CN107244912A - 一种新型bczt基储能陶瓷材料及其制备方法和应用 - Google Patents

一种新型bczt基储能陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN107244912A
CN107244912A CN201710419980.2A CN201710419980A CN107244912A CN 107244912 A CN107244912 A CN 107244912A CN 201710419980 A CN201710419980 A CN 201710419980A CN 107244912 A CN107244912 A CN 107244912A
Authority
CN
China
Prior art keywords
energy storage
bczt
ceramic material
storage ceramic
bases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710419980.2A
Other languages
English (en)
Other versions
CN107244912B (zh
Inventor
董显林
周明星
梁瑞虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201710419980.2A priority Critical patent/CN107244912B/zh
Publication of CN107244912A publication Critical patent/CN107244912A/zh
Application granted granted Critical
Publication of CN107244912B publication Critical patent/CN107244912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • H01G4/1263Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种新型BCZT基储能陶瓷材料及其制备方法和应用,所述BCZT基储能陶瓷材料的组成通式为:(Ba0.85Ca0.15)(Zr0.10Ti0.90)1‑x (Ni y Nb z ) x O3,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0。本发明的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1‑x (Ni y Nb z ) x O3具有高储能密度,同时还具有低介电损耗、介电常数适中、击穿强度大、温度和频率稳定性好等特点。

Description

一种新型BCZT基储能陶瓷材料及其制备方法和应用
技术领域
本发明属于功能陶瓷领域,具体涉及一种以BCZT陶瓷为基体的具有高储能密度、低介电损耗、介电常数适中、击穿强度大、温度和频率稳定性好的储能陶瓷及其制备方法,该储能陶瓷可用于储能电容器。
背景技术
高储能密度陶瓷是制作小型、大容量电容器的关键材料,由于其具有充放电速度快、抗循环老化能力强、高温和高压等极端条件下性能稳定等优点,在电动汽车、高功率电子器件、脉冲功率电源、新能源及智能电网系统等基础科研和工程技术领域均有着广阔的应用前景。
储能介质陶瓷材料主要有线性陶瓷、铁电陶瓷和反铁电陶瓷三类。线性陶瓷介电常数几乎不随电场变化,具有低场下线性可逆、可重复多次充放电、击穿强度大等优点,但由于其介电常数较小,其储能密度在安全电场范围内只有0.01J/cm3数量级。铁电陶瓷具有自发极化,在无外加电场时具有很高的介电常数,而在电场作用下,铁电陶瓷介电常数随电场增加而降低,并且其击穿场强通常不高,导致陶瓷在高场下储能密度并不大,一般不超过0.2J/cm3,并且铁电陶瓷的介质损耗较大,温度和频率的稳定性较差,也制约了铁电陶瓷储能器的发展。反铁电体在中低电场就能达到较高储能密度,但是反铁电-铁电相变引起的体积膨胀非常大,引起陶瓷开裂。
Fletcher等人通过理论计算得出:将铁电陶瓷的居里温度调控到室温以下,可以大大提高陶瓷的储能密度(Journal of Physics D:Applied Physics,1996,29(1):253.)。因此可以将(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3陶瓷的居里温度调控到室温以下,从而提高(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3的储能密度和储能效率。
(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3(BCZT)由于其较高的d33一直备受人们关注,而其在储能方面的研究较少,由于BCZT在室温下为铁电相,介质损耗大,介电常数随电场增加而下降,因此其储能密度仅为0.20~0.30J/cm3,且储能效率低于75%。
发明内容
针对现有技术的以上问题,本发明的目的在于提高一种具有高储能密度、低介电损耗、介电常数适中、击穿强度大、温度和频率稳定性好的储能陶瓷及其制备方法。
在此,本发明提供一种BCZT基储能陶瓷材料,所述BCZT基储能陶瓷材料的组成通式为:(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0,以上均为摩尔数。
本发明通过对(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3陶瓷添加(NiyNbz)4+掺杂改性,调控其居里温度,使其在室温下呈现顺电相,获得了具有储能密度高,介电常数适中,击穿强度大,介质损耗小,温度和频率稳定性好等特点的储能陶瓷,具有良好的应用前景。
本发明中,所述BCZT基储能陶瓷材料在20kV/mm的工作电场下,能释放的储能密度为0.66J/cm3以上,储能效率为88.1%以上。
本发明中,所述BCZT基储能陶瓷材料在室温下为顺电相。
本发明还提供一种上述BCZT基储能陶瓷材料的制备方法,所述方法包括:
采用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体,其中,0.1≤x≤0.8,0<y≤1.0,<z≤1.0;
将所述(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体细磨后添加粘结剂造粒,压制成型得到素坯;
于700℃~900℃排除素坯中的有机物质,得到生料坯体;
将所述生料坯体于1350℃~1600℃烧结,得到所述BCZT基储能陶瓷材料。
本发明中,将(NiyNbz)4+适量掺入(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3中,在一定温度下烧结致密得到(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3储能陶瓷材料。采用传统固相烧结法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体,简单易行,且烧结温度低,适合工业化大规模生产。通过掺入(NiyNbz)4+,能够调控(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3居里温度至室温以下,使其在室温下呈现顺电相,从而提高BCZT的储能密度和储能效率,因此,本发明的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3具有高储能密度(储能效率为88.1%以上),同时还具有低介电损耗、介电常数适中、击穿强度大、温度和频率稳定性好的特点。本发明的储能陶瓷可用于储能多层陶瓷电容器的制造,并且,拓展了锆钛酸钡钙基(BCZT)陶瓷材料在储能方面的应用领域,有利于促进高储能密度陶瓷技术的应用与发展,具有良好的应用前景。此外,本发明的方法制备工艺简单,烧结温度较低,成本低廉,可重复性好。
较佳地,采用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体包括:将原料BaCO3、CaCO3、ZrO2、TiO2、Ni2O3和Nb2O5按照化学计量比配料,研磨、烘干后于1200℃~1300℃保温2~4小时,得到钙钛矿结构的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体。
较佳地,所述粘结剂为聚乙烯醇,所述粘结剂添加量为(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体质量的3%~8%。
较佳地,排除素坯中的有机物质时,于700℃~900℃保温1~3小时。
较佳地,所述烧结的时间为2~6小时。
较佳地,所述烧结的升温速率为2~5℃/分钟。
本发明还提供一种上述BCZT基储能陶瓷材料的应用,包括:
将所述BCZT基储能陶瓷材料加工成所需尺寸,表面被覆电极后得到储能陶瓷元件。
具体地,作为一个示例,所述表面被覆电极例如包括丝网印银,烘干,烧银等。
附图说明
图1中的(a)、(b)是本发明实施例1~4的XRD衍射图;
图2(a)是本发明实施例1的表面SEM图;图2(b)是本发明实施例2的表面SEM图;
图2(c)是本发明实施例3的表面SEM图;图2(d)是本发明实施例4的表面SEM图;
图3(a)是本发明实施例1~4的介电常数随温度变化图;图3(b)是本发明实施例1~4的介电损耗随温度变化图;
图4(a)是本发明实施例1~4的介电常数随频率变化图;图4(b)是本发明实施例1~4的介电损耗随频率变化图;
图5是本发明实施例1~4的电滞回线图;
图6是本发明实施例1~4不同电场下的储能密度及储能效率图;
图7是本发明实施例1~4的击穿强度韦布尔分布图。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明涉及一种具有储能密度高、介电常数适中、击穿强度大、介质损耗小、温度和频率稳定性好等特点的BCZT基储能陶瓷及其制备方法。本发明中,利用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0,经造粒、压制成型、排塑后,在一定温度下烧结致密,得到(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3储能陶瓷材料。本发明的储能陶瓷可用于储能电容器,例如储能多层陶瓷电容器的制造,并且,拓展了锆钛酸钡钙基(BCZT)陶瓷材料在储能方面的应用领域,有利于促进高储能密度陶瓷技术的应用与发展,具有良好的应用前景。此外,本发明的方法制备工艺简单,烧结温度较低,成本低廉,可重复性好。
本发明的BCZT基储能陶瓷材料可采用BaCO3、CaCO3、ZrO2、TiO2、Ni2O3、Nb2O5为起始原料。作为一个示例,例如可以采用纯度在99.0%以上的BaCO3、CaCO3、ZrO2、TiO2、Ni2O3、Nb2O5
以下,具体说明本发明的制备BCZT基储能陶瓷的方法。
首先,采用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0。本发明采用传统固相烧结法,具有简单易行、烧结温度低、适合工业化大规模生产等优点。
具体地,固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体可以包括:将原料BaCO3、CaCO3、ZrO2、TiO2、Ni2O3和Nb2O5按照化学计量比配料,经研磨、烘干后,于1200℃~1300℃保温2~4小时,合成钙钛矿结构的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体。本发明研磨方法没有特别限定,可采用已知的研磨方法,例如湿式球磨法等。在采用湿式球磨法的情况下,料:球:水的质量比(0.8~1.0):(1.0~1.5):(0.8~1.5),为混合时间可以为24~48小时。
接着,将合成好的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3粉体,细磨后添加粘结剂造粒,压制成型得到素坯。上述细磨可以亦可采用湿式球磨法等进行。该情况下,可按照陶瓷粉体:球:去离子水=1:(1.6~2):(0.5~0.9)的质量比细磨,细磨时可以为24~48小时,磨球例如可以采用铁球、玛瑙球或氧化锆球等。
上述添加的粘结剂可采用聚乙烯醇(PVA),粘结剂的添加量为陶瓷粉体质量的3%~8%。上述压制成型的压力可以为150~200MPa。
接着,将素坯进行排塑,即在一定温度下排除素坯中的有机物质。具体地,排塑的温度可以为700℃~900℃,保温时间可以为1~3小时。排塑的升温速率可以为1~5℃/分钟。
接着,将排塑后的素坯放在一定温度下烧结。具体地,烧结过程中,可以在空气中烧结,烧结温度可以为1350℃~1600℃,保温时间可以为2~6h。本发明中,烧结的升温速率可以为2~5℃/分钟。
由此,得到组成通式为(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3的BCZT基储能陶瓷材料,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0。本发明的BCZT基储能陶瓷材料储能密度高,介电常数适中,击穿强度大,介质损耗小,温度和频率稳定性好。通过掺入(NiyNbz)4+,能够调控(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3居里温度至室温以下,使其在室温下呈现顺电相,从而提高BCZT的储能密度和储能效率。本发明的储能陶瓷材料在20kV/mm的工作电场下,能释放的储能密度可达0.66J/cm3以上,储能效率可达88.1%以上。
本发明的优点:
通过掺入(NiyNbz)4+,能够调控(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3居里温度至室温以下,使其在室温下呈现顺电相,从而提高BCZT的储能密度和储能效率,因此,本发明的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(NiyNbz)xO3具有高储能密度(储能效率为88.1%以上),同时还具有低介电损耗、介电常数适中、击穿强度大、温度和频率稳定性好的特点;
本发明的储能陶瓷可用于储能多层陶瓷电容器的制造,并且,拓展了锆钛酸钡钙基(BCZT)陶瓷材料在储能方面的应用领域,有利于促进高储能密度陶瓷技术的应用与发展,具有良好的应用前景;
本发明的方法制备工艺简单,烧结温度较低,成本低廉,可重复性好。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
储能陶瓷材料组成为:
(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.9(Ni1/3Nb2/3)0.1O3(x=0.1,y=1/3,z=2/3)
(1)按上述化学式组成计算所需BaCaO3、CaCO3、ZrO2、TiO2、Ni2O3和Nb2O5质量,采用湿式球磨法混料,按照原料:球:去离子水=1:1.2:1.5的质量比混合24小时,使各组分混合均匀。烘干后过40目筛,在空气气氛下压块,以2℃/min的升温速度升至1250℃,保温2小时,合成组成为(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.9(Ni1/3Nb2/3)0.1O3(x=0.1,y=1/3,z=2/3)的粉体;
(2)将步骤(1)中合成好的粉体中。按照料:球:去离子水=1:2:0.8的比例湿法细磨48小时后出料烘干,过40目筛,添加5wt%PVA进行造粒,干压成型为直径13mm,厚度约为2mm的坯体;
(3)将步骤(2)得到的坯体在800℃保温2小时,排除素坯中的有机物质,排塑升温速率为2℃/min,排塑得到生料坯体;
(4)将步骤(3)得到的生料坯体放入马弗炉中经过1400℃保温2小时得到(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.9(Ni1/3Nb2/3)0.1O3(x=0.1,y=1/3,z=2/3)储能陶瓷,升温速率为2℃/min;
(5)将步骤(4)得到的陶瓷进行XRD测试,测试结果见图1(图1中的(a)、(b));
(6)对陶瓷样品进行了表面SEM观测,图2(a)给出了本实施例陶瓷样品的表面形貌结构图;
(7)将烧结好的陶瓷材料双面磨平至厚度为0.5mm、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银,烧银条件为750℃保温30min。得到覆有电极的陶瓷样品;
(8)对陶瓷样品进行了介电温谱和介电频谱的观测,测试结果见图3(图3(a)、图3(b))、图4(图4(a)、图4(b));
(9)对本实施例陶瓷样品进行了室温下电滞回线测量及不同电场下储能密度及储能效率的测试,测试结果见图5、图6;
(10)对本实施例陶瓷样品进行击穿强度测试,测试样品数为10个,测试结果见图7。
实施例2:
储能陶瓷材料组成为:
(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.8(Ni1/3Nb2/3)0.2O3(x=0.2,y=1/3,z=2/3)
(1)按上述配方重复实施例1的制备方法得到本实施例;
(2)对本实施例进行XRD测试,测试结果见图1;
(3)对本实施例进行表面SEM观测,图2(b)给出了本实施例陶瓷样品的表面形貌结构图2;
(4)对陶瓷样品进行了介电温谱和介电频谱的观测,测试结果见图3、图4;
(5)对本实施例陶瓷样品进行了室温下电滞回线测量,测试结果见图5;
(6)对本实施例陶瓷样品进行不同电场下储能密度及储能效率的测试,测试结果见图6;
(7)对本实施例陶瓷样品进行击穿强度测试,测试样品数为10个,测试结果见图7。
实施例3:
储能陶瓷材料组成为:
(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.7(Ni1/3Nb2/3)0.3O3(x=0.3,y=1/3,z=2/3)
(1)按上述配方重复实施例1的制备方法得到本实施例;
(2)对本实施例进行XRD测试,测试结果见图1;
(3)对本实施例进行表面SEM观测,图2(c)给出了本实施例陶瓷样品的表面形貌结构图2;
(4)对陶瓷样品进行了介电温谱和介电频谱的观测,测试结果见图3、图4;
(5)对本实施例陶瓷样品进行了室温下电滞回线测量,测试结果见图5;
(6)对本实施例陶瓷样品进行不同电场下储能密度及储能效率的测试,测试结果见图6;
(7)对本实施例陶瓷样品进行击穿强度测试,测试样品数为10个,测试结果见图7。
实施例4:
储能陶瓷材料组成为:
(Ba0.85Ca0.15)(Zr0.10Ti0.90)0.6(Ni1/3Nb2/3)0.4O3(x=0.4,y=1/3,z=2/3)
(1)按上述配方重复实施例1的制备方法得到本实施例;
(2)对本实施例进行XRD测试,测试结果见图1;
(3)对本实施例进行表面SEM观测,图2(d)给出了本实施例陶瓷样品的表面形貌结构图2;
(4)对陶瓷样品进行了介电温谱和介电频谱的观测,测试结果见图3、图4;
(5)对本实施例陶瓷样品进行了室温下电滞回线测量,测试结果见图5;
(6)对本实施例陶瓷样品进行不同电场下储能密度及储能效率的测试,测试结果见图6;
(7)对本实施例陶瓷样品进行击穿强度测试,测试样品数为10个,测试结果见图7。
从图1可以看出,(NiyNbz)4+掺入(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3晶格中,晶体结构为赝立方晶系,并没有出现第二相,随着(NiyNbz)4+的不断掺入,衍射峰向高角度移动。
图2是对实施例1~4的陶瓷的表面形貌进行观察,从图2可以看出,实施例1~4晶粒发育良好,晶界都清晰可见,且气孔较少,陶瓷致密度高。
实施例1~4的介电常数和介电损耗在不同温度下的测试结果如图3,从图3可以看出实施例1~4的介电常数变现出了良好的温度稳定性,室温条件下,实施例1~4的介电常数和介电损耗分别为141,0.051%;225,0.042%;432,0.034%;1445,0.086%。从图3可以看出实施例1~4的介质损耗随温度的变化基本保持不变。
实施例1~4的介电常数和介电损耗在不同频率下的测试结果如图4所示,从图4可以看出实施例1~4的介电常数和介电损耗表现出了极好的频率稳定性。
实施例1~4的电滞回线如图5所示,图6是实施例1~4在不同电场条件下的储能密度和储能效率。从图6可以看出实施例1~4的储能密度随着电场的增加而不断增加,储能效率随着电场的增加而下降,同一电场条件下,实施例1~4的储能密度随着(Ni1/3Nb2/3)4+浓度的增加而增加,但是储能效率随着(Ni1/3Nb2/3)4+浓度的增加而下降。实施例4在E=20kV/mm时,得到的储能密度最大(0.66J/cm3),并且储能效率较高(88.1%)。
图7是对实施例1~4击穿数据进行韦布尔分布处理和线性模拟的结果,实施例1~4的介电击穿强度分别为37kV/mm,33kV/mm,27kV/mm,19kV/mm。

Claims (9)

1.一种BCZT基储能陶瓷材料,其特征在于,所述BCZT基储能陶瓷材料的组成通式为:(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0。
2.根据权利要求1所述的BCZT基储能陶瓷材料,其特征在于,所述BCZT基储能陶瓷材料在20kV/mm 的工作电场下,能释放的储能密度为0.66J/cm3以上,储能效率为88.1%以上。
3.根据权利要求1或2所述的BCZT基储能陶瓷材料,其特征在于,所述BCZT基储能陶瓷材料在室温下为顺电相。
4.一种权利要求1至3中任一项所述的BCZT基储能陶瓷材料的制备方法,其特征在于,包括:
采用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3粉体,其中,0.1≤x≤0.8,0<y≤1.0,0<z≤1.0;
将所述(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3粉体细磨后添加粘结剂造粒,压制成型得到素坯;
于700℃~900℃排除素坯中的有机物质,得到生料坯体;
将所述生料坯体于1350℃~1600℃烧结,得到所述BCZT基储能陶瓷材料。
5.根据权利要求4所述的制备方法,其特征在于,采用固相法合成(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3粉体包括:将原料BaCO3、CaCO3、ZrO2、TiO2、Ni2O3和Nb2O5按照化学计量比配料,研磨、烘干后于1200℃~1300℃保温2~4小时,得到钙钛矿结构的(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3粉体。
6.根据权利要求4或5所述的制备方法,其特征在于,所述粘结剂为聚乙烯醇,所述粘结剂添加量为(Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x (Ni y Nb z ) x O3粉体质量的3%~8%。
7.根据权利要求4至6中任一项所述的制备方法,其特征在于,排除素坯中的有机物质时,于700℃~900℃保温1~3小时。
8.根据权利要求4至7中任一项所述的制备方法,其特征在于,所述烧结的时间为2~6小时。
9.一种权利要求1-3中任一项所述的BCZT基储能陶瓷材料的应用,其特征在于,包括:
将所述BCZT基储能陶瓷材料加工成所需尺寸,表面被覆电极后得到储能陶瓷元件。
CN201710419980.2A 2017-06-06 2017-06-06 一种新型bczt基储能陶瓷材料及其制备方法和应用 Active CN107244912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710419980.2A CN107244912B (zh) 2017-06-06 2017-06-06 一种新型bczt基储能陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710419980.2A CN107244912B (zh) 2017-06-06 2017-06-06 一种新型bczt基储能陶瓷材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107244912A true CN107244912A (zh) 2017-10-13
CN107244912B CN107244912B (zh) 2020-07-14

Family

ID=60017929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710419980.2A Active CN107244912B (zh) 2017-06-06 2017-06-06 一种新型bczt基储能陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107244912B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056068A (zh) * 2018-08-24 2018-12-21 西安交通大学 一种bct/bzt体系无铅单晶外延多层储能薄膜及其制备方法
CN109231977A (zh) * 2018-11-02 2019-01-18 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN111978081A (zh) * 2020-08-27 2020-11-24 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN114316921A (zh) * 2022-01-05 2022-04-12 中国科学院工程热物理研究所 一种钙基储能材料、制备方法及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952134A1 (de) * 1999-10-29 2001-05-03 Philips Corp Intellectual Pty Kondensator mit BCZT-Dielektrikum
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952134A1 (de) * 1999-10-29 2001-05-03 Philips Corp Intellectual Pty Kondensator mit BCZT-Dielektrikum
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEWANG YUAN等: "Structures and Properties of Pb(Zr0.5Ti0.5)O3−Pb(Zn1/3Nb2/3)O3−Pb(Ni1/3Nb2/3)O3 Ceramics for Energy Harvesting Devices", 《J. AM. CERAM. SOC.》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056068A (zh) * 2018-08-24 2018-12-21 西安交通大学 一种bct/bzt体系无铅单晶外延多层储能薄膜及其制备方法
CN109231977A (zh) * 2018-11-02 2019-01-18 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN109231977B (zh) * 2018-11-02 2021-01-12 中国科学院上海硅酸盐研究所 一种高温稳定介质陶瓷材料及其制备方法
CN111978081A (zh) * 2020-08-27 2020-11-24 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN111978081B (zh) * 2020-08-27 2022-05-20 西安工业大学 一种bczt基储能陶瓷材料及其制备方法
CN114316921A (zh) * 2022-01-05 2022-04-12 中国科学院工程热物理研究所 一种钙基储能材料、制备方法及其用途
CN114316921B (zh) * 2022-01-05 2024-04-26 中国科学院工程热物理研究所 一种钙基储能材料、制备方法及其用途

Also Published As

Publication number Publication date
CN107244912B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN107244912A (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN109650885A (zh) 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN106810235A (zh) 铁酸铋‑钛酸铅‑钛酸钡三元体系高温压电陶瓷及其制备方法
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN114085079A (zh) 一种高储能的非等摩尔比高熵钙钛矿氧化物陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
Jovalekic et al. A study of ferroelectric properties of Bi4Ti3O12 ceramics prepared from chemically derived powders
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
CN103693958A (zh) 一种用于储能电容器的反铁电陶瓷材料及其制备方法和应用
CN106565234A (zh) 一种超高介电常数介电材料及其制备方法
CN110282970A (zh) 一种二氧化锡掺杂钛酸钡基高储能密度陶瓷材料及其制备方法
CN105384436B (zh) 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法
CN114804870A (zh) 一种无铅反铁电高储能密度陶瓷材料及其制备方法
CN102584230B (zh) 一种高压电系数、高电致应变低温烧结的压电陶瓷材料及其制备方法
CN107488032A (zh) 一种锰掺杂bnt‑ba无铅铁电陶瓷材料及其制备方法
CN105218088B (zh) 一种非化学计量钛酸锶钡基电介质瓷料及制备方法
CN108516827A (zh) 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法
CN117303898B (zh) 一种高熵介质陶瓷及其制备方法
CN113292340B (zh) 一种高压电性低损耗施主受主共掺杂压电陶瓷、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant