CN113087015B - 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法 - Google Patents

一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法 Download PDF

Info

Publication number
CN113087015B
CN113087015B CN202110310425.2A CN202110310425A CN113087015B CN 113087015 B CN113087015 B CN 113087015B CN 202110310425 A CN202110310425 A CN 202110310425A CN 113087015 B CN113087015 B CN 113087015B
Authority
CN
China
Prior art keywords
nano
core
bcth
ceramics
xnd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110310425.2A
Other languages
English (en)
Other versions
CN113087015A (zh
Inventor
方必军
何希悦
吴盾
陆小龙
丁建宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202110310425.2A priority Critical patent/CN113087015B/zh
Publication of CN113087015A publication Critical patent/CN113087015A/zh
Application granted granted Critical
Publication of CN113087015B publication Critical patent/CN113087015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/006Compounds containing, besides hafnium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

本发明属于多功能材料领域,特别涉及一种异相析出法制备的核‑壳纳米颗粒及制备纳米陶瓷的方法。其技术要点如下,包括如下操作步骤:化学式为[(BaCa)1‑xNdx](TiHf)O3(BCTH‑xNd),其中,Ba/Ca=0.8~0.9/0.2~0.1,Ti/Hf=0.85~0.95/0.15~0.05,x=0.001~0.05。本发明以水热法制备的高活性纳米粉体为前驱体,可以省略固相法制备陶瓷的煅烧过程,能够实现低温烧结制备纳米陶瓷,开发新型多功能陶瓷、挖掘新的物理性能,具有产业价值。

Description

一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的 方法
技术领域
本发明属于多功能材料领域,特别涉及一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法。
背景技术
随着电子元器件集成化、小型化和智能化的发展,多功能材料和器件引起了世界范围广泛的研究兴趣。以Pb(Zr1-xTix)O3(PZT)为代表的钙钛矿结构压电陶瓷,通过稀土掺杂、产生施主或受主点电荷缺陷,为压电、荧光、储能多功能材料的开发提供了丰富的可能性。然而,PZT压电陶瓷其主要成分PbO在生产、废弃过程中对人类健康产生损害、并带来全球性污染问题,因此,迫切需要开发能够替代PZT的高性能无铅压电材料。
钛酸钡(BaTiO3)是最早发现的压电陶瓷,其压电性能不高(d33≈190pC/N),烧结温度偏高,很难替代PZT获得广泛应用。2009年以来,BT基高性能无铅压电陶瓷的研究出现重大突破:通过特殊的组成和结构设计,在三相临界点附近的三方-四方准同型相界组成中发现了巨大的压电性能,2012年,Zhou等开发出新的Ba(Ti0.8Hf0.2)O3-x(Ba0.7Ca0.3)TiO3(BCTH)体系,室温d33达到550pC/N。BCTH的铁电剩余极化能够有效提高稀土离子的光致发光性能,是良好的稀土离子发光基质。
目前,BCTH陶瓷多是通过固相法制备,其煅烧温度高达~1300℃、烧结温度高达~1450℃,使得陶瓷制备成本较高、难以重复批量地制备。
有鉴于上述现有技术中存在的缺陷,本发明人基于从事此类材料多年丰富经验及专业知识,配合理论分析,加以研究创新,开发一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法,以水热法制备的高活性纳米粉体为前驱体,可以省略固相法制备陶瓷的煅烧过程,能够实现低温烧结制备纳米陶瓷,开发新型多功能陶瓷、挖掘新的物理性能。
发明内容
本发明的目的是提供一种异相析出法制备的核-壳纳米颗粒,以水热法制备的高活性纳米粉体为前驱体,可以省略固相法制备陶瓷的煅烧过程,能够实现低温烧结制备纳米陶瓷,开发新型多功能陶瓷、挖掘新的物理性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
本发明提供的一种异相析出法制备的核-壳纳米颗粒,化学式为[(BaCa)1-xNdx](TiHf)O3(BCTH-xNd),其中Ba/Ca=0.8~0.9/0.2~0.1,Ti/Hf=0.85~0.95/0.15~0.05,x=0.001~0.05。本发明中,在异价掺杂的钙钛矿结构中,引入了钕元素。而稀土元素丰富的4f和5d电子态,为铁电、荧光耦合提供了可能性,稀土元素掺杂是一种获得高性能多功能压电材料的有效方法。其中稀土元素钕Nd具有丰富的能级结构、激发态能级寿命长,同时,Nd3+能够提供介稳态能级、其4f能级在多种激发下能够实现粒子数反转产生激光,能够诱导增强的荧光并在压电陶瓷中产生多功能性能。
进一步的,异相析出法制备核-壳纳米颗粒的方法是:通过水热法制备钙钛矿结构[(BaCa)1-xNdx](TiHf)O3(BCTH-xNd)纳米粉体,利用异价掺杂产生的点电荷缺陷结合电场诱导异相析出制备BCTH-xNd核-壳纳米颗粒。水热法反应温度低,容易制备高纯度、形貌可控的纳米粉体;同时,水热合成能够进行原子量级的掺杂、多组分能够实现原子量级的均匀混合,反应条件易于调节。在本发明中,采用水热合成的方式获得异价掺杂,从而获得点电荷缺陷,再通过交流电场的诱导,使分子结构重新排布,形成一种类“自组装”的方式,获得核-壳结构的纳米颗粒。本发明采用的这种方法,不但简化了水热法反应的工艺,更简化了核-壳结构纳米颗粒的制备工艺,得到了一种同时具有特殊磁性、荧光性和电学性能的钙钛矿结构纳米颗粒。
进一步的,具体步骤为:
S1、按照化学计量比称量BaCl2H2O、CaCl2、TiCl4、HfO2、Nd2O3
S2、将步骤S1中称量好的原料放入水热釜中添加去离子水混合均匀,加入NaOH形成过饱和溶液,水热反应制备钙钛矿结构BCTH-xNd纳米粉体;
S3、利用异价掺杂产生的点电荷缺陷结合电场诱导异相析出制备BCTH-xNd核-壳纳米颗粒。
进一步的,水热反应的温度是160~200℃,反应时间为16~32h。
进一步的,水热反应中,去离子水的填充率小于75%。
进一步的,电场诱导中的电场为交流电场,频率为50Hz,电压为700V。本发明通过异价掺杂形成的点电荷缺陷结合交流电场的诱导,开发了一种新的合成纳米核-壳颗粒的方法,该方法操作简单,条件温和,且适合工业化生产,能够获得性能更加稳定的纳米核-壳颗粒。
进一步的,NaOH溶液的浓度为14~18M。
本发明的第二个目的是,提供一种异相析出法制备的核-壳纳米颗粒制备纳米陶瓷的方法,无需煅烧过程,仅仅在1280℃及以下烧结即可制备纳米陶瓷。
本发明上述技术目的是由以下技术方案实现的:
本发明提供的一种异相析出法制备的核-壳纳米颗粒制备纳米陶瓷的方法,以BCTH-xNd核-壳纳米颗粒为前驱体,低温烧结制备BCTH-xNd纳米陶瓷。
作为上述技术方案的优选,烧结温度为1200~1280℃,保温时间2~24h。现有技术中,BCTH基陶瓷的烧结温度高达1450℃及以上(晶粒尺寸达数十微米),而本发明提供的纳米颗粒粉体,能够在1280℃以下低温烧结制备致密的纳米陶瓷。
综上所述,本发明具有以下有益效果:
(1)本发明提供的纳米核-壳颗粒,具有钙钛矿结构,并兼具特殊磁性、荧光性以及优异的电学性能;
(2)本发明提供的纳米核-壳颗粒的制备方法,通过水热反应实现了异价掺杂,形成了点电荷缺陷,并利用点电荷缺陷结合交流电场的诱导,形成类似于“自组装”机制,自行组装为核-壳结构,且其壳层和核层的化学组成相同,该制备方法简单,操作步骤少,条件温和,且重复性好;
(3)本发明提供的纳米核-壳陶瓷的制备方法,可省略煅烧步骤,且低温烧结即可制备致密的纳米陶瓷,简化制备步骤,节约能源,具有产业价值,同时,降低烧结温度,能够避免Ba或Ca元素在高温下的少量逸出,提高纳米陶瓷的电学性能。
附图说明
图1、BCTH-Nd核-壳纳米粉体XRD图;
图2、BCTH-Nd核-壳纳米颗粒TEM照片及其放大的TEM照片;
图3、BCTH-Nd核-壳纳米颗粒的磁化曲线;
图4、BCTH-Nd纳米陶瓷XRD;
图5、BCTH-Nd纳米陶瓷SEM照片(1240℃烧结2h);
图6、BCTH-Nd纳米陶瓷的介电温谱(1240℃烧结2h);
图7、BCTH-Nd核-壳纳米颗粒发射光谱(表1中实施例5)。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,对依据本发明提出的一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法,其具体实施方式、特征及其功效,详细说明如后。
本实施例采用的所有原材料均为市售材料。
实施例1
一种异相析出法制备的核-壳纳米颗粒,化学式为[(BaCa)1-xNdx](TiHf)O3(BCTH-xNd),其中Ba/Ca=0.8-0.9/0.2-0.1,Ti/Hf=0.85-0.95/0.15-0.05,x=0.001-0.05。
其制备方法如下:
S1、按照化学计量比称量BaCl2H2O、CaCl2、TiCl4、HfO2、Nd2O3
S2、将步骤S1中称量好的原料放入水热釜中添加去离子水混合均匀,加入NaOH形成过饱和溶液,水热反应制备钙钛矿结构BCTH-xNd纳米粉体,水热反应的温度是160℃,填充率小于75%,反应时间为16h,其中NaOH的浓度为14M;
S3、利用异价掺杂产生的点电荷缺陷结合电场诱导异相析出制备BCTH-xNd核-壳纳米颗粒,电场为交流电场,频率为50Hz,电压为700V。
一种异相析出法制备的核-壳纳米颗粒制备纳米陶瓷的方法具体为:以BCTH-xNd核-壳纳米颗粒为前驱体,低温烧结制备BCTH-xNd纳米陶瓷,烧结温度为1200~1280℃,保温时间2~24h。
实施例2~9
实施例2~9的实验方法和材料均与实施例1相同,其实验条件见下表:
表1实施例1~9的实验条件
Figure BDA0002989366900000061
对比例1
按照化学式Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)称量计量比的NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/40,摩尔比)、钛酸正丁酯、TiO2(钛酸正丁酯/TiO2=1/40,摩尔比,取决于Yb含量)、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,目标产物BNT-Er/Yb的质量为2g。加入十六烷基三甲基溴化铵2.5mg,加入NaOH使其形成16M过饱和溶液,先在120℃水热反应0.5h,随后升温至240℃水热反应8h。
将上述混合液调节NaOH浓度为6M,加入司本-80 60mg、EDTA 100mg,在160℃水热反应24h,得到纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb。
性能测试:
图1是实施例1、实施例5、实施例9水热法制备的BCTH-Nd核-壳纳米粉体XRD图,呈现较纯的钙钛矿结构。
图2是实施例7水热法制备的BCTH-Nd核-壳纳米颗粒TEM照片及其放大的TEM照片,可以清晰地看出核-壳纳米结构,壳层厚5-7nm。
图3是实施例7水热法制备的BCTH-Nd核-壳纳米颗粒的磁化曲线,呈现明显的磁性。
图4是实施例7不同温度低温烧结制备的BCTH-Nd纳米陶瓷XRD图,呈现较纯的钙钛矿结构。
图5是实施例7中1240℃烧结2h制备的BCTH-Nd纳米陶瓷SEM照片,呈现典型的纳米晶粒结构,晶粒形貌较为均匀,具有较高的致密度。
图6是实施例7中1240℃烧结2h制备的BCTH-Nd陶瓷的介电温谱,与固相法高温烧结的陶瓷相比,介电峰值明显减小、居里温度明显向低温移动、介电峰明显宽化与陶瓷晶粒尺寸纳米化密切相关,进一步佐证该陶瓷是纳米陶瓷。
图7是实施例7水热法制备的BCTH-Nd核-壳纳米颗粒的发射光谱,发射较强的靛蓝色荧光。
并对对比例1得到的材料采用SEM测试,经SEM测定,产物呈现纳米立方体结构,对比例1中虽然添加表面活性剂、并采用两步水热反应过程,仍然无法得到核-壳结构纳米颗粒。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例展示如上,但并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (3)

1.一种异相析出法制备的核-壳纳米颗粒,其特征在于,化学式为[(BaCa)1-xNdx](TiHf)O3(BCTH-xNd),其中Ba/Ca=0.8~0.9/0.2~0.1,Ti/Hf=0.85~0.95/0.15~0.05,x=0.001~0.05;异相析出法制备核-壳纳米颗粒的方法是:通过水热法制备钙钛矿结构[(BaCa)1- xNdx](TiHf)O3(BCTH-xNd)纳米粉体,利用异价掺杂产生的点电荷缺陷结合电场诱导异相析出制备BCTH-xNd核-壳纳米颗粒;具体步骤为:
S1、按照化学计量比称量BaCl2•2H2O、CaCl2、TiCl4、HfO2、Nd2O3
S2、将步骤S1中称量好的原料放入水热釜中添加去离子水混合均匀,加入NaOH形成过饱和溶液,水热反应制备钙钛矿结构BCTH-xNd纳米粉体;
S3、利用异价掺杂产生的点电荷缺陷结合电场诱导异相析出制备BCTH-xNd核-壳纳米颗粒;所述水热反应的温度是160~200℃,反应时间为16~32h;所述电场诱导中的电场为交流电场,频率为50Hz,电压为700V;所述NaOH溶液的浓度为14~18M。
2.根据权利要求1所述的一种异相析出法制备的核-壳纳米颗粒制备纳米陶瓷的方法,其特征在于,以所述BCTH-xNd核-壳纳米颗粒为前驱体,低温烧结制备BCTH-xNd纳米陶瓷。
3.根据权利要求2所述的一种异相析出法制备的核-壳纳米颗粒制备纳米陶瓷的方法,其特征在于,烧结温度为1200~1280℃,保温时间2~24h。
CN202110310425.2A 2021-03-23 2021-03-23 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法 Active CN113087015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110310425.2A CN113087015B (zh) 2021-03-23 2021-03-23 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110310425.2A CN113087015B (zh) 2021-03-23 2021-03-23 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法

Publications (2)

Publication Number Publication Date
CN113087015A CN113087015A (zh) 2021-07-09
CN113087015B true CN113087015B (zh) 2022-06-10

Family

ID=76669185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110310425.2A Active CN113087015B (zh) 2021-03-23 2021-03-23 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法

Country Status (1)

Country Link
CN (1) CN113087015B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270828B (it) * 1993-09-03 1997-05-13 Chon Int Co Ltd Processo per la sintesi di polveri ceramiche cristalline di composti di perovskite
TW476733B (en) * 1999-09-30 2002-02-21 Dong-Hau Kuo Barium titanate ceramics with extremely high dielectric constants
CN100335415C (zh) * 2003-02-28 2007-09-05 新加坡纳米材料科技有限公司 一种制备各种晶态钙钛矿类化合物粉体的方法
CN100371298C (zh) * 2004-06-17 2008-02-27 株式会社电装 晶粒取向陶瓷及其制造方法
KR100811454B1 (ko) * 2004-08-19 2008-03-10 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 및 적층 세라믹 커패시터
KR101922876B1 (ko) * 2016-11-09 2018-11-28 삼성전기 주식회사 유전체 조성물 및 이를 포함하는 적층 세라믹 커패시터

Also Published As

Publication number Publication date
CN113087015A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
Xu et al. Synthesis and piezoelectric and ferroelectric properties of (Na0. 5Bi0. 5) 1− xBaxTiO3 ceramics
Ge et al. Preparation and piezoelectricity of NaNbO3 high‐density ceramics by molten salt synthesis
Chao et al. Excellent energy storage performance in La and Ta co-doped AgNbO3 antiferroelectric ceramics
Gao et al. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method
Xie et al. Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics
Vuong et al. Fabrication of Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics using reactive templated grain growth method for improving their preferred degree of orientation, dielectric, and ferroelectric properties
WO2015136953A1 (ja) ペロブスカイト型金属酸窒化物の製造方法
Öztürk et al. The investigation of the photoluminescent and piezoelectric effect of Eu3+ doped Y2Ti2O7 and Sm2Ti2O7 host crystals
Supriya Research progress, doping strategies and dielectric-ferroelectric anomalies of rare earth-based Bi0. 5Na0. 5TiO3 perovskites
Yamatoh et al. Polymerizable complex synthesis of lead-free ferroelectric Na0. 5Bi0. 5TiO3 suppressing evaporation of sodium and bismuth
Ge et al. Facile synthesis and high d 33 of single-crystalline KNbO 3 nanocubes
Zhang et al. Large-scale colloidal synthesis of Co-doped Cu 2 SnSe 3 nanocrystals for thermoelectric applications
Hou et al. The fine-grained KNN–LN ceramics densified from nanoparticles obtained by an economical sol–gel route
CN113087015B (zh) 一种异相析出法制备的核-壳纳米颗粒及制备纳米陶瓷的方法
CN112374888A (zh) 一种通过水基包覆法提高铌酸钾钠基无铅陶瓷储能性质的方法
CN114804870B (zh) 一种无铅反铁电高储能密度陶瓷材料及其制备方法
Katsuyama et al. Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties
Ishii et al. Orientation control of (K, Na) NbO3 ceramics using NaNbO3 particles prepared by single-step molten salt synthesis
CN112979306B (zh) 一种制备铁电储能陶瓷的方法
Luo et al. Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0. 5Zn0. 5Fe2O4-BaTiO3 composite ceramics
Naushin et al. Modification in structural, morphological, magnetic and ferroelectric properties of calcium-doped bismuth ferrite nanoparticles
JP2011020902A (ja) チタン酸ストロンチウム焼結体及びその製造方法
Wang et al. Properties of spark plasma sintered pseudocubic BiFeO3–BaTiO3 ceramics
RU2681860C1 (ru) Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция
JP2010030855A (ja) 結晶配向性構造体およびその製造方法。

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant