CN110092654A - 基于压电材料的互连三维多孔压电骨架、制备方法及其应用 - Google Patents
基于压电材料的互连三维多孔压电骨架、制备方法及其应用 Download PDFInfo
- Publication number
- CN110092654A CN110092654A CN201910452125.0A CN201910452125A CN110092654A CN 110092654 A CN110092654 A CN 110092654A CN 201910452125 A CN201910452125 A CN 201910452125A CN 110092654 A CN110092654 A CN 110092654A
- Authority
- CN
- China
- Prior art keywords
- piezoelectricity
- skeleton
- dimensional porous
- piezoelectric
- interconnection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 239000001913 cellulose Substances 0.000 claims abstract description 30
- 229920002678 cellulose Polymers 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 239000012528 membrane Substances 0.000 claims abstract description 16
- 239000010936 titanium Substances 0.000 claims abstract description 15
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims abstract description 7
- -1 bismuthino Chemical group 0.000 claims abstract description 7
- 238000010532 solid phase synthesis reaction Methods 0.000 claims abstract description 4
- BYUJNNSZGXHGPB-UHFFFAOYSA-N samarium titanium Chemical compound [Ti][Sm] BYUJNNSZGXHGPB-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000000919 ceramic Substances 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- 235000019441 ethanol Nutrition 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 239000000741 silica gel Substances 0.000 claims description 8
- 229910002027 silica gel Inorganic materials 0.000 claims description 8
- 238000010792 warming Methods 0.000 claims description 8
- 238000000498 ball milling Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 238000004821 distillation Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 5
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000008901 benefit Effects 0.000 claims description 3
- 238000013019 agitation Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000000859 sublimation Methods 0.000 claims description 2
- 230000008022 sublimation Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 abstract description 6
- 239000000945 filler Substances 0.000 description 8
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/308—Membrane type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8536—Alkaline earth metal based oxides, e.g. barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种基于压电材料的互连三维多孔压电骨架、制备方法及其应用,所述压电材料是利用固相法制备出钛钐两种元素共掺杂的铁酸铋基压电材料,结构式为Bi1‑x SmxFe1‑ xTixO3,其中0.12≤x≤0.16,所述铁酸铋基压电材料以纤维素做模板经冷冻技术制备出互连三维多孔压电骨架。将制备的互连三维多孔压电骨架应用到柔性压电复合膜中,膜内的压电颗粒均匀分布并且相互连接,应力可以直接在压电颗粒直接传递而不必经过柔性基质,所以具有更大的应力传递能力,相同的外部机械刺激下,能产生更高的输出。
Description
技术领域
本发明涉及压电材料领域,具体设计一种基于压电材料的互连三维多孔压电骨架、制备方法及其应用。
背景技术
基于压电复合膜制备的柔性压电纳米发电机通常由压电填料和柔性基质组成,压电纳米发电机受到外力刺激时,会产生电输出。一般的压电复合膜是直接将柔性基质和压电填料混合制备而成。但是该方法在复合膜固化的过程中,压电填料受重力影响,会聚集在压电复合膜底部,造成压电填料分布不均匀的现象。因此压电发电机在受到外力刺激的时候,大部分应力会被柔性基质所吸收或耗散,只有小部分应力传递到压电填料上,即应力传递能力不高。根据直接压电效应,应力传递能力不高必定导致压电纳米发电机的输出不高。此外,压电材料的压电性也是决定压电纳米发电机的输出的一个重要因素,以往制备高性能压电发电机的压电材料通常含有铅元素,含铅材料将会对环境和人体健康造成巨大的伤害。寻找无铅、经济、制备简单的压电材料一直备受关注。
此外,借助放大电路与比较器电路,利用压电电压信号作为触发信号,控制其他设备的开关。我们将利用本发明制备得压电材料应用到发电机输出上,之后装置安装在灭火器上,消防员可以不必冒着生命危险进入易爆场所进行消防作业,可以有效降低经济损失和人员伤亡。
发明内容
本发明针对目前基于柔性压电复合膜制备的压电纳米发电机应力传递能力不高的问题,提出了一种基于压电材料的互连三维多孔压电骨架、制备方法及其应用,利用纤维素做牺牲模板,通过冷冻干燥技术制备出互连三维多孔压电骨架。并以硅胶为柔性基质,采用原位加热与刮刀涂布方法制备压电填料均匀混合,并相互连接的柔性压电复合膜。提高压电复合膜的应力传递能力,由此提高压电纳米发电机的输出。此外通过固相法制备出钛钐两种元素共掺杂的铁酸铋基压电材料,改善了铁酸铋的压电性,并且材料不含铅,原料价格低廉易得,制备方法简单。
实现本发明的技术方案是:
一种基于压电材料的互连三维多孔压电骨架,所述压电材料利用固相法制备出钛钐两种元素共掺杂的铁酸铋基压电材料,结构式为Bi1-x SmxFe1-xTixO3,其中0.12≤x ≤0.16,所述铁酸铋基压电材料以纤维素做模板经冷冻技术制备出互连三维多孔压电骨架。
所述的基于压电材料的互连三维多孔压电骨架的制备方法,步骤如下:
(1)将Bi、Sm、Fe、和Ti的氧化物混合,以乙醇为媒介,在行星式球磨机中球磨混合均匀,之后烘干使酒精蒸发得到混合原料;
(2)将步骤(1)中混合原料置于马弗炉中煅烧,煅烧后研磨得到压电陶瓷颗粒;
(3)将步骤(2)得到的压电陶瓷颗粒、纤维素和去离子水磁力搅拌12-16h形成均匀的悬浊液;
(4)将步骤(3)得到的悬浊液置于-20℃环境中冷冻结冰,冻结样品置于冷冻干燥机中升华,通过升华的方式除去冻结样品中的水,就行成了压电陶瓷颗粒均匀分布在纤维素为骨架上的混合物;
(5)将步骤(4)得到的纤维素与压电颗粒的混合物煅烧得到互连三维多孔压电骨架。
所述步骤(1)中Bi、Sm、Fe、和Ti的氧化物分别为Bi2O3 (99.9%),Sm2O3 (99.9%),Fe2O3 (99.9%)和TiO2 (99.9%),球磨24-28h混合均匀,之后80-90℃烘干24-30h。
所述步骤(2)中以5℃/min的速度升温至900-950℃,煅烧1-2h;煅烧后手动研磨10h得到粒径尺寸为300-400 μm的压电陶瓷颗粒。
所述步骤(3)悬浊液中压电陶瓷颗粒占8-12wt%,纤维素占4-6 wt%。
所述步骤(4)中冷冻干燥机的温度为-50℃,升华时间为24-30h。
所述步骤(5)中以5℃/min的速度升温至400-450℃烧结1h除去纤维素,之后以同样的升温速率升温至900-950℃烧结1h使压电陶瓷颗粒充分粘连以继承纤维素的三维骨架,至此,互连三维多孔压电骨架制备完成。
制备的互连三维多孔压电骨架在制备柔性压电复合膜中的应用,步骤如下:
以PET-ITO做下电极铺设在50℃的加热台上,将互连三维多孔压电骨架与硅胶的混合物倒在PET-ITO上,在用刮刀涂布技术制备300μm厚的柔性压电复合膜;20min后,趁混合物未完全固化,在上表面贴上另外一层PET-ITO做上电极,继续固化;总固化时间3-4h,至此,PET-ITO做上下电极,硅胶做柔性基质,互连三维多孔压电骨架做压电填料,柔性压电复合膜制备完成。
将本发明柔性压电复合膜应用到压电纳米发电机中,压电纳米发电机的极化电场为6 kV/mm,极化过程是放在70℃的硅油中,持续24小时。
经过实验测试与对比,本发明制备的压电纳米发电机开路电压与短路电流比基于未掺杂BFO颗粒制备的压电纳米发电机要高5.3和5.6倍,分别为16V,2.8 μA。
所述互连三维多孔压电骨架与硅胶的混合物中互连三维多孔压电骨架的质量分数为10-40wt%。
(1)本发明的有益效果是:通过掺杂钛,钐元素,制备Bi0.84Sm0.16Fe0.84Ti0.16O3,提高铁酸铋基材料的压电性,材料不含铅,原材料经济易得,方法简单。
(2)以纤维素为牺牲模板,通过冷冻干燥技术制备互连三维多孔压电骨架,利用原位加热刮刀涂布技术制备柔性压电复合膜。因为互连三维多孔压电骨架较大的体积在柔性基质内会受到更大的阻力,并且原位加热(刮刀涂布技术与加热固化同时进行)加速固化,以此制备的压电复合膜,膜内的压电颗粒均匀分布并且相互连接,应力可以直接在压电颗粒直接传递而不必经过柔性基质,所以具有更大的应力传递能力,相同的外部机械刺激下,能产生更高的输出。
(3)此外,借助放大电路与比较器电路,利用压电电压信号作为触发信号,控制其他设备的开关。我们将此装置安装在灭火器上,消防员可以不必冒着生命危险进入易爆场所进行消防作业,可以有效降低经济损失和人员伤亡。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1冻干的样品经冷冻干燥之后,Bi0.84Sm0.16Fe0.84Ti0.16O3,均匀分布在纤维素上的SEM图像。
图2为实施例1制备的压电材料的SEM图。
图3为实施例1制备的柔性压电复合膜的截面SEM图。
图4为互连三维压电骨架质量分数为10、20、30和40wt%制备的的柔性压电复合膜,并将柔性压电复合膜应用到压电纳米发电机上测量得到的开路电压与短路电流。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于压电材料的互连三维多孔压电骨架的制备方法,步骤如下:
(1)将原料Bi2O3 (99.9%), Sm2O3 (99.9%), Fe2O3 (99.9%)和TiO2 (99.9%)以配为物质的量比为Bi0.84Sm0.16Fe0.84Ti0.16O3,以乙醇为媒介,在行星式球磨机中球磨24h,使四种原料均匀混合,在80℃的烘干箱中存放24h使酒精蒸发,得到均匀混合的原料;
(2)将原料放入马弗炉中,以每分钟5℃的速度升温至900℃,并在900℃下烧结1h。得到Bi0.84Sm0.16Fe0.84Ti0.16O3(BSFTO),再将BSFTO放在研钵中手动研磨10h,得到尺寸合适的压电陶瓷颗粒;
(3)将这些小颗粒与纤维素,去离子水用磁力搅拌器搅拌12h,形成均匀分布的悬浊液(10 wt%的BSFTO,4wt%的纤维素);
(4)将悬浊液放入-20℃环境中冷冻结冰。冻结的样品放入冷冻干燥机中24h,通过升华的方式除去冻结样品中的水,就行成了压电陶瓷颗粒均匀分布在纤维素为骨架上的混合物;
(5)将此混合物放入马弗炉烧结,400℃烧结1h除去纤维素,900℃烧结1h使压电陶瓷颗粒充分粘连以继承纤维素的三维骨架,升温速度都是5℃每分钟;至此,互连三维多孔压电骨架制备完成,得到压电材料。
实施例2
一种基于压电材料的互连三维多孔压电骨架的制备方法,步骤如下:
(1)将原料Bi2O3 (99.9%), Sm2O3 (99.9%), Fe2O3 (99.9%)和TiO2 (99.9%)以配为物质的量比为Bi0.86 Sm0.14Fe00.86Ti0.14O3,以乙醇为媒介,在行星式球磨机中球磨26h,使四种原料均匀混合,在85℃的烘干箱中存放28h使酒精蒸发,得到均匀混合的原料;
(2)将原料放入马弗炉中,以每分钟5℃的速度升温至930℃,并在930℃下烧结1.5h,煅烧后材料放在研钵中手动研磨10h,得到尺寸为350μm的的压电陶瓷颗粒;
(3)将这些小颗粒与纤维素,去离子水用磁力搅拌器搅拌12h,形成均匀分布的悬浊液(8wt%的BSFTO,5wt%的纤维素);
(4)将悬浊液放入-20℃环境中冷冻结冰。冻结的样品放入冷冻干燥机(-50℃)中28h,通过升华的方式除去冻结样品中的水,就行成了压电陶瓷颗粒均匀分布在纤维素为骨架上的混合物;
(5)将此混合物放入马弗炉烧结,430℃烧结1h除去纤维素,930℃烧结1h使压电陶瓷颗粒充分粘连以继承纤维素的三维骨架,升温速度都是5℃每分钟;至此,互连三维多孔压电骨架制备完成,得到压电材料。
实施例3
一种基于压电材料的互连三维多孔压电骨架的制备方法,步骤如下:
(1)将原料Bi2O3 (99.9%), Sm2O3 (99.9%), Fe2O3 (99.9%)和TiO2 (99.9%)以配为物质的量比为Bi0.88 Sm0.12Fe00.88Ti0.12O3,以乙醇为媒介,在行星式球磨机中球磨28h,使四种原料均匀混合,在90℃的烘干箱中存放30h使酒精蒸发,得到均匀混合的原料;
(2)将原料放入马弗炉中,以每分钟5℃的速度升温至950℃,并在950℃下烧结2h,煅烧后材料放在研钵中手动研磨10h,得到尺寸为400μm的的压电陶瓷颗粒;
(3)将这些小颗粒与纤维素,去离子水用磁力搅拌器搅拌12h,形成均匀分布的悬浊液(12wt%的BSFTO,6wt%的纤维素);
(4)将悬浊液放入-20℃环境中冷冻结冰。冻结的样品放入冷冻干燥机(-50℃)中30h,通过升华的方式除去冻结样品中的水,就行成了压电陶瓷颗粒均匀分布在纤维素为骨架上的混合物;
(5)将此混合物放入马弗炉烧结,450℃烧结1h除去纤维素, 950℃烧结1h使压电陶瓷颗粒充分粘连以继承纤维素的三维骨架,升温速度都是5℃每分钟;至此,互连三维多孔压电骨架制备完成,得到压电材料。
利用制备的压电材料制备柔性压电复合膜,步骤如下:
将PET-ITO做电极铺在50℃的加热台上,将互连三维多孔压电骨架与硅胶均匀的混合物(互连三维压电骨架质量分数为10、20、30和40wt%)倒在PET-ITO上,在用刮刀涂布技术制备300微米厚的柔性压电复合膜。20分钟之后,趁混合物未完全固化,在上表面贴上另外一层PET-ITO做上电极,继续固化;总固化时间3h。至此,PET-ITO做上下电极,硅胶做柔性基质,互连三维多孔压电骨架做压电填料,柔性压电复合膜制备完成。
将制备的柔性压电复合膜应用到压电纳米发电机中,压电纳米发电机的极化电场为6 kV/mm,极化过程是放在65-75℃的硅油中,持续24h。
如图4所示,经过实验测试与对比,本发明制备的压电纳米发电机开路电压与短路电流比基于未掺杂BFO颗粒制备的压电纳米发电机要高5.3和5.6倍,分别为16V,2.8 μA。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种基于压电材料的互连三维多孔压电骨架,其特征在于:所述压电材料利用固相法制备出钛钐两种元素共掺杂的铁酸铋基压电材料,结构式为Bi1-x SmxFe1-xTixO3,其中0.12≤x ≤0.16,所述铁酸铋基压电材料以纤维素做模板经冷冻技术制备出互连三维多孔压电骨架。
2.权利要求1所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于步骤如下:
(1)将Bi、Sm、Fe、和Ti的氧化物混合,以乙醇为媒介,球磨混合均匀,之后烘干得到混合原料;
(2)将步骤(1)中混合原料置于马弗炉中煅烧,煅烧后研磨得到压电陶瓷颗粒;
(3)将步骤(2)得到的压电陶瓷颗粒、纤维素和去离子水磁力搅拌12-16h形成均匀的悬浊液;
(4)将步骤(3)得到的悬浊液置于-20℃环境中冷冻结冰,冻结样品置于冷冻干燥机中升华,得到纤维素与压电颗粒的混合物;
(5)将步骤(4)得到的纤维素与压电颗粒的混合物煅烧得到互连三维多孔压电骨架。
3.根据权利要求2所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于:所述步骤(1)中Bi、Sm、Fe、和Ti的氧化物分别为Bi2O3、Sm2O3、Fe2O3和TiO2,球磨24-28h混合均匀,之后80-90℃烘干24-30h。
4.根据权利要求2所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于:所述步骤(2)中以5℃/min的速度升温至900-950℃,煅烧1-2h;煅烧后手动研磨10h得到粒径尺寸为300-400 μm的压电陶瓷颗粒。
5.根据权利要求2所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于:所述步骤(3)悬浊液中压电陶瓷颗粒占8-12wt%,纤维素占4-6 wt%。
6.根据权利要求2所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于:所述步骤(4)中冷冻干燥机的温度为-50℃,升华时间为24-30h。
7.根据权利要求2所述的基于压电材料的互连三维多孔压电骨架的制备方法,其特征在于:所述步骤(5)中以5℃/min的速度升温至400-450℃烧结1h,之后以同样的升温速率升温至900-950℃烧结1h。
8.权利要求2-7任一项制备的互连三维多孔压电骨架在制备柔性压电复合膜中的应用。
9.根据权利要求8所述的应用,其特征在于步骤如下:
以PET-ITO做下电极铺设在50℃的加热台上,将互连三维多孔压电骨架与硅胶的混合物倒在PET-ITO上,在用刮刀涂布技术制备300μm厚的柔性压电复合膜;20min后,趁混合物未完全固化,在上表面贴上另外一层PET-ITO做上电极,继续固化;总固化时间3-4h,制备得到柔性压电复合膜。
10.根据权利要求9所述的应用,其特征在于:所述互连三维多孔压电骨架与硅胶的混合物中互连三维多孔压电骨架的质量分数为10-40wt%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910452125.0A CN110092654A (zh) | 2019-05-28 | 2019-05-28 | 基于压电材料的互连三维多孔压电骨架、制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910452125.0A CN110092654A (zh) | 2019-05-28 | 2019-05-28 | 基于压电材料的互连三维多孔压电骨架、制备方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110092654A true CN110092654A (zh) | 2019-08-06 |
Family
ID=67449480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910452125.0A Pending CN110092654A (zh) | 2019-05-28 | 2019-05-28 | 基于压电材料的互连三维多孔压电骨架、制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110092654A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461412A (zh) * | 2020-12-07 | 2021-03-09 | 河南大学 | 一种基于压电纳米发电机的机器人电子皮肤模拟触感装置 |
CN117613250A (zh) * | 2024-01-24 | 2024-02-27 | 帕瓦(长沙)新能源科技有限公司 | 三维导电铅碳复合材料及其制备方法、负极、铅酸电池 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991013043A1 (en) * | 1990-02-28 | 1991-09-05 | E.I. Du Pont De Nemours And Company | Improved ceramic dielectric compositions and method for enhancing dielectric properties |
CN1524792A (zh) * | 2003-02-28 | 2004-09-01 | 新加坡纳米材料科技有限公司 | 一种制备各种晶态钙钛矿类化合物粉体的方法 |
US20070241642A1 (en) * | 2006-04-12 | 2007-10-18 | Seiko Epson Corporation | Piezoelectric material and piezoelectric device |
JP2009231482A (ja) * | 2008-03-21 | 2009-10-08 | Kanazawa Univ | 強誘電体材料及び圧電体 |
CN101591461A (zh) * | 2009-06-24 | 2009-12-02 | 四川大学 | 无铅压电陶瓷-聚合物压电复合材料及其制备方法 |
CN102555478A (zh) * | 2010-12-28 | 2012-07-11 | 精工爱普生株式会社 | 液体喷射头和液体喷射装置以及压电元件 |
CN104201280A (zh) * | 2014-08-04 | 2014-12-10 | 北京科技大学 | 一种纳米压电薄膜及纳米复合压电发电机的制备方法 |
CN104465981A (zh) * | 2013-09-24 | 2015-03-25 | 天津霖田冶金科技有限公司 | 一种用于压力传感器的压电薄膜结构 |
CN107353572A (zh) * | 2017-08-11 | 2017-11-17 | 太仓碧奇新材料研发有限公司 | 一种高压电系数柔性复合材料薄膜的制备方法 |
CN109727703A (zh) * | 2018-12-27 | 2019-05-07 | 深圳市华科创智技术有限公司 | 一种具有压电效应的透明导电膜及其制备方法 |
-
2019
- 2019-05-28 CN CN201910452125.0A patent/CN110092654A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991013043A1 (en) * | 1990-02-28 | 1991-09-05 | E.I. Du Pont De Nemours And Company | Improved ceramic dielectric compositions and method for enhancing dielectric properties |
CN1524792A (zh) * | 2003-02-28 | 2004-09-01 | 新加坡纳米材料科技有限公司 | 一种制备各种晶态钙钛矿类化合物粉体的方法 |
US20070241642A1 (en) * | 2006-04-12 | 2007-10-18 | Seiko Epson Corporation | Piezoelectric material and piezoelectric device |
JP2009231482A (ja) * | 2008-03-21 | 2009-10-08 | Kanazawa Univ | 強誘電体材料及び圧電体 |
CN101591461A (zh) * | 2009-06-24 | 2009-12-02 | 四川大学 | 无铅压电陶瓷-聚合物压电复合材料及其制备方法 |
CN102555478A (zh) * | 2010-12-28 | 2012-07-11 | 精工爱普生株式会社 | 液体喷射头和液体喷射装置以及压电元件 |
CN104465981A (zh) * | 2013-09-24 | 2015-03-25 | 天津霖田冶金科技有限公司 | 一种用于压力传感器的压电薄膜结构 |
CN104201280A (zh) * | 2014-08-04 | 2014-12-10 | 北京科技大学 | 一种纳米压电薄膜及纳米复合压电发电机的制备方法 |
CN107353572A (zh) * | 2017-08-11 | 2017-11-17 | 太仓碧奇新材料研发有限公司 | 一种高压电系数柔性复合材料薄膜的制备方法 |
CN109727703A (zh) * | 2018-12-27 | 2019-05-07 | 深圳市华科创智技术有限公司 | 一种具有压电效应的透明导电膜及其制备方法 |
Non-Patent Citations (5)
Title |
---|
PARDEEP K. JHA ET AL.: "Sm/Ti co-substituted bismuth ferrite multiferroics:reciprocity between tetragonality and piezoelectricity", 《PHYS.CHEM.CHEM.PHYS.》 * |
XIAOHU REN ET AL.: "Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester", 《APPLIED MATERIALS & INTERFACES》 * |
YONG ZHANG ET AL.: "Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics", 《 NANO ENERGY》 * |
全国敏感元件与传感器学术团体联合组织会编: "《第十三届全国敏感元件与传感器学术会议论文集》", 31 October 2014, 国防工业出版社 * |
鲍长春: "《信息和电子技术理论与应用》", 30 September 2004, 中国文联出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461412A (zh) * | 2020-12-07 | 2021-03-09 | 河南大学 | 一种基于压电纳米发电机的机器人电子皮肤模拟触感装置 |
CN117613250A (zh) * | 2024-01-24 | 2024-02-27 | 帕瓦(长沙)新能源科技有限公司 | 三维导电铅碳复合材料及其制备方法、负极、铅酸电池 |
CN117613250B (zh) * | 2024-01-24 | 2024-04-19 | 帕瓦(长沙)新能源科技有限公司 | 三维导电铅碳复合材料及其制备方法、负极、铅酸电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6880425B2 (ja) | 無鉛高絶縁セラミックコーティングを有する酸化亜鉛避雷器バルブブロック及びそれを調製するための方法 | |
CN110092654A (zh) | 基于压电材料的互连三维多孔压电骨架、制备方法及其应用 | |
CN105294140A (zh) | 多孔陶瓷的制备方法、多孔陶瓷及其应用 | |
CN107759219B (zh) | 一种高居里温度无铅压电陶瓷及其制备方法 | |
Zeng et al. | Recent progress in 3D printing piezoelectric materials for biomedical applications | |
CN104051606B (zh) | 一种铌酸钾钠基多层压电陶瓷元件及其制备方法 | |
CN110467457A (zh) | 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用 | |
CN113213929A (zh) | 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法 | |
CN110204335A (zh) | 一种同时具有高储能密度和效率的陶瓷材料及其制备方法 | |
CN113716957B (zh) | 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置 | |
CN110342925A (zh) | 一种反铁电陶瓷材料及其制备方法 | |
CN109704764A (zh) | 中介电高q微波介电陶瓷材料、陶瓷体及其制备方法 | |
CN103739285B (zh) | 氧化物增韧多孔锆钛酸铅压电陶瓷的制备方法 | |
CN110143826A (zh) | 一种功能性蜂窝状陶瓷及其制备方法 | |
CN110156459A (zh) | 一种基于BiAlO3掺杂BaTiO3无铅压电陶瓷储能电容器的制备方法 | |
CN102299254A (zh) | 一种流延法制备大尺寸厚膜压电复合材料的方法 | |
CN113511893B (zh) | 一种bnt基三层结构的高储能密度陶瓷及其制备方法 | |
WO2021023270A1 (zh) | 一种超声波雾化片及其制作工艺、超声波电子烟 | |
CN106673650B (zh) | 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法 | |
CN110835266B (zh) | 一种铌酸钾钠基压电陶瓷及其制备方法和应用 | |
CN109694247A (zh) | 一种高效率的储能线性电介质陶瓷材料及其制备方法 | |
CN107011704B (zh) | 一种微波发热涂料 | |
CN114213122B (zh) | 压电陶瓷材料及其制备方法 | |
CN108794003A (zh) | 一种掺杂铌酸钾钠的生物玻璃陶瓷及其制备方法 | |
JP5337073B2 (ja) | 電流−電圧非直線抵抗体およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190806 |