WO2004076379A1 - Procede de preparation de poudres d'un compose de type perovskite - Google Patents

Procede de preparation de poudres d'un compose de type perovskite Download PDF

Info

Publication number
WO2004076379A1
WO2004076379A1 PCT/CN2004/000153 CN2004000153W WO2004076379A1 WO 2004076379 A1 WO2004076379 A1 WO 2004076379A1 CN 2004000153 W CN2004000153 W CN 2004000153W WO 2004076379 A1 WO2004076379 A1 WO 2004076379A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
solution
solution containing
strontium
mol
Prior art date
Application number
PCT/CN2004/000153
Other languages
English (en)
French (fr)
Inventor
Jianfeng Chen
Zhigang Shen
Yun Jimmy
Original Assignee
Nanomaterials Technology Pte Ltd.
Beijing University Of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanomaterials Technology Pte Ltd., Beijing University Of Chemical Technology filed Critical Nanomaterials Technology Pte Ltd.
Priority to EP04715233A priority Critical patent/EP1598326A4/en
Priority to JP2006501453A priority patent/JP2006519152A/ja
Publication of WO2004076379A1 publication Critical patent/WO2004076379A1/zh
Priority to US11/214,145 priority patent/US20060045840A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention relates to the preparation of a single or homogeneous composite solid solution perovskite compound. Specifically, the present invention relates to a method for preparing various crystalline perovskite compound powders in a hypergravity reactor. More specifically, the present invention relates to a method for continuously preparing various crystalline perovskite compound powders with narrow particle size distribution using a supergravity reactor.
  • Perovskite compounds have a general molecular formula A x (B0 3 ) y , and its typical representative is an AB0 3 type structure with BaTi0 3 as an example, in which the cation at the A position is an ion with a larger ionic radius (alkali metal, Alkaline earth metals, etc.), in the tetrahedral gap composed of oxygen, the coordination number is 12, and the B-position cation is generally a transition metal ion with a small ionic radius, and forms B0 6 octahedron with oxygen, and is connected in the form of apex .
  • RP-type perovskite-type composite oxide there is the crystal structure of the RP-type perovskite-type composite oxide and the crystal structure of the perovskite-type composite oxide.
  • RP-type perovskite-like composite oxides are a type of ternary composite oxides called Ruddlesdon-Poppe type.
  • the RP structure is an alternating layer of n-layer ABO ⁇ titanium ore structure and a layer of rock salt structure (AO).
  • AO rock salt structure
  • n 1, it has a K 2 NiF 4 structure (A 2 B0 4 ).
  • Double perovskite is a composite oxide with ⁇ 6 metering form. Since the 1950s, more than 300 types of double perovskite-type composite oxides have been synthesized.
  • double perovskite a major feature of double perovskite is the B position.
  • Atom superstructure phenomenon In double perovskite, the distribution of ions at the B site can be divided into the following three types: 1) disorderly arrangement 2) rock salt structure 3) layered structure.
  • Perovskite compounds typified by barium titanate are important raw materials for manufacturing the most widely used electronic ceramics at home and abroad. Due to doping and other means, suitable and adjustable dielectric constants can be obtained. Ferroelectric, piezoelectric, withstand voltage and insulation performance, so it is mainly used for manufacturing high-capacity layer capacitors, multilayer substrates, various sensors, semiconductor materials and sensitive components. Has important commercial value.
  • the perovskite-type electronic ceramics are prepared by forming and sintering a perovskite-type compound powder as a raw material to form a ceramic body, the quality of the powder will directly affect the quality of the final product. the amount.
  • electronic components are becoming more and more miniaturized, multifunctional, high-performance, and integrated.
  • the current methods for preparing ceramic perovskite powders can be divided into two categories: solid phase reaction method and liquid phase reaction method.
  • the solid-phase reaction method is performed by using a solid raw material such as element A (A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements. ) Carbonate or oxide and element B (where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements).
  • A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements.
  • Carbonate or oxide and element B where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements
  • One or more of these oxides are mixed at a high temperature, for example, at a temperature of about 1000 to 1450 ° C, and then calcined, wet-mille
  • the bulk agglomerates of perovskite compounds obtained according to this calcination method are difficult to reach particles below 1 ⁇ m by wet grinding, and sometimes even perovskite compounds are not obtained.
  • the particles prepared by this method usually have high impurity content, coarse particle size, wide particle size distribution, and low product purity, and high-temperature sintering is required when preparing ceramic materials. Therefore, the products prepared according to this method are very It is difficult to meet the requirements of miniaturization, multifunctionalization and integration of electronic ceramic products.
  • the liquid phase method mainly includes chemical precipitation method, co-precipitation method, sol-gel method and hydrothermal method.
  • chemical precipitation method co-precipitation method
  • sol-gel method sol-gel method
  • hydrothermal method for example, Kazunobu Abe. Et al. (U.S. Patent, Patent No.
  • A is Mg, Ca, Sr, Ba, Pb or other rare earth metal elements
  • B is Ti, Zr, Sn, Hf element
  • the first step is to contain A element (A is Mg, Ca, Sr, Ba, Pb or other rare earth metal elements) hydroxide and B element (where B is a hydroxide of Ti, Zr, Sn, Hf element) for hydrothermal reaction; then in the second step, add a poorly soluble auxiliary such as CO 2 to precipitate unreacted A in the reaction mixture to adjust the chemistry of A and B Metering ratio; or the second step is to filter the hydrothermal reaction suspension, wash it with water, dry it and then disperse it in water After forming a suspension, add A to it, and then add a precipitant to precipitate A to adjust A / B.
  • the third step is filtering, washing and drying to obtain a single or composite perovskit
  • the above method is usually a multi-step reaction, and the process is complicated; it needs to be reacted at high temperature and / or high pressure, or it needs to be calcined at high temperature to obtain perovskite compound powder with complete crystal form; so the above preparation of perovskite compound powder
  • the production cost and equipment cost of the method are high.
  • a complicated post-treatment is required to obtain a perovskite-type compound powder having a complete crystal form in a stoichiometric ratio.
  • the above methods are mostly discontinuous methods, there are differences in powder quality between batches, and industrial scale-up is also difficult.
  • the purpose of the present invention is to meet the requirements of electronic ceramic components in recent years to be increasingly miniaturized, multifunctional, high-performance, integrated, and to obtain a small average particle size, narrow particle size distribution, and good crystallinity.
  • Perovskite powder with a spherical shape and a low sintering temperature thereby providing a simple operation, which can be performed at a lower temperature and normal pressure, and can be controlled to obtain a desired average particle size compared to the prior art.
  • Diameter of the perovskite compound powder method and it is also desirable that the obtained perovskite compound powder has a complete crystal form that conforms to the stoichiometric ratio and requires no further post-treatment, thereby reducing production costs and equipment costs and achieving A method of industrial production.
  • An object of the present invention is to provide a method for preparing a perovskite compound powder at a relatively low temperature and normal pressure. .
  • Another object of the present invention is to provide a prepared perovskite-based compound having a desired average particle size, particularly a superfine perovskite-based compound powder, and more particularly a nano-level perovskite-based compound powder. Body method.
  • Another object of the present invention is to provide a method for preparing a perovskite compound powder having a small average particle size and a narrow particle size distribution.
  • the present invention provides a method for preparing a titanium ore compound powder A x (BOC ⁇ ), which method includes:
  • A is one or more of Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements
  • B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements
  • x and y are to balance the valence of each other, Each independently is 1-4;
  • said A x (B0 3) y is not BaTi0 3 and SrTi0 3.
  • the mixed solution containing the ions of A and B is preferably reacted with an alkali solution in a hypergravity reactor.
  • the slurry containing the ultrafine perovskite compound powder obtained by the reaction is prepared according to a conventional method by post-treatment including aging, filtration, washing, drying and the like to obtain the perovskite having the properties required by the present invention.
  • Compound powder is prepared according to a conventional method by post-treatment including aging, filtration, washing, drying and the like to obtain the perovskite having the properties required by the present invention.
  • the method according to the present invention is capable of industrially continuously preparing single or composite perovskite compound powders.
  • Grade or sub-micron grade the average particle diameter is controllable, the particle size distribution is narrow, and the method according to the present invention can also prepare a slurry containing the perovskite compound powder.
  • DESCRIPTION OF DRAWINGS FIG. 1 is a TEM photograph of Ba 0. 85 Sr 0. 15 TiO 3 powder according to the present invention.
  • FIG. 2 is BaTi0 3 of the present invention, And SrTi0 3 powder XRD pattern.
  • FIG. 3 is a TEM photograph of Ba 0. 8 Sr 0. 2 TiO 3 powder according to the present invention.
  • FIG 4 of the present invention is Ba 0. 5 Sr 0. 5 TiO TEM photograph 3 powder.
  • FIG 5 is a BaTi the present invention is 0. 85 Zro.
  • FIG. 6 is a TEM photograph of BaTi 0. 95 Zr 0. 05 O 3 powder of the present invention.
  • FIG. 7 is the present invention BaTi 0. 7 Zr 0. 3 O TEM photograph 3 powder.
  • FIG. 8 is a TEM photograph of the powder of Bao. 75 Sr 0. 25 Ti 0. 75 Zr 0. 25 0 3 according to the present invention.
  • FIG. 9 is a process flow chart of preparing dual materials of perovskite compound powder according to the present invention.
  • Fig. 10 is a process flow chart of preparing three materials of titanium ore powder according to the present invention.
  • Fig. 11 is a schematic diagram of a hypergravity reactor according to the present invention.
  • DETAILED DESCRIPTION The present invention provides a method for preparing a perovskite compound powder A x (B0 3 ) y , which method includes:
  • A is one or more of Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare metal elements
  • B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements
  • x and y are to balance the valence of each other,
  • said A x (B0 3) y is not BaTi0 3 and SrTi0 3.
  • A is preferably one or more of Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi, such as two or three, more Preferably, one or more of Li, Na, K, Mg, Ca, Sr, Ba, La, and more preferably one or more of Mg, Ca, Sr, Ba, La; wherein B is preferably Ti One or more of Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta, such as two or three, more preferably Ti One or more of Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Ni, Fe, Cr, W, Ta are more preferably Ti, Zr, Sn, Hf, Nb, Ce, One or several such as two or three
  • x is equal to the valence of the anion (B0 3 ), and y is equal to the valence of A.
  • x, y are each independently a number between 1-4; preferably a number between 1-3.
  • the base used is selected from the group consisting of: a hydroxide of a metal or alkaline earth metal, ammonium hydroxide, and tetramethylammonium hydroxide; preferably selected from: sodium hydroxide, potassium hydroxide, and tetrafluorene Ammonium hydroxide.
  • concentration of the alkaline solution is 0.5-15.0 mol / L.
  • the substance providing the A ion is selected from the group consisting of chloride, nitrate,
  • the hydroxide, oxalate, perchlorate, acetate, and organic salts of A include alkoxylates of A, or a mixture thereof.
  • the substance that provides B ions is selected from the group consisting of chloride, nitrate, hydroxide, oxalate, perchlorate, acetate, and organic salts of B, including alkoxylates of B, or mixtures thereof. It is preferably selected from its water-soluble salts or chlorides or nitrates.
  • the volume flow ratio of the alkali solution to the solution containing A or the solution containing B, or a mixture thereof is 0.5-10.
  • the molar ratio of A ions to B ions is 0.70-1.30.
  • the "hypergravity reactor"("rotary bed hypergravity reactor”) disclosed in the prior art includes, for example, Chinese patent ZL 95107423.7, Chinese patent ZL 92100093.6, Chinese patent ZL 91109225.2> Chinese patent ZL95105343.4, Chinese invention patent Those disclosed in application 00100355.0 and Chinese invention patent application 00129696.5, these patents or patent applications are incorporated herein by reference.
  • the hypergravity reactor in the present invention is different from the above-mentioned reactor in that the hypergravity reactor used in the present invention is a hypergravity reactor for performing liquid-liquid reaction, and includes liquid inlets of at least two materials. For example, as shown in FIG. 6, it includes liquid inlets 21 and 22 respectively introducing different materials.
  • the reactants are reacted in a rotating packed bed.
  • the fillers that can be used in the rotary packed bed of the present invention include, but are not limited to, metallic materials and non-metallic materials, such as wire mesh, porous plates, corrugated plates, foam materials, and structured packing. Referring to FIG.
  • the present invention provides a method for preparing a perovskite-type compound powder, which includes A (A is Li, Na, K, Mg, Ca, Sr, Ba, Solutions of ions of Pb, Sm, La, Nd, Bi and other rare earth metal elements and containing B (where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn , Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements) mixed solution and alkali solution are introduced into the rotating bed hypergravity reactor through liquid inlet 21 and liquid inlet 22 respectively In the process of rotating the drum 24 driven by the shaft 26 at a temperature of about 60 ° C to about 100 ° C, A (A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Solutions of ions of Sm, La, Nd, Bi and other rare earth metal elements and containing B (where B is Ti, Zr, Sn, Hf, Nb, Ce,
  • the reaction mixture from the liquid outlet 25 is collected and subjected to post-treatment including stirring aging, filtration, washing, and drying to obtain a perovskite compound powder having a desired average particle diameter.
  • the method for preparing barium titanate powder according to the present invention can continuously prepare single or composite perovskite compound powder.
  • a mixed aqueous solution containing ions of A and B ions may be provided by providing an aqueous solution containing ions of A and then adding an aqueous solution containing ions of B to the above aqueous solution, or by adding an aqueous solution containing ions of A to It is obtained in an aqueous solution of B ions.
  • the above-mentioned formulation containing A (A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements)
  • a solution of one or more of the ions and containing B (where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W
  • B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W
  • One or more of the elements such as Ta, Ta, etc.
  • the liquid is measured from the storage tank 1 through the pump 10 and the flowmeter 9 and then enters the rotating bed 3 through the liquid inlet 2 of the rotating bed.
  • A is one or more of Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements
  • B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements
  • B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements
  • it may also contain B (where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, A solution of one or more of Y, Sc, W, Ta, etc., containing A (A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and others
  • A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and others
  • B is Ti, Zr , Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta and other elements, solutions containing A (A is Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and one or more of rare earth metal elements) solution and lye in porous bed
  • the reacted reaction mixture containing the reaction product passes through the liquid outlet of the reactor and flows into the stirring tank 8.
  • the reaction mixture collected in the stirred tank 8 is aged in the stirred tank for a period of time, for example, 3 to 5 minutes.
  • the aged suspension is then filtered, washed with water at about 60 ° C to about 100 ° C, preferably deionized water, and dried to obtain a perovskite compound powder.
  • the rotation speed of the rotating bed rotor is about 100 rpm to about 1000 rpm, preferably about 150 rpm to about 5000 rpm, and more preferably about 200 rpm to about 3000 rpm Still more preferably, it is about 500 rpm to about 2000 rpm.
  • a substance (A is one or more of Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi and other rare earth metal elements) is provided.
  • water-soluble salts of A including but not limited to: chlorides, nitrates, hydroxides, oxalates, perchlorates, acetates, and organic salts of A such as alkoxylates of A, or Their mixture is preferably a chloride or a nitrate or an organometallic salt of A such as a barium alkoxylate.
  • B (where B is Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta, etc.
  • One or more substances are generally selected from the water-soluble salts of B, including but not limited to: chlorides, nitrates, hydroxides, oxychlorides, and organic salts of B, or mixtures thereof.
  • the base used therein is generally selected from the group consisting of hydroxides of alkali metals or alkaline earth metals, ammonium hydroxide, tetramethylammonium hydroxide, and mixtures thereof, and is preferably selected from sodium hydroxide and potassium hydroxide. Or tetramethylammonium hydroxide.
  • the flow rate of the alkali solution and the water-soluble solution of A or B or a mixed solution thereof can be changed within a wide range, and can be based on the diameter of the rotating bed, the rotation speed, the reaction temperature, and the concentration of the reactants.
  • the conditions are selected, and it is preferred that the volume flow ratio of the alkali solution to the water-soluble solution of A, B or their mixed solution is in the range of about 0.5-10.
  • the concentration of B ions in the water-soluble salt containing B or other B ion-containing aqueous solution is about 0.1-5.0 mol / L, preferably about 0.3-3.0 mol / L, more preferably about 0.3-1.5 mol / L;
  • the concentration of A in the solution of ions of A is about 0.1-5.0, mol / L, preferably about 0.3-3.0 mol / L, more preferably about 0.3-1.5 mol / L; in order to obtain a solution containing B and A, you can The solutions having the above concentrations are mixed.
  • the molar ratio of A / B in the solution of B and A is about 0.80 to about 1.20, preferably about 0.90 to about 1.10, and more preferably about 0.95 to about 1.08.
  • the concentration of the alkaline solution is about 0.5 to about 15.0 mol / L, preferably about 1,0 to about 10.0 mol / L, and more preferably about 2.5 to about 7.0 mol / L.
  • the pH of the reaction mixture after the reaction is maintained at greater than about 10, and preferably the pH is greater than about 12. More preferably, the pH is greater than 12.5.
  • the substances provided in the above 8.A and the lye can be industrially pure or analytically pure reagents. If it is industrially pure reagents, it is best to purify to remove other impurities.
  • additives such as a crystal shape control agent or a dispersant may be further added to help further disperse, refine, Narrow the particle size distribution, control the shape of perovskite compound powder particles and improve their performance.
  • the suspension after the reaction is discharged from the discharge bed of the rotating bed and collected in a storage tank with stirring.
  • the suspension in the stirring tank is aged by stirring, filtering, washing and drying to obtain perovskite compound powder.
  • the shield of non-limiting example of the composition of the present invention comprises Ba ⁇ SrJiC obtained wherein a is 0-1, such as Ba 0. 85 Sr 0. 15 TiO 3, Ba 0. 8 Sr 0. 2 TiO 3 or Ba 0. 5 Sr 0. 5 TiO 3 ; Bai.
  • a Ti b Zr0 3 where a is 0-1 such as BaTi 0. 85 Zr 0. 15 O 3 , BaTi 0. 95 Zr 0. 05 O 3 , BaTi 0. 7 Zr 0. 3 O 3 ; Ba! -ASrJ bZrbO where a and b are 0-1 respectively, such as Bao.75Sro.25Tio.75Zro.25O3.
  • the perovskite compound powder obtained according to the method of the present invention can be analyzed by, for example, a transmission electron microscope.
  • a transmission electron microscope for example, in one embodiment of the present invention, 0.05 g of the dried perovskite compound powder is dispersed in 50 ml of ethanol, sonicated in an ultrasonic cleaner, and then dropped on a copper mesh for observation under an electron microscope. Japan's fflTACffl-800 transmission electron microscope was used to analyze the initial particle size and morphology of the particles.
  • the average particle diameter is less than about 500 nm, preferably less than about 250 nm, and more preferably less than about 150 nm.
  • the average particle diameter is about 500 nm to about 10 nm, preferably about 250 nm to about 20 nm, and more preferably about 150 to about 20 nm.
  • the method of the present invention uses a hypergravity reaction. It can be completed in a short time, and can be prepared by a continuous method, and can control the formation of perovskite compound powders with a predetermined average grain size, uniform particle size distribution, and regular morphology or a powder containing the powder. Slurry. This powder does not need to be calcined before the ceramic is sintered. This can save a lot of energy costs and production costs. Small diameter, complete crystal form, regular morphology, suitable for dielectric, piezoelectric, antiferroelectric, pyroelectric, withstand voltage, sensitive, microwave dielectric and other ceramic raw materials.
  • a 4.5mol / L NaOH solution was prepared, in which NaOH was used as analytical reagent.
  • a 4.5 mol / l NaOH solution was placed in a stainless steel NaOH storage tank 1 (see Figure 9).
  • the (BaCl 2 + SrCl 2 ) and TiCl 4 mixed solution is prepared by the following steps: SrCl 2 at a concentration of 2 mol / L, BaCl 2 at a concentration of 2 mol / L, and TiCl 4 at a concentration of 2 mol / L, respectively.
  • the total concentration of the mixed solution of [BaCl 2 ] + [SrCl 2 ] + [TiCl 4 ] prepared by adding deionized water is 1 mol / L, and the molar ratio of SrCl 2 / (BaCl 2 + SrCl 2 ) in the solution is 0.15, ([BaCl 2 ] + [SrCl 2 ]) / [TiCl 4 ] was 1,05.
  • the mixed solution of BaCl 2 , SrCl 2 and TiCl 4 prepared as described above is placed in a storage tank 6.
  • a mixed solution of BaCl 2 , SrCl 2 and TiCl 4 with a total concentration of 1 mol / L is pumped out from the storage tank 6 via the pump 7 and metered by the flow meter 5 into the rotating bed through the liquid inlet 4 of the rotating bed. 3, its flow rate is set to 30.0L / hr.
  • the 4.5mol / L NaOH solution is pumped from the NaOH storage tank 1 through the pump 10, and after being measured by the flowmeter 9, it enters the rotating bed 3 from the liquid inlet 2 of the rotating bed, and the flow rate is set to 30.0 L / hr.
  • the suspension was aged in a stirred tank for 3-5 minutes.
  • the aged suspension was then filtered and washed three times with deionized water at about 95 ° C, and dried in a desiccator at about 100 ° C to obtain Ba 0. 85 Sr 0 , 15 TiO 3 powder.
  • the O.lg powder was dispersed in 50 ml of ethanol and sonicated in an ultrasonic cleaner for 20 min. Drops were made on a copper wire used for electron microscope observation, and the Japanese HITACHI-800 transmission electron microscope was used to analyze the initial particle size and morphology of the particles.
  • the TEM picture is shown in Figure 1. Referring to FIG. 1, the analysis shows that the barium strontium titanate powder prepared in this embodiment is spherical particles with an average particle size of about 70 nm.
  • the molar ratios of SrCl 2 / (BaCl 2 + SrCl 2 ) are 0.05 0.1, 0.20 0.30, and 0.50, respectively.
  • the other operations are the same as in Embodiment 1.
  • the particle sizes of the obtained powders are all less than 100.
  • Figures 3 and 4 are TEM photos of SrCl 2 / (BaCl 2 + SrCl 2 ) molar ratios of 0.2 and 0.5, respectively.
  • Figure 2 shows XRD patterns of different amounts of Sr.
  • This example illustrates the preparation of barium titanate powder with different reactants.
  • a 4.5mol / L NaOH solution was prepared, in which NaOH was used as analytical reagent.
  • Prepare 1mol L of Sr (OH) 2 and 1mol L of Ba (OH) 2 mix the above NaOH Sr (OH) 2 and Ba (OH) 2 to a volume of 10L, and the concentration of [ ⁇ ] is 6.0mol / L, The total concentration of [Ba 2+ ] + [Sr 2+ ] is 0.5mol / L, and the molar ratio of [Sr 2+ ] / ([Ba 2+ ] + [Sr 2+ ]) in the solution is 0.15.
  • the NaOH Sr (OH) 2 and Ba (OH) 3 ⁇ 4 solution was placed in a stainless steel NaOH storage tank 1 (see Figure 9).
  • the two solutions were fully contacted and reacted in the packed bed of the rotating bed 3.
  • the temperature of the rotating bed was controlled at about 90 ° C, and the rotation speed was selected to be 1440 rpm.
  • the reaction suspension was collected in a stirred tank 8. The reaction lasted 20 minutes.
  • Example 4 After the reaction, the suspension was aged in a stirred tank for 3-5 minutes. The aged suspension was then filtered and washed three times with deionized water at about 95 ° C, and dried in a desiccator at about 100 ° C to obtain Ba. . 85 Sr i5 Ti0 3 powder. The particle size of the obtained powder was less than 100 nm. Powder XRD pattern between SrTi0 3 BaTi0 3 cubic phase and the cubic phase, similar to Example 1. Example 4
  • a 5 mol / l NaOH solution was placed in a stainless steel NaOH storage tank 1 (see Figure 9).
  • the total concentration of the mixed solution of [BaCl 2 ] + [ZrCl 4 ] + [TiCl 4 ] was 1.0 mol / L by adding deionized water, and [ZrCl 4 ] ([ZrCl 4 ] + [TiCl 4 ]) The molar ratio was 0.15, and [BaCl 2 ] / ([TiCl 4 ] + [ZrCl 4 ]) was 1,05.
  • the mixed solution of BaCl 2 , ZrCl 4 and TiCl 4 prepared as described above is placed in a storage tank 6.
  • a mixed solution of BaCl 2 , ZrCl 4 and TiCl 4 with a total concentration of 1 mol / L is pumped out from the storage tank 6 via the pump 7 and metered by the flow meter 5 into the rotating bed through the liquid inlet 4 of the rotating bed. 3, its flow rate is set to 30.0L / hr.
  • the 4.5mol / L NaOH solution is pumped from the NaOH storage tank 1 through the pump 10, measured by the flowmeter 9, and enters the rotating bed 3 from the liquid inlet 2 of the rotating bed, and the flow rate is set to 30,0 L / hr.
  • the mixed solution of BaCl 2 , ZrCl 4 and TiCl 4 and the NaOH solution were fully contacted and reacted in the packing layer of the rotating bed 3.
  • the temperature of the rotating bed was controlled at about 90 ° C, and the rotation speed was selected to be 1440 rpm.
  • the reaction suspension was collected in a stirred tank 8.
  • the reaction between the mixed solution of BaCl 2 , ZrCl 4 and TiCl 4 and the NaOH solution lasted for 20 min.
  • the suspension was aged in a stirred tank for 3-5 minutes. The aged suspension was then filtered and washed three times with about 95 C of deionized water, and dried in a desiccator at about 100 C to obtain BaTi 0. 85 Zr 0. 15 O 3 powder.
  • the O.lg powder was dispersed in 50 ml of ethanol and sonicated in an ultrasonic cleaner for 20 min. Drops were made on a copper wire for electron microscope observation, and the initial particle size and morphology of the particles were analyzed using a Japanese HITACHI-800 transmission electron microscope.
  • the TEM picture is shown in Figure 5.
  • the barium zirconate titanate powder prepared in this embodiment is spherical particles, and the average particle size is about 80 nm.
  • the XRD pattern of the powder is BaTi0 3 with cubic phase and SrTi0 3 with cubic phase. 85 Zr (). 15 0 3 crystal.
  • Example 6 Except that the Zr source is ZrOCl 2 , the rest are the same as those in Example 4. The product characteristics of the obtained barium zirconate titanate powder are the same as in the embodiment. Example 6
  • Figs. 6 and 7 are TEM photographs with a molar ratio of ZrOCl 2 / (TiCl 4 + ZrOCl 2 ) of 0.05 and 0.3, respectively.
  • An aqueous solution of NaOH having a concentration of 3 mol / L was prepared, and an aqueous solution having a total concentration of [BaCl 2 ] + [TiCl 4 ] + [SnCl 4 ] of 3 mol / L and [BaCl 2 ] / [TiCl 4 ] of 1.05 was prepared.
  • a 4.5mol / L NaOH solution was prepared, in which NaOH was used as analytical reagent.
  • a 4.5 mol / l NaOH solution was placed in a stainless steel NaOH storage tank 1 (see Figure 9).
  • the (BaCl 2 + SrCl 2 ) and TiCl 4 mixed solution is prepared by the following steps: A 2 mol / L SnCl 4 2 mol / L concentration BaCl 2 and a 2 mol / L TiCl 4 solution are prepared, respectively.
  • a mixed solution of BaCl 2 , SnCl 4 and TiCl 4 with a total concentration of 1 mol / L is pumped out from the storage tank 6 via the pump 7, and metered by the flow meter 5 into the rotary bed through the liquid inlet 4 of the rotary bed. 3. Its flow rate is set to 30.0L / hr.
  • the NaOH solution with a concentration of 4.5 mol / L is pumped out from the NaOH storage tank 1 through the pump 10, measured by the flow meter 9, and enters the rotating bed 3 through the liquid inlet 2 of the rotating bed, and the flow rate is set to 30.0 L / hr.
  • the mixed solution of BaCl 2 , SnCl 4 and TiCl 4 and the NaOH solution were fully contacted and reacted in the packing layer of the rotating bed 3.
  • the temperature of the rotating bed was controlled at about 90 ° C, and the rotation speed was selected to be 1440 rpm.
  • the reaction suspension was collected in a stirred tank 8. The reaction between the mixed solution of BaCl 2 , SnCl 4 and TiCl 4 and the NaOH solution lasted for 20 min.
  • Example 2 The same NaOH solution as in Example 1 was placed in a stainless steel NaOH storage tank 1 (see FIG. 9). SrCl 2 at a concentration of 2 mol / L, BaCl 2 at a concentration of 2 mol / L, ZrCl 4 at a concentration of 2 mol / L, and TiCl 4 at a concentration of 2 mol / L were prepared. A total solution of [BaCl 2 ] + [SrCl 2 ] + [TiCl 4 ] + [ZrCl 4 ] mixed solution was prepared by adding deionized water, and the total concentration of SrCl 2 in the solution was 1 mol / L.
  • the molar ratio of / (BaCl 2 + SrCl 2 ) is 0.25
  • the molar ratio of [ZrCl 4 ] ([ZrCl 4 ] + [TiCl 4 ]) is 0.25
  • ([BaCl 2 ] + [SrCl 2 ]) / ([TiCl 4 ] + [ZrCl 4 ]) was 1.05.
  • the mixed solution of BaCl 2 , SrCl 2 and TiCl 4 prepared as described above is placed in a storage tank 6.
  • a mixed solution of BaCl 2 , SrCl 2 , ZrCl 4 and TiCl 4 with a total concentration of 1 mol / L is pumped from the storage 6 through the pump 7 and metered by the flow meter 5 through the rotary bed liquid inlet 4
  • the rotating bed 3 has a flow rate of 30.0 L / hr.
  • the 4.5mol / L NaOH solution is pumped from the NaOH storage tank 1 through the pump 10, and after being measured by the flowmeter 9, it enters the rotating bed 3 from the liquid inlet 2 of the rotating bed, and the flow rate is set to 30.0 L / hr.
  • the mixed solution of BaCl 2 , SrCl 2 , ZrCl 4 and TiCl 4 and the NaOH solution were fully contacted and reacted in the packed bed of the rotating bed 3.
  • the temperature of the rotating bed was controlled at about 90 ° C, and the rotation speed was selected to be 1440 rpm.
  • the reaction suspension was collected in a stirred tank 8. The reaction between the mixed solution of BaCl 2 , SrCl 2 , ZrCl 4 and TiCl 4 and the NaOH solution lasted 20 minutes.
  • the suspension was aged in a stirred tank for 3-5 minutes.
  • the aged suspension was then filtered and washed three times with deionized water at approximately 95 ° C, in a desiccator at approximately 100 ° C. C was dried to obtain Bao.75Sro.25 io.75Zro.25O3 powder.
  • the O.lg powder was dispersed in 50 ml of ethanol and sonicated in an ultrasonic cleaner for 20 min. Drops were made on a copper wire used for electron microscopy observation, and Japan's HITACHI-800 transmission electron coagulation was used to analyze the initial particle size and morphology of the particles.
  • the TEM picture is shown in Figure 8. Referring to FIG. 8, the analysis shows that the doped barium titanate body prepared with the Zr-doped amount and the Sr-doped amount prepared in this embodiment are spherical particles with an average particle size of less than 100 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

一种制备各种晶态钙钛矿类化合物粉体的方法 发明领域 本发明涉及一种制备单一的或均勾的复合固溶体钙钛矿类化合物
Figure imgf000002_0001
具体地, 本发明涉及在超重力反应器中, 制备各种晶 态钙钛矿类化合物粉体的方法。 更具体地, 本发明涉及一种使用超重力反 应器, 连续制备各种粒度分布窄的晶态钙钛矿类化合物粉体的方法。 背景技术 钙钛矿类化合物具有普遍的分子式 Ax(B03)y, 它的典型代表是以 BaTi03为例的 AB03型结构, 其中 A位阳离子为离子半径较大的离子 (碱 金属, 碱土金属等), 处于由氧构成的十四面体间隙中, 配位数为 12, B位 阳离子一般为离子半径较小的过渡金属离子, 与氧形成 B06八面体, 并以 顶点形式联结。此外还有 RP类钙钛矿型复合氧化物的晶体结构和汉钙钛矿 型复合氧化物的晶体结构。 RP型类钙钛矿复合氧化物是一类被称之为 Ruddlesdon-Poppe型的三元复合氧化物, RP结构是由 n层 ABO^钛矿结构 和一层岩盐结构 (AO)交替层积而形成, n=l时,则具有 K2NiF4结构 (A2B04)。 双钙钛矿是具有 ΑΑΈΒΌ6计量形式的复合氧化物, 从 50年代至今已合成 出 300余种双钙钛矿型复合氧化物, 从固体化学角度看 双钙钛矿的一大 特征是 Β位原子的超结构现象; 在双钙钛矿中, Β位离子的分布可划分为 下述三种类型: 1)无序排列 2)岩盐结构 3)层状结构。 以钛酸钡为典型代表的 钙钛矿类化合物是制造目前国内外应用最广泛的电子陶瓷的重要原料, 由 于通过掺杂及其它手段可以获得具有合适的且可调的介电常数, 良好的铁 电、 压电、 耐压及绝缘性能, 所以主要用于制造高电容积层电容器、 多层 基片、 各种传感器、 半导体材料和敏感元件。 具有重要的商业价值。 具体 地, 由于钙钛矿类电子陶瓷是以钙钛矿类化合物粉体为原料经成型和烧结 从而形成陶瓷体而制备得到的, 因此粉体的质量将直接影响最终产品的质 量。 近年来, 电子元器件正在向越来越小型化、 多功能化、 高性能化、 集 成化发展, 为了达到上述趋势所带来的要求, 希望得到具有下述性能的电 子陶瓷粉体原料, 包括: (1)相对而言较小的粒度, 通常要求平均粒径小于 200nm, (2)较窄的粒度分布, (3)形貌为球形, (4)良好的结晶度, (5)相对 制得的电子陶瓷材料具有良好的烧结特性和堆积密度、 较高的介电常数, 降低了烧结时的温度, 例如作为电容器原料可以具有节省昂贵的内电极和 降低电容器的体积等优点。
目前制备陶瓷用钙钛矿类化合物粉体的方法可分为两大类: 固相反应 法和液相反应法。
固相反应法是通过将固体原料例如 A元素 (A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种)的碳 酸盐或氧化物和 B元素 (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种)的氧化物混合后 在高温下例如约 1000 - 1450°C的温度下煅烧反应、 湿法研磨、 过滤、 干燥 而制备得到单一的钙钛矿类或复合的钙钛矿类化合物粉体的一种方法。 根 据这种煅烧的方法得到的钙钛矿类化合物的块状团聚物采用湿式研磨很难 使其达到 Ι μ ηι以下的颗粒, 有时甚至得不到钙钛矿类化合物。 而且, 这种 方法制备得到的颗粒通常杂质含量高、 颗粒粒径粗、 粒度分布宽、 产品纯 度不高, 并且在制备陶瓷材料时, 需要进行高温烧结, 因而根据这种方法 制得的产品很难符合电子陶瓷产品小型化、 多功能化、 集成化的要求。
因此, 为了合成高品质的钙钛矿类化合物粉体, 现在大多釆用液相法。 液相法主要包括化学沉淀法、 共沉淀法、 溶胶 -凝胶法和水热法。 例如 Kazunobu Abe.等人 (美国专利,专利号: 4643984 , 1987年)提出采用三步法 制备分子式为 AB03(A为 Mg, Ca, Sr, Ba, Pb或其它稀土金属元素, B为 Ti, Zr, Sn, Hf元素)的钙钛矿类化合物, 第一步为将包含 A元素 (A为 Mg, Ca, Sr, Ba, Pb或其它稀土金属元素)的氢氧化物和包含 B元素 (其中 B为 Ti, Zr, Sn, Hf元素)的氢氧化物进行水热反应; 然后第二步, 加入难溶性 助剂如 C02来沉淀反应混合物中未反应的 A用来调整 A和 B的化学计量比; 或者第二步是将水热反应后的悬浮液过滤、 用水洗涤、 干燥后再分散水中 形成悬浮液后、 在其中添加 A, 再加入沉淀剂使 A沉淀达到调整 A/B的目 的。 第三步为过滤、 洗涤、 千燥可以得到符合化学计量比的单一或复合的 钙钛矿类化合物 AB03
还有如 Dawson等人 (WO 90/06291)提出釆用 B的草酸化物和 A的氯化 物或氢氧化物反应得到钙钛矿类化合物的前驱体。 然后煅烧得到钙钛矿类 化合物。
上述方法通常为多步反应, 过程复杂; 需要在高温和 /或高压下反应、 或者需要进行高温煅烧来得到晶型完整的钙钛矿类化合物粉体; 所以上述 制备钙钛矿类化合物粉体的方法的生产成本和设备费用较高。 并且在反应 后, 需要进行复杂的后处理以得到符合化学计量比的具有完整晶型的钙钛 矿类化合物粉体。 此外, 由于上述方法多为不连续的方法, 因此各批次之 间粉体质量存在差别, 工业放大也比较困难。
因此, 本发明的目的是希望满足近年来电子陶瓷元器件向越来越小型 化、 多功能化、 高性能化、 集成化发展的要求, 希望得到平均粒径小、 粒 度分布窄、 结晶度好、 球形形貌、 烧结温度低的钙钛矿类化合物粉体, 从 而提供了一种相对于现有技术, 操作简单、 能在较低温度和常压下进行并 且能够控制得到具有所需平均粒径的钙钛矿类化合物粉体的方法, 而且还 希望所得到的钙钛矿类化合物粉体具有符合化学计量比的完整晶型、 无需 进一步后处理, 从而降低生产成本和设备费用且能实现工业化生产的一种 方法。
本发明的一个目的是提供一种在较低温度和常压下制备钙钛矿类化合 物粉体的方法。 .
本发明的另一个目的是提供一种控制得到具有所需平均粒径的制备钙 钛矿类化合物, 特别是超细钙钛矿类化合物粉体, 更特别地是纳米级钙钛 矿类化合物粉体的方法。
本发明的再一个目的是提供一种连续制备钙钛矿类化合物粉体的方 法。
本发明的又一个目的是提供一种制备平均粒径小、 粒度分布窄的钙钛 矿类化合物粉体的方法。 发明内容 本发明提供一种制备 钛矿类化合物粉体 Ax(BOC々方法, 该方法包 括:
将包含 A的离子的溶液、 包含 B的离子的溶液以及碱溶液, 或者将包 含 A的离子和 B的离子的混合溶液与碱溶液,在超重力反应器中, 在约 60 °C至约 100。C的温度下反应; 其中 A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb , Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种; 其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元 素中的一种或几种; x和 y是为了互相平衡化合价, 各自独立为 1-4;
条件是所述的 Ax(B03)y不为 BaTi03和 SrTi03
优选将包含 A的离子和 B的离子的混合溶液与碱溶液在超重力反应器 中进行反应。 任选地, 将反应得到的包含超细钙钛矿类化合物粉体的浆液 按照常规方法, 通过包括陈化、 过滤、 洗涤、 干燥等后处理而制得具有本 发明所需性能的钙钛矿类化合物粉体。
根据本发明的方法能够工业化连续制备单一的或复合的钙钛矿类化合 物粉体。 级或亚微米级、 平均粒径可控、 粒度分布窄, 并且根据本发明的方法还可 以制得包含所述钙钛矿类化合物粉体的浆料。 附图描述 图 1是本发明 Ba0.85Sr0.15TiO3粉体的 TEM照片。
图 2是本发明 BaTi03
Figure imgf000005_0001
和 SrTi03粉体的 XRD衍射图谱。 图 3是本发明 Ba0.8Sr0.2TiO3粉体的 TEM照片。
图 4是本发明 Ba0.5Sr0.5TiO3粉体的 TEM照片。
图 5是本发明 BaTi0.85Zro.1503粉体的 TEM照片。
图 6是本发明 BaTi0.95Zr0.05O3粉体的 TEM照片。
图 7是本发明 BaTi0.7Zr0.3O3粉体的 TEM照片。 图 8是本发明 Bao.75Sr0.25Ti0.75Zr0.2503粉体的 TEM照片。
图 9是本发明制备钙钛矿类化合物粉体的双物料的工艺流程图。
图 10是本发明制备 钛矿类粉体的三物料的工艺流程图。
图 11是本发明超重力反应器的示意图。 具体实施方式 本发明提供一种制备钙钛矿类化合物粉体 Ax(B03)y的方法, 该方法包 括:
将包含 A的离子的溶液、 包含 B的离子的溶液以及碱溶液, 或者将包 含 A的离子和 B的离子的混合溶液与碱溶液,在超重力反应器中, 在约 60 Ό至约 100。C的温度下反应; 其中 A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀 金属元素中的一种或几种; 其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元 素中的一种或几种; x和 y是为了互相平衡化合价,
条件是所述的 Ax(B03)y不为 BaTi03和 SrTi03
根据本发明的上述方法, 其中 A优选为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi中的一种或几种,如两种或三种, 更优选为 Li, Na, K, Mg, Ca, Sr, Ba, La中的一种或几种, 还更优选 Mg, Ca, Sr, Ba, La中的一种或几种; 其中 B优选为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta中的一种或几种如两种或三种, 更 优选为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Ni, Fe, Cr, W, Ta中 的一种或几种更优选为 Ti, Zr , Sn, Hf, Nb, Ce, 中的一种或几种如两种 或三种
在上述 钛矿类化合物粉体 Ax(B03)y中,x等于阴离子 (B03)的价,而 y等 于 A的化合价。 x, y各自独立为 1-4之间的数;优选为 1-3之间的数。
根据本发明的方法, 其中所使用的碱选自: 减金属或碱土金属的氢氧 化物、 氢氧化铵和四曱基氢氧化铵; 优选为选自: 氢氧化钠、 氢氧化钾和 四曱基氢氧化铵。 所述碱溶液的浓度为 0.5-15.0 mol/L。
^^据本发明的方法, 其中提供 A离子的物质选自: 氯化物、 硝酸盐、 氢氧化物、 草酸盐、 高氯酸盐、 醋酸盐以及 A的有机盐包括 A的烷氧基化 物, 或者它们的混合^。 优选为选自: 氯化物或硝酸盐
提供 B离子的物质选自: 氯化物、 硝酸盐、 氢氧化物、 草酸盐、 高氯 酸盐、 醋酸盐以及 B的有机盐包括 B的烷氧基化物, 或者它们的混合物。 优先为选自其水溶性盐或氯化物或硝酸盐。 在上述的方法中, 碱溶液与包含 A的溶液或包含 B的溶液或者它们的 混合物的体积流量比为 0.5-10。 A离子与 B离子的摩尔比为 0.70-1.30。
"超重力反应器"( "旋转床超重力反应器")在现有技术中公开的例如 包括在中国专利 ZL 95107423.7、 中国专利 ZL 92100093.6、 中国专利 ZL 91109225.2 > 中国专利 ZL95105343.4、 中国发明专利申请 00100355.0以及 中国发明专利申请 00129696.5中公开的那些, 本发明中引入这些专利或专 利申请作为参考。 本发明中的超重力反应器与上述反应器不同之处在于本 发明所使用的超重力反应器为进行液液反应的超重力反应器 , 包含至少两 种物料的进液口。例如图 6所示,包括分别引入不同物料的进液口 21和 22, 在反应过程中, 反应物在旋转填充床中进行反应。 具体地, 在本发明的旋 转填充床中可以使用的填料包括, 但不限于: 金属材料和非金属材料, 如 丝网、 多孔板、 波紋板、 泡沫材料、 规整填料。 参见图 11 , 根据本发明的一个实施方案, 本发明提供了一种制备钙钛 矿类化合物粉体的方法, 包括将包含 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种)的离子的溶液 和包含 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种)的离子的混合溶液与碱溶液分 别通过液体进口 21和液体进口 22引入旋转床超重力反应器中, 在约 60°C 至约 100°C的温度下, 在轴 26带动的转鼓 24的旋转过程中, 含有 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元 素中的一种或几种)的离子的溶液和包含 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几 种)的离子的混合溶液与碱溶液在填料 23 内进行反应, 然后反应混合物 (浆 液)通过液体出口 25离开超重力反应器。 收集来自液体出口 25的反应混合 物, 进行包括搅拌陈化、 过滤、 洗涤、 干燥的后处理, 得到具有所需的平 均粒径的钙钛矿类化合物粉体。 本发明的制备钛酸钡粉体的方法能够连续 制备单一的或复合的钙钛矿类化合物粉体。
在上述方法中, 包含 A的离子和 B的离子的混合水溶液可以通过提供 包含 A的离子的水溶液,然后将含有 B的离子的水溶液加入上述水溶液中, 或者通过将包含 A的离子的水溶液加入含有 B的离子的水溶液中而得到。
在本发明的一个实施方案中, 参考图 9, 将上述配制的含有 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中 的一种或几种)的离子的溶液和包含 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种) 的离子的混合溶液置于储罐 6中, 经由泵 7泵出,通过流量计 5计量后经由 旋转床液体进口 4进入旋转床 3, 同时, 碱液自储罐 1经由泵 10泵出流量 计 9计量后经由旋转床液体进口 2进入旋转床 3。在旋转床 3的旋转过程中, 含有 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它 稀土金属元素中的一种或几种)的离子的溶液和包含 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中 的一种或几种)的离子的混合溶液和碱液在旋转床 3 的多孔填料层 (未示出) 中、 在约 60°C至约 100°C, 优选为高于约 70°C , 更优选高于约 80°C的温度 下充分接触、 反应。
在本发明的另一个实施方案中 (参见图 10), 还可以将含有 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种)的溶液、 含有 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种)的溶液以 及碱液, 分别通过液体进口 2、 4和 5进入旋转床 3 , 并在旋转床 3的旋转 过程中, 含有 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种)的溶液、 含有 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元 素中的一种或几种)的溶液以及碱液在旋转床 3的多孔填料层 (未示出)中、在 约 60°C至约 100°C, 优选为高于约 70°C , 更优选高于约 80°C的温度下充分 接触、 反应。
反应后的包含反应产品的反应混合物通过反应器的液体出口, 流入搅 拌釜 8。 优选, 将收集在搅拌釜 8中的所述反应混合物在搅拌釜中搅拌陈化 一段时间, 例如为 3 - 5分钟。 然后将陈化后的悬浮液过滤, 用约 60°C至约 100°C的水, 优选去离子水洗涤, 干燥得到钙钛矿类化合物粉体。
根据本发明的方法中, 在启动超重力反应器后, 反应过程中, 旋转床 转子的转速为约 lOO rpm至约 lOOOOrpm, 优选为约 150 rpm至约 5000rpm, 更优选为约 200 rpm至约 3000rpm, 还更优选为约 500rpm至约 2000rpm。
在本发明的方法中, 提供 A(A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种)的物质通常选自 A 的水溶性盐, 包括但不限于: 氯化物、 硝酸盐、 氢氧化物、 草酸盐、 高氯 酸盐、 醋酸盐以及 A的有机盐如 A的烷氧基化物, 或者它们的混合物, 优 选为氯化物或硝酸盐或 A的有机金属盐如钡的烷氧基化物。
在本发明的方法中, 提供 B (其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几种)的物 质通常选自 B的水溶性盐, 包括但不限于: 氯化物、 硝酸盐、 氢氧化物、 氧氯化物以及 B的有机盐, 或者它们的混合物。
