CN106673650B - 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法 - Google Patents

一种高透明铌酸钾钠基压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106673650B
CN106673650B CN201611241428.0A CN201611241428A CN106673650B CN 106673650 B CN106673650 B CN 106673650B CN 201611241428 A CN201611241428 A CN 201611241428A CN 106673650 B CN106673650 B CN 106673650B
Authority
CN
China
Prior art keywords
ball
hours
high transparency
potassium sodium
sodium niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611241428.0A
Other languages
English (en)
Other versions
CN106673650A (zh
Inventor
杨祖培
柴启珍
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201611241428.0A priority Critical patent/CN106673650B/zh
Publication of CN106673650A publication Critical patent/CN106673650A/zh
Application granted granted Critical
Publication of CN106673650B publication Critical patent/CN106673650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Abstract

本发明公开了一种高透明铌酸钾钠基压电陶瓷材料及其制备方法,该陶瓷材料的通式为(1‑x)(K0.5Na0.5)NbO3‑xCa(Zn1/3Nb2/3)O3,式中x表示Ca(Zn1/3Nb2/3)O3的摩尔百分比,x的取值为0.03~0.10,该陶瓷材料通过配料、预烧、球磨、造粒、压片、无压密闭烧结、抛光及烧银等工艺步骤制备而成。本发明制备方法简单、重复性好、成品率高,所得陶瓷材料透明性高且具有较好的电性能,在x的取值为0.07和0.08时,透过率为70%~83%(近红外区)、压电常数为66~72pC/N、介电常数为1100~1162、居里温度为170~184℃。

Description

一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种高透明铌酸钾钠基压电陶瓷材料及其制备方法。
背景技术
透明陶瓷作为一种先进功能材料,由于其具有优异的力学、热学、光学和电学等性能,应用十分广泛。自1962年美国首次制备氧化铝透明陶瓷以来,世界各国对透明陶瓷进行了大量研究,开发了氧化物和非氧化物透明陶瓷、掺镧的锆钛酸铅(PLZT)电光透明陶瓷、钇铝石榴石激光透明陶瓷、钆镓石榴石(GGG)透明闪烁陶瓷等。
压电陶瓷作为重要的高技术功能材料,在超声换能、传感器、无损检测和通讯技术等领域已经得到广泛应用。目前,在压电领域中应用最多的仍是以PZT为基的多元系含铅陶瓷。铅是一种有毒有害且在高温下易挥发的物质。在PZT基陶瓷的高温烧结过程中,大量铅的挥发势必造成环境的污染,直接危害人类的健康。近年来,随着人们环保意识的增强以及对无铅压电材料迫切的需求,无铅压电陶瓷的研究已成为一种研究的热点。
近年来,铌酸盐系的铌酸钾钠(KNN)陶瓷以较高的居里温度和优良的压电性能倍受关注,已有研究结果提高了其温度稳定性,改善了压电性能,但很少关注其透明性能。
发明内容
本发明所要解决的技术问题在于提供一种高透明性且具有较好电性能的铌酸钾钠基压电陶瓷材料,以及该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的组成通式是(1-x)(K0.5Na0.5)NbO3-xCa(Zn1/3Nb2/3)O3,式中x表示Ca(Zn1/3Nb2/3)O3的摩尔百分比,x的取值为0.03~0.10,该陶瓷材料在近红外区的透过率为50%~83%、压电常数为50~102pC/N、介电常数为900~1500、居里温度为53~342℃。
上述陶瓷材料的组成通式中,当x的取值0.07~0.08时,该陶瓷材料的透过率为70%~83%、压电常数为66~72pC/N、介电常数为1100~1162、居里温度为170~184℃。
上述高透明铌酸钾钠基压电陶瓷材料的制备方法如下:
1、配料
按照(1-x)(K0.5Na0.5)NbO3-xCa(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、ZnO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,850℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉;
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛;
4、造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1170~1190℃,烧结5~8小时,随炉自然冷却至室温;
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成高透明铌酸钾钠基压电陶瓷材料。
上述步骤5中,优选以3℃/分钟的升温速率升温至1180℃,烧结6小时。
本发明制备方法简单、重复性好、成品率高,所制备的陶瓷材料透明性高且具有较好的电性能,其在光学上各向同性、实用性强、易于生产,是一种性能优良的无铅透明压电陶瓷。
附图说明
图1是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料的XRD图。
图2是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料的透过率图。
图3是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料在1MHz下的介电常数随温度的变化关系图。
图4是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料在1MHz下的居里温度和最大介电常数随x取值的变化关系图。
图5是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料的电滞回线图。
图6是实施例1~6制备的高透明铌酸钾钠基压电陶瓷材料的压电常数随x取值的变化关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.97(K0.5Na0.5)NbO3-0.03Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.6414g、纯度为99.99%的K2CO3 3.4444g、纯度为99.99%的Nb2O513.5219g、纯度为99.99%的CaCO3 0.3086g、纯度为99.99%的ZnO 0.0836g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥15小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至850℃预烧5小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥15小时,用研钵研磨10分钟,过160目筛。
4、造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180℃,烧结6小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精搽拭干净。采用日本理学MiniFlex600型衍射仪进行XRD测试,采用UV-3600型紫外可见近红外光分光光度计进行光学透过率测试,结果见图1~2。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成高透明铌酸钾钠基压电陶瓷材料。采用Agilient4980A型精密阻抗分析仪、AixACCT-TF2000型铁电参数测试仪和ZJ-3d型准静态d33测量仪分别对陶瓷材料的介电性能、铁电性能、压电性能进行测试,结果见图3~6。
实施例2
本实施例的配料步骤1中,按照0.95(K0.5Na0.5)NbO3-0.05Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5810g、纯度为99.99%的K2CO3 3.3656g、纯度为99.99%的Nb2O5 13.4009g、纯度为99.99%的CaCO3 0.5131g、纯度为99.99%的ZnO0.1394g,其他步骤与实施例1相同,制备成高透明铌酸钾钠基压电陶瓷材料。
实施例3
本实施例的配料步骤1中,按照0.96(K0.5Na0.5)NbO3-0.06Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5511g、纯度为99.99%的K2CO3 3.3267g、纯度为99.99%的Nb2O5 13.3404g、纯度为99.99%的CaCO3 0.6151g、纯度为99.99%的ZnO0.1667g,其他步骤与实施例1相同,制备成高透明铌酸钾钠基压电陶瓷材料。
实施例4
本实施例的配料步骤1中,按照0.93(K0.5Na0.5)NbO3-0.07Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5213g、纯度为99.99%的K2CO3 3.2878g、纯度为99.99%的Nb2O5 13.2800g、纯度为99.99%的CaCO3 0.7169g、纯度为99.99%的ZnO0.1940g,其他步骤与实施例1相同,制备成高透明铌酸钾钠基压电陶瓷材料。
实施例5
本实施例的配料步骤1中,按照0.92(K0.5Na0.5)NbO3-0.08Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.4911g、纯度为99.99%的K2CO3 3.2484g、纯度为99.99%的Nb2O5 13.2201g、纯度为99.99%的CaCO3 0.8182g、纯度为99.99%的ZnO0.2221g,其他步骤与实施例1相同,制备成高透明铌酸钾钠基压电陶瓷材料。
实施例6
本实施例的配料步骤1中,按照0.9(K0.5Na0.5)NbO3-0.10Ca(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 2.4331g、纯度为99.99%的K2CO3 3.1728g、纯度为99.99%的Nb2O5 13.0989g、纯度为99.99%的CaCO3 1.0212g、纯度为99.99%的ZnO0.2740g,其他步骤与实施例1相同,制备成高透明铌酸钾钠基压电陶瓷材料。
由图1可见,实施例1~6制备的陶瓷材料均为纯的钙钛矿结构,其中x的取值为0.06以下时,该陶瓷材料为正交相,当x的取值为0.06~0.10时,该陶瓷材料为伪立方相。由图2可见,实施例1~6制备的陶瓷材料均呈现较高的透明性,其中x取值为0.07和0.08时,该陶瓷材料的透明性最好,其在近红外区(790~1600nm)的透过率最高可达80%以上。由图3~6可见,陶瓷材料的介电常数、居里温度、压电常数均随着x的增大而降低,具有饱和的电滞回线,其中x取值为0.07和0.08时,所得陶瓷材料在具有高透明性的同时也具有较好的电学性能,其中x=0.07时,陶瓷材料的压电常数为72pC/N、介电常数为1162、居里温度为184℃、剩余极化强度为0.66μC/cm2、矫顽场为5.2kV/cm,x=0.08时,陶瓷材料的压电常数为66pC/N、介电常数为1100、居里温度为170℃、剩余极化强度为0.43μC/cm2、矫顽场为4.8kV/cm。

Claims (4)

1.一种高透明铌酸钾钠基压电陶瓷材料,其特征在于:该陶瓷材料的通式为(1-x)(K0.5Na0.5)NbO3-xCa(Zn1/3Nb2/3)O3,式中x表示Ca(Zn1/3Nb2/3)O3的摩尔百分比,x的取值为0.03~0.10;该陶瓷材料在近红外区的透过率为50%~83%、压电常数为50~102pC/N、介电常数为900~1500、居里温度为53~342℃。
2.根据权利要求1所述的高透明铌酸钾钠基压电陶瓷材料,其特征在于:所述x的取值为0.07~0.08,陶瓷材料的透过率为70%~83%、压电常数为66~72pC/N、介电常数为1100~1162、居里温度为170~184℃。
3.一种权利要求1所述的高透明铌酸钾钠基压电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)(K0.5Na0.5)NbO3-xCa(Zn1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、ZnO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,850℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛;
(4)造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1170~1190℃,烧结5~8小时,随炉自然冷却至室温;
(6)抛光
将步骤(5)烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
(7)烧银
在步骤(6)抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成高透明铌酸钾钠基压电陶瓷材料。
4.根据权利要求3所述的高透明铌酸钾钠基压电陶瓷材料的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180℃,烧结6小时,随炉自然冷却至室温。
CN201611241428.0A 2016-12-29 2016-12-29 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法 Active CN106673650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611241428.0A CN106673650B (zh) 2016-12-29 2016-12-29 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611241428.0A CN106673650B (zh) 2016-12-29 2016-12-29 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106673650A CN106673650A (zh) 2017-05-17
CN106673650B true CN106673650B (zh) 2019-05-14

Family

ID=58872337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611241428.0A Active CN106673650B (zh) 2016-12-29 2016-12-29 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106673650B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180185B (zh) * 2018-11-16 2021-03-23 陕西师范大学 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN111153697B (zh) * 2020-01-14 2022-02-15 西安工业大学 一种宽稳定性窄带铌酸钾钠基铁电陶瓷材料及其制备方法
CN113292339A (zh) * 2021-06-30 2021-08-24 福州大学 一种铌酸钾钠无铅压电陶瓷与银电极的低温共烧方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823878A (zh) * 2010-04-23 2010-09-08 四川师范大学 铌酸钠钾铪锆钛酸钙系无铅压电陶瓷组合物
WO2015155933A1 (ja) * 2014-04-11 2015-10-15 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
CN105669193A (zh) * 2014-11-20 2016-06-15 中国科学院声学研究所 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823878A (zh) * 2010-04-23 2010-09-08 四川师范大学 铌酸钠钾铪锆钛酸钙系无铅压电陶瓷组合物
WO2015155933A1 (ja) * 2014-04-11 2015-10-15 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
CN105669193A (zh) * 2014-11-20 2016-06-15 中国科学院声学研究所 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法

Also Published As

Publication number Publication date
CN106673650A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN102757220B (zh) 一种Bi0.5Na0.5TiO3基三元体系无铅压电陶瓷及制备
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN106673650B (zh) 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN104628379B (zh) 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN101265084A (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN106588011B (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN107244898A (zh) 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法
CN109626988A (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN101343182B (zh) 掺杂的五元系低温烧结压电陶瓷材料及其制备方法
CN106747669B (zh) 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN108275999A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
CN110357624A (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN104098333A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN105819855B (zh) 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法
CN104030683A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN101575213B (zh) 一种提高Sr2-xCaxNaNb5O15陶瓷介电和压电性能的制备工艺
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN101786880A (zh) 一种铌酸钾钠-铌酸钾锂压电陶瓷及其制备方法
CN101337815A (zh) 无铅压电陶瓷及其制备方法
CN105732032A (zh) 高致密度的铌锑酸钾钠锂-锆酸铋钠钙二元系无铅压电陶瓷及其制备方法
CN102010195B (zh) 一种掺锆和钼的铋层状无铅压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant