아닌 오믹성 접촉을 형성해야 한다.
둘째, 주석 인듐 산화물(ITO) 및 타이티늄 질화물(TiN) 등의 대부분의 투명 전도성 박막층은 상대적으로 작은 일함수 값 (5 eV 이하)을 갖고 있기 때문에 p형 질화물계 클래드층과의 직접적인 접촉(Contact)에 의한 오믹접촉을 형성하는 것이 어려울 뿐만이 아니라, 투명 전도성 박막층을 질화물계 클래드층 상부에 증착하는 공정에 상당한 영향을 받고 있다. 상기한 투명 전도성 박막층을 이용하여 질화물계 발광소자의 오믹접촉 전극으로 이용하고자 하는 노력과 함께 현재에는 상기한 문제들을 부분적으로 극복하고 실질적인 질화물계 발광소자의 고투명성 오믹전극으로 폭넓게 이용되고 있다.
하지만, 설령 상기한 문제점들을 해결하여 이들 투명 전도성 박막층을 질화물계 반도체의 p형 또는 n형 오믹접촉을 갖는 질화물계 발광소자를 제작한 경우에 여전히 외부발광효율(External Quantum Efficiency : EQE)적인 특성면에서 결정적인 문제를 지니고 있는데, 첫 번째는 투명 전도성 박막층들은 질화물계 발광소자의 활성층에서 생성 및 출사되는 빛에 대해서 높은 반사 및 흡수를 하는 성질을 갖고 있어 낮은 외부 발광효율을 갖게 만들며, 두 번째는 투명 전도성 오믹접촉 전극박막은 공기에 비해서 큰 굴절률 지수와 평평한 2차원 형태의 계면을 갖고 있기 때문 에 최대의 외부발광효율(EQE)을 얻는 데는 상당한 한계점을 지니고 있다.
질화물계 발광소자의 활성층에서 생성된 빛을 외부로 축출하는 문제오 직접적으로 관련 있는 외부발광효율(EQE)을 향상시키고자 많은 연구 그룹 및 회사에서 연구 중에 있다. 이러한 연구 결과로 인해서 현재 질화물계 발광소자 공정에 직접적으로 이용되고 있는 기술들은 질화물계 발광소자의 활성층 상부에 적층되는 질화물계 클래드층의 표면 거칠기(Surface Roughness) 증가, 그리고 광결정 효과(Photonic Crystal Effects)을 도입한 투명 전도성 오믹컨택트층(Transparent Conducting Ohmic Contact Layer) 등이 있다. 하지만, 상기한 공정 기술들은 대량 생산라인(Product Line)에 적용할 수 있을 정도로 높은 신뢰성을 지니진 못한 실정이다.
본 발명은 상기와 같은 문제점을 개선하기 위하여 창안-개발된 것으로서, 전극의 수평방향으로의 낮은 면저항과 수직방향으로의 낮은 비접촉 저항값을 갖으면서 동시에 높은 빛투과도를 갖으면서 질화물계 발광소자의 활성층에서 생성된 빛을 외부로 최대한 많은 양을 축출하기 위해서 투명 전도성 아연산화물(ZnO)의 1차원 형상의 나노구조를 이용하여 다기능성 양질의 질화물계 발광소자의 오믹컨택트층을 개발하고 이러한 양질의 오믹컨택트층을 적용한 탑에미트형 질화물계 발광소자 및 그 제조방법을 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위하여 본 발명에 따른 탑에미트형 질화물계 발광소 자 구조는 크게 4종류로 제작되고 있는데, 이들 중 가장 일반적으로 알려진 것으로서 절연성 사파이어(Sapphire) 기판 상부에 질화물계 버퍼층(Nitride-based Buffer Layer), n형 질화물계 클래드층, p형 질화물계 클래드층, 그리고 두 질화물계 클래드층 사이에 질화물계 활성층을 삽입한 탑에미트형 질화물계 발광소자 구조가 있다. 이와 같이 절연성 사파이어 기판 상부에 적층된 발광구조체를 에칭공정과 결합하여 만든 발광소자는 소자 구동 시 발생되는 열의 발산능(Heat Dissipation)이 좋지가 않아서 상대적으로 작은 발광면적을 갖고 있으면서 저용량 및 저휘도용 메사구조의 탑에미트형 질화물계 발광소자(MESA-structured Top-emitting Nitride-based Light Emitting Device)로 이용되고 있다.
또 다른 질화물계 발광소자 구조로는 실리콘 카바이드(SiC) 등과 같은 전도성 기판 상부에 적층된 것으로서 두꺼운 질화물계 버퍼층(Nitride-based Buffer Layer)에서부터 활성층을 포함한 두 질화물계 클래드층이 순차적으로 적층되어 있다. 이와 같이 전도성 불투명 기판 상부에 적층된 발광구조체를 이용하여 제작한 질화물계 발광소자는 소자 구동 시 발생되는 열의 발산능(Heat Dissipation)이 우수하여 상대적으로 대면적의 대용량 및 고휘도용 수직구조의 탑에미트형 질화물계 발광소자(Vertical Structure Top-emitting Nitride-based Light Emitting Device)로 이용되고 있다.
또 다른 질화물계 발광소자 구조로는 전도성 기판으로 사용되고 있는 실리콘 카바이드(SiC) 의 고비용을 해결하고자 레이저 리프트 오프(LLO) 방법을 이용하여 절연성 기판인 사파이어 상부에 적층된 질화물계 발광 구조체를 분리하고 금속을 비롯한 열전도성이 우수한 새로운 기판에 본딩(Bonding)하여 상대적으로 대면적의 대용량 및 고휘도용 수직구조의 탑에미트형 질화물계 발광소자(Vertical Structure Top-emitting Nitride-based Light Emitting Device)로 이용되고 있다. 참고로, 레이저 리프트 오프 방법을 이용한 질화물계 발광소자는 빛을 외부로 방출시키는 방법에 따라서 2종류가 있다. 질화물계 활성층에서 생성된 빛을 n형 질화물계 클래드층 또는 p형 질화물계 클래드층을 통해서 방출하느냐에 따라서 차별성을 갖는다.
본 발명을 성공적으로 수행하기 위해서, 본 발명에서 가장 핵심 부분은 투명 전도성 아연산화물(ZnO)의 나노라드(Nano-rods), 나노와이어(Nano-wires), 및 나노기둥(Nano-columnar) 등과 같은 1차원 형상을 갖는 나노구조의 다기능성 오믹컨택층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)을 질화물계 반도체 발광소자의 p형 또는 n형 질화물계 클래드층 상부에 도입하여 고휘도 및 고신뢰성 탑에미트형 질화물계 발광소자를 제작할 수 있다.
이하, 첨부된 도면을 참조하면서 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOL) 제조방법과 나노구조의 다기능성 오믹컨택트층(NMOCL)을 이용하여 바람직한 본 발명의 탑에미트형 질화물계 발광소자 및 그 제조방법을 보다 상세하게 설명한다.
도 1은 본 발명의 탑에미트형 질화물계 발광소자의 실시예에 적용되는 나노구조를 갖는 다기능성 오믹컨택트층을 형성하기 위한 1차원 형상의 나노구조 투명 전도성 아연산화물이 성장된 (Grown) 모습을 보여주고 있다.
도 1을 참조하면, 도 1 (가), (나), 및 (다)는 공정온도 및 시간 등의 공정 조건에 따라서 각기 약간씩 다른 모양의 1차원 나노구조 형상으로 성장된(Grown) 투명 전도성 아연산화물(ZnO)을 보여주고 있다.
상기한 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nano-wire)와 같은 1차원 형상의 나노구조를 갖는 투명 전도성 아연산화물(ZnO)은 어떠한 다른 성분도 포함하지 않은 것을 우선적으로 선택하지만, 바람직하게는 나노구조의 투명 전도성 아연산화물의 투명 전도성인 아연산화물(ZnO)의 전자농도(Electron Concentration), 에너지 밴드갭(Energy Bandgap), 광 굴절지수(Refractive Index) 등을 조절하기 위해서 다음과 같은 금속들로 구성된 금속 및 산화물들; 알루미늄(Al), 크롬(Cr), 모리브테니움(Mo), 실리콘(Si), 저메니움(Ge), 인듐(In), 리튬(Li), 갈륨(Ga), 마그네슘(Mg), 아연(Zn), 베릴륨(Be), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 티타니움(Ti), 탄탈륨(Ta), 캐드뮴(Cd), 란탄(La) 원소계열 중에서 적어도 하나 이상의 성분을 첨가하는 것도 바람직하다.
또한, 나노구조의 투명 전도성 아연산화물(ZnO)을 모체로 하여 첨가되는 상기한 원소들의 양은 웨이트 퍼센트(w.t. %)로 0.1 % 내지 49 %를 갖는 것으로 한정하는 것이 바람직하다.
바람직하게는, 상기한 나노구조의 투명 전도성 아연산화물(ZnO)은 10 나노미터 이상의 두께로 형성된다.
상기한 나노구조 형상의 아연산화물(ZnO)은 n형 또는 p형 질화물계 클래드층 상부에 직접적으로 또는 간접적으로 금속 유기 화학 증기 증착법(Metalorganic Chemical Vapor Deposition :MOCVD)을 비롯한 화학적 반응을 통한 CVD( Chemical Vapor Deposition) 이나 열 또는 이빔 증착법(Theral or E-beam Evaporation), 높은 에너지를 갖는 레이저 빔을 이용한 증착법(Laser Deposition), 산소(O2), 질소(N2), 또는 아르곤(Ar) 등의 개스 이온을 사용한 스퍼터링 증착 방법(Sputtering Deposition), 또는 2개 이상의 스퍼터 건(Sputtering Gun)을 이용한 코스퍼터링 증착 방법(Co-sputtering Deposition) 등의 다양한 방법의 물리적 증착 방법 (Physical Vapor Deposition) 중 하나 이상을 사용하여 형성한다.
바람직하게는 상기한 나노구조 형상의 아연산화물은 빛투과도 및 전기전도성을 향상시키기 위해서 산소(O2), 질소(N2), 수소(H2), 아르곤(Ar), 공기(Air), 및 진공(Vacuum) 분위기에서 800도 이하의 온도에서 열처리를 행하는 것이 좋다.
또한 나노구조 형상의 아연산화물의 광학 및 전기적 특성을 향상시키기 위해서 800도 이하의 온도에서 산소(O2), 질소(N2), 수소(H2), 및 아르곤(Ar) 이온을 이용한 플라즈마 처리(Plasma Treatment)를 행하는 것이 바람직하다.
도 2는 본 발명의 탑에미트형 질화물계 발광소자의 실시예에 적용되는 나노구조를 갖는 다기능성 오믹컨택트층을 형성하기 위한 1차원 형상의 나노구조 투명 전도성 아연산화물이 에칭(Etching)을 거쳐 만들어진 모습을 보여주고 있다.
상기한 나노기둥(Nano-columnar), 나노라드(Nano-rod), 나노와이어(Nano-wire)와 같은 1차원 형상의 나노구조를 갖는 투명 전도성 아연산화물(ZnO)은 어떠한 다른 성분도 포함하지 않은 것을 우선적으로 선택하지만, 바람직하게는 나노구조의 투명 전도성 아연산화물의 투명 전도성인 아연산화물(ZnO)의 전자농도 (Electron Concentration), 에너지 밴드갭(Energy Bandgap), 광 굴절지수(Refractive Index) 등을 조절하기 위해서 다음과 같은 금속들로 구성된 금속 및 산화물들; 알루미늄(Al), 크롬(Cr), 모리브테니움(Mo), 실리콘(Si), 저메니움(Ge), 인듐(In), 리튬(Li), 갈륨(Ga), 마그네슘(Mg), 아연(Zn), 베릴륨(Be), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 티타니움(Ti), 탄탈륨(Ta), 캐드뮴(Cd), 란탄(La) 원소계열 중에서 적어도 하나 이상의 성분을 첨가하는 것도 바람직하다.
또한, 나노구조의 투명 전도성 아연산화물(ZnO)을 모체로 하여 첨가되는 상기한 원소들의 양은 웨이트 퍼센트(w.t. %)로 0.1 % 내지 49 %를 갖는 것으로 한정하는 것이 바람직하다.
바람직하게는, 상기한 나노구조의 투명 전도성 아연산화물(ZnO)은 10 나노미터 이상의 두께로 형성된다.
도 2를 참조하면, 도 2 (가)는 투명 전도성 아연산화물(ZnO)이 n형 또는 p형 질화물계 클래드층 상부에 직접적으로 또는 간접적으로 금속 유기 화학 증기 증착법(Metalorganic Chemical Vapor Deposition :MOCVD)을 비롯한 화학적 반응을 통한 CVD( Chemical Vapor Deposition) 이나 열 또는 이빔 증착법(Theral or E-beam Evaporation), 높은 에너지를 갖는 레이저 빔을 이용한 증착법(Laser Deposition), 산소(O2), 질소(N2), 또는 아르곤(Ar) 등의 개스 이온을 사용한 스퍼터링 증착 방법(Sputtering Deposition), 또는 2개 이상의 스퍼터 건(Sputtering Gun)을 이용한 코스퍼터링 증착 방법(Co-sputtering Deposition) 등의 다양한 방법의 물리적 증착 방법 (Physical Vapor Deposition) 중 하나 이상을 사용하여 2차원 필름(Film)으로 형성된 모습이다.
도 2 (나), (다), 및 (라)는 투명 전도성 아연산화물(ZnO) 박막(도 2 (가))을 적어도 수소(H2)를 반드시 포함한 에칭(Etching)공정을 도입하여 만든 나노구조 형상의 아연산화물을 보여주고 있는데, 제각기 에칭(Etching)공정온도 및 시간 등의 조건에 따라서 나노구조 형상의 아연산화물은 제각기 약간씩 다른 형상을 갖고 있다.
또한 나노구조 형상의 아연산화물의 광학 및 전기적 특성을 향상시키기 위해서 800도 이하의 온도에서 산소(O2), 질소(N2), 수소(H2) 및 아르곤(Ar) 이온을 이용한 플라즈마 처리(Plasma Treatment)를 행하는 것이 바람직하다.
도 3은 본 발명의 제1실시예에 적용되는 나노구조를 갖는 다기능성 오믹컨택트층이 적용된 메사 구조(MESA Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이다.
도 3(가)을 참조하면, 탑에미트형 질화물계 발광소자는 절연성 사파이어 기판(310), 질화물계 버퍼층(Nitride-based Buffer Layer)(320), n형 질화물계 클래드층(330), 질화물계 활성층(340), p형 질화물계 클래드층(350), 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)(360)이 순차적으로 적층된 구조로 되어 있다. 참조부호 370은 p형 전극패드이고, 380은 n형 전극패드이다.
나노구조의 다기능성 오믹컨택트층(360)은 p형 질화물계 클래드층(350) 상부 에 직접 또는 간접적으로 나노구조의 투명 전도성 아연산화물(Nano-structured Transparent Conducting Zinc Oxide)(360)을 적층하여 형성시킨다.
상기한 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nano-wire)와 같은 1차원 형상의 나노구조를 갖는 투명 전도성 아연산화물(ZnO)은 어떠한 다른 성분도 포함하지 않은 것을 우선적으로 선택하지만, 바람직하게는 나노구조의 투명 전도성 아연산화물의 투명 전도성인 아연산화물(ZnO)의 전자농도(Electron Concentration), 에너지 밴드갭(Energy Bandgap), 광 굴절지수(Refractive Index) 등을 조절하기 위해서 다음과 같은 금속들로 구성된 금속 및 산화물들; 알루미늄(Al), 크롬(Cr), 모리브데니움(Mo), 실리콘(Si), 저메니움(Ge), 인듐(In), 리튬(Li), 갈륨(Ga), 마그네슘(Mg), 아연(Zn), 베릴륨(Be), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 티타니움(Ti), 탄탈륨(Ta), 캐드뮴(Cd), 란탄(La) 원소계열 중에서 적어도 하나 이상의 성분을 첨가하는 것도 바람직하다.
또한, 나노구조의 투명 전도성 아연산화물(ZnO)을 모체로 하여 첨가되는 상기한 원소들의 양은 웨이트 퍼센트(w.t. %)로 0.1 % 내지 49 %를 갖는 것으로 한정하는 것이 바람직하다.
바람직하게는, 상기한 나노구조의 투명 전도성 아연산화물(ZnO)은 10 나노미터 이상의 두께로 형성된다.
도 3(나)에 도시한 바와 같이, 나노구조의 다기능성 오믹컨택트층(360)은 p형 질화물계 클래드층(350) 상부에 p형 질화물계 클래드층과 오믹접촉 특성을 향상 시키고자 단층 또는 이중층으로 구성된 오믹삽입층(Ohmic Interlayer)을 접목하여 단층(Single Layer)(360a), 이중층(Bi-layer)(360a, 360b), 또는 삼중층(Tri-layer)(360a, 360b, 360c)으로 구성될 수 있다.
투명 전도성 아연산화물계로 형성된 나노구조의 다기능성 오믹컨택트층(360)은 단층(360a)의 경우, 나노구조의 다기능성 오믹컨택트층(360)과 p형 질화물계 클래드층(350) 사이에 오믹삽입층(Ohmic Interlayer)이 도입되지 않은 것이다.
바람직하게는, 투명 전도성 아연산화물계로 형성된 나노구조의 다기능성 오믹컨택트층(360)은 이중층(360a, 360b)의 경우, 나노구조의 투명 전도성 아연산화물(ZnO)(360b)을 p형 질화물계 클래드층(350) 상부에 직접적으로 형성시키기 전에 p형 질화물계 클래드층과의 오믹접촉을 형성하는데 유리한 금속(Ni, Pd, Pt, Rh, Zn, In, Sn, Zn, Ag, Au), 산화물(ITO, SnO2, ZnO, In2O3, Ga2O3, RhO2, NiO, CoO, PdO, PtO, CuAlO2, CuGaO2), 또 질화물(TiN, TaN, SiNx) 중 한 성분을 선택하여 오믹삽입층으로 상용한다.
더욱 바람직하게는, 투명 전도성 아연산화물계로 형성된 나노구조를 이용하여 다기능성 오믹컨택트층(360)을 삼중층(360a, 360b, 360c)으로 제작하는 경우, 나노구조의 투명 전도성 아연산화물(360c)을 p형 질화물계 클래드층(350) 상부에 직접적으로 형성시키기 전에 p형 질화물계 클래드층과 오믹접촉을 형성하는데 유리한 금속(Ni, Pd, Pt, Rh, Zn, In, Sn, Zn, Ag, Au), 산화물(ITO, SnO2, ZnO, In2O3, RhO2, NiO, CoO, PdO, PtO, CuAlO2, CuGaO2), 또 질화물(TiN, TaN, SiNx) 중 이미 널리 공지된 두 종류의 물질로 구성된 이중 오믹삽입층(360a, 360b)을 직 접 질화물계 클래드층(350) 상부에 형성하고 그 상부에 나노구조의 투명 아연산화물을 증착하여 삼중층의 나노구조 다기능성 오믹컨택트층을 형성한다.
또한, 이중층 및 삼중층 구조를 갖는 나노구조의 다기능성 p형 오믹컨택트층을 형성하기 위해서 오믹접촉 특성을 향상시키고자 도입한 오믹삽입층을 적층하고, 나노구조의 투명 전도성 아연산화물을 그들 상부에 증착하기 전에 800도 이하의 온도와 다양한 산소(O2), 질소(N2), 아르곤(Ar), 수소(H2), 공기, 진공 등의 개스 분위기에서 열처리를 행하는 것이 바람직하다.
또한, 바람직하게는 나노구조의 투명 전도성 아연산화물을 완전히 다기능성 오믹컨택트(360)의 최상층부에 증착 한 후, 800도 이하의 온도와 다양한 산소(O2), 질소(N2), 아르곤(Ar), 수소(H2), 공기, 진공 등의 개스 분위기에서 열처리를 행하는 것이 바람직하다.
여기서 기판(310)으로부터 p형 질화물계 클래드층(350)까지가 발광 구조체에 해당하고, p형 질화물계 클래드층(350) 상부에 적층된 나노구조의 다기능성 오믹컨택트층(360)이 p형 오믹전극 구조체에 해당한다.
기판(310)은 절연성 사파이어(Al2O3)로 형성된 것이 바람직하다.
질화물계 버퍼층(320)은 생략될 수 있다.
버퍼층(320)으로부터 p형 클래드층(350)까지의 각 층은 Ⅲ족 질화물계 화합물의 일반식인 AlxInyGazN(x, y, z : 정수)로 표현되는 화합물 중 선택된 어느 화합물을 기본으로 하여 형성되고, n형 클래드층(330) 및 p형 클래드층(350)은 해당 도펀트가 첨가된다.
또한, 질화물계 활성층(340)은 단층 또는 MQW층 등 공지된 다양한 방식으로 구성될 수 있다.
일예로서 질화갈륨(GaN)계 화합물을 적용하는 경우, 질화물계 버퍼층(320)은 GaN으로 형성되고, n형 질화물계 클래드층(330)은 GaN에 n형 도펀트로서 Si, Ge, Se, Te등이 첨가되어 형성되고, 질화물계 활성층은 InGaN/GaN MQW 또는 AlGaN/GaN MQW로 형성되며, p형 질화물계 클래드층(350)은 GaN에 n형 도펀트로서 Mg, Zn, Ca, Sr, Ba 등이 첨가되어 형성된다.
n형 질화물계 클래드층(330)과 n형 전극패드(380) 사이에는 n형 오믹컨택트층(미도시)이 개제될 수 있고, n형 오믹컨택트층은 타이타늄(Ti)과 알루미늄(Al)이 순차적으로 적층된 층구조 등 공지된 다양한 구조가 적용될 수 있다.
p형 전극패드(370)는 니켈(Ni)/금(Au) 또는 은(Ag)/금(Au)이 순차적으로 적층된 층구조가 적용될 수 있다.
상기한 각 층은 금속 유기 화학 증기 증착법(Metalorganic Chemical Vapor Deposition :MOCVD)을 비롯한 화학적 반응을 통한 CVD( Chemical Vapor Deposition) 이나 열 또는 이빔 증착법(Theral or E-beam Evaporation), 높은 에너지를 갖는 레이저 빔을 이용한 증착법(Laser Deposition), 산소(O2), 질소(N2), 또는 아르곤(Ar) 등의 개스 이온을 사용한 스퍼터링 증착 방법(Sputtering Deposition), 또는 2개 이상의 스퍼터 건(Sputtering Gun)을 이용한 코스퍼터링 증착 방법(Co-sputtering Deposition) 등의 다양한 방법의 물리적 증착 방법 (Physical Vapor Deposition) 중 하나 이상을 사용하여 형성하는 것이 바람직하다.
나노구조의 다기능성 멀티 오믹컨택트층(360)은 p형 전극구조체로서 p형 클래드층(350) 상부에 형성된 오믹삽입층이 없는 단층(Single Layer), 또는 하나 또는 두층으로 구성된 오믹삽입층을 포함한 다음 나노구조의 투명 전도성 아연산화물과 결합하여 생성된 이중층(Bi-layer) 또는 삼중층(Tri-layer) 구조로 한다.
도 4는 본 발명의 제 2실시예에 따른 다기능성 p형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이다.
도 4(가)을 참조하면, 탑에미트형 질화물계 발광소자는 전도성 실리콘 카바이드 기판(410), 질화물계 버퍼층(Nitride-based Buffer Layer)(420), n형 질화물계 클래드층(430), 질화물계 활성층(440), p형 질화물계 클래드층(450), 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)(460)이 순차적으로 적층된 구조로 되어 있다. 참조부호 470은 p형 전극패드이고, 480은 n형 전극패드이다.
나노구조의 다기능성 오믹컨택트층(460)은 p형 질화물계 클래드층(450) 상부에 직접 또는 간접적으로 나노구조의 투명 전도성 아연산화물(Nano-structured Transparent Conducting Zinc Oxide)(460)을 적층하여 형성시킨다.
상기한 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nano-wire)와 같은 1차원 형상의 나노구조를 갖는 투명 전도성 아연산화물(ZnO)은 어떠한 다른 성분도 포함하지 않은 것을 우선적으로 선택하지만, 바람직하게는 나노구조의 투명 전도성 아연산화물의 투명 전도성인 아연산화물(ZnO)의 전자농도 (Electron Concentration), 에너지 밴드갭(Energy Bandgap), 광 굴절지수(Refractive Index) 등을 조절하기 위해서 다음과 같은 금속들로 구성된 금속 및 산화물들; 알루미늄(Al), 크롬(Cr), 모리브테니움(Mo), 실리콘(Si), 저메니움(Ge), 인듐(In), 리튬(Li), 갈륨(Ga), 마그네슘(Mg), 아연(Zn), 베릴륨(Be), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 티타니움(Ti), 탄탈륨(Ta), 캐드뮴(Cd), 란탄(La) 원소계열 중에서 적어도 하나 이상의 성분을 첨가하는 것도 바람직하다.
또한, 나노구조의 투명 전도성 아연산화물(ZnO)을 모체로 하여 첨가되는 상기한 원소들의 양은 웨이트 퍼센트(w.t. %)로 0.1 % 내지 49 %를 갖는 것으로 한정하는 것이 바람직하다.
바람직하게는, 상기한 나노구조의 투명 전도성 아연산화물(ZnO)은 10 나노미터 이상의 두께로 형성된다.