在本发明的方法中, 其中所使用的碱通常选自碱金属或碱土金属的氢 氧化物、 氢氧化铵、 四曱基氢氧化铵以及它们的混合物 , 优选选自氢氧化 钠、 氢氧化钾或四甲基氢氧化铵。
根据本发明的方法,碱溶液与 A、 B的水溶性溶液或它们的混合溶液的 流量能够在很宽的范围内变化, 能够根据包括旋转床的直径、 旋转速度、 反应温度、 反应物的浓度的条件进行选择, 优选碱溶液与 A、 B的水溶性溶 液或它们的混合溶液的体积流量比在约 0.5-10的范围内。 含 B的水溶性盐 或其它含 B离子的水溶液中 B的离子的浓度为约 0.1-5.0 mol/L, 优选为约 0.3-3.0 mol/L, 更优选为约 0.3-1.5 mol/L; 含 A的离子的溶液中 A的浓度为 约 0.1-5.0、mol/L, 优选为约 0.3-3.0mol/L, 更优选为约 0.3-1.5 mol/L; 为了 得到含 B和 A的溶液, 可以将具有上述浓度的溶液混合。 根据本发明的方 法, B与 A的溶液中 A/B的摩尔比为约 0.80至约 1.20, 优选为约 0.90至约 1.10, 更优选为约 0.95至约 1.08。 根据本发明的方法, 碱溶液的浓度为约 0.5至约 15.0 mol/L, 优选为约 1,0至约 10.0 mol/L, 更优选为约 2.5至约 7.0 mol/L。 根据本发明的方法, 将 反应后的反应混合物的 pH保持在大于约 10, 优选 pH大于约 12。 更优选 pH大于 12.5。
根据本发明的方法, 提供上述8、 A的物质以及碱液可以是工业纯或分 析纯的试剂, 若是工业純试剂, 则最好精制以除去其它杂质。
根据本发明的方法, 在反应过程中, 在含有 B和 /或 A的离子溶液中或 者碱液中, 还可加入添加剂包括晶形控制剂或分散剂, 以有助于颗粒进一 步分散、 细化、 窄化粒径分布、 控制钙钛矿类化合物粉体颗粒的形状并改 善其性能。
反应后的悬浮液由旋转床排料口排出, 收集于带有搅拌的储槽中。 将 搅拌槽中的悬浮液搅拌陈化、 过滤、 洗涤、 干燥, 得到钙钛矿类化合物粉 体。
根据本发明得到的物盾的非限定性的实例包括 Ba^SrJiC 其中 a为 0-1 , 如 Ba0.85Sr0.15TiO3, Ba0.8Sr0.2TiO3或 Ba0.5Sr0.5TiO3; Bai.aTibZr03 , 其中 a 为 0-1如 BaTi0.85Zr0.15O3, BaTi0.95Zr0.05O3 , BaTi0.7Zr0.3O3; Ba!-aSrJ bZrbO 其中 a,b分别为 0- 1 , 如 Bao.75Sro.25Tio.75Zro.25O3。 分析测试及测试结果 根据本发明方法得到的钙钛矿类化合物粉体能够通过例如透射电子显 微镜分析。 例如, 在本发明的一个实施方案中, 取 0.05g干燥后的钙钛矿类 化合物粉体置于 50ml乙醇中分散, 在超声波清洗器中超声, 然后滴于用于 电镜观察用的铜网上, 采用日本 fflTACffl-800型透射电子显微镜分析颗粒 初始粒径及形貌。
结果表明, 根据本发明的方法所制得的任何一种单一或复合的钙钛矿 类化合物粉体的平均粒径很小, 粒度分布窄。 平均粒径小于约 500nm, 优 选为小于约 250nm, 更优选为小于约 150nm。 例如, 平均粒径为约 500 nm 至约 10 nm, 优选为约 250 nm至约 20nm, 更优选为约 150至约 20nm。
因此, 本发明的方法相对于现有技术的方法, 由于釆用了超重力反应 器, 在较短时间内完成, 而且能够以连续法制备, 并且可以控制生成具有 预定平均晶粒大小、 粒度分布均勾、 形貌规则的钙钛矿类化合物粉体或包 含所述粉体的浆料。 此粉体在陶瓷烧结前无需煅烧。 从而可节省大量的能 源费用及生产成本。 径小、 晶型完整、 形貌规则、 适合于作为介电、 压电、 反铁电、 热释电、 耐压、 敏感、 微波介质及其它陶瓷的原料。 实施例 以下是根据本发明的方法,制备具有钙钛矿类化合物粉体的非限定性 实例。 这些实施例进一步描述和说明了本发明范围内的实施方案。 本发明 中给出的实施例仅用于说明的目的, 对本发明不构成任何限定, 在不背离 本发明精神和范围的条件下可对其进行各种改变,均是本领域普通技术人 员所认可的。 除非特別指出, 实施例中所列的所有浓度均为重量百分比。 实施例 1
采用超重力法制备钛酸锶钡
配制 4.5mol/L浓度的 NaOH溶液, 其中 NaOH采用分析纯的试剂。 将 4.5mol/l浓度的 NaOH溶液置于不锈钢的 NaOH储罐 1 中(参见图 9)。 而 (BaCl2+SrCl2)和 TiCl4混合溶液的配制采用以下步骤: 分别配制 2mol/L浓度 的 SrCl2、 2mol/L浓度的 BaCl2和 2mol/L浓度的 TiCl4溶液。 通过加入去离 子水配制 [BaCl2]+ [SrCl2]+[TiCl4]的混合溶液的总浓度为 lmol/L, 而溶液中 SrCl2 /(BaCl2+ SrCl2)的摩尔比为 0.15、 ([BaCl2]+ [SrCl2])/[TiCl4]为 1,05。 将 上述配制的 BaCl2、 SrCl2和 TiCl4混合溶液置于储罐 6中。
启动超重力反应器后, 总浓度为 lmol/L的 BaCl2、 SrCl2和 TiCl4混合溶 液从储罐 6经由泵 7泵出,并经流量计 5计量后由旋转床液体进口 4进入旋 转床 3 , 其流量设定为 30.0L/hr。 而 4.5mol/L浓度的 NaOH溶液自 NaOH储 罐 1经由泵 10泵出, 经流量计 9计量后由旋转床液体进口 2进入旋转床 3 , 其流量设定为 30.0L/hr。 进入超重力反应器后, BaCl2、 SrCl2和 TiCl4混合溶 液和 NaOH溶液在旋转床 3的填料层中充分接触、 反应。 反应过程中旋转 床的温度控制在约 90°C , 选择转速为 1440rpm。 将反应后的悬浮液收集于 搅拌釜 8中。 其中 BaCl2 SrCl2和 TiCl4混合溶液和 NaOH溶液的反应持续 20min
反应后悬浮液在搅拌釜中搅拌陈化 3-5min。 然后将陈化后的悬浮液过 滤并用约 95°C 的去离子水洗涤 3次, 在干燥器中在约 100°C干燥得到 Ba0.85Sr0,15TiO3粉体。
取 O.lg粉体置于 50ml乙醇中分散、 在超声波清洗器中超声 20min。 滴 于用于电镜观察用的铜网上, 采用日本 HITACHI-800型透射电子显 :镜分 析颗粒初始粒径及形貌, 其 TEM照片见图 1。 参考图 1, 分析得出, 采用 本实施例制备出的钛酸锶钡粉体为球形颗粒, 平均粒度为约 70nm
用日本岛津 XRD-6000型 X射线衍射仪分析晶体物相 (Cui , 扫描速度 47min)。 其 XRD扫描图见图 2。从图 2可以看出粉体 XRD图谱介于立方相 的 BaTi03和立方相的 SrTi03之间。 实施例 2
采用超重力法制备不同掺 Sr量的钛酸锶钡
除下述变化外, 其余同实施例 1
SrCl2/(BaCl2+ SrCl2)的摩尔比分别为 0.05 0.1 , 0.20 0.30, 0.50。 而其 它操作同实施例 1。得到的粉体的粒度皆小于 100 图 3和图 4分别为 SrCl2 /(BaCl2+ SrCl2)的摩尔比为 0.2和 0.5的 TEM照片。图 2为不同掺 Sr量的 XRD 图。
实施例 3
此实施例为了说明釆用不同反应物制备钛酸钡粉体。
配制 4.5mol/L浓度的 NaOH溶液, 其中 NaOH采用分析纯的试剂。 分 别配制 lmol L的 Sr(OH)2和 lmol L的 Ba(OH)2, 将上述 NaOH Sr(OH)2和 Ba(OH)2混合成体积为 10L, [ΟΙ ]浓度为 6.0mol/L, 而 [Ba2+]+[Sr2+]总浓度为 0.5mol/L, 而溶液中 [Sr2+]/([Ba2+]+[Sr2+])的摩尔比为 0.15 , 将上述 NaOH Sr(OH)2和 Ba(OH) ¾合溶液置于不锈钢的 NaOH储罐 1中(参见图 9)。配制 0.48mol/L浓度的 TiCl4溶液 10L。 将其置于储罐 6中。 启动超重力反应器后, 0.48mol/L浓度的 TiCl4溶液从储罐 6经由泵 7泵 出, 并经流量计 5计量后由旋转床液体进口 4进入旋转床 3 , 其流量设定为 30.0L/hr。 而 NaOH、 Sr(OH)2和 Ba(OH)2混合溶液自储罐 1经由泵 10泵出, 经流量计 9计量后由旋转床液体进口 2进入旋转床 3, 其流量设定为 30.0L/hr。进入超重力反应器后 , 两股溶液在旋转床 3的填料层中充分接触、 反应。 反应过程中旋转床的温度控制在约 90°C, 选择转速为 1440rpm。 将 反应后的悬浮液收集于搅拌釜 8中。 其中反应持续 20min。
反应后悬浮液在搅拌釜中搅拌陈化 3-5min。 然后将陈化后的悬浮液过 滤并用约 95°C 的去离子水洗涤 3 次, 在干燥器中在约 100°C干燥得到 Ba。.85Sr i5Ti03粉体。得到的粉体的粒度小于 100nm。粉体 XRD图谱介于立 方相的 BaTi03和立方相的 SrTi03之间, 类似与实施例 1。 实施例 4
采用超重力法制备锆钛酸钡
配制 4.5mol/L浓度的 NaOH溶液, 其中 NaOH采用分析纯的试剂。 将
4.5mol/l浓度的 NaOH溶液置于不锈钢的 NaOH储罐 1中(参见图 9)。而 BaCl2 和 (TiCl4 + ZrCl4)混合溶液的配制釆用以下步驟: 分别配制 2mol/L浓度的 ZrCl4、 2mol/L浓度的 BaCl2和 2mol/L浓度的 TiCl4溶液。通过加入去离子水 配制 [BaCl2]+[ZrCl4]+[TiCl4]的混合溶液的总浓度为 1.0mol/L , 而溶液中 [ZrCl4]([ZrCl4]+[TiCl4])的摩尔比为 0.15、 [BaCl2] /( [TiCl4] + [ZrCl4])为 1,05。 将上述配制的 BaCl2、 ZrCl4和 TiCl4混合溶液置于储罐 6中。
启动超重力反应器后, 总浓度为 lmol/L的 BaCl2、 ZrCl4和 TiCl4混合溶 液从储罐 6经由泵 7泵出,并经流量计 5计量后由旋转床液体进口 4进入旋 转床 3 , 其流量设定为 30.0L/hr。 而 4.5mol/L浓度的 NaOH溶液自 NaOH储 罐 1经由泵 10泵出, 经流量计 9计量后由旋转床液体进口 2进入旋转床 3 , 其流量设定为 30,0L/hr。 进入超重力反应器后, BaCl2、 ZrCl4和 TiCl4混合溶 液和 NaOH溶液在旋转床 3的填料层中充分接触、 反应。 反应过程中旋转 床的温度控制在约 90°C , 选择转速为 1440rpm。 将反应后的悬浮液收集于 搅拌釜 8中。 其中 BaCl2、 ZrCl4和 TiCl4混合溶液和 NaOH溶液的反应持续 20min。 反应后悬浮液在搅拌釜中搅拌陈化 3-5min。 然后将陈化后的悬浮液过 滤并用约 95 C 的去离子水洗涤 3次, 在干燥器中在约 100 C干燥得到 BaTi0.85Zr0.15O3粉体。
取 O.lg粉体置于 50ml乙醇中分散、 在超声波清洗器中超声 20min。 滴 于用于电镜观察用的铜网上, 采用日本 HITACHI-800型透射电子显微镜分 析颗粒初始粒径及形貌, 其 TEM照片见图 5。 参考图 5 , 釆用本实施例制 备出的锆钛酸钡粉体为球形颗粒, 平均粒度为约 80nm。 粉体的 XRD图谱 为介于立方相的 BaTi03和立方相的 SrTi03的立方相的 BaTi。.85Zr().1503晶体。 实施例 5
除 Zr源采用 ZrOCl2外, 其余同实施例 4。 得到锆钛酸钡粉体产品特征 同实施例 。 实施例 6
采用超重力法制备不同掺 Zr量的锆钛酸钡
除下述变化外, 其余同实施例 5
ZrOCl2/(TiCl4+ ZrOCl2)的摩尔比分别为 0.05 , 0.1 , 0.20, 0.30, 0.50 而其它操作同实施例 4。得到的粉体的粒度根据掺杂量的增加略有增加, 但 都小于 200 图 6和图 7分别为 ZrOCl2/(TiCl4+ ZrOCl2)的摩尔比为 0.05 和 0.3的 TEM照片。 实施例 7
采用超重力法制备锡钛酸钡
除下述变化外, 其余同实施例 1
制备浓度为 3mol/L的 NaOH水溶液, [BaCl2]+[TiCl4] + [SnCl4]的总浓 度为 3mol/L并且 [BaCl2]/[TiCl4]为 1.05的水溶液。
配制 4.5mol/L浓度的 NaOH溶液, 其中 NaOH采用分析纯的试剂。 将 4.5mol/l浓度的 NaOH溶液置于不锈钢的 NaOH储罐 1 中(参见图 9)。 而 (BaCl2+SrCl2)和 TiCl4混合溶液的配制采用以下步骤: 分别配制 2mol/L浓度 的 SnCl4 2mol/L浓度的 BaCl2和 2mol/L浓度的 TiCl4溶液。 通过加入去离 子水配制 [BaCl2]+[TiCl4]+[SnCl4]的混合溶液的总浓度为 lmol/L, 而溶液中 [SnCl4]/([TiCl4]+[SnCl4])的摩尔比为 0.15、 [BaCl2]/[TiCl4]+[SnCl4])为 1.05。 将上述配制的 BaCl2、 SnCl4和 TiCl4混合溶液置于储罐 6中。
启动超重力反应器后, 总浓度为 lmol/L的 BaCl2、 SnCl4和 TiCl4混合溶 液从储罐 6经由泵 7泵出,并经流量计 5计量后由旋转床液体进口 4进入旋 转床 3, 其流量设定为 30.0L/hr。 而 4.5mol/L浓度的 NaOH溶液自 NaOH储 罐 1经由泵 10泵出, 经流量计 9计量后由旋转床液体进口 2进入旋转床 3, 其流量设定为 30.0L/hr。 进入超重力反应器后, BaCl2、 SnCl4和 TiCl4混合 溶液和 NaOH溶液在旋转床 3的填料层中充分接触、 反应。 反应过程中旋 转床的温度控制在约 90°C , 选择转速为 1440rpm。 将反应后的悬浮液收集 于搅拌釜 8中。 其中 BaCl2、 SnCl4和 TiCl4混合溶液和 NaOH溶液的反应持 续 20min。
反应后所得的浆液在搅拌釜中搅拌陈化 3-5min。 然后将陈化后的悬浮 液过滤并用约 90。C 的去离子水洗涤 3 次, 在干燥器中干燥得到 BaTio.85Sn i503粉体。 经 TEM分析表明该粉体为球形颗粒, 其平均粒径小 于 100nm。 实施例 8
除下述变化外, 其余同实施例 1。
除碱液采用 KOH外, 其余同实施例 1。 其中 KOH浓度采用和 NaOH相 同。
得到产品特征类同与实施例 1。 实施例 9
采用超重力法制备不同掺 Zr量和掺 Sr量的掺杂钛酸钡
除下述变化外, 其余同实施例 1。
釆用和实施例 1相同的 NaOH溶液置于不锈钢的 NaOH储罐 1中(参见 图 9)。 分别配制 2mol/L浓度的 SrCl2、 2mol/L浓度的 BaCl2、 2mol/L浓度的 ZrCl4和 2mol/L 浓度的 TiCl4溶液。 通过加入去离子水配制 [BaCl2]+ [SrCl2]+[TiCl4]+[ZrCl4]的混合溶液的总浓度为 lmol/L , 而溶液中 SrCl2 /(BaCl2+ SrCl2)的摩尔比为 0.25、 [ZrCl4]([ZrCl4]+[TiCl4])的摩尔比为 0.25、 ([BaCl2]+ [SrCl2])/([TiCl4]+[ZrCl4])为 1.05。将上述配制的 BaCl2、 SrCl2和 TiCl4 混合溶液置于储罐 6中。
启动超重力反应器后, 总浓度为 lmol/L的 BaCl2、 SrCl2、 ZrCl4和 TiCl4 混合溶液从储 6经由泵 7泵出, 并经流量计 5计量后由旋转床液体进口 4 进入旋转床 3 , 其流量设定为 30.0L/hr。 而 4.5mol/L浓度的 NaOH溶液自 NaOH储罐 1经由泵 10泵出, 经流量计 9计量后由旋转床液体进口 2进入 旋转床 3 , 其流量设定为 30.0L/hr。 进入超重力反应器后, BaCl2、 SrCl2、 ZrCl4和 TiCl4混合溶液和 NaOH溶液在旋转床 3的填料层中充分接触、反应。 反应过程中旋转床的温度控制在约 90°C , 选择转速为 1440rpm。 将反应后 的悬浮液收集于搅拌釜 8中。 其中 BaCl2、 SrCl2、 ZrCl4和 TiCl4混合溶液和 NaOH溶液的反应持续 20min。
反应后悬浮液在搅拌釜中搅拌陈化 3-5min。 然后将陈化后的悬浮液过 滤并用约 95°C 的去离子水洗涤 3次, 在干燥器中在约 100。C干燥得到 Bao.75Sro.25 io.75Zro.25O3粉体。
取 O.lg粉体置于 50ml乙醇中分散、 在超声波清洗器中超声 20min。 滴 于用于电镜观察用的铜网上, 采用日本 HITACHI-800型透射电子显凝:镜分 析颗粒初始粒径及形貌, 其 TEM照片见图 8。 参考图 8, 分析得出, 采用 本实施例制备出的掺 Zr量和掺 Sr量均为 25%的掺杂钛酸钡体为球形颗粒, 平均粒度为小于 100nm。

Claims

权 利 要 求 书
1. 一种制备钙钛矿类化合物粉体 Ax(B03)y的方法, 该方法包括: 将包含 A的离子的溶液、 包含 B的离子的溶液以及碱溶液, 或者将包 含 A的离子和 B的离子的混合溶液与碱溶液, 或者将包含 A的离子和碱的 混合溶液与包含 B离子的溶液在超重力反应器中, 在约 60°C至约 100°C的 温度下反应; 其中 A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi和其它稀土金属元素中的一种或几种; 其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta等元素中的一种或几 种; x和 y是互相平衡化合价的值;
条件是所述的 Ax(B03)y不为 BaTi03和 SrTi03
2. 根据权利要求 1的方法, 其中所使用的碱选自: 碱金属或碱土金属 的氢氧化物、 氢氧化铵和四曱基氢氧化铵。
3. 根据权利要求 1的方法, 其中所使用的碱选自: 氢氧化钠、 氢氧化 钾和四甲基氢氧化铵。
4.根据前述任一项权利要求的方法, 其中 A为 Li, Na, K, Mg, Ca, Sr, Ba, Pb, Sm, La, Nd, Bi中的一种或几种; 其中 B为 Ti, Zr, Sn, Hf, Nb, Ce, Al, Zn, Mn, Co, Ni, Fe, Cr, Y, Sc, W, Ta中的一种 或几种。
5.根据前述任一项权利要求的方法, 其中 A为 Mg, Ca, Sr, Ba中的 一种或几种; 其中 B为 Ti, Zr, Sn中的一种或几种。
6. 根据前述任一项权利要求的方法, 其中提供 Sr2+离子的物质选自: 氯化锶、 硝酸锶、 氢氧化锶、 草酸锶、 高氯酸锶、 醋酸锶以及锶的有机盐 包括铜的烷氧基化物, 或者它们的混合物; 提供 Ti4+的物质选自: 氯化钛、 硝酸钛、 氢氧化钛、 氧氯化钛、 钛的有机盐包括钛的烷氧基化物, 或者它 们的混合物。
7. 据前述任一项权利要求的方法, 其中碱溶液与包含 A的溶液或包 含 B的溶液或者它们的混合物的体积流量比为 0.5-10。
8. 根据前述任一项权利要求的方法,其中包含 A离子与 B离子的摩尔 比为 0.70-1.30。
9. 根据前述任一项权利要求的方法, 其中包含 Ti4+的溶液的浓度为.0 mol/L。
10. 根据前述任一项权利要求的方法, 其中所述碱溶液的浓度为5.0 mol/L。
PCT/CN2004/000153 2003-02-28 2004-02-27 Procede de preparation de poudres d'un compose de type perovskite WO2004076379A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04715233A EP1598326A4 (en) 2003-02-28 2004-02-27 PROCESS FOR THE PREPARATION OF POWDERS OF A PEROVSKITE COMPOUND
JP2006501453A JP2006519152A (ja) 2003-02-28 2004-02-27 ペロブスカイト型結晶化合物粉末の製造方法
US11/214,145 US20060045840A1 (en) 2003-02-28 2005-08-29 Process for preparing perovskite-type crystalline compound powders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB031067719A CN100335415C (zh) 2003-02-28 2003-02-28 一种制备各种晶态钙钛矿类化合物粉体的方法
CN03106771.9 2003-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/214,145 Continuation-In-Part US20060045840A1 (en) 2003-02-28 2005-08-29 Process for preparing perovskite-type crystalline compound powders

Publications (1)

Publication Number Publication Date
WO2004076379A1 true WO2004076379A1 (fr) 2004-09-10

Family

ID=32913707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000153 WO2004076379A1 (fr) 2003-02-28 2004-02-27 Procede de preparation de poudres d'un compose de type perovskite

Country Status (5)

Country Link
US (1) US20060045840A1 (zh)
EP (1) EP1598326A4 (zh)
JP (1) JP2006519152A (zh)
CN (1) CN100335415C (zh)
WO (1) WO2004076379A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188557A (zh) * 2017-06-01 2017-09-22 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN109111224A (zh) * 2017-06-23 2019-01-01 天津大学 一种高温度稳定性锂镍钛系微波介质陶瓷及其制备方法和应用
CN111359622A (zh) * 2020-04-13 2020-07-03 南京中微纳米功能材料研究院有限公司 一种双钙钛矿催化剂及其制备方法与用法
CN113952917A (zh) * 2021-10-18 2022-01-21 济源市鲁泰纳米材料有限公司 一种超重力反应器及其制备的活性纳米氧化锌的制备方法

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
KR100543979B1 (ko) * 2003-11-21 2006-01-20 한국표준과학연구원 나노 크기의 세공을 갖는 강자기성 망간 산화물 막과 이의제조방법
GB0421120D0 (en) * 2004-09-22 2004-10-27 Goodrich Control Sys Ltd Piezoelectric materials
CN100370560C (zh) * 2005-04-18 2008-02-20 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
JP2007320798A (ja) * 2006-05-31 2007-12-13 Teijin Ltd 強誘電体薄膜作製溶液およびその製造方法
US7993611B2 (en) 2006-08-02 2011-08-09 Eestor, Inc. Method of preparing ceramic powders using ammonium oxalate
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders
CN100457679C (zh) * 2006-10-19 2009-02-04 上海大学 高性能微波介质材料的制备方法
CN101239824B (zh) * 2007-02-06 2010-08-25 香港理工大学 铌酸钠钾锆钛酸钡系无铅压电陶瓷组合物
CN101641806B (zh) * 2007-03-30 2011-11-30 佳能株式会社 外延膜、压电元件、铁电元件、它们的制造方法以及液体排出头
CN101279923B (zh) * 2007-04-06 2010-08-25 宁波万华聚氨酯有限公司 一种制备多亚甲基多苯基多胺的方法
JP5537931B2 (ja) 2007-04-19 2014-07-02 日本特殊陶業株式会社 圧電磁器組成物及び圧電素子
US8937030B2 (en) * 2007-06-11 2015-01-20 Research Foundation Of The City University Of New York Preparation of perovskite nanocrystals via reverse micelles
JP5344456B2 (ja) * 2008-03-11 2013-11-20 独立行政法人物質・材料研究機構 非鉛系圧電材料
JP5355148B2 (ja) * 2008-03-19 2013-11-27 キヤノン株式会社 圧電材料
JP5219921B2 (ja) * 2008-05-28 2013-06-26 キヤノン株式会社 金属酸化物、圧電材料および圧電素子
CN104201410B (zh) * 2008-07-14 2017-04-12 株式会社村田制作所 互连器用材料、单元间分离结构体及固体电解质型燃料电池
US8529785B2 (en) * 2008-07-30 2013-09-10 Canon Kabushiki Kaisha Metal oxide
US8518290B2 (en) * 2008-07-30 2013-08-27 Canon Kabushiki Kaisha Piezoelectric material
JP2010143789A (ja) * 2008-12-18 2010-07-01 Canon Inc 圧電体材料
JP2010143788A (ja) * 2008-12-18 2010-07-01 Canon Inc 酸窒化物圧電材料及びその製造方法
US20100285316A1 (en) * 2009-02-27 2010-11-11 Eestor, Inc. Method of Preparing Ceramic Powders
JP2012519142A (ja) * 2009-02-27 2012-08-23 イーストー,インコーポレイティド 酸化物粉末の湿式化学的共沈のための反応管および熱水処理
FR2944784B1 (fr) * 2009-04-27 2011-05-27 Commissariat Energie Atomique Titanates de baryum doublement substitues au cerium et fer ou manganese de structure perovskite
CN101624284B (zh) * 2009-08-05 2013-01-02 中国科学院上海硅酸盐研究所 掺杂bkt-bt系无铅ptcr陶瓷材料及制备方法
KR101128860B1 (ko) * 2009-08-11 2012-03-23 삼성정밀화학 주식회사 리튬티타네이트 나노입자의 제조방법
US20110079883A1 (en) * 2009-10-01 2011-04-07 Canon Kabushiki Kaisha Ferroelectric thin film
CN101792316B (zh) * 2010-01-28 2012-06-27 中南大学 高居里点的无铅ptcr热敏陶瓷材料
JP5754619B2 (ja) * 2010-03-02 2015-07-29 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP2011187790A (ja) 2010-03-10 2011-09-22 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置、および圧電素子
JP5614531B2 (ja) * 2010-03-12 2014-10-29 セイコーエプソン株式会社 液体噴射ヘッド及びそれを用いた液体噴射装置並びに圧電素子
JP2011211143A (ja) * 2010-03-12 2011-10-20 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びに圧電素子
JP5375688B2 (ja) * 2010-03-16 2013-12-25 セイコーエプソン株式会社 液体噴射ヘッド、圧電素子および圧電アクチュエーター
CN101805170B (zh) * 2010-04-15 2012-09-26 桂林理工大学 低温烧结锂基微波介电陶瓷及其制备方法
CN102219698B (zh) * 2010-04-15 2014-04-23 中国石油化工股份有限公司 生产c1~c4烷基亚硝酸酯的方法
KR101698762B1 (ko) * 2010-04-30 2017-01-23 삼성에스디아이 주식회사 리튬 전이금속 인산염의 제조방법
RU2446105C1 (ru) * 2010-10-06 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Способ получения титанатов щелочноземельных металлов или свинца
CN102030352B (zh) * 2010-10-25 2013-10-09 湘潭大学 一种制备纳米材料的方法
CN102211019B (zh) * 2011-03-24 2013-01-23 桂林理工大学 可见光响应的复合氧化物光催化剂Ba1-xSrxLi2Ti6O14及制备方法
CN102211021B (zh) * 2011-03-25 2012-11-07 桂林理工大学 可见光响应的复合氧化物光催化剂LiBa3-xSrxTi5Nb3O21及制备方法
CN102898136B (zh) * 2012-10-13 2014-04-09 中国计量学院 新型微波介质陶瓷及其制备方法
CN102874870B (zh) * 2012-10-22 2014-04-16 北京工业大学 一种低温制备LaAlO3-BiAlO3雪花状纳米粉体
CN103265288B (zh) * 2013-05-10 2015-10-14 伊犁师范学院 大介电常数压电陶瓷及其制备方法
CN103253934A (zh) * 2013-06-17 2013-08-21 桂林理工大学 钛酸钡基高介电温度稳定型陶瓷材料及其制备方法
CN103449536B (zh) * 2013-08-30 2015-01-21 华北水利水电大学 钙钛石型纳米Nd1-xMgxCoO3的制备方法
CN103539449B (zh) * 2013-10-07 2015-11-25 桂林理工大学 可低温烧结的微波介电陶瓷BiNbW2O10及其制备方法
CN103496987A (zh) * 2013-10-18 2014-01-08 桂林理工大学 可低温烧结的微波介电陶瓷Li2Nb2WO9及其制备方法
CN103553608A (zh) * 2013-10-27 2014-02-05 桂林理工大学 可低温烧结的微波介电陶瓷LiSmNb2O7及其制备方法
CN103922737A (zh) * 2014-04-06 2014-07-16 桂林理工大学 可低温烧结的微波介电陶瓷Li3Nb3Si2O13及其制备方法
CN104193325B (zh) * 2014-08-28 2016-02-17 云南云天化股份有限公司 一种陶瓷粉体、其制备方法、微波介质陶瓷粉体及其制备方法
CN104393243A (zh) * 2014-10-21 2015-03-04 南京航空航天大学 一种碳自包覆纳米级SrLi2Ti6O14的制备方法
CN104355617B (zh) * 2014-10-27 2016-03-30 吉林大学 一种立方相镧铁钛氧化物的高温高压制备方法
CN104609858B (zh) * 2014-12-25 2018-02-02 南阳森霸光电股份有限公司 被动式热释电红外传感器用热释电陶瓷材料及其制备方法
CN104649665A (zh) * 2014-12-28 2015-05-27 桂林理工大学 一种具有近零谐振频率温度系数的微波介质陶瓷Li2La3NdV2O12
CN104710175B (zh) * 2015-02-09 2017-07-11 陕西师范大学 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN104649668A (zh) * 2015-02-09 2015-05-27 桂林理工大学 温度稳定型高品质因数微波介电陶瓷BiTa3W3O18及其制备方法
CN104649669A (zh) * 2015-02-10 2015-05-27 桂林理工大学 温度稳定型高介电常数微波介电陶瓷Ba6Ti3Zr5Nb8O42及其制备方法
CN104649670A (zh) * 2015-02-25 2015-05-27 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷LiZn2V7O20
CN104649672A (zh) * 2015-02-25 2015-05-27 桂林理工大学 低损耗温度稳定型低介电常数微波介电陶瓷LiZnNb5O14
CN104817324A (zh) * 2015-04-27 2015-08-05 桂林理工大学 温度稳定型低介电常数微波介电陶瓷Li2LaVO5
CN104876573A (zh) * 2015-05-23 2015-09-02 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷BaLiNd3Mo5O21
CN104909750A (zh) * 2015-05-23 2015-09-16 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷BaLi3Nd3Mo2O13
CN104876577A (zh) * 2015-05-23 2015-09-02 桂林理工大学 超低介电常数微波介电陶瓷SrLi3AlV8O24及其制备方法
CN104944949A (zh) * 2015-05-23 2015-09-30 桂林理工大学 高品质因数低介电常数微波介电陶瓷CaLiLaMo2O9
CN104876578A (zh) * 2015-05-23 2015-09-02 桂林理工大学 低介电常数微波介电陶瓷SrLi3EuV8O24及其制备方法
CN104891993A (zh) * 2015-05-23 2015-09-09 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷SrLi3Eu3Mo2O13
CN104876576A (zh) * 2015-05-23 2015-09-02 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷SrLiEu3Mo5O21
CN104876570A (zh) * 2015-05-23 2015-09-02 桂林理工大学 高品质因数低介电常数微波介电陶瓷BaLi3La3W2O13
CN104876574A (zh) * 2015-05-23 2015-09-02 桂林理工大学 高品质因数超低介电常数微波介电陶瓷CaLiLa3Mo5O21
CN104926303A (zh) * 2015-06-15 2015-09-23 桂林理工大学 一种温度稳定型铋基钙钛矿介电陶瓷材料及其制备方法
JP2017034140A (ja) * 2015-08-04 2017-02-09 Tdk株式会社 半導体磁器組成物およびptcサーミスタ
CN105174951A (zh) * 2015-09-08 2015-12-23 桂林理工大学 低损耗与高热稳定性的超低介电常数微波介电陶瓷EuY2V3O12
CN105110768A (zh) * 2015-09-20 2015-12-02 桂林理工大学 中介电常数微波介电陶瓷Ba3Li3Bi2Sb5O20及其制备方法
CN105218083A (zh) * 2015-10-07 2016-01-06 桂林理工大学 低介电常数微波介电陶瓷Ba3Li2BiV3O13及其制备方法
CN105218084A (zh) * 2015-10-07 2016-01-06 桂林理工大学 低介电常数微波介电陶瓷Li4Ba2BiV3O13及其制备方法
CN105218093A (zh) * 2015-10-07 2016-01-06 桂林理工大学 温度稳定型中介电常数微波介电陶瓷BaLi2LaVO6
CN105236954A (zh) * 2015-10-07 2016-01-13 桂林理工大学 超低介电常数微波介电陶瓷Li3MgBi5O10及其制备方法
CN105218085A (zh) * 2015-10-09 2016-01-06 桂林理工大学 低介电常数微波介电陶瓷Li4Bi3Sb3O14及其制备方法
CN105218086A (zh) * 2015-10-09 2016-01-06 桂林理工大学 低介电常数微波介电陶瓷BaLi3ZnBi5O11及其制备方法
CN105272204A (zh) * 2015-10-09 2016-01-27 桂林理工大学 低介电常数微波介电陶瓷SrLi3MgBi5O11及其制备方法
CN105236978A (zh) * 2015-10-18 2016-01-13 桂林理工大学 温度稳定型低介电常数微波介电陶瓷LiBaLa2V3O12
CN105314975A (zh) * 2015-11-29 2016-02-10 桂林理工大学 高品质因数温度稳定型微波介电陶瓷BaLi2ZnGeO5及其制备方法
CN105272170A (zh) * 2015-11-30 2016-01-27 桂林理工大学 高品质因数温度稳定型微波介电陶瓷LiBa2FeGe3O10及其制备方法
CN105272171A (zh) * 2015-11-30 2016-01-27 桂林理工大学 温度稳定型低介电常数微波介电陶瓷Ba2ZnGe3O9及其制备方法
CN105503173A (zh) * 2015-12-15 2016-04-20 桂林理工大学 温度稳定型低介电常数微波介电陶瓷Ba3Bi2GeO8及其制备方法
CN105541301A (zh) * 2015-12-19 2016-05-04 桂林理工大学 温度稳定型低介电常数微波介电陶瓷Sr2MgGe3O9及其制备方法
CN105565780A (zh) * 2015-12-23 2016-05-11 桂林理工大学 高品质因数低介电常数微波介电陶瓷Sr3MgGe4O12及其制备方法
ES2628027B1 (es) * 2015-12-24 2018-05-11 Consejo Superior De Investigaciones Científicas (Csic) MATERIAL CERÁMICO PIEZOELÉCTRICO DE ALTA TEMPERATURA DE BIScO3-PbTIO3, DISEÑADO QUÍMICAMENTE PARA OPERAR EN CONDICIONES DE ALTA POTENCIA Y PROCEDIMIENTO PARA OBTENER DICHO MATERIAL CERÁMICO
CN105645947A (zh) * 2015-12-27 2016-06-08 桂林理工大学 可低温烧结的温度稳定型微波介电陶瓷Bi2TiGe3O11及其制备方法
CN105540652A (zh) * 2015-12-28 2016-05-04 江南大学 一种亚微米级钛酸锶的低温直接沉淀制备方法
CN105503175A (zh) * 2016-01-09 2016-04-20 桂林理工大学 一种温度稳定型中介电常数微波介电陶瓷CaTiNbBiO7及其制备方法
CN105503176A (zh) * 2016-01-09 2016-04-20 桂林理工大学 一种温度稳定型低介电常数微波介电陶瓷CaTiVBiO7及其制备方法
CN105669183A (zh) * 2016-01-09 2016-06-15 桂林理工大学 可低温烧结的微波介电陶瓷Zn3Bi3SbTi2O14及其制备方法
CN105777102A (zh) * 2016-02-17 2016-07-20 桂林理工大学 高品质因数超低介电常数微波介电陶瓷Cu3La2Ge3O12及其制备方法
CN105777104A (zh) * 2016-02-17 2016-07-20 桂林理工大学 温度稳定型低介电常数微波介电陶瓷Ba3Bi2Ge3O12及其制备方法
CN105801102A (zh) * 2016-02-17 2016-07-27 桂林理工大学 高品质因数超低介电常数微波介电陶瓷Mg3Bi2Ge3O12及其制备方法
CN105777121A (zh) * 2016-02-17 2016-07-20 桂林理工大学 高品质因数超低介电常数微波介电陶瓷Zn3Sm2Ge3O12及其制备方法
CN105669184A (zh) * 2016-02-18 2016-06-15 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷Cu3Bi2V2O11
CN105693232A (zh) * 2016-02-18 2016-06-22 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷CuBi2V2O9
CN105693219A (zh) * 2016-02-20 2016-06-22 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷BaMg3B4O10及其制备方法
CN106007673A (zh) * 2016-05-23 2016-10-12 桂林理工大学 高品质因数温度稳定型超低介电常数微波介电陶瓷Ca3Y2Ge3O12
CN105777078A (zh) * 2016-05-23 2016-07-20 桂林理工大学 低损耗温度稳定型超低介电常数微波介电陶瓷Mg3Y2Ge3O12
CN106116522A (zh) * 2016-06-19 2016-11-16 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷Mg3Li2B2O7及其制备方法
CN106278251A (zh) * 2016-07-30 2017-01-04 桂林理工大学 温度稳定型微波介电陶瓷SrBi3GaTi2O11
CN106278191A (zh) * 2016-08-01 2017-01-04 桂林理工大学 一种复合氧化物Al2Ca3MgSb2O12作为温度稳定型微波介电陶瓷的应用
CN106390974B (zh) * 2016-09-13 2019-02-19 安徽大学 一种高效光催化剂SrTiO3的制备方法
CN107902691A (zh) * 2016-12-23 2018-04-13 中国工程物理研究院材料研究所 一种无机钙钛矿材料及其制备方法
KR102349097B1 (ko) * 2016-12-29 2022-01-10 조인트 스톡 컴퍼니 크라스노야르스크 하이드로파워 플랜트 (제이에스씨 크라스노야르스크 에이치피피) 페로브스카이트 구조의 흡광 물질을 생성하는 방법 및 이의 제조를 위한 가변 조성의 액체 폴리할로겐화물
CN106588009A (zh) * 2016-12-30 2017-04-26 桂林融通科技有限公司 一种高温度稳定型电介质材料及其制备方法
CN106588010A (zh) * 2016-12-30 2017-04-26 桂林融通科技有限公司 一种宽温稳定型陶瓷介质材料及其制备方法
CN106747423B (zh) * 2017-02-10 2020-04-14 哈尔滨工业大学 一种单相nbt基反铁电陶瓷及其制备方法
CN106927827A (zh) * 2017-03-24 2017-07-07 桂林理工大学 一种铝酸盐温度稳定型微波介电陶瓷
CN106927811A (zh) * 2017-03-24 2017-07-07 桂林理工大学 一种铟酸盐高品质因数超低介电常数微波介电陶瓷
CN106927828A (zh) * 2017-03-24 2017-07-07 桂林理工大学 一种温度稳定型铟酸盐微波介电陶瓷
CN107010924A (zh) * 2017-03-24 2017-08-04 桂林理工大学 一种温度稳定型镓酸盐微波介电陶瓷
CN106830923A (zh) * 2017-03-24 2017-06-13 桂林理工大学 高品质因数微波介电陶瓷Bi3Y2Ga3O12
CN106927830A (zh) * 2017-03-25 2017-07-07 桂林理工大学 一种温度稳定型超低介电常数微波介电陶瓷
CN106927807A (zh) * 2017-03-25 2017-07-07 桂林理工大学 一种铝酸盐高品质因数超低介电常数微波介电陶瓷
CN106927829A (zh) * 2017-03-25 2017-07-07 桂林理工大学 一种钇酸盐高品质因数微波介电陶瓷
CN106927813A (zh) * 2017-03-26 2017-07-07 桂林理工大学 一种低损耗温度稳定型微波介电陶瓷
CN106927812A (zh) * 2017-03-26 2017-07-07 桂林理工大学 一种低损耗超低介电常数微波介电陶瓷
CN106946548A (zh) * 2017-03-26 2017-07-14 桂林理工大学 一种高品质因数镓酸盐微波介电陶瓷
CN106830924A (zh) * 2017-03-27 2017-06-13 桂林理工大学 一种低损耗镓酸盐超低介电常数微波介电陶瓷
CN106966713A (zh) * 2017-03-27 2017-07-21 桂林理工大学 一种低损耗铝酸盐超低介电常数微波介电陶瓷
KR102023398B1 (ko) 2017-03-31 2019-09-23 강릉원주대학교산학협력단 Bmw계 고주파 유전체 세라믹 소재 및 그 제조방법
CN107010948A (zh) * 2017-04-21 2017-08-04 吴迪 一种压电陶瓷纤维的制备方法
CN107010941B (zh) * 2017-05-02 2020-09-01 桂林电子科技大学 一种具有巨电致阻变的无铅铁电陶瓷材料及其制备方法
CN107021757B (zh) * 2017-05-27 2020-01-10 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN107285761A (zh) * 2017-06-30 2017-10-24 江苏大学 一种微波介质材料及其制备方法
CN107602121A (zh) * 2017-10-20 2018-01-19 周开珍 一种高储能密度无铅反铁电陶瓷材料及其制备方法
CN107602113A (zh) * 2017-10-22 2018-01-19 周开珍 一种无铅高储能密度陶瓷材料及其制备方法
US11078123B2 (en) * 2017-11-10 2021-08-03 Tdk Corporation Metal oxynitride thin film, process for producing metal oxynitride thin film, and capacitor element
CN108246059A (zh) * 2018-03-23 2018-07-06 鼎格环境科技(苏州)有限公司 挥发性有机物耦合净化装置
FR3086282B1 (fr) * 2018-09-20 2020-09-25 Saint Gobain Ct Recherches Produit fondu polycristallin a base de brownmillerite
CN109293247B (zh) * 2018-10-25 2021-11-16 陕西科技大学 一种高电导玻璃粉及其制备方法,及基于其的钛酸钡基玻璃陶瓷及其制备方法
CN109320232B (zh) * 2018-11-08 2021-02-12 电子科技大学 一种微波介质用陶瓷材料及其制备方法
CN111348924A (zh) * 2018-12-20 2020-06-30 攀枝花学院 抗钛熔体的耐火耐蚀材料及其制备方法和应用
CN111747739A (zh) * 2019-03-28 2020-10-09 中国科学院上海硅酸盐研究所 一种反铁电陶瓷材料及其制备方法
CN110092654A (zh) * 2019-05-28 2019-08-06 河南大学 基于压电材料的互连三维多孔压电骨架、制备方法及其应用
CN110449146A (zh) * 2019-05-31 2019-11-15 兰州大学 一种全光谱吸收钙钛矿型光催化材料及制备方法
CN110642617B (zh) * 2019-10-31 2022-01-28 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN110981467B (zh) * 2019-12-09 2020-12-29 华中科技大学 一种无铅热释电复合陶瓷材料及其制备方法
CN111359617B (zh) * 2020-04-14 2023-04-07 北京石油化工学院 一种可再生催化剂以及制备方法、应用
CN111646795B (zh) * 2020-06-10 2022-06-07 国家能源大规模物理储能技术(毕节)研发中心 一种高居里点压电材料及其制备方法
CN113929165B (zh) * 2020-07-14 2023-04-18 中国科学院大连化学物理研究所 一种锆酸锶基化合物及其制备方法和应用
CN112090421A (zh) * 2020-09-01 2020-12-18 山西晋环科源环境资源科技有限公司 一种钙钛矿型锆酸钙复合材料的制备方法及应用
CN112159224A (zh) * 2020-09-30 2021-01-01 泗阳群鑫电子有限公司 一种高介电陶瓷电容器介质材料及其制备工艺
CN112341160B (zh) * 2020-11-06 2022-08-30 南京工业大学 一种宽频高q低温度系数钡镁钙铌钽系复合陶瓷及其制备方法
US11791098B2 (en) * 2020-12-16 2023-10-17 Samsung Electro-Mechanics Co., Ltd. Dielectric and multilayer capacitor including the same
CN112844403B (zh) * 2021-01-22 2022-07-19 成都理工大学 一种乙酸自热重整制氢的钇锰镍类钙钛矿结构催化剂
CN113087015B (zh) * 2021-03-23 2022-06-10 常州大学 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法
CN113800908A (zh) * 2021-08-26 2021-12-17 桂林理工大学 中介电常数双钙钛矿微波介质陶瓷材料及其制备方法
CN113652232B (zh) * 2021-09-22 2023-01-31 烟台希尔德材料科技有限公司 一种高折射率微晶修饰的荧光体化合物及其制备方法和组合物
JP2023051595A (ja) * 2021-09-30 2023-04-11 トヨタ自動車株式会社 水分解光触媒に用いられる半導体粒子とそれを用いた光触媒並びにそれらの合成方法
CN114505068A (zh) * 2022-03-03 2022-05-17 中山大学 一种压电催化剂及其制备方法与应用
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用
CN114538923A (zh) * 2022-03-31 2022-05-27 无锡宜雅科技合伙企业(有限合伙) 一种齿科用可切削的氧化锆瓷块及其制备方法
CN115739115A (zh) * 2022-11-25 2023-03-07 南京航空航天大学 一种b位双离子掺杂钛酸锶纳米复合光催化材料及其制备方法
CN115849903B (zh) * 2022-12-21 2023-08-22 惠州市鑫永诚光电科技有限公司 复合热释电陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116146A (zh) * 1995-05-26 1996-02-07 北京化工大学 超微颗粒的制备方法
CN1433967A (zh) * 2002-01-21 2003-08-06 北京化工大学 制备钛酸钡粉体的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131345A (ja) * 1984-07-25 1986-02-13 堺化学工業株式会社 組成物の製造方法
CN1109651C (zh) * 2000-11-14 2003-05-28 北京化工大学 碳化反应制备二氧化硅粉体的方法
CN1164489C (zh) * 2002-07-31 2004-09-01 满金声 二步法碳酸化反应制备纳米二氧化硅工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116146A (zh) * 1995-05-26 1996-02-07 北京化工大学 超微颗粒的制备方法
CN1433967A (zh) * 2002-01-21 2003-08-06 北京化工大学 制备钛酸钡粉体的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN JIANFENG ET AL: "SYNTHESIS OF NANOMATERIALS BY HIGH GRAVITY PRECIPITATION METHOD AND APPLICATION", MODERN CHEMICAL INDUSTRY, vol. 21, no. 9, 2001, pages 9 - 12, XP008087717 *
CHEN ZHIGANG ET AL: "PREPARATION TECHNOLOGY OF BATI03 ELECTRONIC CERAMMIC NANOPOWDERS", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 21, no. 1, 2002, pages 34 - 36, XP008087715 *
LIU FANG-TAO ET AL: "PREPARATION OF NANOSIZED BATI03 POWERS BY HIGH GRAVITY REACTIVE PRECIPTATION(HGRP)", J. OF BUCT, vol. 30, no. 1, 2003, pages 5 - 8, 12, XP009089203 *
See also references of EP1598326A4 *
WANG YUHONG ET AL: "HIGH GRAVITY TECHNOLOGY AND ITS APPLICATION", METAL MINE, vol. 4, 1999, pages 25 - 29, XP008087744 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188557A (zh) * 2017-06-01 2017-09-22 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN109111224A (zh) * 2017-06-23 2019-01-01 天津大学 一种高温度稳定性锂镍钛系微波介质陶瓷及其制备方法和应用
CN111359622A (zh) * 2020-04-13 2020-07-03 南京中微纳米功能材料研究院有限公司 一种双钙钛矿催化剂及其制备方法与用法
CN111359622B (zh) * 2020-04-13 2022-12-02 南京中微纳米功能材料研究院有限公司 一种双钙钛矿催化剂及其制备方法与用法
CN113952917A (zh) * 2021-10-18 2022-01-21 济源市鲁泰纳米材料有限公司 一种超重力反应器及其制备的活性纳米氧化锌的制备方法

Also Published As

Publication number Publication date
EP1598326A1 (en) 2005-11-23
CN100335415C (zh) 2007-09-05
JP2006519152A (ja) 2006-08-24
US20060045840A1 (en) 2006-03-02
CN1524792A (zh) 2004-09-01
EP1598326A4 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
WO2004076379A1 (fr) Procede de preparation de poudres d'un compose de type perovskite
EP0641740B1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
US20050186133A1 (en) Process for preparing a strontium titanate powder
JP2635048B2 (ja) ペロブスカイトベース生成物の製法
JPH0459261B2 (zh)
US7001585B2 (en) Method of making barium titanate
EP1860069B1 (en) Method for producing composition
Yoshikawa et al. Chemical Preparation of Lead‐Containing Niobate Powders
US20050019248A1 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
JP4657621B2 (ja) ペロブスカイト型チタン含有複合酸化物粒子、その製造方法及び用途
JPH0648734A (ja) 結晶性チタン酸系ペロブスカイト化合物微粒子の製造方法
JP3772354B2 (ja) セラミック粉体の製造方法
CN101863456A (zh) 制备复合金属氧化物的方法
JPS623004A (ja) 湿式法による易焼結性ペロブスカイト原料粉末の製造方法
JPH0367964B2 (zh)
JP4643443B2 (ja) チタン酸バリウム粉末の製造方法
JPH07277710A (ja) ペロブスカイト型複合酸化物粉末の製造方法
KR100395218B1 (ko) BaTiO3계 분말 제조 방법
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH0688788B2 (ja) 低温焼結性pzt系圧電セラミツクス粉末の製造方法
JPH0159205B2 (zh)
RU2273603C1 (ru) Способ получения порошков титаната или цирконата двухвалентного металла и твердого раствора на их основе
CN118164751A (zh) 一种钛酸钡钙粉体、其制备方法及应用
JPH01122907A (ja) ペロブスカイト酸化物紛末の製造方法
JPH0524861B2 (zh)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004715233

Country of ref document: EP

Ref document number: 11214145

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006501453

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004715233

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11214145

Country of ref document: US