CN114804870A - 一种无铅反铁电高储能密度陶瓷材料及其制备方法 - Google Patents

一种无铅反铁电高储能密度陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114804870A
CN114804870A CN202210536338.3A CN202210536338A CN114804870A CN 114804870 A CN114804870 A CN 114804870A CN 202210536338 A CN202210536338 A CN 202210536338A CN 114804870 A CN114804870 A CN 114804870A
Authority
CN
China
Prior art keywords
ceramic
lead
powder
energy storage
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210536338.3A
Other languages
English (en)
Other versions
CN114804870B (zh
Inventor
陈骏
祁核
陈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Original Assignee
Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute For Advanced Material University Of Science & Technology Beijing filed Critical Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Priority to CN202210536338.3A priority Critical patent/CN114804870B/zh
Publication of CN114804870A publication Critical patent/CN114804870A/zh
Application granted granted Critical
Publication of CN114804870B publication Critical patent/CN114804870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3253Substoichiometric niobium or tantalum oxides, e.g. NbO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种无铅反铁电高储能密度陶瓷材料及其制备方法,所述无铅反铁电高储能密度陶瓷材料的化学通式为(1‑x)(Na0.5Ag0.5)1‑ 3yMyNbO3‑xABO3,其中0<x≤0.3,0<y≤0.15;所述ABO3选自BiFeO3、NaTaO3和AgTaO3中的一种;所述的通式中的M选自Bi、La、Ce三价金属的氧化物中的一种或多种,当为多种时,其摩尔分数之和为1;通过结合NaNbO3和AgNbO3这两种无铅反铁电体的优势,构建了(Na0.5Ag0.5)NbO3基体,并且通过高价元素替代A位抑制Ag还原,当向(Na0.5Ag0.5)NbO3中加入其它钙钛矿组成,可以获得稳定的且可逆的反铁电相结构,最终获得高的储能密度,使其能够满足无铅储能电容器中的实际应用需求。

Description

一种无铅反铁电高储能密度陶瓷材料及其制备方法
技术领域
本发明涉及电介质储能陶瓷材料技术领域,具体涉及一种无铅反铁电高储能密度陶瓷材料及其制备方法。
背景技术
当前随着人们日益增长的能源需求,石油等化石燃料不可再生能源被持续不断的消耗,这将使得人类要面临着巨大的能源危机。因此,提高能源利用率和开发新能源已成为世界各国共同关注的问题,同时有些国家把其提升到国家未来生存和发展的重要战略层面。电能的开发和利用已成为缓解当前能源危机的重要途径,寻找电能储存的新材料和新工艺是及其必要的。电介质电容器因具有充放电速度快、寿命时间长等优点,因此,使得它们能满足于不同方面的应用需求。随着科技的发展,在某些方面应用中如脉冲系统等对储能材料提出了新的要求,即具有电容器的优点同时具有高的能量存储密度。通过对电容器及其材料的改性,获得同时具有高能量和功率密度的材料,已成为当前研究的主要方向和热点。目前,用于制备电容器的高储能密度电介质材料的研究主要集中在聚合物、聚合物-陶瓷复合材料以及陶瓷三大类。其中,陶瓷材料具有介电常数高、可调性好、热稳定性好、储能密度高及低的能量损耗等优点,而被广泛应用于储能器件中。
关于储能陶瓷介质材料,其主要可分为线性陶瓷介质、铁电体陶瓷介质和反铁电体陶瓷介质三大类。其中反铁电材料,由于其具有高的饱和极化强度以及低的剩余极化而具有潜力获得高的储能特性,但是大多数的反铁电材料含有对环境以及人体有害的Pb元素,如PbZrO3反铁电材料体系。NaNbO3陶瓷在室温下具有反铁电结构,但纯NaNbO3在施加第一周期电场之后即转变为铁电相。而且除了室温下的反铁电相,其在360℃至480℃之间还存在另外一个反铁电正交相。AgNbO3虽然具有可逆的反铁电特征且具有优异储能性能,但银在烧结过程中易还原且价格昂贵限制了其使用。
发明内容
本发明的目的是针对以上问题,提供一种无铅反铁电高储能密度陶瓷材料及其制备方法,通过结合NaNbO3和AgNbO3这两种无铅反铁电体的优势,构建了(Na0.5Ag0.5)NbO3基体,并且通过高价元素替代A位抑制Ag还原,当向(Na0.5Ag0.5)NbO3中加入其它钙钛矿组成,可以获得稳定的且可逆的反铁电相结构,最终获得高的储能密度,使其能够满足无铅储能电容器中的实际应用需求。
为了实现上述目的,本发明采取的技术方案为:一种无铅反铁电高储能密度陶瓷材料,其化学通式为(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3,其中0<x≤0.3,0<y≤0.15;所述ABO3选自BiFeO3、NaTaO3和AgTaO3中的一种;所述的通式中的M选自Bi、La、Ce三价金属的氧化物中的一种或多种,当为多种时,其摩尔分数之和为1。
为解决上述问题,本发明还提供了一种上述无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将原料按照通式(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3所示化学组成的化学计量比称量化学纯或分析纯的碳酸盐或金属氧化物进行配料;
b、将步骤a配好的原料以酒精或者水为介质,经4-12小时的球磨混料,湿粉经烘干后得到混合粉料;
c、将所述混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为850-1000℃,保温2-4小时,煅烧过程中使用氧气气氛;重复步骤b和c至少一次,完成预煅烧合成预合成粉体;
d、将步骤c得到的预合成粉体经过研碎后仍以酒精或者水为介质球磨6-24小时,干燥后的粉体过100-130目筛后在50-200MPa的压力下制成所需形状的陶瓷坯体;
e、将步骤d得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1100-1250℃,烧结时间为1-4小时,升温速率为1-3℃/min,得到陶瓷样品;
f、将步骤e得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
与现有技术相比,本发明具有以下特点以及有益效果:
1、本发明的陶瓷组成同时具有高储能密度和高储能效率,可采用传统压电陶瓷的制备技术和工业用原料获得,具有实用性,其中储能密度大于7J/cm3,储能效率大于78%。
2、本发明的无铅反铁电陶瓷银含量较低,成本较低,且通过A位缺位的方法抑制银还原,工艺重复性好,性能稳定性好。
3、制备的无铅反铁电高储能陶瓷的结构为纯钙钛矿结构,无其他任何杂相,提高了该高储能陶瓷的结构稳定性及可重复使用性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例中0.98(Na0.5Ag0.5)0.7Bi0.1NbO3-0.02NaTaO3陶瓷在不同频率下无铅反铁电高储能密度陶瓷的温度-介电性能;
图2为本发明实施例中0.98(Na0.5Ag0.5)0.7Bi0.1NbO3-0.02NaTaO3陶瓷在室温下的X射线衍射图谱;
图3为本发明实施例中0.98(Na0.5Ag0.5)0.7Bi0.1NbO3-0.02NaTaO3陶瓷的电滞回线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将接合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种无铅反铁电高储能密度陶瓷材料,其化学通式为(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3,其中0<x≤0.3,0<y≤0.15;所述ABO3选自BiFeO3、NaTaO3和AgTaO3中的一种;所述的通式中的M选自Bi、La、Ce三价金属的氧化物中的一种或多种,当为多种时,其摩尔分数之和为1。通过结合NaNbO3和AgNbO3这两种无铅反铁电体的优势,构建了(Na0.5Ag0.5)NbO3基体,并且通过高价元素替代A位抑制Ag还原,当向(Na0.5Ag0.5)NbO3中加入其它钙钛矿组成,可以获得稳定的且可逆的反铁电相结构,最终获得高的储能密度,使其能够满足无铅储能电容器中的实际应用需求。
本发明还提供了一种上述无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将原料按照通式(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3所示化学组成的化学计量比称量化学纯或分析纯的碳酸盐或金属氧化物进行配料;
b、将步骤a配好的原料以酒精或者水为介质,经4-12小时的球磨混料,湿粉经烘干后得到混合粉料;
c、将所述混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为850-1000℃,保温2-4小时,煅烧过程中使用氧气气氛;重复步骤b和c至少一次,完成预煅烧合成预合成粉体;
d、将步骤c得到的预合成粉体经过研碎后仍以酒精或者水为介质球磨6-24小时,干燥后的粉体过100-130目筛后在50-200MPa的压力下制成所需形状的陶瓷坯体;本发明中的陶瓷坯体形状为直径10mm、厚度0.5-2mm的圆片;
e、将步骤d得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1100-1250℃,烧结时间为1-4小时,升温速率为1-3℃/min,得到陶瓷样品;
f、将步骤e得到的陶瓷样品经过抛光处理后在两端面涂上银电极。涂敷银电极为现有的常规工艺,如将烧结后的陶瓷胚体双面用丝网刷上银浆后,在700-800℃条件下烧渗银电极,得到成品。
通过上述方法所制备的高储能密度陶瓷为纯钙钛矿结构,可以使得本发明的陶瓷组成同时具有高储能密度和高储能效率,可采用传统压电陶瓷的制备技术和工业用原料获得,具有实用性,其中储能密度大于7J/cm3,储能效率大于78%;其次,本发明的无铅反铁电陶瓷银含量较低,成本较低,且通过A位缺位的方法抑制银还原,工艺重复性好,性能稳定性好;制备的无铅反铁电高储能陶瓷的结构为纯钙钛矿结构,无其他任何杂相,提高了该高储能陶瓷的结构稳定性及可重复使用性。
实施例1
本实施例提供的无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将分析纯的Na2CO3、Nb2O5、Ag2O、Bi2O3、Ta2O5,按按化学式0.98(Na0.5Ag0.5)0.7Bi0.1NbO3-0.02NaTaO3中的化学计量比称取上述各原料后混合,得混合物;
b、将上述配好的原料以酒精为介质,经6小时的球磨混料;湿粉经烘干后得到混合粉料;