도 4(나)에 도시한 바와 같이, 나노구조의 다기능성 오믹컨택트층(460)은 p형 질화물계 클래드층(450) 상부에 p형 질화물계 클래드층과 오믹접촉 특성을 향상시키고자 단층 또는 이중층으로 구성된 오믹삽입층(Ohmic Interlayer)을 접목하여 단층(Single Layer)(460a), 이중층(Bi-layer)(460a, 460b), 또는 삼중층(Tri-layer)(460a, 460b, 460c)으로 구성될 수 있다.
투명 전도성 아연산화물계로 형성된 나노구조의 다기능성 오믹컨택트층(460)은 단층(460a)의 경우, 나노구조의 다기능성 오믹컨택트층(460)과 p형 질화물계 클래드층(450) 사이에 오믹삽입층(Ohmic Interlayer)이 도입되지 않은 것이다.
바람직하게는, 투명 전도성 아연산화물계로 형성된 나노구조의 다기능성 오믹컨택트층(460)은 이중층(460a, 460b)의 경우, 나노구조의 투명 전도성 아연산화물(ZnO)(460b)을 p형 질화물계 클래드층(450) 상부에 직접적으로 형성시키기 전에 p형 질화물계 클래드층과의 오믹접촉을 형성하는데 유리한 금속(Ni, Pd, Pt, Rh, Zn, In, Sn, Zn, Ag, Au), 산화물(ITO, SnO2, ZnO, In2O3, Ga2O3, RhO2, NiO, CoO, PdO, PtO, CuAlO2, CuGaO2), 또 질화물(TiN, TaN, SiNx) 중 한 성분을 선택하여 오믹삽입층으로 상용한다.
더욱 바람직하게는, 투명 전도성 아연산화물계로 형성된 나노구조를 이용하여 다기능성 오믹컨택트층(460)을 삼중층(460a, 460b, 460c)으로 제작하는 경우, 나노구조의 투명 전도성 아연산화물(460c)을 p형 질화물계 클래드층(450) 상부에 직접적으로 형성시키기 전에 p형 질화물계 클래드층과 오믹접촉을 형성하는데 유리한 금속(Ni, Pd, Pt, Rh, Zn, In, Sn, Zn, Ag, Au), 산화물(ITO, SnO2, ZnO, In2O3, RhO2, NiO, CoO, PdO, PtO, CuAlO2, CuGaO2), 또 질화물(TiN, TaN, SiNx) 중 이미 널리 공지된 두 종류의 물질로 구성된 이중 오믹삽입층(460a, 460b)을 직접 질화물계 클래드층(450) 상부에 형성하고 그 상부에 나노구조의 투명 아연산화물을 증착하여 삼중층의 나노구조 다기능성 오믹컨택트층을 형성한다.
또한, 이중층 및 삼중층 구조를 갖는 나노구조의 다기능성 p형 오믹컨택트층을 형성하기 위해서 오믹접촉 특성을 향상시키고자 도입한 오믹삽입층을 적층하고, 나노구조의 투명 전도성 아연산화물을 그들 상부에 증착하기 전에 800도 이하의 온도와 다양한 산소(O2), 질소(N2), 아르곤(Ar), 수소(H2), 공기, 진공 등의 개스 분 위기에서 열처리를 행하는 것이 바람직하다.
또한, 바람직하게는 나노구조의 투명 전도성 아연산화물을 완전히 다기능성 오믹컨택트(460)의 최상층부에 증착 한 후, 800도 이하의 온도와 다양한 산소(O2), 질소(N2), 아르곤(Ar), 수소(H2), 공기, 진공 등의 개스 분위기에서 열처리를 행하는 것이 바람직하다.
여기서 기판(410)으로부터 p형 질화물계 클래드층(450)까지가 발광 구조체에 해당하고, p형 질화물계 클래드층(450) 상부에 적층된 나노구조의 다기능성 오믹컨택트층(460)이 p형 오믹전극 구조체에 해당한다.
기판(410)은 전도성 실리콘 카바이드(SiC) 기판으로 하는 것이 바람직하다.
질화물계 버퍼층(420)은 생략될 수 있다.
버퍼층(420)으로부터 p형 클래드층(450)까지의 각 층은 Ⅲ족 질화물계 화합물의 일반식인 AlxInyGazN(x, y, z : 정수)로 표현되는 화합물 중 선택된 어느 화합물을 기본으로 하여 형성되고, n형 클래드층(430) 및 p형 클래드층(450)은 해당 도펀트가 첨가된다.
또한, 질화물계 활성층(440)은 단층 또는 MQW층 등 공지된 다양한 방식으로 구성될 수 있다.
일 예로서 질화갈륨(GaN)계 화합물을 적용하는 경우, 질화물계 버퍼층(420)은 GaN으로 형성되고, n형 질화물계 클래드층(430)은 GaN에 n형 도펀트로서 Si, Ge, Se, Te등이 첨가되어 형성되고, 질화물계 활성층은 InGaN/GaN MQW 또는 AlGaN/GaN MQW로 형성되며, p형 질화물계 클래드층(450)은 GaN에 n형 도펀트로서 Mg, Zn, Ca, Sr, Ba 등이 첨가되어 형성된다.
n형 질화물계 클래드층(430) 하부에 존재하는 전도성 기판과 기판 하부층에 직접접으로 두껍게 증착된 반사성 금속박막층이 n형 오믹 전극패드(480)로 사용되고, 상기한 n형 오믹 전극패드는 알루미늄(Al), 로듐(Rh), 또는 은(Ag) 등 빛반사성이 우수한 금속을 우선적으로 선정하여 다양한 층구조가 적용될 수 있다.
p형 전극패드(370)는 니켈(Ni)/금(Au) 또는 은(Ag)/금(Au)이 순차적으로 적층된 층구조가 적용될 수 있다.
상기한 각 층은 금속 유기 화학 증기 증착법(Metalorganic Chemical Vapor Deposition :MOCVD)을 비롯한 화학적 반응을 통한 CVD( Chemical Vapor Deposition) 이나 열 또는 이빔 증착법(Theral or E-beam Evaporation), 높은 에너지를 갖는 레이저 빔을 이용한 증착법(Laser Deposition), 산소(O2), 질소(N2), 또는 아르곤(Ar) 등의 개스 이온을 사용한 스퍼터링 증착 방법(Sputtering Deposition), 또는 2개 이상의 스퍼터 건(Sputtering Gun)을 이용한 코스퍼터링 증착 방법(Co-sputtering Deposition) 등의 다양한 방법의 물리적 증착 방법(Physical Vapor Deposition) 중 하나 이상을 사용하여 형성하는 것이 바람직하다.
나노구조의 다기능성 멀티 오믹컨택트층(460)은 p형 전극구조체로서 p형 클래드층(450) 상부에 형성된 오믹삽입층이 없는 단층(Single Layer), 또는 하나 또는 두층으로 구성된 오믹삽입층을 포함한 다음 나노구조의 투명 전도성 아연산화물과 결합하여 생성된 이중층(Bi-layer) 또는 삼중층(Tri-layer) 구조로 한다.
도 5는 본 발명의 제 3실시예에 따른 다기능성 p형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이다.
도 5(가)을 참조하면, 탑에미트형 질화물계 발광소자는 전도성 반도체 또는 금속 기판(510), 본딩층(Bonding Layer)(520), n형 질화물계 클래드층(530), 질화물계 활성층(540), p형 질화물계 클래드층(550), 본딩층(520)과 n형 질화물계 클래드층(530) 사이에 활성층에서 생성된 빛을 상부로 발광시키기 위해서 삽입된 고반사성 박막층(560), 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)(570)이 순차적으로 적층된 구조로 되어 있다. 참조부호 , 580은 p형 전극패드이다.
제3실시예에 제안한 질화물계 발광소자를 나노구조의 다기능성 오믹컨택트층(NMOCL)(570)을 비롯한 모든 층을 형성하는 물질, 두께, 및 방법 등은 상기한 것과 동일하다.
도 6은 본 발명의 제 4실시예에 따른 다기능성 n형 오믹컨택트층이 적용된 수직 구조 (Vertical Structure)의 탑에미트형 질화물계 발광소자를 나타내 보인 단면도이다.
도 6(가)을 참조하면, 탑에미트형 질화물계 발광소자는 전도성 반도체 또는 금속 기판(610), 본딩층(Bonding Layer)(620), n형 질화물계 클래드층(630), 질화물계 활성층(640), p형 질화물계 클래드층(650), 본딩층(520)과 n형 질화물계 클래드층(630) 사이에 활성층에서 생성된 빛을 상부로 발광시키기 위해서 삽입된 고반사성 박막층(660), 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact Layer : NMOCL)(570)이 순차적으로 적층된 구조로 되어 있다. 참조부호 , 680은 n형 전극패드이다.
제4실시예에 제안한 질화물계 발광소자를 나노구조의 다기능성 오믹컨택트층(NMOCL)(570)을 비롯한 모든 층을 형성하는 물질, 두께, 및 방법 등은 상기한 것과 동일하다.
상기한 바와 같이, 다기능성 p형 또는 n 형 오믹컨택트층을 사용한 탑에미트형 질화물계 발광소자 및 그 제조방법에 의하면 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact layer : NMOCL)과 계면 특성이 개선되어 우수한 전류-전압 특성을 나타낼 뿐만 아니라, 본 발명에서 도입된 나노구조의 투명한 전도성 아연산화물을 이용하기 때문에 발광소자의 외부발광효율(External Quantum Efficiency : EQE)을 높일 수 있을 것으로 기대된다.

Claims (8)

  1. n형 질화물계 클래드층과 p형 질화물계 클래드층 사이에 질화물계 활성층을 갖는 탑에미트형 질화물계 발광소자에 있어서,
    상기 n형 또는 p형 질화물계 클래드층 상부에 나노구조의 투명 전도성 아연산화물(ZnO)을 포함하고 있는 단층(Single Layer) 또는 2층 이상의 다층(Multilayer)으로 적층된 나노구조의 다기능성 오믹컨택트층(Nano-structured Multifunctional Ohmic Contact layer : NMOCL)을 구비하고,
    상기 나노구조의 다기능성 오믹컨택트층은 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nanowire)와 같은 1차원 형태의 나노 구조의 투명 전도성 아연 산화물(ZnO)계 화합물로 형성된 것을 특징으로 하는 탑에미트형 질화물계 발광소자.
  2. 제1항에 있어서,
    상기 나노구조의 다기능성 오믹컨택트층의 최상층부를 구성하고 있는 투명 전도성 아연산화물의 전자농도(Electron Concentration), 에너지 밴드갭(Energy Bandgap), 및 광 굴절지수(Refractive Index) 등을 조절하기 위해서 다음과 같은 금속들로 구성된 금속 또는 산화물들; 알루미늄(Al), 크롬(Cr), 모리브데니움(Mo), 실리콘(Si), 저메니움(Ge), 인듐(In), 리튬(Li), 갈륨(Ga), 마그네슘(Mg), 아연(Zn), 베릴륨(Be), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 티타니움(Ti), 탄탈륨(Ta), 캐드뮴(Cd), 란탄(La) 원소계열 중에서 적어도 하나 이상의 성분을 첨가하며, 나노구조의 투명 전도성 아연산화물(ZnO)을 모체로 하여 첨가되는 상기한 원소들의 양은 웨이트 퍼센트(w.t. %)로 0.1 % 내지 49 %를 갖는 것으로 한정하는 것을 특징으로 하고 있는 탑에미트형 질화물계 발광소자.
  3. 제1항에 있어서,
    상기 n형 또는 p형 질화물계 클래드층 상부에 나노구조의 투명 전도성 아연산화물(ZnO)을 포함하고 있는 나노구조의 다기능성 n형 또는 p형 오믹컨택트층을 형성하는 방법은 n형 또는 p형 질화물계 클래드 상층부에 아연산화물을 직접적으로 성장(Growth)시키거나 2차원 필름 형태의 아연산화물을 반드시 수소(H2) 개스가 포함된 분위기에서 열처리하여 에칭(Etching) 및 재성장(Regrowth)단계를 반복적으로 하여 형성하는 나노구조의 다기능성 오믹컨택트층을 갖는 탑에미트형 질화물계 발광소자.
  4. 제1항에 있어서,
    상기한 나노구조의 투명 전도성 아연산화물(ZnO)은 10 나노미터 이상의 두께로 형성되며 n형 또는 p형 질화물계 클래드층 상부에 적층하는 나노구조의 다기능성 오믹컨택트층의 최상층부에 적층하는 것을 특징으로 하는 탑에미트형 질화물계 발광소자.
  5. 제1항에 있어서,
    상기 나노구조의 다기능성 오믹컨택트층은 탑에미트형 질화물계 발광소자의 구조와는 무관하게 적용되며, 또한 발광소자 제작 공정 순서와 무관하게 적용되는 것을 특징으로 하는 탑에미트형 질화물계 발광소자.
  6. n형 질화물계 클래드층과 p형 질화물계 클래드층 사이에 질화물계 활성층을 갖는 탑에미트형 질화물계 발광소자의 제조방법에 있어서,
    가. 절연성 또는 전도성 기판 상부에 질화물계 버퍼층(Nitride-based Buffer Layer), n형 질화물계 클래드층, 질화물계 활성층 및 p형 질화물계 클래드층이 순차적으로 적층된 발광 구조체에 있어서, 상기 p형 또는 n형 질화물계 클래드층 상부에 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nanowire)와 같은 1차원 형태의 나노구조의 투명 전도성 아연산화물(ZnO)이 포함된 다기능성 오믹컨택트층을 형성하는 단계, 그리고
    나. 상기 가 단계를 거친 전극 구조체를 열처리하는 단계를 포함하고,
    상기 나노구조의 다기능성 오믹컨택트층은 아연산화물(ZnO)을 모체로 하는 산화물로 형성된 것을 특징으로 하는 탑에미트형 질화물계 발광소자의 제조방법.
  7. 제6항에 있어서,
    상기 n형 또는 p형 질화물계 클래드층 상부에 나노기둥(Nano-columnar), 나노라드(Nano-rod), 또는 나노와이어(Nanowire)와 같은 1차원 형태의 나노구조의 투명 전도성 아연산화물(ZnO)이 포함된 다기능성 오믹컨택트층은 n형 또는 p형 클래드층 상부에 단층으로 구성하는 것을 기본 구조로 하되, 상기한 다기능성 오믹컨택트층과 n형 또는 p형 오믹컨택트층과의 계면에서 걸리는 전압강하(Voltage Drop)을 감소시키기 위해서 오믹삽입층(Ohmic Interlayer)으로 단층 또는 이중층으로 도입하는 탑에미트형 발광소자의 제조방법.
  8. 제7항에 있어서,
    상기 오믹삽입층은 인듐(In), 주석(Sn), 아연(Zn), 갈륨(Ga), 카드뮴(Cd), 마그네슘(Mg), 베릴륨(Be), 은(Ag), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 금(Au), 티타늄(Ti), 바나듐(V), 실리콘(Si), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 팔라듐(Pd), 백금(Pt), 및 란탄(La) 원소계열 중에서 적어도 하나 이상인 금속(Metal), ITO, ZnO, In2O3, 불순물이 첨가된 인듐 산화물(In2O3), SnO2, CdO, 및 Ga2O3 중에서 적어도 하나 이상인 투명 전도성 산화물(TCOs), 티타늄 질화물(TiN)을 포함하는 천이금속계 질화물 중에서 적어도 하나 이상인 투명 전도성 질화물(TCNs) 중 적어도 한 성분 이상을 포함하고 있는 것을 특징으로 하며, 계면 특성 또는 열적 안정성을 도모하기 위해서 나노구조의 아연산화물을 형성시키기 전에 열처리를 행하는 것을 특징으로 한 탑에미트형 질화물계 발광소자의 제조방법.
KR1020050072527A 2005-08-09 2005-08-09 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법 KR100720101B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020050072527A KR100720101B1 (ko) 2005-08-09 2005-08-09 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
JP2006216773A JP4764283B2 (ja) 2005-08-09 2006-08-09 窒化物系発光素子及びその製造方法
TW095129244A TWI361500B (en) 2005-08-09 2006-08-09 Nitride-based light emitting device and manufacturing method thereof
CN2006101592505A CN1917245B (zh) 2005-08-09 2006-08-09 氮化物基发光器件及其制造方法
US11/501,360 US7427785B2 (en) 2005-08-09 2006-08-09 Nitride-based light emitting device and manufacturing method thereof
US12/192,360 US7820463B2 (en) 2005-08-09 2008-08-15 Nitride-based light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050072527A KR100720101B1 (ko) 2005-08-09 2005-08-09 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20050086390A KR20050086390A (ko) 2005-08-30
KR100720101B1 true KR100720101B1 (ko) 2007-05-18

Family

ID=37270275

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050072527A KR100720101B1 (ko) 2005-08-09 2005-08-09 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법

Country Status (5)

Country Link
US (2) US7427785B2 (ko)
JP (1) JP4764283B2 (ko)
KR (1) KR100720101B1 (ko)
CN (1) CN1917245B (ko)
TW (1) TWI361500B (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548852B1 (en) * 2003-12-22 2013-07-10 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
KR100720101B1 (ko) * 2005-08-09 2007-05-18 삼성전자주식회사 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
TWI270222B (en) * 2005-10-07 2007-01-01 Formosa Epitaxy Inc Light emitting diode chip
KR101008285B1 (ko) * 2005-10-28 2011-01-13 주식회사 에피밸리 3족 질화물 반도체 발광소자
WO2007069871A1 (en) 2005-12-16 2007-06-21 Samsung Electronics Co., Ltd. Optical device and method of fabricating the same
KR100794304B1 (ko) * 2005-12-16 2008-01-11 삼성전자주식회사 광학 소자 및 그 제조 방법
JP5244614B2 (ja) * 2005-12-27 2013-07-24 三星ディスプレイ株式會社 Iii族窒化物系発光素子
KR100741204B1 (ko) * 2006-03-17 2007-07-19 엘지전자 주식회사 나노로드를 형성하는 방법
KR100755649B1 (ko) * 2006-04-05 2007-09-04 삼성전기주식회사 GaN계 반도체 발광소자 및 그 제조방법
KR100793417B1 (ko) * 2006-06-16 2008-01-11 정명근 산화아연계 나노선을 구비한 3차원 구조를 갖는 나노 소자및 이를 이용한 장치
SG156218A1 (ko) 2007-04-20 2009-11-26
EP2149153A4 (en) * 2007-05-17 2011-11-30 Canterprise Ltd CONTACT AND METHOD FOR ITS MANUFACTURE
JP5237274B2 (ja) * 2007-06-28 2013-07-17 京セラ株式会社 発光素子及び照明装置
CN101459209B (zh) * 2007-12-14 2012-04-18 台达电子工业股份有限公司 发光二极管装置及其制造方法
DE102009018603B9 (de) 2008-04-25 2021-01-14 Samsung Electronics Co., Ltd. Leuchtvorrichtung und Herstellungsverfahren derselben
US8669574B2 (en) 2008-07-07 2014-03-11 Glo Ab Nanostructured LED
KR20100028412A (ko) 2008-09-04 2010-03-12 삼성전자주식회사 나노 막대를 이용한 발광 다이오드 및 그 제조 방법
KR20100055750A (ko) * 2008-11-18 2010-05-27 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101257572B1 (ko) * 2008-12-15 2013-04-23 도요타 고세이 가부시키가이샤 반도체 발광 소자
CN102473809B (zh) * 2010-04-20 2015-08-12 松下电器产业株式会社 发光二极管
CN102473808B (zh) * 2010-05-07 2014-11-26 松下电器产业株式会社 发光二极管
TWI573288B (zh) * 2010-10-18 2017-03-01 鴻海精密工業股份有限公司 發光二極體及其製作方法
TW201246308A (en) * 2011-05-03 2012-11-16 Univ Chung Yuan Christian Method for band gap tuning of metal oxide semiconductors
KR20130052825A (ko) * 2011-11-14 2013-05-23 삼성전자주식회사 반도체 발광소자
US8796693B2 (en) * 2012-12-26 2014-08-05 Seoul Semiconductor Co., Ltd. Successive ionic layer adsorption and reaction process for depositing epitaxial ZnO on III-nitride-based light emitting diode and light emitting diode including epitaxial ZnO
CN103346230A (zh) * 2013-06-18 2013-10-09 上海大学 铜氧化物/氧化锌基复合透明电极发光二极管及其制备方法
US9306126B2 (en) * 2014-07-14 2016-04-05 Intermolecular, Inc. Oxides with thin metallic layers as transparent ohmic contacts for p-type and n-type gallium nitride
KR101773706B1 (ko) * 2016-04-27 2017-08-31 한국산업기술대학교산학협력단 자외선 발광소자용 투명전극 및 이의 제조방법
JP6853882B2 (ja) 2016-10-24 2021-03-31 グロ アーベーGlo Ab 発光ダイオード、ディスプレイデバイス、および、直視型ディスプレイデバイス
CN106409994B (zh) * 2016-10-28 2019-05-14 华灿光电(浙江)有限公司 一种AlGaInP基发光二极管芯片及其制作方法
CN108336191B (zh) * 2017-12-08 2019-08-02 华灿光电(苏州)有限公司 一种发光二极管芯片及制备方法
CN107993934B (zh) * 2017-12-08 2020-09-11 中国科学院微电子研究所 增强氧化镓半导体器件欧姆接触的方法
US20220416124A1 (en) * 2019-12-20 2022-12-29 Semiconductor Energy Laboratory Co., Ltd. Inorganic light-emitting element and semiconductor device including inorganic light-emitting element
CN113410353B (zh) * 2021-04-29 2023-03-24 华灿光电(浙江)有限公司 发光二极管外延片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094114A (ja) 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology ZnO系酸化物半導体層を有する半導体装置およびその製法
KR20050063668A (ko) * 2003-12-22 2005-06-28 삼성전자주식회사 탑에미트형 질화물계 발광소자 및 그 제조방법
KR20050117272A (ko) * 2004-06-10 2005-12-14 학교법인 포항공과대학교 투명 전도성 나노막대를 전극으로 포함하는 발광소자

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105430U (ko) * 1990-02-17 1991-10-31
JP3259811B2 (ja) * 1995-06-15 2002-02-25 日亜化学工業株式会社 窒化物半導体素子の製造方法及び窒化物半導体素子
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
KR100495215B1 (ko) * 2002-12-27 2005-06-14 삼성전기주식회사 수직구조 갈륨나이트라이드 발광다이오드 및 그 제조방법
US20050107870A1 (en) * 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
KR100593264B1 (ko) * 2003-06-26 2006-06-26 학교법인 포항공과대학교 p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자
US7122827B2 (en) * 2003-10-15 2006-10-17 General Electric Company Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same
JP2005197506A (ja) * 2004-01-08 2005-07-21 Kyoshin Kagi Kofun Yugenkoshi 窒化ガリウム基iii−v族化合物半導体発光ダイオードとその製造方法
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7330369B2 (en) * 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
TWI442456B (zh) * 2004-08-31 2014-06-21 Sophia School Corp 發光元件
KR100720101B1 (ko) * 2005-08-09 2007-05-18 삼성전자주식회사 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
JP5611522B2 (ja) * 2005-08-19 2014-10-22 エルジー ディスプレイ カンパニー リミテッド 伝導性ナノロッドを透明電極として含む発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094114A (ja) 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology ZnO系酸化物半導体層を有する半導体装置およびその製法
KR20050063668A (ko) * 2003-12-22 2005-06-28 삼성전자주식회사 탑에미트형 질화물계 발광소자 및 그 제조방법
KR20050117272A (ko) * 2004-06-10 2005-12-14 학교법인 포항공과대학교 투명 전도성 나노막대를 전극으로 포함하는 발광소자

Also Published As

Publication number Publication date
US7427785B2 (en) 2008-09-23
CN1917245A (zh) 2007-02-21
US20080305567A1 (en) 2008-12-11
US7820463B2 (en) 2010-10-26
TW200715618A (en) 2007-04-16
JP4764283B2 (ja) 2011-08-31
JP2007049159A (ja) 2007-02-22
CN1917245B (zh) 2012-02-01
US20070034891A1 (en) 2007-02-15
TWI361500B (en) 2012-04-01
KR20050086390A (ko) 2005-08-30

Similar Documents

Publication Publication Date Title
KR100720101B1 (ko) 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
KR100750933B1 (ko) 희토류 금속이 도핑된 투명 전도성 아연산화물의나노구조를 사용한 탑에미트형 질화물계 백색광 발광소자및 그 제조방법
KR100706796B1 (ko) 질화물계 탑에미트형 발광소자 및 그 제조 방법
KR100580634B1 (ko) 질화물계 발광소자 및 그 제조방법
US8395176B2 (en) Top-emitting nitride-based light-emitting device with ohmic characteristics and luminous efficiency
US8487344B2 (en) Optical device and method of fabricating the same
KR100717276B1 (ko) 발광 소자용 구조체, 이를 이용한 발광 소자 및 그 제조 방법
JP5244614B2 (ja) Iii族窒化物系発光素子
JP5084099B2 (ja) トップエミット型窒化物系発光素子及びその製造方法
KR100794306B1 (ko) 발광 소자 및 그 제조 방법
US20110018027A1 (en) Top-emitting light emitting diodes and methods of manufacturing thereof
KR100794305B1 (ko) 광학 소자 및 그 제조 방법
KR20070068537A (ko) 광학 소자 및 그 제조방법
KR20060007948A (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
KR100787939B1 (ko) 발광 소자용 구조체 및 이를 이용한 발광 소자의 제조 방법
KR100611639B1 (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
KR100767398B1 (ko) 발광 소자용 구조체 및 이를 이용한 발광 소자의 제조 방법
KR100611642B1 (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
KR100601971B1 (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
KR100574105B1 (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
KR100784382B1 (ko) 광학 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 13