CN105819856B - 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法 - Google Patents

铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105819856B
CN105819856B CN201610143380.3A CN201610143380A CN105819856B CN 105819856 B CN105819856 B CN 105819856B CN 201610143380 A CN201610143380 A CN 201610143380A CN 105819856 B CN105819856 B CN 105819856B
Authority
CN
China
Prior art keywords
ceramic material
ball
hours
potassium niobate
sodium base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610143380.3A
Other languages
English (en)
Other versions
CN105819856A (zh
Inventor
杨祖培
张小帅
晁小练
魏灵灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201610143380.3A priority Critical patent/CN105819856B/zh
Publication of CN105819856A publication Critical patent/CN105819856A/zh
Application granted granted Critical
Publication of CN105819856B publication Critical patent/CN105819856B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Abstract

本发明公开了一种铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法,该陶瓷材料的通式为(1‑x)(K0.5Na0.5)NbO3‑xSr(Mg1/3Nb2/3)O3,式中x表示Sr(Mg1/3Nb2/3)O3的摩尔数,x的取值为0.02~0.08。本发明通过配料、预烧、球磨、造粒、压片、无压密闭烧结、抛光及烧银等工艺步骤,制备成透光性高、光学上各向同性、实用性强、易于生产的铌酸钾钠基无铅透明铁电陶瓷材料,制备该方法简单、重复性好、成品率高。实验结果表明,x的取值为0.05时制备的陶瓷材料的光学透射率在近红外区达60%~75%,并且具有较好的电学性能,其剩余极化强度为4.8μC/cm2,矫顽场为7.4kV/cm,最大介电常数为2104,介电损耗为0.03,压电常数d33为48pC/N。

Description

铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法。
背景技术
近年来,随着科学技术的迅速发展,在光纤通信、集成光学和信息处理等技术领域,急切需要各种调制、开关和存贮显示光信息的电光器件,于是掀起了透明铁电陶瓷及其器件的研究热潮。
透明铁电陶瓷是具有电光效应的一类透明陶瓷,可用来制作光闸、光调制品、光存储器、光谱滤波器等电光器件。铅基透明铁电陶瓷如PLZT、PMN-PT、PZN-PT、PZN-PLZT等由于具有高的光电效应,快的响应速度,低成本等优异的性能已经被广泛应用到电光器件的生产中。
然而,由于铅基透明铁电陶瓷含有70%以上的铅,对人体和环境会带来较大的危害,随着世界各国逐渐颁发了铅基材料的禁止使用的相关法律法规,使得寻找一种无铅透明铁电陶瓷显得极为迫切。铌酸钾钠基((K0.5Na0.5)NbO3)陶瓷由于具有高的压电性能、居里温度和机械性能而引起了研究者的关注,2008年,空军工程大学的杜红亮等已经发现(K0.5Na0.5)NbO3-(Na0.5Bi0.5)TiO3的透明现象。2011年,香港理工大学的陈王丽华等使用热压法制备了(K0.5Na0.5)0.95Li0.05Nb0.95Bi0.05O3透明陶瓷,并对其光学性能的机理进行了深入研究。2014年,空军工程大学的杜红亮等通过引入ABO3钙钛矿结构的Sr(Sc0.5Nb0.5)O3获得了具有优良光学性能铌酸钾钠基透明陶瓷。
发明内容
本发明所要解决的技术问题在于提供一种高透光性、光学上各向同性且具有较高电学性能、实用性强、易于生产的铌酸钾钠基无铅透明铁电陶瓷材料,以及该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的组成通式是(1-x)(K0.5Na0.5)NbO3-xSr(Mg1/3Nb2/3)O3,式中x表示Sr(Mg1/3Nb2/3)O3的摩尔数,x的取值为0.02~0.08,优选x的取值为0.05。
上述铌酸钾钠基无铅透明铁电陶瓷材料的制备方法如下:
1、配料
按照(1-x)(K0.5Na0.5)NbO3-xSr(Mg1/3Nb2/3)O3的化学计量分别称取纯度大于99.99%的原料Na2CO3、K2CO3、Nb2O5、SrCO3、MgO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥5~10小时,用研钵研磨,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,900℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨10~12小时,分离锆球,将预烧粉在80~100℃下干燥5~10小时,用研钵研磨,过160目筛。
4、造粒及压片
向过160目筛后的预烧粉中加入其质量40%~50%的质量分数为5%的聚乙烯醇水溶液,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1200~1220℃,烧结5~8小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
上述步骤5中,优选以3℃/分钟的升温速率升温至1220℃,烧结6小时。
本发明方法简单、重复性好、成品率高,所制备的陶瓷材料透光性高、光学上各向同性、实用性强、易于生产。实验结果表明,x的取值为0.05时制备的陶瓷材料的光学透射率在近红外区达60%以上,并且具有优良的电学性能,是一种性能优良的无铅透明铁电陶瓷。
附图说明
图1是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料的透射率图。
图2是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料的XRD图。
图3是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料在1MHz下的介电常数和介电损耗随温度的变化关系图。
图4是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料在1MHz下的居里温度和最大介电常数的变化关系图。
图5是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料的电滞回线图。
图6是实施例1~7制备的铌酸钾钠基无铅透明铁电陶瓷材料的压电常数图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.95(K0.5Na0.5)NbO3-0.05Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.8384g、纯度为99.99%的K2CO3 5.0052g、纯度为99.99%的Nb2O519.9280g、纯度为99.99%的SrCO3 1.1260g、纯度为99.99%的MgO 0.0822g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥10小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至900℃预烧5小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨12小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥10小时,用研钵研磨10分钟,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入其质量50%的质量分数为5%的聚乙烯醇水溶液,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1220℃,烧结6小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精搽拭干净。采用UV-3600型紫外可见近红外光分光光度计(由日本岛津公司生产)进行光学透射率测试,结果见图1。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基无铅透明铁电陶瓷材料。采用D/max-2200X型射线衍射仪(由日本理学公司生产)和Agilient4980A型精密阻抗分析仪(由安捷伦科技有限公司生产)进行陶瓷介电和铁电性能测试,结果见图2~6。
实施例2
本实施例的配料步骤1中,按照0.98(K0.5Na0.5)NbO3-0.02Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.9936g、纯度为99.99%的K2CO3 5.2076g、纯度为99.99%的Nb2O5 20.3033g、纯度为99.99%的SrCO3 0.4543g、纯度为99.99%的MgO0.0207g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例3
本实施例的配料步骤1中,按照0.97(K0.5Na0.5)NbO3-0.03Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.9415g、纯度为99.99%的K2CO3 5.1397g、纯度为99.99%的Nb2O5 20.1775g、纯度为99.99%的SrCO3 0.6795g、纯度为99.99%的MgO0.0618g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例4
本实施例的配料步骤1中,按照0.96(K0.5Na0.5)NbO3-0.04Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.8898g、纯度为99.99%的K2CO3 5.0723g、纯度为99.99%的Nb2O5 20.0524g、纯度为99.99%的SrCO3 0.9034g、纯度为99.99%的MgO0.0822g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例5
本实施例的配料步骤1中,按照0.94(K0.5Na0.5)NbO3-0.06Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.7873g、纯度为99.99%的K2CO3 4.9385g、纯度为99.99%的Nb2O5 19.8043g、纯度为99.99%的SrCO3 1.3474g、纯度为99.99%的MgO0.1226g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例6
本实施例的配料步骤1中,按照0.93(K0.5Na0.5)NbO3-0.07Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.7364g、纯度为99.99%的K2CO3 4.8722g、纯度为99.99%的Nb2O5 19.6813g、纯度为99.99%的SrCO3 1.5675g、纯度为99.99%的MgO0.1426g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
实施例7
本实施例的配料步骤1中,按照0.92(K0.5Na0.5)NbO3-0.08Sr(Mg1/3Nb2/3)O3的化学计量分别称取纯度为99.99%的Na2CO3 3.6858g、纯度为99.99%的K2CO3 4.8063g、纯度为99.99%的Nb2O5 19.5590g、纯度为99.99%的SrCO3 1.7864g、纯度为99.99%的MgO0.1625g,其他步骤与实施例1相同,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
由图1~2可见,实施例1~7制备的不同x取值的陶瓷材料均为纯的钙钛矿相,且呈现较高的透光性,其中x取值为0.05的陶瓷材料的透射率在波长为1000~2000范围内可达60%以上。由图3~6可见,陶瓷材料的介电常数、剩余极化强度和压电常数均随着x的增大而降低,其中x取值为0.05的陶瓷材料具有较好的电学性能,其剩余极化强度为4.8μC/cm2,矫顽场为7.4kV/cm,最大介电常数为2104,介电损耗为0.03,压电常数d33为48pC/N。

Claims (4)

1.一种铌酸钾钠基无铅透明铁电陶瓷材料,其特征在于:该陶瓷材料的通式为(1-x)(K0.5Na0.5)NbO3-xSr(Mg1/3Nb2/3)O3,式中x表示Sr(Mg1/3Nb2/3)O3的摩尔数,x的取值为0.02~0.08。
2.根据权利要求1所述的铌酸钾钠基无铅透明铁电陶瓷材料,其特征在于:所述x的取值为0.05。
3.权利要求1所述的铌酸钾钠基无铅透明铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)(K0.5Na0.5)NbO3-xSr(Mg1/3Nb2/3)O3的化学计量分别称取纯度均为99.99%的原料Na2CO3、K2CO3、Nb2O5、SrCO3、MgO,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥5~10小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,900℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨10~12小时,分离锆球,将预烧粉在80~100℃下干燥5~10小时,用研钵研磨,过160目筛;
(4)造粒及压片
向过160目筛后的预烧粉中加入其质量40%~50%的质量分数为5%的聚乙烯醇水溶液,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1200~1220℃,烧结5~8小时,随炉自然冷却至室温;
(6)抛光
将步骤(5)烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
(7)烧银
在步骤(6)抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基无铅透明铁电陶瓷材料。
4.根据权利要求3所述的铌酸钾钠基无铅透明铁电陶瓷的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,并在氧化锆平板周围铺满预烧粉,先用380分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1220℃,烧结6小时,随炉自然冷却至室温。
CN201610143380.3A 2016-03-14 2016-03-14 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法 Expired - Fee Related CN105819856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610143380.3A CN105819856B (zh) 2016-03-14 2016-03-14 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610143380.3A CN105819856B (zh) 2016-03-14 2016-03-14 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105819856A CN105819856A (zh) 2016-08-03
CN105819856B true CN105819856B (zh) 2018-03-06

Family

ID=56987643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143380.3A Expired - Fee Related CN105819856B (zh) 2016-03-14 2016-03-14 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105819856B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542824A (zh) * 2016-11-10 2017-03-29 桂林电子科技大学 一种铌酸钾钠基透明陶瓷及其制备方法
CN106747669B (zh) * 2016-12-29 2019-10-25 陕西师范大学 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN108863358B (zh) * 2018-07-11 2021-04-06 桂林电子科技大学 一种宽温度稳定型陶瓷电容器介质材料及其制备方法
CN109180185B (zh) * 2018-11-16 2021-03-23 陕西师范大学 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN109320243A (zh) * 2018-11-19 2019-02-12 福州大学 一种高透明度的铌酸钾钠-钛酸钡锶透明陶瓷的制备方法
JP7352347B2 (ja) * 2018-12-07 2023-09-28 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法
CN110981476A (zh) * 2019-12-17 2020-04-10 西安工业大学 一种铌酸钾钠基透明陶瓷材料及其制备方法
CN111153698B (zh) * 2020-01-16 2022-01-04 桂林电子科技大学 一种透明铁电陶瓷材料及其制备方法和应用
CN111978082B (zh) * 2020-08-27 2022-05-17 西安工业大学 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN116217228A (zh) * 2023-02-25 2023-06-06 桂林理工大学 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法
CN116768624B (zh) * 2023-06-28 2024-05-03 上海工程技术大学 一种铌酸钠基无相变电介质陶瓷材料、其制备方法及其用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180249A (zh) * 2010-10-25 2013-06-26 富士胶片株式会社 钙钛矿型氧化物膜及使用该氧化物膜的铁电体膜、铁电体器件和制造钙钛矿型氧化物膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446146B2 (ja) * 2008-07-01 2014-03-19 日立金属株式会社 圧電薄膜素子、センサ及びアクチュエータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180249A (zh) * 2010-10-25 2013-06-26 富士胶片株式会社 钙钛矿型氧化物膜及使用该氧化物膜的铁电体膜、铁电体器件和制造钙钛矿型氧化物膜的方法

Also Published As

Publication number Publication date
CN105819856A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN105819855B (zh) 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法
CN101935208B (zh) 稀土铝酸盐单相或复相纳米晶透明陶瓷材料及其制备方法
CN106588011B (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN105541413B (zh) 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法
CN101265084A (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN110041074B (zh) 一种上转换发光透明铁电陶瓷材料及其制备方法和应用
CN106747669B (zh) 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN108585847A (zh) 一种铌酸钾钠基陶瓷的制备方法
CN106938929B (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN104557058A (zh) 真空-氧气氛复合热压烧结制备高透过率透明电光陶瓷的方法
CN104072136B (zh) 镧掺杂铌镁酸铅‑钛酸铅透明陶瓷的制备方法
CN104098333A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN104030683A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN106673650B (zh) 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
CN103288450B (zh) 铌酸钾钠-锆钛酸铋钾/锂系无铅压电陶瓷
CN101337815A (zh) 无铅压电陶瓷及其制备方法
CN107216149A (zh) 一种透明无铅压电陶瓷材料及其制备方法
CN109251030A (zh) 一种高光学温度传感特性的钬掺杂铌酸钾钠-钛酸锶透明陶瓷的制备方法
CN109320243A (zh) 一种高透明度的铌酸钾钠-钛酸钡锶透明陶瓷的制备方法
CN102180670A (zh) 铌酸钾钠锂-钛酸铋钠钾无铅压电陶瓷及其制备方法
CN102718482B (zh) 压电陶瓷材料及其制备方法、压电发电振子
CN107253859B (zh) 高发光热稳定性的Eu-Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180306

Termination date: 20210314