c、将得到的混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为850℃,氧气气氛保温4小时;重复步骤b和c一次,完成预煅烧合成;
d、将得到的预合成粉体经过研碎后仍以酒精为介质球磨12小时,干燥后的粉体过100目筛后在100MPa的压力下冷压成型直径10mm、厚度1mm的圆片,得到陶瓷坯体;
e、将得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,并置于倒放的双坩埚中,即将陶瓷坯体和粉末放置于双坩埚叠置所形成的空间内,烧结温度为1200℃,烧结时间为2小时、升温速率为3℃/min,得到陶瓷样品;
f、将得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
由此得到0.98(Na0.5Ag0.5)0.7Bi0.1NbO3-0.02NaTaO3的无铅陶瓷。图1为不同频率下无铅反铁电高储能密度陶瓷的温度-介电性能;采用X-射线衍射分析仪(XRD)来确定预烧粉体和陶瓷样品的晶体结构和相结构;采用铁电分析仪测试陶瓷及玻璃陶瓷样品的电滞回线。高压测试时,将样品放在硅油中,防止表面放电。性能如下:在150℃以内,其相对介电常数为620,且不同频率下介电常数相差不大;该成分样品的XRD图谱显示为纯钙钛矿结构;通过电滞回线算得储能性能为7.5J/cm3,储能效率80%。
实施例2
本实施例提供的无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将分析纯的Na2CO3、Nb2O5、Ag2O、La2O3、Bi2O3、Ta2O5、Fe2O3按按化学式0.9(Na0.5Ag0.5)0.97La0.01NbO3-0.1BiFeO3中的化学计量比称取上述各原料后混合,得混合物;
b、将上述配好的原料以酒精为介质,经6小时的球磨混料;湿粉经烘干后得到混合粉料;
c、将得到的混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为900℃,氧气气氛保温4小时;重复步骤b和c两次,完成预煅烧合成;
d、将得到的预合成粉体经过研碎后仍以酒精为介质球磨24小时,干燥后的粉体过100目筛后在100MPa的压力下冷压成型直径10mm、厚度1mm的圆片,得到陶瓷坯体;
e、将得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,并置于倒放的双坩埚中,即将陶瓷坯体和粉末放置于双坩埚叠置所形成的空间内,烧结温度为1200-1250℃,烧结时间为2小时、升温速率为3℃/min,得到陶瓷样品;
f、将得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
由此得到0.9(Na0.5Ag0.5)0.97La0.01NbO3-0.1BiFeO3的无铅陶瓷。测试方法如实施例1,性能如下:在150℃以内,其相对介电常数为650,且不同频率下介电常数相差不大;该成分样品的XRD图谱显示为纯钙钛矿结构;通过电滞回线算得储能性能为7.9J/cm3,储能效率82%。
实施例3
本实施例提供的无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将分析纯的Na2CO3、Nb2O5、Ag2O、La2O3、Ta2O5按按化学式0.95(Na0.5Ag0.5)0.7La0.1NbO3-0.05NaTaO3中的化学计量比称取上述各原料后混合,得混合物;
b、将上述配好的原料以酒精为介质,经6小时的球磨混料;湿粉经烘干后得到混合粉料;
c、将得到的混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为900℃,氧气气氛保温4小时;重复步骤b和c两次,完成预煅烧合成;
d、将得到的预合成粉体经过研碎后仍以酒精为介质球磨24小时,干燥后的粉体过100目筛后在100MPa的压力下冷压成型直径10mm、厚度1mm的圆片,得到陶瓷坯体;
e、将得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,并置于倒放的双坩埚中,即将陶瓷坯体和粉末放置于双坩埚叠置所形成的空间内,烧结温度为1230℃,烧结时间为2小时、升温速率为3℃/min,得到陶瓷样品;
f、将得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
由此得到0.95(Na0.5Ag0.5)0.7La0.1NbO3-0.05NaTaO3的无铅陶瓷。测试方法如实施例1,性能如下:在150℃以内,其相对介电常数为630,且不同频率下介电常数相差不大;该成分样品的XRD图谱显示为纯钙钛矿结构;通过电滞回线算得储能性能为7.9J/cm3,储能效率84%。
实施例4
本实施例提供的无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将分析纯的Na2CO3、Nb2O5、Ag2O、Ce2O3、Ta2O5按按化学式0.85(Na0.5Ag0.5)0.7Ce0.1NbO3-0.15NaTaO3中的化学计量比称取上述各原料后混合,得混合物;
b、将上述配好的原料以酒精为介质,经4.5小时的球磨混料;湿粉经烘干后得到混合粉料;
c、将得到的混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为950℃,氧气气氛保温3小时;重复步骤b和c两次,完成预煅烧合成;
d、将得到的预合成粉体经过研碎后仍以酒精为介质球磨6-7小时,干燥后的粉体过120目筛后在55MPa的压力下冷压成型直径10mm、厚度1.5mm的圆片,得到陶瓷坯体;
e、将得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,并置于倒放的双坩埚中,即将陶瓷坯体和粉末放置于双坩埚叠置所形成的空间内,烧结温度为1100℃,烧结时间为4小时、升温速率为2℃/min,得到陶瓷样品;
f、将得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
由此得到0.85(Na0.5Ag0.5)0.7Ce0.1NbO3-0.15NaTaO3的无铅陶瓷。测试方法如实施例1,性能如下:在150℃以内,其相对介电常数为680,且不同频率下介电常数相差不大;该成分样品的XRD图谱显示为纯钙钛矿结构;通过电滞回线算得储能性能为8.5J/cm3,储能效率83%。
实施例5
本实施例提供的无铅反铁电高储能密度陶瓷材料的制备方法,包括如下步骤:
a、将分析纯的Na2CO3、Nb2O5、Ag2O、La2O3、Ta2O5按按化学式0.7(Na0.5Ag0.5)0.97La0.01NbO3-0.3AgTaO3中的化学计量比称取上述各原料后混合,得混合物;
b、将上述配好的原料以酒精为介质,经8小时的球磨混料;湿粉经烘干后得到混合粉料;
c、将得到的混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为1000℃,氧气气氛保温2小时;重复步骤b和c两次,完成预煅烧合成;
d、将得到的预合成粉体经过研碎后仍以酒精为介质球磨12小时,干燥后的粉体过130目筛后在200MPa的压力下冷压成型直径10mm、厚度1mm的圆片,得到陶瓷坯体;
e、将得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,并置于倒放的双坩埚中,即将陶瓷坯体和粉末放置于双坩埚叠置所形成的空间内,烧结温度为1250℃,烧结时间为1小时、升温速率为3℃/min,得到陶瓷样品;
f、将得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
由此得到0.7(Na0.5Ag0.5)0.97La0.01NbO3-0.3AgTaO3的无铅陶瓷。测试方法如实施例1,性能如下:在150℃以内,其相对介电常数为700,且不同频率下介电常数相差不大;该成分样品的XRD图谱显示为纯钙钛矿结构;通过电滞回线算得储能性能为8.8J/cm3,储能效率84%。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种无铅反铁电高储能密度陶瓷材料,其特征在于,
其化学通式为(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3,其中0<x≤0.3,0<y≤0.15;
所述ABO3选自BiFeO3、NaTaO3和AgTaO3中的一种;
所述的通式中的M选自Bi、La、Ce三价金属的氧化物中的一种或多种,当为多种时,其摩尔分数之和为1。
2.一种根据权利要求1所述的无铅反铁电高储能密度陶瓷材料的制备方法,其特征在于,包括如下步骤:
a、将原料按照通式(1-x)(Na0.5Ag0.5)1-3yMyNbO3-xABO3所示化学组成的化学计量比称量化学纯或分析纯的碳酸盐或金属氧化物进行配料;
b、将步骤a配好的原料以酒精或者水为介质,经4-12小时的球磨混料,湿粉经烘干后得到混合粉料;
c、将所述混合粉料放置于氧化铝坩埚中煅烧合成,合成温度为850-1000℃,保温2-4小时,煅烧过程中使用氧气气氛;重复步骤b和c至少一次,完成预煅烧合成预合成粉体;
d、将步骤c得到的预合成粉体经过研碎后仍以酒精或者水为介质球磨6-24小时,干燥后的粉体过100-130目筛后在50-200MPa的压力下制成所需形状的陶瓷坯体;
e、将步骤d得到的陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1100-1250℃,烧结时间为1-4小时,升温速率为1-3℃/min,得到陶瓷样品;
f、将步骤e得到的陶瓷样品经过抛光处理后在两端面涂上银电极。
CN202210536338.3A 2022-05-17 2022-05-17 一种无铅反铁电高储能密度陶瓷材料及其制备方法 Active CN114804870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210536338.3A CN114804870B (zh) 2022-05-17 2022-05-17 一种无铅反铁电高储能密度陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210536338.3A CN114804870B (zh) 2022-05-17 2022-05-17 一种无铅反铁电高储能密度陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114804870A true CN114804870A (zh) 2022-07-29
CN114804870B CN114804870B (zh) 2023-05-05

Family

ID=82515125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210536338.3A Active CN114804870B (zh) 2022-05-17 2022-05-17 一种无铅反铁电高储能密度陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114804870B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332643A (zh) * 2023-02-17 2023-06-27 广西大学 一种具备典型双电滞回线的铌酸钠基无铅反铁电陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087242A (zh) * 2020-01-10 2020-05-01 陕西科技大学 一种高极化的铁电陶瓷及其制备方法
CN111548156A (zh) * 2020-04-14 2020-08-18 广西大学 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087242A (zh) * 2020-01-10 2020-05-01 陕西科技大学 一种高极化的铁电陶瓷及其制备方法
CN111548156A (zh) * 2020-04-14 2020-08-18 广西大学 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DONG YANG ET AL.: "Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
JIE JIANG ET AL.: "Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering", 《ENERGY STORAGE MATERIALS》 *
吴瑞芳: "铌酸银基无铅反铁电陶瓷的储能性能", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
宋爱珍: "铌酸银基无铅陶瓷的铁电-反铁电相转变研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332643A (zh) * 2023-02-17 2023-06-27 广西大学 一种具备典型双电滞回线的铌酸钠基无铅反铁电陶瓷材料及其制备方法
CN116332643B (zh) * 2023-02-17 2024-04-02 广西大学 一种具备典型双电滞回线的铌酸钠基无铅反铁电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114804870B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Singh et al. Crystallographic phases, phase transitions, and barrier layer formation in (1− x)[Pb (Fe1/2Nb1/2) O3]− xPbTiO3
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN115504784B (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN113387697A (zh) 高铁电稳定性兼具超快速充放电、高储能效率的钛酸铋钠基陶瓷材料及制备方法
JPS6320790B2 (zh)
CN114804870A (zh) 一种无铅反铁电高储能密度陶瓷材料及其制备方法
Yao et al. Enhanced electrical properties of (Li, Ce) co-doped Sr (Na 0.5 Bi 0.5) Bi 4 Ti 5 O 18 high temperature piezoceramics
Chen et al. Origin of the ultra-wide temperature dielectric stability and dynamic behavior of nanoregions in 0.6 Bi (Mg 0.5 Ti 0.5) O 3–0.4 Ba 0.8 Ca 0.2 (Ti 0.875 Zr 0.125) O 3
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
KR102380196B1 (ko) 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법
CN108585851B (zh) 一种铌酸钠基无铅无钾大功率压电陶瓷及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
Li et al. Relaxor behavior and ferroelectric properties of Na 0.5 Bi 0.5 TiO 3-K 0.5 Bi 0.5 TiO 3-KNbO 3 lead-free ceramics
Takeuchi et al. Rapid preparation of lead titanate sputtering target using spark‐plasma sintering
Wang et al. Low-temperature sintering of 12Pb (Ni1/3Sb2/3) O3–40PbZrO3–48PbTiO3 with V2O5 and excess PbO additives
Ding et al. Hydrothermal synthesis, structure and property of nano-BaTiO 3-based dielectric materials
Rao et al. New dielectric materials based on pyrochlore-type oxides-Ca 3 RE 3 Ti 7 Ta 2 O 26.5 (RE= Pr, Sm, Gd, Dy or Y): Structure, FT-IR spectra, microstructure and dielectric properties
CN116332643B (zh) 一种具备典型双电滞回线的铌酸钠基无铅反铁电陶瓷材料及其制备方法
CN111548157B (zh) 基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用
KR101454341B1 (ko) Pzt계 압전 세라믹 및 그 제조 방법
Kong et al. Ferroelectric ceramics (I)
Bućko et al. Photoluminescence and electrical properties in Pr-modified (Ba1-xCax) TiO3 multifunctional ceramics
CN116986896B (zh) 阴离子取代改性的钛酸铋钠无铅压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant