CN111348924A - 抗钛熔体的耐火耐蚀材料及其制备方法和应用 - Google Patents

抗钛熔体的耐火耐蚀材料及其制备方法和应用 Download PDF

Info

Publication number
CN111348924A
CN111348924A CN201811562923.0A CN201811562923A CN111348924A CN 111348924 A CN111348924 A CN 111348924A CN 201811562923 A CN201811562923 A CN 201811562923A CN 111348924 A CN111348924 A CN 111348924A
Authority
CN
China
Prior art keywords
refractory
corrosion
resistant material
combustion
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811562923.0A
Other languages
English (en)
Inventor
邓刚
庞立娟
李会容
张雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panzhihua University
Original Assignee
Panzhihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panzhihua University filed Critical Panzhihua University
Priority to CN201811562923.0A priority Critical patent/CN111348924A/zh
Publication of CN111348924A publication Critical patent/CN111348924A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种抗钛熔体的耐火耐蚀材料及其制备方法和应用。属于耐火材料技术领域。抗钛熔体的耐火耐蚀材料的制备方法,包括以下步骤:(1)按化学式Sr4Zr3‑x‑yYxHfyO10的化学计量比称取Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4溶于水中,再加入络合燃烧剂和助燃剂反应,待络合反应完成后,加入低沸点醇类溶剂与水共沸,直至得到粘稠状的溶胶;(2)对溶胶加热直至达到燃点,使溶胶发生燃烧反应,待完全燃烧后得到粉末;(3)将上述粉末在600~800℃预煅烧2~4h,然后在1600~1700℃煅烧0.5~1.5h,即得耐火耐蚀材料;其中,0≤x≤0.5,0≤y≤2。本发明方法制备的耐火耐蚀材料主要用于制备高温合金熔炼坩埚材料或者防护材料,可降低Sr4Zr3O10型坩埚的烧结温度,降低生产成本。

Description

抗钛熔体的耐火耐蚀材料及其制备方法和应用
技术领域
本发明属于耐火材料技术领域,具体涉及一种抗钛熔体的耐火耐蚀材料及其制备方法和应用。
背景技术
钛及钛合金具有比强度高、密度小、耐腐蚀等一系列优良特性,广泛应用于现代工业中,例如生物科学、医学工程、航空航天工业、能源、海洋、军事工业等领域。
目前,钛及钛合金的主流熔炼方式是自秏电极电弧炉和电子束熔炼两种。自秏电极电弧炉熔炼钛合金时,存在宏观偏析和微观偏析缺陷,需要多次熔炼才能达到要求,耗时耗电且需制作电极等设备和工序;电子束熔炼过程中,熔池温度高,过热度大,金属处于液态的时间长,因此铸锭在凝固时,柱状晶发展,这就给开坯带来不利的影响,另外,电子束熔铸锭还易产生一些表面冶金缺陷,如表面横向裂纹、冷隔、表面不光滑等。并且,由于钛的熔点和化学性质非常活泼,熔炼时,液态钛几乎能与所有坩埚用的耐火材料如氧化锆、氧化镁、氧化硅和氧化铝均发生反应,因此,导致其熔炼不能采取常规的耐火材料制造的坩埚进行熔炼。
发明内容
为了解决现有技术的问题,本发明提供了一种抗钛熔体的耐火耐蚀材料的制备方法,包括以下步骤:
(1)按化学式Sr4Zr3-x-yYxHfyO10的化学计量比称取Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4溶于水中,加入络合燃烧剂和助燃剂反应,待络合反应完成后,加入低沸点醇类溶剂与水共沸,直至得到粘稠状的溶胶;
(2)对溶胶加热直至达到燃点,使溶胶发生燃烧反应,待完全燃烧后得到粉末;
(3)将上述粉末在600~800℃预煅烧2~4h,然后在1600~1700℃煅烧0.5~1.5h,即得耐火耐蚀材料;
其中,0≤x≤0.5,0≤y≤2。
进一步地,步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4的总摩尔量与络合燃烧剂的摩尔比为1:2~3。
进一步地,步骤(1)中,所述络合燃烧剂选自甘氨酸、柠檬酸、尿素或硬脂酸。
进一步地,步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O、Hf(NO3)4和络合燃烧剂的总摩尔量与助燃剂的摩尔比为1:0.004~0.01。
进一步地,步骤(1)中,所述助燃剂为硝酸铵或氯化铵。
进一步地,步骤(1)中,所述低沸点醇类溶剂选自乙二醇、甲醇、乙醇或异丙醇中的一种或多种。
进一步地,步骤(1)中,所述络合反应的温度为60~100℃。
进一步地,步骤(2)中,所述络合燃烧剂与低沸点醇类溶剂的摩尔比为1:0.04~1。
本发明还提供了上述的抗钛熔体的耐火耐蚀材料的制备方法制备得到的耐火耐蚀材料。
本发明还提供了上述的耐火耐蚀材料在制备坩埚中的应用。
本发明的有益效果是:
本发明方法制备的耐火耐蚀材料的相成分单一,粒径小(5~10nm),熔点在2674℃以上,可用于制备高温合金熔炼坩埚材料或防护材料,尤其适用于制备钛合金熔炼坩埚材料;并且本发明材料可以降低钛合金坩埚或者其它高温合金防护材料的烧结温度,从而降低坩埚材料或高温防护材料的制备成本。
本发明耐火耐蚀材料的制备方法简便,易于控制,适用于工业大规模生产。
附图说明
图1为实施例1制备的Sr4Zr3O10耐火耐蚀材料的XRD分析图谱。
图2为实施例2制备的含钇的Sr4Zr3O10耐火耐蚀材料的XRD分析图谱。
图3为实施例3制备的Sr4Zr2HfO10耐火耐蚀材料的XRD分析图谱。
具体实施方式
一种抗钛熔体的耐火耐蚀材料的制备方法,包括以下步骤:
(1)按化学式Sr4Zr3-x-yYxHfyO10的化学计量比称取Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4溶于水中,加入络合燃烧剂和助燃剂反应,待络合反应完成后,加入低沸点醇类溶剂与水共沸,直至得到粘稠状的溶胶;
(2)对溶胶加热直至达到燃点,使溶胶发生燃烧反应,待完全燃烧后得到粉末;
(3)将上述粉末在600~800℃预煅烧2~4h,然后在1600~1700℃煅烧0.5~1.5h,即得耐火耐蚀材料;
其中,0≤x≤0.5,0≤y≤2。
在Sr4Zr3O10的基础上添加Y有利于稳定耐火耐蚀材料的结构,添加Hf有利于提高耐火耐蚀材料的熔点和耐热温度。
进一步地,步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4的总摩尔量与络合燃烧剂的摩尔比为1:2~3。
进一步地,步骤(1)中,所述络合燃烧剂选自甘氨酸、柠檬酸、尿素或硬脂酸。
进一步地,步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O、Hf(NO3)4和络合燃烧剂的总摩尔量与助燃剂的摩尔比为1:0.004~0.01。
进一步地,步骤(1)中,所述助燃剂是指在燃烧反应时能够释放气体的物质,优选为硝酸铵或氯化铵。
进一步地,步骤(1)中,所述低沸点醇类溶剂选自乙二醇、甲醇、乙醇或异丙醇中的一种或多种。
进一步地,步骤(1)中,所述络合反应的温度为60~100℃。
进一步地,步骤(2)中,所述络合燃烧剂与低沸点醇类溶剂的摩尔比为1:0.04~1。
采用上述方法制备的耐火耐蚀材料相成分单一,粒径小(5~10nm),表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面附近的原子扩散、界面中的空洞收缩及空位团的湮没。因此,在较低温度下烧结就能达到致密化目的,即本发明的耐火耐蚀材料在较低的烧结温度下就可以制备得到坩埚材料,降低了坩埚材料的制备成本。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
取0.4mol的Sr(NO3)2和0.3molZr(NO3)4·5H2O溶入10ml去离子水中,再取2.1mol的甘氨酸和1g的NH4NO3加入去离子水中,在80℃恒温水浴中搅拌1h,加入5ml乙二醇与水共沸除去水分,直到形成粘稠的溶胶。将溶胶置于电炉上继续加热直至达到燃点,使溶胶发生燃烧反应,待燃烧完全后得到疏松的粉末。将得到的粉末在600-800℃预煅烧2-4h,然后在1600-1700℃煅烧1h,获得所需Sr4Zr3O10粉末,粒径为5~10nm,熔点为2674℃,耐热温度为1800℃。XRD分析图谱见图1,从图1可以看出Sr4Zr3O10耐火耐蚀材料是单一的Sr4Zr3O10相。
实施例2
取0.4mol的Sr(NO3)2和0.28mol Zr(NO3)4·5H2O和0.02molY(NO3)3·6H2O溶入10ml去离子水中,再取1.4mol的柠檬酸和1g的NH4NO3加入去离子水中,在80℃恒温水浴中搅拌1h,加入5ml乙二醇与水共沸除去水分,直到形成粘稠的溶胶。将溶胶置于电炉上继续加热直至达到燃点,使溶胶发生燃烧反应,待燃烧完全后得到疏松的粉末。将得到的粉末在600-800℃预煅烧2-4h,然后在1600-1700℃煅烧1h,获得所需含钇的Sr4Zr3O10粉末,粒径为5~10nm,XRD分析图谱见图2,从图2可以看出含钇的Sr4Zr3O10耐火耐蚀材料依然是单一相。
实施例3
取0.4mol的Sr(NO3)2和0.2mol Zr(NO3)4·5H2O和0.1mol Hf(NO3)4溶入10ml去离子水中,再取1.4mol的柠檬酸和1g的NH4NO3加入去离子水中,在80℃恒温水浴中搅拌1h,加入5ml乙二醇与水共沸除去水分,直到形成粘稠的溶胶。将溶胶置于电炉上继续加热直至达到燃点,使溶胶发生燃烧反应,待燃烧完全后得到疏松的粉末。将得到的粉末在600-800℃预煅烧2-4h,然后在1600-1700℃煅烧1h,获得所需的Sr4Zr2HfO10粉末,粒径为5~10nm,XRD分析图谱见图3,从图3可以看出,随着Hf的加入,XRD衍射谱向左偏移,但整个材料依然是单一相。
实施例4
取实施例1中制备得到的Sr4Zr3O10粉末,掺入2%质量分数的助熔剂纳米TiO2(粒径5-10nm),球磨均匀,120℃下干燥后将装入模具中,采用冷等静压并保压2-3min取出,得到坩埚胚体,在600℃预烧1-2小时,然后在1550-1650℃烧结2-3h,即得Sr4Zr3O10型耐火耐蚀坩埚。
实施例5
取实施例2中制备得到的含钇的Sr4Zr3O10粉末,掺入2%质量分数的助熔剂纳米TiO2(粒径5-10nm),球磨均匀,120℃下干燥后将装入模具中,采用冷等静压并保压2-3min取出,得到坩埚胚体,在600℃预烧1-2小时,然后在1550-1650℃烧结2-3h,即得Sr4Zr3O10型耐火耐蚀坩埚。
实施例6
取实施例3制备得到的Sr4Zr2HfO10粉末,掺入2%质量分数的助熔剂纳米TiO2(粒径5-10nm),球磨均匀,120℃下干燥后将装入模具中,采用冷等静压并保压2-3min取出,得到坩埚胚体,在600℃预烧1-2小时,然后在1550-1650℃烧结2-3h,即得Sr4Zr3O10型耐火耐蚀坩埚。
对比例1
取市售Sr4Zr3O10粉末(5-10mm),掺入2%质量分数的助熔剂纳米TiO2(粒径5-10nm),球磨均匀,120℃下干燥后将装入模具中,采用冷等静压并保压2-3min取出,得到坩埚胚体,在600℃预烧1-2小时,然后在1750℃烧结4h,即得Sr4Zr3O10型耐火耐蚀坩埚。

Claims (10)

1.抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:包括以下步骤:
(1)按化学式Sr4Zr3-x-yYxHfyO10的化学计量比称取Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4溶于水中,加入络合燃烧剂和助燃剂反应,待络合反应完成后,加入低沸点醇类溶剂与水共沸,直至得到粘稠状的溶胶;
(2)对溶胶加热直至达到燃点,使溶胶发生燃烧反应,待反应完全后得到粉末;
(3)将上述粉末在600~800℃预煅烧2~4h,然后在1600~1700℃煅烧0.5~1.5h,即得耐火耐蚀材料;
其中,0≤x≤0.5,0≤y≤2。
2.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O和Hf(NO3)4的总摩尔量与络合燃烧剂的摩尔比为1:2~3。
3.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,所述络合燃烧剂选自甘氨酸、柠檬酸、尿素或硬脂酸。
4.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,Sr(NO3)2、Zr(NO3)4·5H2O、Y(NO3)3·6H2O、Hf(NO3)4和络合燃烧剂的总摩尔量与助燃剂的摩尔比为1:0.004~0.01。
5.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,所述助燃剂为硝酸铵或氯化铵。
6.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:所述低沸点醇类溶剂选自乙二醇、甲醇、乙醇或异丙醇中的一种或多种。
7.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,所述络合反应的温度为60~100℃。
8.根据权利要求1所述的抗钛熔体的耐火耐蚀材料的制备方法,其特征在于:步骤(1)中,所述络合燃烧剂与低沸点醇类溶剂的摩尔比为1:0.04~1。
9.权利要求1~7任一项所述的抗钛熔体的耐火耐蚀材料的制备方法制备得到的耐火耐蚀材料。
10.权利要求9所述的耐火耐蚀材料在制备坩埚中的应用。
CN201811562923.0A 2018-12-20 2018-12-20 抗钛熔体的耐火耐蚀材料及其制备方法和应用 Pending CN111348924A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811562923.0A CN111348924A (zh) 2018-12-20 2018-12-20 抗钛熔体的耐火耐蚀材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811562923.0A CN111348924A (zh) 2018-12-20 2018-12-20 抗钛熔体的耐火耐蚀材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111348924A true CN111348924A (zh) 2020-06-30

Family

ID=71193732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811562923.0A Pending CN111348924A (zh) 2018-12-20 2018-12-20 抗钛熔体的耐火耐蚀材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111348924A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330697A (en) * 1963-08-26 1967-07-11 Sprague Electric Co Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor
US5091348A (en) * 1988-04-22 1992-02-25 Alcan International Limited Sol-gel method of making ceramics
CN1101634A (zh) * 1993-09-03 1995-04-19 全国际公司 钙钛矿化合物晶状陶瓷粉的合成方法
CN1524792A (zh) * 2003-02-28 2004-09-01 新加坡纳米材料科技有限公司 一种制备各种晶态钙钛矿类化合物粉体的方法
CN101454477A (zh) * 2006-05-30 2009-06-10 西门子公司 钨青铜结构材料的应用以及具有热障涂层的涡轮部件
CN101948308A (zh) * 2010-09-27 2011-01-19 内蒙古工业大学 一种陶瓷高温隔热材料
CN102898147A (zh) * 2012-11-05 2013-01-30 西华师范大学 一种制备钛酸盐压电陶瓷粉体的环境协调型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330697A (en) * 1963-08-26 1967-07-11 Sprague Electric Co Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor
US5091348A (en) * 1988-04-22 1992-02-25 Alcan International Limited Sol-gel method of making ceramics
CN1101634A (zh) * 1993-09-03 1995-04-19 全国际公司 钙钛矿化合物晶状陶瓷粉的合成方法
CN1524792A (zh) * 2003-02-28 2004-09-01 新加坡纳米材料科技有限公司 一种制备各种晶态钙钛矿类化合物粉体的方法
CN101454477A (zh) * 2006-05-30 2009-06-10 西门子公司 钨青铜结构材料的应用以及具有热障涂层的涡轮部件
CN101948308A (zh) * 2010-09-27 2011-01-19 内蒙古工业大学 一种陶瓷高温隔热材料
CN102898147A (zh) * 2012-11-05 2013-01-30 西华师范大学 一种制备钛酸盐压电陶瓷粉体的环境协调型方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FINN WILLY POULSEN ET AL.: "Phase relations and conductivity of Sr- and La-zirconates", 《SOLID STATE LONICS》 *
RAJESH V. SHENDE ET AL.: "Strontium Zirconate and Strontium Titanate Ceramics for High-Voltage Applications: Synthesis, Processing, and Dielectric Properties", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
周张健: "《无机非金属材料工艺学》", 31 January 2010, 中国轻工业出版社 *

Similar Documents

Publication Publication Date Title
Dong et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys
Streit et al. Zirconium nitride as inert matrix for fast systems
Nafsin et al. Direct measurements of quasi-zero grain boundary energies in ceramics
CN112875704B (zh) 一种难熔金属碳化物固溶体粉末的低温制备方法
Zhao et al. Investigation of the properties and leaching characteristics of ceramic cores fabricated using BaZrO3 as the raw material
JPH05200529A (ja) アルミニウム化チタンの方向性凝固鋳造法
Lan et al. Phase and microstructural evolution of BaZrO3‐CaZrO3 refractory and its interaction with titanium alloy melt
Zhang et al. Effects of various rare earth oxides on morphology and size of oxide dispersion strengthening (ODS)-W and ODS-Mo alloy powders
Liu et al. Fabrication of SmCo5 alloy via cobalt-induced calciothermic reduction and magnetic properties of its ribbon
CN114045446A (zh) 一种具有纳米尺度热塑性成形能力的Zr基非晶合金及其制备方法和应用
Wang et al. Anti-corrosion AlN ceramic crucible with excellent thermal shock resistance for induction melting of TiAl alloy
Wang et al. Microstructure and mechanical property improvement of laser additive manufacturing Ti–6Al–4V via the niobium addition
CN111348924A (zh) 抗钛熔体的耐火耐蚀材料及其制备方法和应用
CN115627407B (zh) 一种zta陶瓷增强铁基复合材料的制备方法
CN104788106B (zh) 真空感应熔炼高温合金用坩埚的制造方法
CN111112641A (zh) 纳米钼铼合金粉末的制备方法
CN115772034A (zh) 一种高熵碳化物陶瓷先驱体、高熵碳化物陶瓷及制备方法
CN102234746A (zh) 一种锌基大块非晶合金及其制备方法
CN113897528A (zh) 一种均匀分散的Fe-Ni/Al2O3磁性复合材料的制备方法
CN108504969B (zh) 一种耐腐蚀锆基非晶合金及其制备方法
Sun et al. Interfacial reaction mechanism between Y-containing DD5 alloy and Al2O3 ceramic during directional solidification process
Zhang et al. Facile preparation of ZrO2 whiskers by LiF-KCl molten salts synthesis
CN113307639B (zh) 锶锆氧化物复相耐火材料及其制备方法
RU2760814C1 (ru) Керамический огнеупорный материал, тигель и способ изготовления тигля
KR20110040104A (ko) 티타늄 합금 주조용 알파케이스 계면반응 제어 주형 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200630

RJ01 Rejection of invention patent application after publication