CN107244898A - 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法 - Google Patents

一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107244898A
CN107244898A CN201710445622.9A CN201710445622A CN107244898A CN 107244898 A CN107244898 A CN 107244898A CN 201710445622 A CN201710445622 A CN 201710445622A CN 107244898 A CN107244898 A CN 107244898A
Authority
CN
China
Prior art keywords
barium
piezoelectric ceramics
calcium zirconate
leadless piezoelectric
strontium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710445622.9A
Other languages
English (en)
Other versions
CN107244898B (zh
Inventor
杨祖培
陈晓芳
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710445622.9A priority Critical patent/CN107244898B/zh
Publication of CN107244898A publication Critical patent/CN107244898A/zh
Application granted granted Critical
Publication of CN107244898B publication Critical patent/CN107244898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法,该陶瓷材料的通式为(1‑x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3‑x(Ba0.3Sr0.7)TiO3,式中x表示(Ba0.3Sr0.7)TiO3的摩尔数,x的取值为0.05~0.20。本发明采用熔盐法,通过配料、球磨、预烧、洗盐、造粒、压片、烧结、抛光及烧银等工艺步骤,制备成介电性能优越、铁电性能良好、压电性能较高、储能性较好以及实用性强、纯度高、易于生产的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料,制备方法简单、重复性好、成品率高。

Description

一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制 备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料,以及该陶瓷材料的制备方法。
背景技术
压电陶瓷是一种可实现电能和机械能之间相互转化的高技术功能材料,在储能、通信、电子、军事和信息等领域已经得到广泛应用。锆钛酸铅(PZT)基压电陶瓷由于在准同型相界处具有优异的电学性能,过去一直被广泛使用。但是材料中高含量的氧化铅是一种有毒有害且在高温下易挥发的物质,在PZT基陶瓷的高温烧结过程中,大量铅的挥发势必造成环境的污染,直接危害人类的健康。近年来,随着人们环保意识的增强以及对无铅压电材料迫切的需求,无铅压电陶瓷的研究已成为一种迫切的研究热点。
锆钛酸钡钙基材料由于具有良好的压电性能在无铅压电陶瓷领域引起了人们的广泛关注。2009年,西安交通大学任小兵课题组用固相法制备出(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3无铅压电陶瓷,并采用组分变化和相图详细论证了准同型相界(MPB)对性能的影响。目前,锆钛酸钡钙材料的研究主要集中在探讨相结构、微观结构和电性能之间的的关系以及高压电性起源等方面,但是锆钛酸钡钙材料烧结温度高(1450~1500℃)一直是一个问题。
发明内容
本发明所要解决的技术问题在于提供一种介电性能优越、铁电性能良好、压电性能较高、储能性较好以及实用性强、重复性好、纯度高、易于生产的钛酸锶钡掺杂的锆钛酸钡钙陶瓷材料,并提供一种该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的通式为(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-x(Ba0.3Sr0.7)TiO3,式中x表示(Ba0.3Sr0.7)TiO3的摩尔数,x的取值为0.05~0.20,优选x的取值为0.15。
本发明钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的制备方法由下述步骤组成:
1、配料
按照(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-x(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3、CaCO3、ZrO2、TiO2和SrCO3,并向原料中加入NaCl与KCl摩尔比为1:1的熔盐,混合均匀,得到原料混合物,其中NaCl与KCl的总质量占原料混合物质量的20%~60%;将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~16小时,出料,在80~100℃下干燥12~24小时,用研钵研磨。
2、预烧
将步骤1研磨后的原料混合物置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,在1000~1150℃保温3~5小时进行预烧,预烧完后自然冷却至室温,用研钵研磨,过160目筛得到预烧粉。
3、洗盐
向预烧粉中加入沸腾的去离子水,搅拌、静置、沉淀、倒掉上清液;重复该过程,直至上清液中加入AgNO3水溶液后不出现白色沉淀为止,然后抽滤,滤饼在80~100℃干燥后,用研钵研磨,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过120目筛,制成球状粉粒;将球状粉粒用压片机压制成圆柱状坯件。
5、排胶
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温2小时,自然冷却到室温。
6、烧结
将步骤5中排胶以后的圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1340~1400℃,恒温烧结4~7小时,然后以2℃/分钟的降温速率降至室温。
7、抛光
将步骤6烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.4~0.6mm厚,用酒精擦拭干净;
8、烧银
在步骤7抛光后的陶瓷上下表面分别涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至常温,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
上述步骤1中,优选加入的NaCl与KCl的总质量占原料混合物质量的40%~50%。
上述步骤2中,优选在1100℃保温4小时进行预烧。
上述步骤6中,优选以3℃/分钟的升温速率升温至1360℃,恒温烧结6小时。
本发明陶瓷材料介电常数高、铁电性能优越、压电性能良好、实用性强并易于生产。实验结果表明,x取值为0.15时,该陶瓷材料介电性能优越,其室温介电常数可达3300,介电损耗为0.016,最大介电常数可到13985,居里温度为81℃;铁电性能良好,其剩余极化强度为9.3μC/cm2,矫顽场为2.45kV/cm;压电性能较高,压电常数为430pC/N、机电耦合系数为45%;储能性较好,储能密度为0.18J/cm3,储能效率为65%;并且烧结温度较低,为1360℃,是一种性能优良的无铅压电陶瓷材料。
本发明采用熔盐法制备钛酸锶钡掺杂的锆钛酸钡钙陶瓷材料,制备方法简单、重复性好、成品率高,不仅可以有效降低陶瓷材料的烧结温度,同时还能提高陶瓷材料的性能。
附图说明
图1是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的XRD图。
图2是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料在1KHz下的介电常数和介电损耗随温度的变化关系图。
图3是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的室温介电常数、室温介电损耗和居里温度随x取值的变化关系图。
图4是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的电滞回线图。
图5是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的剩余极化强度和矫顽场随x取值的的变化关系图。
图6是实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的压电常数和机电耦合系数随x取值的变化关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.95(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-0.05(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3(纯度99%)9.1870g、CaCO3(纯度99%)0.8073g、ZrO2(纯度99%)0.6626g、TiO2(纯度99.99%)4.0506g、SrCO3(纯度99%)0.2926g,并称取NaCl(纯度99%)6.5915g、KCl(纯度99%)8.4085g,将称好的所有物质混合均匀,得到原料混合物;将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,用球磨机以401转/分钟充分混合球磨16小时,出料,在80℃下干燥12小时,用研钵研磨,得到混合料。
2、预烧
将步骤1研磨后的原料混合物置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,置于电阻炉内,在1100℃保温4小时进行预烧,预烧完后自然冷却至室温,用研钵研磨,过160目筛得到预烧粉。
3、洗盐
将预烧粉置于烧杯中,加入沸腾的去离子水,搅拌、静置、沉淀、倒掉上清液,完成一次洗盐过程;不断重复该洗盐过程,直至上清液中加入AgNO3水溶液后不出现白色沉淀为止,最后用循环水式真空泵进行抽滤,滤饼置于干燥箱中80℃干燥后,用研钵研磨,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过120目筛,制成球状粉粒;将球状粉粒放入直径为11.5mm的不锈钢模具内,用60MPa的压力将其压制成圆柱状坯件。
5、排胶
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温2小时,自然冷却到室温。
6、烧结
将步骤5排胶后的圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1360℃,恒温烧结6小时,然后以2℃/分钟的降温速率降温至室温。
7、抛光
将步骤6烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.4~0.6mm厚,用酒精擦拭干净。
8、烧银
在步骤7抛光后的陶瓷上下表面分别涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至常温,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
实施例2
本实施例的配料步骤1中,按照0.90(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-0.10(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3(纯度99%)8.9213g、CaCO3(纯度99%)0.7684g、ZrO2(纯度99%)0.6306g、TiO2(纯度99.99%)4.0920g、SrCO3(纯度99%)0.5877g,并称取NaCl(纯度99%)6.5915g、KCl(纯度99%)8.4085g,其他步骤与实施例1相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
实施例3
本实施例的配料步骤1中,按照0.85(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-0.15(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3(纯度99%)8.6532g、CaCO3(纯度99%)0.7291g、ZrO2(纯度99%)0.5984g、TiO2(纯度99.99%)4.1337g、SrCO3(纯度99%)0.8856g,并称取NaCl(纯度99%)6.5915g、KCl(纯度99%)8.4085g,其他步骤与实施例1相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
实施例4
本实施例的配料步骤1中,按照0.80(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-0.20(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3(纯度99%)8.3824g、CaCO3(纯度99%)0.6894g、ZrO2(纯度99%)0.5658g、TiO2(纯度99.99%)4.1759g、SrCO3(纯度99%)1.1865g,并称取NaCl(纯度99%)6.5915g、KCl(纯度99%)8.4085g,其他步骤与实施例1相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
发明人对实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料进行了XRD表征和电学性能测试,结果见图1~6。由图1可见,实施例1~4制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料均为纯的钙钛矿相,无第二相存在;由图2~3可见,陶瓷材料的居里温度随着x的增大而降低,介电常数随着x的增大先增大后降低,而介电损耗却随着x的增大先降低后增大,在x取值为0.15时陶瓷材料的介电性能最好,其最大介电常数可达13985,室温介电常数可达3300,室温介电损耗为0.016,居里温度为81℃;由图4~6可见,实施例1~4制备的陶瓷材料均具有饱和的电滞回线,在x取值为0.15时,陶瓷材料的铁电和压电性能最好,剩余极化强度为9.3μC/cm2,矫顽场为2.45kV/cm,压电常数为430pC/N,机电耦合系数为45%,储能密度为0.18J/cm3,储能效率为65%,是一种性能优良的无铅压电陶瓷。
实施例5
本实施例的烧结步骤6中,将圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1340℃,恒温烧结6小时,然后以2℃/分钟的降温速率降温至室温。其他步骤与实施例3相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
实施例6
本实施例的烧结步骤6中,将圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1380℃,恒温烧结6小时,然后以2℃/分钟的降温速率降温至室温。其他步骤与实施例3相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
实施例7
本实施例的烧结步骤6中,将圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1400℃,恒温烧结6小时,然后以2℃/分钟的降温速率降温至室温。其他步骤与实施例3相同,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
发明人对实施例5~7制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的电学性能进行测试,结果见表1。
表1实施例5~7制备的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的电学性能
陶瓷材料 烧结温度 剩余极化强度 矫顽场 最大介电常数 室温介电常数
实施例5 1340℃ 6.47μC/cm2 2.35kV/cm 12213 3251
实施例6 1380℃ 7.69μC/cm2 2.46kV/cm 14100 3181
实施例7 1400℃ 7.48μC/cm2 2.99kV/cm 12273 2892

Claims (6)

1.一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料,其特征在于:该陶瓷材料的通式为(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-x(Ba0.3Sr0.7)TiO3,式中x表示(Ba0.3Sr0.7)TiO3的摩尔数,x的取值为0.05~0.20。
2.根据权利要求1所述的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料,其特征在于:所述x的取值为0.15。
3.一种权利要求1所述的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-x(Ba0.3Sr0.7)TiO3的化学计量,称取原料BaCO3、CaCO3、ZrO2、TiO2和SrCO3,并向原料中加入NaCl与KCl摩尔比为1:1的熔盐,混合均匀,得到原料混合物,其中NaCl与KCl的总质量占原料混合物质量的20%~60%;将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~16小时,出料,在80~100℃下干燥12~24小时,用研钵研磨;
(2)预烧
将步骤(1)研磨后的原料混合物置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,在1000~1150℃保温3~5小时进行预烧,预烧完后自然冷却至室温,用研钵研磨,过160目筛得到预烧粉;
(3)洗盐
向预烧粉中加入沸腾的去离子水,搅拌、静置、沉淀、倒掉上清液;重复该过程,直至上清液中加入AgNO3水溶液后不出现白色沉淀为止,然后抽滤,滤饼在80~100℃干燥后,用研钵研磨,过160目筛;
(4)造粒及压片
向步骤(3)过160目筛后的预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过120目筛,制成球状粉粒;将球状粉粒用压片机压制成圆柱状坯件;
(5)排胶
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温2小时,自然冷却到室温;
(6)烧结
将步骤(5)中排胶以后的圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1340~1400℃,恒温烧结4~7小时,然后以2℃/分钟的降温速率降至室温;
(7)抛光
将步骤(6)烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.4~0.6mm厚,用酒精擦拭干净;
(8)烧银
在步骤(7)抛光后的陶瓷上下表面分别涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至常温,制备成钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料。
4.根据权利要求3所述的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的制备方法,其特征在于:在步骤(1)中,所述NaCl与KCl的总质量占原料混合物质量的40%~50%。
5.根据权利要求3所述的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的制备方法,其特征在于:在步骤(2)中,1100℃保温4小时进行预烧。
6.根据权利要求3所述的钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料的制备方法,其特征在于:在步骤(6)中,以3℃/分钟的升温速率升温至1360℃,恒温烧结6小时。
CN201710445622.9A 2017-06-14 2017-06-14 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法 Active CN107244898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710445622.9A CN107244898B (zh) 2017-06-14 2017-06-14 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710445622.9A CN107244898B (zh) 2017-06-14 2017-06-14 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN107244898A true CN107244898A (zh) 2017-10-13
CN107244898B CN107244898B (zh) 2020-10-16

Family

ID=60018177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710445622.9A Active CN107244898B (zh) 2017-06-14 2017-06-14 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN107244898B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602114A (zh) * 2017-10-26 2018-01-19 贵州大学 一种锆钛酸钡钙bczt压电陶瓷及其织构化制备方法
CN109928422A (zh) * 2018-08-14 2019-06-25 华北理工大学 一种熔盐制备钛酸钾晶体的方法
CN111978081A (zh) * 2020-08-27 2020-11-24 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN112876240A (zh) * 2021-02-10 2021-06-01 同济大学 一种陶瓷材料及其制备方法和用途
CN113200744A (zh) * 2021-04-25 2021-08-03 湖南省美程陶瓷科技有限公司 一种无铅压电陶瓷传感器材料及其制备方法
CN114180958A (zh) * 2021-11-30 2022-03-15 景德镇陶瓷大学 一种高储能密度钛酸锶钡-钛酸铋钠基微晶玻璃复合陶瓷材料及其制备方法
CN114539988A (zh) * 2021-09-30 2022-05-27 华中科技大学 一种高性能钙基热载体的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648807A (zh) * 2009-09-14 2010-02-17 桂林理工大学 锆钛酸钡钙基压电陶瓷及其制备方法
CN103265288A (zh) * 2013-05-10 2013-08-28 伊犁师范学院 大介电常数压电陶瓷及其制备方法
CN105985111A (zh) * 2015-03-18 2016-10-05 Tdk株式会社 介电陶瓷组合物以及电子部件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648807A (zh) * 2009-09-14 2010-02-17 桂林理工大学 锆钛酸钡钙基压电陶瓷及其制备方法
CN103265288A (zh) * 2013-05-10 2013-08-28 伊犁师范学院 大介电常数压电陶瓷及其制备方法
CN105985111A (zh) * 2015-03-18 2016-10-05 Tdk株式会社 介电陶瓷组合物以及电子部件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANGFENG BAI 等: "Piezoelectric and Strain Properties of Strontium-Doped BZT-BCT Lead-Free Ceramics", 《KEY ENGINEERING MATERIALS》 *
余思源: "锆钛酸钡钙基无铅压电陶瓷的制备与电学性能的研究", 《中国学位论文全文数据库》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602114A (zh) * 2017-10-26 2018-01-19 贵州大学 一种锆钛酸钡钙bczt压电陶瓷及其织构化制备方法
CN107602114B (zh) * 2017-10-26 2022-05-20 贵州大学 一种锆钛酸钡钙bczt压电陶瓷及其织构化制备方法
CN109928422A (zh) * 2018-08-14 2019-06-25 华北理工大学 一种熔盐制备钛酸钾晶体的方法
CN111978081A (zh) * 2020-08-27 2020-11-24 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN111978081B (zh) * 2020-08-27 2022-05-20 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN112876240A (zh) * 2021-02-10 2021-06-01 同济大学 一种陶瓷材料及其制备方法和用途
CN113200744A (zh) * 2021-04-25 2021-08-03 湖南省美程陶瓷科技有限公司 一种无铅压电陶瓷传感器材料及其制备方法
CN114539988A (zh) * 2021-09-30 2022-05-27 华中科技大学 一种高性能钙基热载体的制备方法及其应用
CN114180958A (zh) * 2021-11-30 2022-03-15 景德镇陶瓷大学 一种高储能密度钛酸锶钡-钛酸铋钠基微晶玻璃复合陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN107244898B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN107244898A (zh) 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN103482977A (zh) 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN108147813A (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN106938929B (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN101429027A (zh) 一种铌酸钾钠基无铅压电陶瓷及其低温烧结制备方法
CN102674832A (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN104591729B (zh) 一种采用磁控溅射法制备pbz薄膜用的pbz靶材的制备方法
CN106064942A (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN110156459A (zh) 一种基于BiAlO3掺杂BaTiO3无铅压电陶瓷储能电容器的制备方法
CN102976748A (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN105036736A (zh) 一种钛酸铋钠基无铅电致伸缩陶瓷材料及其制备方法
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN107140975A (zh) 钛酸铋钠基铁电陶瓷及其制备方法与应用
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN107244912A (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN109251030A (zh) 一种高光学温度传感特性的钬掺杂铌酸钾钠-钛酸锶透明陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant