WO2002092693A1 - Composition de silicone thermoconductrice - Google Patents

Composition de silicone thermoconductrice Download PDF

Info

Publication number
WO2002092693A1
WO2002092693A1 PCT/JP2002/004642 JP0204642W WO02092693A1 WO 2002092693 A1 WO2002092693 A1 WO 2002092693A1 JP 0204642 W JP0204642 W JP 0204642W WO 02092693 A1 WO02092693 A1 WO 02092693A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sio
conductive silicone
thermally conductive
weight
Prior art date
Application number
PCT/JP2002/004642
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fukui
Manabu Sutoh
Hiroji Enami
Masayuki Onishi
Tadashi Okawa
Satoshi Onodera
Original Assignee
Dow Corning Toray Silicone Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co., Ltd. filed Critical Dow Corning Toray Silicone Co., Ltd.
Priority to DE60230142T priority Critical patent/DE60230142D1/de
Priority to KR1020037014852A priority patent/KR100858836B1/ko
Priority to JP2002589569A priority patent/JP4255287B2/ja
Priority to US10/476,998 priority patent/US7329706B2/en
Priority to EP02769587A priority patent/EP1403326B1/en
Publication of WO2002092693A1 publication Critical patent/WO2002092693A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a thermally conductive silicone composition, and more particularly, to a thermally conductive silicone composition having a good thermal conductivity even if it contains a large amount of a thermally conductive filler in order to obtain a highly thermally conductive silicone composition. And a functional silicone composition.
  • thermally conductive silicone composition a thermally conductive silicone grease, a thermally conductive silicone gel yarn composition, and a thermally conductive silicone rubber composition are known.
  • thermally conductive silicone composition examples include, for example, an adhesive agent selected from the group consisting of an organopolysiloxane having a beer group, an organohydrogenpolysiloxane, a thermally conductive filler, an aminosilane, an epoxysilane and an alkyl titanate.
  • Conductive silicone composition comprising an agent and a platinum-based catalyst (see Japanese Patent Application Laid-Open No.
  • an organopolysiloxane having an average of two alkenyl groups per molecule Heat consisting of organopolysiloxane containing an average of 3 or more silicon-bonded hydrogen atoms in one molecule, heat conductive filler consisting of zinc oxide and magnesium oxide, filler treating agent, and platinum-based catalyst
  • the conductive silicone composition contains at least 0.1 mol% of alkenyl groups in one molecule.
  • a thermally conductive silicone composition comprising spherical or non-spherical alumina powder having a particle diameter of less than 0 ⁇ m and platinum or a platinum-based compound (see Japanese Patent Application Laid-Open No.
  • Heat-conductive silicone composition comprising a polysiloxane, a heat-conductive filler having an average particle size of 5 to 20 ⁇ m, an adhesion aid, and platinum and a platinum-based compound (JP-A-2-97755) No. 9) has been proposed.
  • thermally conductive silicone fiber examples include, for example, an organopolysiloxane containing at least two silicon-bonded alkenyl groups in one molecule, and at least two silicon-bonded hydrogen atoms in one molecule.
  • Organohydrogenpolysiloxane organosiloxane containing at least one silicon-bonded alkoxy group or silicon-bonded hydroxyl group in one molecule, spherical or non-organic having an average particle diameter of less than 10 ⁇ m
  • raw silicone composition comprising a spherical alumina fine powder, a spherical or non-spherical alumina fine powder having an average particle diameter of 10 to 50 ⁇ , and a catalyst for a hydrosilylation reaction (Japanese Unexamined Patent Publication No. Select from liquid silicone, zinc oxide, alumina, aluminum nitride, boron nitride, and silicon carbide powder.
  • a thermally conductive silicone composition comprising at least one thickener, an organopolysiloxane having at least one hydroxyl group directly bonded to a silicon atom in one molecule, and an alkoxysilane (Japanese Patent Laid-Open No. 958 publication) has been proposed.
  • the organosiloxane containing at least one silicon atom-bonded hydroxyl group in one molecule is a diorganosiloxane having silanol groups at both ends of the molecular chain.
  • a diorganosiloxane improves the thermal conductivity of a cured silicone product obtained by curing the same. Therefore, when the content of the thermally conductive filler in this composition is increased, there is a problem that the handleability and moldability of the obtained silicone composition are deteriorated.
  • JP-A-2000-256558 and JP-A-2001-139815 disclose a formula:
  • an object of the present invention is to provide a thermally conductive silicone composition having good handling workability even if a large amount of a thermally conductive filler is contained in order to obtain a highly thermally conductive silicone composition. It is in. Disclosure of the invention
  • the thermally conductive silicone composition of the present invention comprises (A) an organopolysiloxane, (B) a thermally conductive filler, and (C) (i) a general formula:
  • R 1 is a monovalent hydrocarbon group having an aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond
  • R 3 is an alkyl group.
  • an organosiloxane having one silicon atom-bonded hydroxyl group in one molecule and having at least 5 silicon atoms
  • R 4 is the same or different monovalent hydrocarbon group
  • R 5 is an oxygen atom or a divalent hydrocarbon group
  • R 3 is the same as above
  • p is 100 to 20 Is an integer of 0, and d is the same as described above.
  • the composition is characterized by comprising at least the above components (A), (B) and (C). Further, the present composition may be further blended with (D) a curing agent to form a curable composition.
  • the curing mechanism of the present composition is not limited, and examples thereof include a hydrosilylation reaction, a condensation reaction, and a free radical reaction due to an organic peroxide, which are rapidly cured and do not generate by-products. And a hydrosilylation reaction.
  • the organopolysiloxane of the component (A) is the main component of the composition.
  • the group bonded to the silicon atom in the organopolysiloxane include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a noninole group, Decyl, decyl, dodecyl, tridecyl, tetra Linear alkyl groups such as decyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group; isopropyl group, tertiary butyl group, isobutyl group, 2-methylpentadecyl group, and 11-hexyl
  • a branched alkyl group such as a cycloalkyl group; a cyclic alkyl group such as a cyclopentyl group, a cyclohexyl group, or a cyclododecyl group; a alkenyl group such as a butyl group, an aryl group, a butenyl group, a pentenyl group, or a hexenyl group; Aralkyl groups such as benzyl group, phenethyl group and 2- (2,4,6-trimethylphenyl) propyl group; 3,3,3- Halogenated alkyl groups such as a trifluoropropyl group and a 3-chloropropyl group are preferred, and an alkyl group, Group, a Ariru group, particularly preferably a methyl group, Bulle group, a phenyl group.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 OmPa's. It is preferably in the range of 0,000 O mPa's, more preferably in the range of 50 to 50,000 O mPa's, and in particular, in the range of 100 to 50,0 It is preferably within the range of 0 O mPa's. This is because if the viscosity at 25 ° C is less than the lower limit of the above range, the physical properties of the obtained silicone composition tend to be significantly reduced. This is because the handling efficiency of the obtained silicone composition tends to be significantly reduced.
  • the molecular structure of such an organopolysiloxane is not limited, and may be, for example, linear, branched, or partially branched.
  • examples of the organopolysiloxane include linear and dendritic (dendrimer), and preferably linear or partially branched linear.
  • Such organopolysiloxanes include, for example, dimethylvinylsiloxane at both ends of the molecular chain, dimethylpolysiloxane at the both ends of the molecular chain, dimethylpolysiloxane at the both ends of the molecular chain, and dimethylvinylsiloxane at both ends of the molecular chain.
  • the component (A) is preferably an organopolysiloxane having on average 0.1 or more silicon atom-bonded alkenyl groups in the molecule.
  • an organopolysiloxane having an average of 0.5 or more silicon atom-bonded alkenyl groups in one molecule is preferable, and in particular, an average of 0.8 or more silicon atom-bonded alkenyl groups in one molecule is preferable.
  • Examples of the silicon atom-bonded alkyl group in the reganopolysiloxane include the same alkenyl groups as described above, and preferably a butyl group.
  • Examples of the group bonded to a silicon atom other than the alkenyl group in this organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group as described above.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 OmPa's, and more preferably 50 to 100,000. It is preferably in the range of 100 mPa's, more preferably in the range of 50 to 50,000 mPa's, and particularly preferably in the range of 100 to 50,000 OmPa's. It is preferably within the range of mPa's.
  • the molecular structure of such an organopolysiloxane is not limited, and the same structure as described above is exemplified. Preferably, the structure is linear or partially branched linear. Examples of such an organopolysiloxane include a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers. Examples of such an organopolysiloxane include the same alkenyl group-containing organopolysiloxanes as described above.
  • the component (A) is an organopolysiloxane having at least two silano mono groups or a silicon atom-bonded hydrolyzable group in one molecule.
  • the silicon atom-bonded hydrolyzable group in the organopolysiloxane include an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group; a vinyloxy group, a propoxy group, an isopropoxy group, and the like.
  • Alkenyl groups such as ethethyl 1-2-methylvinyloxy group; alkoxyalkoxy groups such as methoxetoxy group, ethoxytoxy group and methoxypropoxy group; acyloxy groups such as acetoxy group and octanoyloxy group; dimethylketoxime N, methylamino, acetylamino, dimethylamino, dimethylamino, butylamino, etc .; aminoxy, such as dimethylamino, dimethylamino, etc .; N-methyl / acetoamide And amide groups such as N-ethylacetoamide group.
  • a group bonded to a silicon atom other than a silanol group and a silicon atom-bonded hydrolyzable group in the organopolysiloxane includes Examples thereof include the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 OmPa's, and more preferably 50 to 100,000. It is preferably in the range of 100 O mPa's, and particularly preferably in the range of 100 to 100,000 O mPa's.
  • the molecular structure of such an organopolysiloxane is not limited, and the same structures as described above are exemplified. Preferably, it is a linear or partially branched linear. Examples of such an organopolysiloxane include the same organopolysiloxanes having at least two silanol groups or silicon atom-bonded hydrolyzable groups in one molecule as described above.
  • the organopolysiloxane of the component (A) is not limited, but preferably at least one silicon atom per molecule. It is an organopolysiloxane having a linked alkyl group. Examples of the group bonded to the silicon atom in the organopolysiloxane include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkyl group, an aryl group, and an aralkyl group as described above.
  • a halogenated alkyl group are preferably an alkyl group, an alkyl group, or an aryl group, and particularly preferably a methyl group, a vinyl group, or a phenyl group.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 OmPa's, and more preferably 50 to 100,000. It is preferably within the range of 0 O mPa's, more preferably within the range of 50 to 50,000 O mPa's, and particularly preferably within the range of 100 to 50,000 O. It is preferably within the range of mPa's.
  • the molecular structure of such an organopolysiloxane is not limited, and the same structure as described above is exemplified. Preferably, it is linear or partially branched linear. Examples of such an organopolysiloxane include a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers. Examples of such an organopolysiloxane include the same organopolysiloxanes as described above.
  • the heat conductive filler of the component (B) is a component for imparting heat conductivity to the obtained silicone composition.
  • metal powders such as aluminum powder, copper powder, and nickel powder; alumina powder.
  • Metal oxide-based powders such as magnesium oxide powder, beryllium oxide powder, beryllium oxide powder, silicon oxide powder, and titanium oxide powder; metal nitride-based powders such as boron nitride powder and aluminum nitride powder; boron carbide powder; Metal carbide powders such as titanium powder and silicon carbide powder; Fe_Si alloy, Fe-A1 alloy, Fe-Si-A1 alloy, Fe-Si-Cr alloy, Fe-Ni alloy, Fe-Ni-Co alloy, Fe- Soft magnetic alloy powders such as Ni-Mo alloy, Fe-Co alloy, Fe-Si-Al-Cr alloy, Fe_Si-B alloy, Fe-Si-Co-B alloy; Mn-Zn ferrite, Mn-Mg-Zn Ferrite, M
  • the component (B) may be a metal oxide-based powder, a metal nitride-based powder, or a metal carbide. It is preferably a system powder, and particularly preferably an alumina powder.
  • the average particle size of the component (B) is not limited, but is preferably in the range of 0.1 to 100 ⁇ m, and particularly preferably in the range of 0.1 to 50 ⁇ . .
  • the thermally conductive filler of the component ( ⁇ ) spherical alumina having an average particle size of 5 to 50 m (but not including 5 ⁇ ).
  • the mixture is a mixture of the powder and (B 2 ) a spherical or irregularly shaped alumina powder having an average particle size of 0.1 to 5 m. 0-9 0 is in the weight percent range, the content of said (B 2) component is preferably in the range of 1 0-7 0 wt% "
  • the content of the component (B) is not limited. However, in order to form a silicone composition having good thermal conductivity, the volume% must be at least 30% by volume in the present composition.
  • the content of the component (B) should be at least 50% by weight in the present yarn. Preferably, it is more preferably in the range of 70 to 98% by weight, and particularly preferably in the range of 90 to 97% by weight. Specifically, the content of the component (B) is preferably in the range of 500 to 2,500 parts by weight based on 100 parts by weight of the component (A), and more preferably 500 to 2,000 parts by weight.
  • Parts by weight and particularly preferably in the range of 800 to 2,000 parts by weight. This is because if the content of the component (B) is less than the lower limit of the above range, the thermal conductivity of the obtained silicone composition tends to be insufficient. The viscosity of the obtained silicone composition becomes too high, so that the component (B) cannot be uniformly dispersed in the obtained silicone composition, or the handling workability thereof tends to be significantly reduced. is there.
  • the component (C) is a heat conductive silicone composition that has good workability even if it contains a large amount of the heat conductive filler of the above component (B) in order to obtain a silicone composition having high heat conductivity.
  • R 1 is a monovalent hydrocarbon group having an aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond
  • R 3 is an alkyl group.
  • m is an integer of 0 or more, n is an integer of 0 or more, provided that when a is 0, And m is an integer of 1 or more.
  • An organosiloxane having at least 5 silicon atoms, (iii) a general formula:
  • R 4 is the same or different monovalent hydrocarbon group
  • R 5 is an oxygen atom or a divalent hydrocarbon group
  • R 3 is the same as described above
  • p is an integer of 100 to 200.
  • d is the same as above.
  • organosiloxane selected from the group consisting of organosiloxanes represented by
  • This component (i) does not impair the handleability and moldability of the composition even if it contains a large amount of the thermally conductive filler of component (B) in order to obtain a silicone composition having high thermal conductivity.
  • the composition has curability, it is a component for imparting good adhesiveness to a substrate that is in contact with the composition during curing.
  • R 1 is a monovalent hydrocarbon group having an aliphatic unsaturated bond, for example, a vinyl group, an aryl group, a butenyl group, a hexyl group, a decenyl group, a pendecenyl group, a dodecenyl group, Linear alkenyl groups such as tridecyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadeceyl group, nonadecenyl group, eicosenyl group; isopropenyl group, 2-methyl-2-propane- Branched alkenyl groups such as 2-methyl-10-denylenyl group; cyclic alkynole groups having an aliphatic unsaturated bond such as vinylcyclohexyl group and butylcyclododecy
  • An aryl having an unsaturated unsaturated bond such as a bulbenzyl group or a bulpentyl group;
  • the alkyl group is preferably a linear alkyl group, and particularly preferably a vinyl group, an aryl group, or a hexeninol group.
  • the position of the aliphatic unsaturated bond in R 1 is not limited, but is preferably a position farther from the silicon atom to be bonded.
  • R 2 in the above formula is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond, and is the same as the above-mentioned linear alkyl group, branched alkyl group, and cyclic alkyl group.
  • R 3 in the above formula is an alkyl group, an alkoxyalkyl group, an alkyl group, or an acyl group.
  • the alkyl group for R 3 includes, for example, the same straight-chain alkyl group, branched-chain alkyl group, and cyclic alkyl group as described above, and is preferably a straight-chain alkyl group, and particularly preferably.
  • alkoxyalkyl group for R 3 include a methoxyethoxy group, an ethoxyethoxy group, and a methoxypropoxy group, and a methoxyethoxy group is preferable.
  • alkenyl group for R 3 include the same alkenyl groups as described above, and are preferably isopropenyl groups.
  • Examples of the acyl group for R 3 include an acetoxyl group.
  • a in the above formula is an integer of 0 to 3, and is preferably 1.
  • b in the above formula is 1 or 2, and preferably 1.
  • c in the above formula is an integer of 1 to 3, and is preferably 1.
  • d in the above formula is an integer of 1 to 3, and is preferably 3.
  • c + d in the above equation is an integer of 2 to 4.
  • 'm in the above formula is an integer of 0 or more.
  • m in the above formula is an integer of 1 or more.
  • Such m is preferably an integer of 0 to 100, more preferably an integer of 1 to 100, further preferably an integer of 1 to 50, and 1 It is preferably an integer of from 25 to 25, and particularly preferably an integer of from 1 to 10.
  • n in the above formula is an integer of 0 or more.
  • Such n is preferably an integer of 0 to 100, more preferably an integer of 1 to 100, further preferably an integer of 5 to 100, and furthermore, , Preferably an integer of 10 to 100, particularly an integer of 10 to 75 Is preferred.
  • organosiloxane having a silanol group at one end of the molecular chain and represented by the general formula: R 2 ( 4.f) S i (OR 3 ) f
  • a silane compound represented by the following formula in the presence of an acid catalyst such as acetic acid in the above silanol-terminated organosiloxane, I 1 and R 2 in the formula are the same groups as described above, and a, b, m, and n in the formula are the same integers as described above.
  • R 2 and R 3 in the formula are the same groups as described above.
  • f in the formula is an integer of 2 to 4, and is preferably 4.
  • Such silane compounds include, for example, dialkoxydialkylsilanes such as dimethoxydimethylsilane, dimethyoxyethylsilyl, ethoxydimethylsilane, and methoxyethoxylsilane; trimethoxymethylsilane, trimethyxylsilane, Trialkoxyalkylsilanes such as trimethoxypropyl silane, triethoxymethylsilane, and triethoxysylsilane; tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane; methyltri (methoxyethoxy) silane Alkoxyalkoxysilanes; alkenoxysilanes such as methyltriisoproponoxysilane; and acyloxysilanes such as methyltriacetoxysilane.
  • the acid catalyst include fatty acids such as
  • organosiloxane as the component (i) examples include the following compounds.
  • Si (OC (ii) component is an organosiloxane having one silicon atom-bonded hydroxyl group per molecule and at least 5 silicon atoms, and has high thermal conductivity.
  • thermally conductive filler (B) Even if a large amount of the thermally conductive filler (B) is contained in order to obtain the above silicone composition, it is a component that imparts the characteristic of the present composition that the handleability is excellent.
  • Component ii) treats the surface of the thermally conductive filler of component (B) with a silicon atom-bonded hydroxyl group in the molecule, lowers the viscosity of the resulting composition, and allows for the blending of more filler. It is considered to function as a treating agent or a plasticizer.
  • the component (ii) needs to have only one silicon atom-bonded hydroxyl group in one molecule, and if the number is two or more, it is necessary to promote the interparticle bonding of the component (B). The viscosity of the resulting composition increases and the filling amount cannot be increased.
  • the component (ii) needs to have at least 5 silicon atoms in one molecule, preferably at least 10, more preferably 10 to 500, and particularly preferably. Is 50-200.
  • organosiloxanes in which the number of silicon atoms in one molecule is less than the lower limit of the above range are too small in molecular size, and the component (B)
  • organosiloxanes exceeding the upper limit of the above range tend to be unable to sufficiently treat the surface of (ii), and the molecular volume bound to the surface of the component (II) is too large, and
  • the organosiloxane of the component (ii) is not limited.
  • the component (ii) is represented by the general formula
  • the organosiloxane is represented by R 4 in the above formula is the same or different monovalent hydrocarbon group, and is the same as the above-mentioned linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, alkenyl group, halogen
  • An alkyl group is exemplified, preferably an alkyl group, and particularly preferably a methyl group.
  • r in the above formula is an integer of 5 or more, preferably an integer of 10 to 50 °, and particularly preferably an integer of 50 to 200.
  • the organosiloxane of the component (iii) is an organosiloxane having a silicon atom-bonded hydrolyzable group at one end of the molecular chain, and the repeating unit of diorganosiloxane in the organosiloxane is within a specific range. Therefore, even if a large amount of the thermally conductive filler of the above-mentioned component (B) is contained in order to obtain a highly thermally conductive silicone composition, it is possible to obtain a thermally conductive silicone composition having good handling workability. It is a component having the characteristic that it can be formed.
  • R 4 in the formula is the same or different monovalent hydrocarbon group, and is the same as described above for a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an aryl group, and an aralkyl group. And a halogenated alkyl group and a halogenated alkyl group are preferred. A linear alkyl group is preferred, and a methyl group is particularly preferred.
  • R 5 in the above formula is an oxygen atom or a divalent hydrocarbon group. Examples of the divalent hydrocarbon group for R 5 include an alkylene group such as a methylene group, an ethylene group, a propylene group, an isopropylene group, and a butylene group.
  • R 5 is preferably an oxygen atom.
  • R 3 in the above formula is the same group as described above.
  • P in the above formula is an integer of 100 to 200, preferably an integer of 105 to 200, and more preferably 105 to 200.
  • organosiloxane of the component (iii) examples include, for example,
  • the organosiloxane of the component (iv) deteriorates the handleability of the composition even if a large amount of the thermally conductive filler of the component (B) is contained in order to obtain a silicone composition having high thermal conductivity.
  • the composition has curability, the composition is excellent in moldability and is a component for imparting good adhesion to a substrate that is in contact with the composition during curing.
  • R 2 in the above formula is a monovalent hydrocarbon group having no same or different aliphatic unsaturated bond, and the same groups as described above are exemplified, preferably, an alkyl group and an aryl group, More preferred are alkyl groups having 1 to 4 carbon atoms, and particularly preferred are a methyl group and an ethyl group.
  • R 3 in the above formula is an alkyl group, an alkoxyalkyl group, an alkoxyl group, or an acyl group, examples of which are the same as those described above, preferably an alkyl group, particularly preferably a methyl group, These are ethyl and propyl groups.
  • e in the above formula is an integer of 1 to 3, and is preferably 1.
  • c in the above formula is an integer of 1 to 3, and is preferably 1.
  • d is an integer of 1 to 3, and is preferably 3.
  • c + d in the above equation is an integer of 2 to 4.
  • n in the above formula is an integer of 0 or more, preferably an integer of 0 to 100, more preferably an integer of 1 to 100, further preferably an integer of 5 to 100, more preferably Is an integer of 10 to 100, particularly preferably an integer of 10 to 75.
  • R 2 in the formula is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond, and the same groups as described above are exemplified.
  • e in the above formula is an integer of 1 to 3, and is preferably 1.
  • n is an integer of 0 or more, preferably an integer of 0 to 100, more preferably an integer of 1 to 100, and still more preferably an integer of 5 to 100. Yes, more preferably an integer of 10 to 100, particularly preferably an integer of 10 to 75.
  • R 2 in the formula is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond, and the same groups as described above are exemplified.
  • R 3 in the above formula is an alkyl group, an alkoxyalkyl group, an alkoxy group, or an acyl group, and the same groups as described above are exemplified.
  • f in the above formula is an integer of 2 to 4, and is preferably 4.
  • Such silane compounds include, for example, dialkoxydialkylsilanes such as dimethoxydimethylsilane, dimethoxydimethylsilyl, diethoxydimethylsilane, and ethoxyethoxylsilane; trimethoxymethylsilane, trimethoxyethylsilane, Trialkoxyalkylsilanes such as trimethoxypropyl silane, triethoxymethylsilane, and triethoxysylsilane; tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetrapropoxysilane; methyltri (methoxyethoxy) silane Alkoxyalkoxysilanes; alkenoxysilanes such as methyltriisoproponoxysilane; and acyloxysilanes such as methyltriacetoxysilane.
  • the acid catalyst include fatty acids such as ace
  • the content of the component (C) is not limited, and may be any amount as long as the surface of the component (B) can be treated to improve the dispersibility in the obtained thermally conductive silicone composition.
  • the amount is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the component (B), and more preferably, with respect to 100 parts by weight of the component (B). It is preferably in the range of 0.1 to 5 parts by weight. This is because if the content of the component (C) is less than the lower limit of the above range, the moldability of the obtained silicone composition will be reduced or the product will be obtained if the content of the component (B) is large. This is because the component (B) tends to settle and separate during storage of the silicone composition. On the other hand, if it exceeds the upper limit of the above range, the physical properties of the obtained silicone composition tend to decrease. .
  • any one of the above components (i) to (iv) can be used alone or in combination of two or more as the above component (C).
  • the above component (B) is contained in order to obtain a silicone composition having high thermal conductivity, in order to obtain a thermally conductive silicone composition having good workability,
  • R 4 is a monovalent hydrocarbon group
  • R 3 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group
  • 'g is an integer of 1 to 3.
  • R 4 is the same or different monovalent hydrocarbon group
  • R 5 is an oxygen atom or a divalent hydrocarbon group
  • R 3 is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group.
  • y is an integer of 0 to 99
  • d is an integer of 1 to 3.
  • the organosiloxane represented by the formula (1) may be used in combination.
  • R 4 in the formula is a monovalent hydrocarbon group, and the same groups as described above are exemplified.
  • R 3 in the formula is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group, and the same groups as described above are exemplified.
  • G in the formula is an integer of 1 to 3, and is preferably 2 or 3.
  • Examples of such a silane compound include alkoxysilanes such as methyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, butyltrimethoxysilane, dimethyltrimethoxysilane, ethyltrimethoxysilane, octinoletrimethoxysilane, noeltrimethoxysilane, and the like.
  • Examples include alkoxyalkoxylanes such as silane; alkenoxysilanes such as methyltriisoproponoxysilane; and acyloxysilanes such as methyltriacetoxysilane.
  • R 4 in the formula is the same or different monovalent hydrocarbon group, and the same groups as described above are exemplified.
  • R 5 in the formula is an oxygen atom or a divalent hydrocarbon group, and the same groups as described above are exemplified.
  • R 3 in the formula is an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group, and the same groups as described above are exemplified.
  • y in the formula is an integer of 0 to 99, preferably an integer of 0 to 80, and particularly preferably an integer of 0 to 60.
  • d in the formula is an integer of from:! To 3, and is preferably 3. Examples of such an organosiloxane include, for example,
  • the content of the above-mentioned silane compound or organosiloxane is not limited, and the dispersibility in the heat conductive silicone composition obtained by treating the surface of the component (B) together with the component (C) is obtained. Any amount can be used as long as it can improve, specifically, (B
  • the amount is preferably in the range of 0.001 to 10 parts by weight per 100 parts by weight of the component (B), and in particular, 0.001 to 100 parts by weight of the component (B). It is preferably within the range of 5 to 5 parts by weight. This is because if the content of the silane compound or organosiloxane is less than the lower limit of the above range, when the component (B) is contained in a large amount, the moldability of the obtained silicone thread and component may be reduced, This is because the component (B) tends to settle and separate during storage of the obtained silicone composition, and the consistency tends to decrease significantly. On the other hand, when the content exceeds the upper limit of the above range, the physical properties of the obtained silicone composition are reduced. This is because the characteristic tends to decrease.
  • Examples of the method of adding the component (C) or the component (C) and the silane compound or the organosiloxane to the composition include, for example, the component (B) and the component (C), and A method in which a silane compound or an organosiloxane is mixed and the surface of the component (B) is pre-treated and added; after the components (A) and (B) are mixed, the component (C) is added, if necessary. And a method in which the surface of the component (B) is treated in the component (A) and then added, and the latter method is particularly preferred.
  • the component (C) or the component (C) and the silane compound or the organosiloxane are contained in the surface of the component (B) in a state where the surface of the component (B) is treated. Even if it is simply contained in Good.
  • the treatment may be carried out by heating or using acetic acid, phosphoric acid, An acidic substance or a basic substance such as trialkylamine, quaternary ammonium salts, ammonia gas, or ammonium carbonate may be used in combination.
  • a curable composition can also be added to the yarn composition by further mixing (D) a curing agent.
  • the curing agent of the component (D) comprises an organopolysiloxane having an average of two or more silicon-bonded hydrogen atoms in one molecule and a platinum-based catalyst. It is.
  • the group bonded to the silicon atom bond in the organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above.
  • the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 1 to 100,000 O mPa ′s, and particularly preferably 1 to 500,000 O mPa ′s. It is preferred that the s is in the range of s.
  • the molecular structure of such an organopolysiloxane is not limited and includes, for example, linear, branched, partially branched linear, cyclic, and dendritic (dendrimer).
  • Such organopolysiloxanes include, for example, homopolymers having these molecular structures, copolymers having these molecular structures, and mixtures thereof.
  • Such organopolysiloxanes include, for example, dimethylpolysiloxane having dimethylhydrogensiloxy groups at both ends of the molecular chain, dimethylsiloxane having trimethylsiloxy groups at both ends of the molecular chain, methylhydrogensiloxane copolymer, and dimethylhydrogen at both ends of the molecular chain.
  • the content of the organopolysiloxane is an amount necessary for curing the present composition.
  • the content of the organopolysiloxane is based on 1 mole of a silicon atom-bonded alkenyl group in the component (A).
  • the amount of silicon-bonded hydrogen atoms in this component is preferably in the range of 0.1 to 10 mol, and more preferably in the range of 0.1 to 5 mol. In particular, the amount is preferably in the range of 0.1 to 3.0 mol.
  • the platinum-based catalyst is a catalyst for accelerating the curing of the present composition.
  • examples thereof include chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum olefin complex, a platinum alkenylsiloxane complex, and platinum platinum. And carbonyl complexes.
  • the content of the platinum-based catalyst is an amount necessary for curing the present composition.
  • the amount of platinum metal in the present component is in the range of 0.01 to 1.0 ppm by weight with respect to the component (A). :! Preferably, the amount is within the range of ppm500 ppm. This is because if the content of the component is less than the lower limit of the above range, the obtained silicone composition tends not to be sufficiently hardened, while the amount exceeding the upper limit of the above range is compounded. This is because the curing rate of the obtained silicone composition does not significantly improve.
  • the component (D) is composed of a silane having at least three silicon-bonded hydrolyzable groups in one molecule or a partial hydrolyzate thereof, and And a catalyst for condensation reaction.
  • the silicon atom-bonded hydrolyzable group in this silane include the same alkoxy group, alkoxyalkoxy group, acyloxy group, ketoxime group, alkenoxy group, amino group, aminoxy group, and amide group as described above.
  • the silicon atom of this silane includes, for example, the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, and aralkyl group as described above.
  • the group may be bonded to a halogenated alkyl group.
  • Such silane or its silane Examples of the partially decomposed hydrolyzate include methyltriethoxysilane, butyltriethoxysilane, butyltriacetoxysilane, and ethyl ortho silicate.
  • the content of the silane or a partial hydrolyzate thereof is an amount necessary for curing the present composition, and specifically, is 0.1% by weight based on 100 parts by weight of the component (A). It is preferably in the range of 0.1 to 20 parts by weight, particularly preferably in the range of 0.1 to 10 parts by weight. This is because if the content of the silane or its partial hydrolyzate is less than the lower limit of the above range, the storage stability of the obtained composition tends to decrease, and the adhesiveness tends to decrease. On the other hand, if the amount exceeds the upper limit of the above range, curing of the obtained composition tends to be extremely slow.
  • the condensation reaction catalyst is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, an amino group or a ketoxime group is used as a curing agent.
  • a silane having a hydrolyzable group such as an aminoxy group, an amino group or a ketoxime group
  • examples of such a catalyst for the condensation reaction include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; and dioxopropoxybis (acetyl acetate) titanium and diisopropoxybis (ethyl acetate acetate) titanium.
  • Organic titanium chelate compounds organic aluminum compounds such as aluminum tris (acetyl acetoacetate) and aluminum tris (ethyl acetoacetate); dinoreconium tetra (acetyl acetonate); Organic aluminum compounds such as dibutyltin dioctoate, dibutyltin dilaterate, butyltin-2-ethylhexoate, and the like; tin naphthenate, tin oleate, tin butylate, cobalt naphthenate; Steer Metal salts of organic carboxylic acids such as zinc phosphate; amine compounds such as hexylamine and dodecylamine phosphate; and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; potassium acetate and lithium nitrate Lower fatty acid salts of alkali metals; dialkylhydroxylamines such as dimethylhydroxylamine and getylhydroxy
  • the content of the condensation reaction catalyst is an arbitrary amount, and may be an amount necessary for curing the present composition. Specifically, based on 100 parts by weight of the component (A) It is preferably in the range of 0.1 to 20 parts by weight, and particularly preferably in the range of 0.1 to 10 parts by weight. This is because, when the catalyst is essential, if the content of the catalyst is less than the lower limit of the above range, the obtained composition tends to be insufficiently cured. If the upper limit is exceeded, the storage stability of the obtained composition tends to decrease.
  • the component (D) is an organic peroxide.
  • the organic peroxides include benzoyl peroxide, dicumyl peroxide, 2,5-dimethylbis (2,5-t-butylperoxy) hexane, and di-tert-butyl peroxide. , T-butyl parbenzoate.
  • the content of the organic peroxide compound is an amount necessary for curing the present composition.
  • the content of the organic peroxy acid is 100 parts by weight based on 100 parts by weight of the organopolysiloxane (A). It is preferably in the range of 5 to 5 parts by weight.
  • the present composition may include, as long as the purpose of the present invention is not impaired, other optional components such as fillers such as fumed silica, precipitated silica, and fumed silica.
  • Filler whose surface has been hydrophobized with an organic silicon compound; Adhesion-imparting agent such as 3-glycidoxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane; other pigments, dyes, fluorescent dyes, heat-resistant additives, It may contain a flame retardant, such as a lyazole compound, or a plasticizer.
  • the curing speed of the present composition is adjusted and the handling efficiency is improved.
  • Acetylene-based compounds such as 3-butyn-1-onole and 1-ethyninole-1-cyclohexanol; en-yne compounds such as 3-methyl-3-pentene-1-yne and 3,5-dimethyl-3-hexene-1-yne
  • a curing reaction inhibitor such as a hydrazine-based compound, a phosphine-based compound, or a mercaptan-based compound.
  • the content of the curing reaction inhibitor is not limited, but is preferably in the range of 0.001 to: 1.0% by weight based on the composition.
  • the method of curing the composition is not limited. For example, after forming the present composition, leaving it at room temperature, or after forming the present composition, 50 to 200 ° The method of heating to C is mentioned.
  • the properties of the silicone rubber thus obtained are not limited, and examples thereof include a gel, a low-hardness rubber, and a high-hardness rubber.
  • the heat conductive silicone composition of the present invention will be described in more detail with reference to examples.
  • the characteristics in the examples are values at 25 ° C.
  • thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured as follows, and the results are shown in Table 1.
  • the 14 consistency of this heat conductive silicone rubber composition was measured according to the method specified in JISK 2220.
  • a high consistency value means that the heat conductive silicone rubber composition has high plasticity and excellent handleability.
  • the thermally conductive silicone rubber composition was sandwiched between 0.2-thick ethylene tetrafluoride resin films so as to have a thickness of 2 orchids, and was heated and cured at 150 ° C. for 15 minutes. Thereafter, the film made of the tetrafluoroethylene resin was peeled off, and it was observed whether a silicone rubber sheet could be formed.
  • Good moldability was obtained when a uniform silicone rubber sheet could be formed: ⁇ , Moldable in a sheet form, and poor moldability when a part where the strength was weak was partially good: ⁇ , Sheet form The case where the molding was not possible or the strength was weak even if the molding was possible was evaluated as poor moldability: X,.
  • the heat conductivity of the heat-conductive silicone rubber obtained by heating and curing the heat-conductive silicone rubber composition at 150 ° C for 15 minutes was measured according to the hot wire method specified in JISR 2616 by Kyoto Electronics Co., Ltd. It was measured by a thermal conductivity meter QTM-500.
  • the thermally conductive silicone rubber composition was sandwiched between adherends of the same kind, and then cured by heating at 150 ° C. for 30 minutes.
  • adherends As the adherend, an aluminum plate (JISH 4000, A1050P), a nickel plate (SPCC-SB), and a stainless steel plate (SUS-3042B) manufactured by Paltec Co., Ltd. were used.
  • the bonding area was 25 mm ⁇ 10 mm, and the thickness of the bonding layer was 1 mm.
  • the tensile shear adhesive strength of this heat conductive silicone rubber was measured according to the provisions of JIS K 6249.
  • 900 parts by weight of alumina powder, and formula (CH 2 CH) (CH 3 ) 2 SiO [(CH 3 ) 2 SiO] 5 .
  • thermoly conductive silicone rubber composition was prepared.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • this mixture has a viscosity of 5 mPa's, and has a molecular chain having an average of 5 silicon-bonded hydrogen atoms in one molecule.
  • thermo conductivity 0.5 parts by weight of a 1,3-dibutyl-1,1,3,3-tetramethyldisiloxane complex of platinum having a platinum content of 0.5% by weight is mixed with the mixture to obtain a thermal conductivity.
  • a silicone rubber composition was prepared. The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • the mixture was added with a viscosity of 5 raPa's, and dimethylsiloxane / methylhydrogensiloxane having both ends of a molecular chain having an average of 5 silicon-bonded hydrogen atoms in one molecule.
  • a heat-conductive silicone rubber composition was prepared in the same manner as in Comparative Example 1, except that the same amount of decyltrimethoxysilane was used in place of methinoletrimethoxysilane.
  • the properties of the heat conductive silicone rubber composition and the heat conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • thermally conductive silicone rubber composition was prepared in the same manner as in Comparative Example 1, except that the same amount of the organosiloxane represented by the following formula was used.
  • the properties of the thermally conductive silicone rubber composition were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • silicone rubber base 1 platinum platinum content of 0.5 weight 0/0, 3 Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight were uniformly mixed heat
  • a conductive silicone rubber composition was prepared.
  • thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured as follows, and the results are shown in Table 2.
  • This thermally conductive silicone rubber composition was sandwiched between a 50 ⁇ -thick polyethylene terephthalate resin film (PET film) to a thickness of 1 mm and cured by heating at 100 ° C. for 30 minutes. Then, the PET film was peeled off, and it was observed whether or not the silicone rubber sheet could be molded. If the uniform silicone rubber sheet could be molded, the moldability was good: 1, although it could be molded into a sheet, it was partially molded Poor moldability was evaluated when there was a part where the strength was weak, and poor moldability was evaluated as poor when the sheet could not be formed into a sheet, or when the strength was weak even if it could be partially formed.
  • PET film polyethylene terephthalate resin film
  • the heat-conductive silicone rubber composition was cured by heating at 100 ° C. for 30 minutes, and the heat conductivity of the obtained heat-conductive silicone rubber was measured according to the hot wire method specified in JISR 2616 by a rapid heat It was measured with a conductivity meter Q TM-500.
  • This heat conductive silicone rubber composition was cured by heating at 100 ° C for 30 minutes.
  • the hardness of the obtained thermally conductive silicone rubber was measured with a type E durometer specified in JISK625.
  • Example 5 instead of the dimethylsiloxane having a silanol group at one end of the molecular chain, the formula:
  • a thermally conductive silicone rubber base was prepared in the same manner as in Example 5 except that the same amount of dimethylsiloxane having a silanol group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this heat conductive silicone rubber base was measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the silicone rubber base platinum content 0.5 wt 0/0 1 platinum is, 3-divinyl _ 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight of uniformly
  • a thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2.
  • Example 5 instead of the dimethylsiloxane having a silanol group at one end of the molecular chain, the formula:
  • a thermally conductive silicone rubber base was prepared in the same manner as in Example 5 except that the same amount of dimethylsiloxane having a silanol group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this heat conductive silicone rubber base was measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the silicone rubber base platinum content 0.5 wt 0/0 1 platinum is, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight of uniformly
  • a thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2.
  • Example 5 instead of the dimethylsiloxane having a silanol group at one end of the molecular chain, the formula:
  • a thermally conductive silicone rubber base was prepared in the same manner as in Example 5 except that the same amount of dimethylsiloxane having a silanol group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this heat conductive silicone rubber base was measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the silicone rubber base 1 platinum platinum content of 0.5 weight 0/0, 3 Jibyuru one 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by uniformly
  • a thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber, the composition, and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the silicone rubber base 1 platinum platinum content of 0.5 weight 0/0, 3 Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by uniformly and The mixture was mixed to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2. Compared to the results of Examples 5 to 8, the consistency before curing is high and the handling is poor, and despite having the same crosslinking density, the hardness after curing is high and elasticity is lost. I understand.
  • Example 5 instead of the dimethylsiloxane having a silanol group at one end of the molecular chain, the formula:
  • thermally conductive silicone rubber composition in the same manner as in Example 5 except that the same amount of dimethylxanxane-blocked silanol groups at both ends of the molecular chain represented by was used, but the viscosity of the composition was too high. 1,200 parts by weight of a truly spherical alumina powder having an average particle diameter of 100 / m and 800 parts by weight of an irregularly shaped alumina powder having an average particle diameter of 2.2 ⁇ are mixed together. It is not possible to measure the consistency of the thermally conductive silicone rubber base, evaluate the moldability of the thermally conductive silicone rubber composition, and measure the thermal conductivity and hardness of the thermally conductive silicone rubber. could not.
  • Comparative Example 5 a truly spherical alumina powder having an average particle size of 10 ⁇ m was reduced to 9900 parts by weight, and an alumina powder having an average particle size of 2.2 ⁇ was reduced to 600 parts by weight.
  • a heat-conductive silicone rubber base was prepared in the same manner as in Comparative Example 5, except that the total content was 93% by weight. The consistency of this heat conductive silicone rubber base was measured in the same manner as in Example 5, and the results are shown in Table 2. Then, the silicone rubber base, 1 platinum platinum content of 0.5 weight 0/0, 3 Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 wt capital uniformly The mixture was mixed to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the filling amount of the spherical alumina powder having an average particle diameter of 10 ⁇ and the irregularly shaped alumina powder having an average particle diameter of 2.2 ⁇ was reduced.
  • Example 5 instead of dimethylxanxane having a silanol group at one end of the molecular chain, a compound represented by the formula:
  • a thermally conductive silicone rubber base was prepared in the same manner as in Example 5 except that the same amount of dimethylsiloxane having a silanol group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this heat conductive silicone rubber base was measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the silicone rubber base 1 platinum platinum content of 0.5 weight 0/0, 3 Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by uniformly and The mixture was mixed to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 5, and the results are shown in Table 2.
  • the dimethylsioxaxane with a silanol group blocked at one end of the molecular chain used here is the same dimethylsiloxane as the dimethylsioxaxane with a blocked silanol group at one end of the molecular chain used in Examples 5 to 8, but the degree of polymerization is small. Therefore, effective treatment could not be performed, and it was found that the obtained composition had high consistency before curing and poor handleability, and also had high hardness after curing and lost elasticity.
  • Table 2 Table 2
  • this silicone rubber base has a platinum content of 0.5 weight. / 0 1 platinum is 3- Jibieru one 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight (platinum metal with respect to the molecular chain terminal Jimechirubi two Rushirokishi group-blocked dimethylpolysiloxane 1 Oppm) to prepare a thermally conductive silicone rubber composition.
  • the content of alumina powder in this composition was 94.0% by weight (79.4% by volume).
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured as follows, and the results are shown in Table 3.
  • This thermally conductive silicone rubber composition was sandwiched between a 50 / m-thick polyethylene terephthalate resin film (PET film) to a thickness of 1 mm, and cured by heating at 100 ° C for 30 minutes. . Thereafter, the PET film was peeled off, and it was observed whether the silicone rubber sheet could be formed. If the sheet could be formed without any problems, the moldability was determined to be “ ⁇ ”. If it could be formed into a sheet, but was partially agglomerated and broken Is indicated as “ ⁇ ” as a poor formability, and “X” as a poor formability when most of the sheets could not be formed due to cohesive failure.
  • PET film polyethylene terephthalate resin film
  • the thermal conductivity of the thermally conductive silicone rubber obtained by heating and curing the thermally conductive silicone rubber composition at 100 ° C for 30 minutes is determined according to the heat conductivity specified in JISR 2616. According to the linear method, it was measured with a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the hardness of the thermally conductive silicone rubber obtained by heating and curing the thermally conductive silicone rubber composition at 100 ° C. for 30 minutes was measured with a type E durometer specified in JISK6253. It was measured.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • the silicone rubber base platinum content 0. 5 wt 0/0 is a platinum 1, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0. 2 parts by weight (of the The amount of platinum metal was 1 O ppm with respect to the dimethylpolysiloxane having a dimethylbielsuccinyl group at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • the silicone rubber base platinum content 0.5 wt 0/0 at a 1 platinum, 3- Jibyuru one 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight (the Dimethylpoly-siloxy group-blocked dimethylpolysiloxaxane at an amount such that platinum metal becomes 1 O ppm) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxyxyloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • the silicone rubber base the platinum content 0 5 wt 0/0 at a 1 platinum, 3-divinyl -.. Lou 1, 1, 3, 3-tetramethyldisiloxane complex 0 2 parts by weight
  • a heat-conductive silicone rubber composition was prepared by mixing the above-mentioned dimethylvinylsiloxy group-blocked dimethylpolysiloxane with both ends of the molecular chain with platinum metal in an amount of 1 ⁇ ).
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxycoxyoxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of the silicone rubber base was measured in the same manner as in Example 9, and the consistency was measured. Table 3 shows the results.
  • the silicone rubber base the platinum content is 0 5 1 platinum wt%, three to Jibiniru 1;.. 1, 3, 3-tetramethyldisiloxane complex 0 2 parts by weight (above molecular chain
  • the amount of platinum metal was 1 O ppm with respect to dimethylpolysiloxane having dimethylvinylsiloxy groups at both ends) to obtain a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • the silicone rubber base platinum content 0.5 wt 0/0 at a 1 platinum, 3- Jibyuru one 1, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight (the Was mixed with dimethylpolysiloxane blocked with dimethyl bi-siloxy groups at both ends of the molecular chain so that the amount of platinum metal was 1 O ppm) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3.
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • Example 9 instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat conductive silicone rubber base was prepared in the same manner as in Example 9 except that the same amount was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 3.
  • the silicone rubber base platinum content 0. 5 wt 0/0 is a platinum 1, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0. 2 parts by weight (of the The amount of platinum metal was 1 O ppm with respect to the dimethyl polysiloxane having a dimethyl bierchie xy group blocked at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 3. Table 3
  • Table 3 shows that the content of the alumina powder in the thermally conductive silicone rubber composition was 79.4% by volume.
  • Examples 9 to 11 and Comparative Examples 8 to 11 are compared, the difference in the number of repeating units of dimethylsiloxane in the dimethylpolysiloxane capped with trimethoxysiloxy group at one end of the molecular chain indicates that the thermally conductive silicone rubber composition is slightly different. It was found that the degree of change greatly changed and the hardness of the silicone rubber obtained by curing also changed greatly.
  • Example 9 comparing Example 9 with Comparative Examples 13 and 13, even if the number of repeating units of dimethylsiloxane in dimethylpolysiloxane is equal, the force at which one end of a molecular chain is blocked by a trimethoxysiloxy group, It was found that the degree of thermal conductivity of the silicone rubber composition was greatly changed and the hardness of the silicone rubber obtained by curing was greatly changed depending on whether or not was blocked with a trimethoxysiloxy group. Furthermore, comparing Comparative Examples 12 and 13, if both molecular chain terminals of dimethylpolysiloxane are blocked with trimethoxysiloxy groups, heat conduction is independent of the number of repeating units of dimethylsiloxane. It has been found that the silicone rubber composition has a high degree of adhesion and the handling efficiency is reduced.
  • dimethylpolysiloxane with a viscosity of 40 O mPa's at both ends of the molecular chain and dimethylvinylsiloxane having a hydroxyl group blocked (vinyl group content 0.44% by weight) 10 0 parts by weight, 1,500 parts by weight of truly spherical alumina powder having an average particle size of 10 ⁇ m, 1,000 parts by weight of amorphous alumina powder having an average particle size of 2.2 / im, and the formula:
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 12, except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 4.
  • the silicone rubber base platinum content 0.5 wt 0/0 1, 3 one Jibyuru one first platinum is, 1, 3, 3-tetramethyldisiloxane complex 0.2 parts by weight (the (The amount of platinum metal becomes 1 O ppm with respect to dimethylpolysiloxane with dimethylbielsic acid at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the content of alumina powder in this composition was 95.0% by weight (82.4% by volume).
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 4.
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 4.
  • the silicone rubber base, platinum content 0. 5 wt 0/0 is a platinum 1, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0.
  • thermally conductive silicone rubber composition 2 parts by weight (of the The amount of platinum metal was 1 O ppm with respect to dimethylpolysiloxane blocked with dimethylvinylsiloxy groups at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 4.
  • Example 12 instead of the dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • Example 12 instead of the dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 4. Then, the silicone rubber base, platinum content of 0 5 wt 0/0 at a 1 platinum, 3 -. Divinyl -.
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 4.
  • the silicone rubber base platinum content 0. 5 wt 0/0 is a platinum 1, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0. 2 parts by weight (of the The amount of platinum metal was 1 O ppm with respect to dimethylpolysiloxane blocked with dimethylvinylsiloxy groups at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 4.
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat-conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane having a trimethoxysiloxy group blocked at one end of the molecular chain represented by the following formula was used.
  • the consistency of this silicone rubber base was measured in the same manner as in Example 9, and the results are shown in Table 4.
  • the silicone rubber base platinum content 0. 5 wt 0/0 is a platinum 1, 3-Jibiniru 1, 1, 3, 3-tetramethyldisiloxane complex 0. 2 parts by weight (of the The amount of platinum metal was 1 O ppm with respect to dimethylpolysiloxane blocked with dimethylvinylsiloxy groups at both ends of the molecular chain) to prepare a thermally conductive silicone rubber composition.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 9, and the results are shown in Table 4.
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane capped with trimethoxysiloxy groups at both ends of the molecular chain represented by was used, but the viscosity of the base was too high. Therefore, 1,500 parts by weight of a truly spherical alumina powder having an average particle size of 10 m and 1,000 parts by weight of an amorphous powder having an average particle size of 2.2 ⁇ could not be mixed.
  • Example 12 in place of dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat conductive silicone rubber base was prepared in the same manner as in Example 12 except that the same amount of dimethylpolysiloxane capped with trimethoxysiloxy groups at both ends of the molecular chain represented by was used.However, the viscosity of the base was too high. 1,500 parts by weight of a truly spherical alumina powder having an average particle diameter of 10 ⁇ m and 100,000 parts by weight of an irregularly shaped alumina powder having an average particle diameter of 2.2 are mixed. I could't do that. Table 4
  • Table 4 shows that the content of the alumina powder in the thermally conductive silicone rubber composition was extremely high as 82.4% by volume.
  • a comparison of Examples 12 to 14 and Comparative Examples 15 to 17 shows that the heat conductive silicone rubber composition is different due to the difference in the number of repeating units of dimethylsiloxane in the dimethylpolysiloxane blocked at one end of the molecular chain. It was found that the consistency changed significantly and the hardness of the silicone rubber obtained by curing also changed significantly.
  • Comparative Example 18 shows that even if the number of repeating units of dimethylsiloxane in dimethylpolysiloxane is equal, if both molecular chain terminals are blocked with trimethoxysiloxy groups, Regardless of the number of repeating units, it was found that the consistency of the thermally conductive silicone rubber composition was increased and the handling workability was reduced.
  • thermally conductive silicone rubber composition The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured as follows, and the results are shown in Table 5.
  • the 1/4 consistency of this thermally conductive silicone rubber composition was measured according to the method specified in JIS K2220.
  • a high consistency value means that the heat conductive silicone rubber composition has high plasticity and excellent handleability.
  • thermal conductive silicone rubber composition [Moldability of thermal conductive silicone rubber composition]
  • the thermally conductive silicone rubber composition was sandwiched between 0.2 mm thick tetrafluoroethylene resin films so as to have a thickness of 2 mm, and was heated and cured at 150 ° C. for 15 minutes. Thereafter, the film made of the tetrafluoroethylene resin was peeled off, and it was observed whether a silicone rubber sheet could be formed.
  • Good moldability was obtained when a uniform silicone rubber sheet could be formed: ⁇ , Moldable in a sheet form, and poor moldability when a part where the strength was weak was partially good: ⁇ , Sheet form The case where the molding was not possible or the strength was weak even if the molding was possible was evaluated as poor moldability: X,.
  • the heat conductivity of the heat-conductive silicone rubber obtained by heating and curing the heat-conductive silicone rubber composition at 150 ° C for 15 minutes was measured according to the hot wire method specified in JISR 2616 by Kyoto Electronics Co., Ltd. It was measured by a thermal conductivity meter QTM-500.
  • the heat conductive silicone rubber composition was sandwiched between adherends of the same kind, and then cured by heating at 150 ° C. for 30 minutes.
  • adherends As the adherend, an aluminum plate (JISH 4000, A1050P), a nickel plate (SPCC_SB), and a stainless steel plate (SUS-3042B) manufactured by Paltec Co., Ltd. were used.
  • the bonding area was 25 mm X 10 mm, and the thickness of the bonding layer was 1 mm.
  • the tensile shear adhesive strength of the heat conductive silicone rubber was measured according to JISK 6249.
  • the mixing device has a molecular chain with both ends having a viscosity of 30 OmPa's.
  • thermoly conductive silicone grease A part of this thermally conductive silicone grease was poured into a 50 ml glass beaker, and the 1/4 penetration of this silicone grease was measured by the method specified in JISK 2220. The results are shown in Table 6. Note that a large value of the likelihood means that the heat conductive silicone grease has high plasticity and is excellent in handleability.
  • the heat conductive silicone grease is wrapped in a salted vinylidene resin film, and the heat conductivity is measured by a rapid heat conductivity meter QTM-500 manufactured by Kyoto Electronics Manufacturing Co., Ltd. in accordance with the hot wire method specified in JISR 2616. Measure and the result Are shown in Table 6.
  • Example 16 in place of the dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat conductive silicone grease was prepared in the same manner as in Example 16 except that the same amount of the organosiloxane represented by the following formula was used.
  • the thermal conductivity and the thermal conductivity of this thermally conductive silicone grease were measured in the same manner as in Example 16, and the results are shown in Table 6.
  • Example 16 in place of the dimethylpolysiloxane capped at one end of the molecular chain, the formula:
  • a heat conductive silicone grease was prepared in the same manner as in Example 16 except that the same amount of oligosiloxane represented by the following formula was used.
  • the thermal conductivity of this silicone grease was measured in the same manner as in Example 16, and the results are shown in Table 6.
  • Example 16 in place of the trimethoxysiloxy group-blocked dimethyl ⁇ / repolysiloxane at one end of the molecular chain, a compound represented by the formula:
  • the thermal conductivity and thermal conductivity of this thermally conductive silicone grease were measured in the same manner as in Example 16, and the results are shown in Table 6.
  • a heat conductive silicone grease was prepared. The thermal conductivity and thermal conductivity of this thermal conductive silicone grease were measured in the same manner as in Example 16, and the results are shown in Table 6.
  • Example 16 an attempt was made to prepare a thermally conductive silicone grease in the same manner as in Example 16 except that the same amount of methyltrimethoxysilane was used instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain.
  • the viscosity of the composition was too high, a predetermined amount of the alumina powder could not be mixed, and the measurement of the thermal conductivity and the thermal conductivity of the thermally conductive silicone grease could not be performed.
  • Example 16 in place of the dimethylpolysiloxane capped with a trimethoxysiloxy group at one end of the molecular chain, a compound represented by the formula:
  • a heat conductive silicone grease was prepared in the same manner as in Example 16 except that the same amount of the oligosiloxane represented by the formula was used.However, the viscosity of the composition was too high, and a predetermined amount of the alumina powder was mixed. It was not possible to measure the thermal conductivity just after thermal conductive silicone grease.
  • a heat-conductive silicone grease was prepared in the same manner as in Example 16 except that the same amount of decyltrimethoxysilane was used in place of dimethylpolysiloxane blocked with a trimethoxysiloxy group at one end of the molecular chain.
  • the thermal conductivity and thermal conductivity of this thermally conductive silicone grease were measured in the same manner as in Example 16, and the results are shown in Table 6.
  • a heat conductive silicone grease was prepared in the same manner as in Example 21 except that the same amount of decyltrimethoxysilane was used instead of dimethylpolysiloxane having a trimethoxysiloxy group at one end of the molecular chain.
  • the thermal conductivity of this silicone dolly was measured in the same manner as in Example 16, and the results are shown in Table 6. Table 6
  • a loss mixer 72.05 parts by weight of a dimethylpolysiloxane having a viscosity of 30 OmPa's and capped with trimethylsiloxy groups at both ends of the molecular chain, 137 parts by weight of spherical alumina powder having an average particle diameter of 0.4 m, and an average particle diameter of 2 / m 167.6 parts by weight of spherical alumina powder, 615.4 parts by weight of spherical alumina powder having an average particle size of 18 ⁇ m,
  • a loss mixer 75 parts by weight of a dimethylpolysiloxane having a viscosity of 30 OmPa's and capped with trimethylsiloxy groups at both ends of the molecular chain, 137 parts by weight of spherical alumina powder having an average particle size of 0.4 ⁇ m, 137 parts by weight, and an average particle size of 2 ⁇ 167.6 parts by weight of spherical alumina powder having an average particle diameter of 18 ⁇ 6 15.4 parts by weight of spherical alumina powder having the following formula:
  • the dimethylpolysiloxane blocked at both ends of the molecular chain having a viscosity of 40 OraPa's (dimethyl group content 0.44% by weight) 43.6 parts by weight, average particle size 40 ⁇ 550 parts by weight of spherical alumina powder having a particle size of m, and 368 parts by weight of alumina powder having an irregular shape having an average particle size of 2.2 m.
  • a rubber composition was prepared. The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 8. Was.
  • the mixture has a viscosity of 5 mPa's, and a molecular chain having an average of 5 silicon-bonded hydrogen atoms in one molecule.
  • thermo conductivity 0.5 parts by weight of a platinum 1,3-dibutyl-1,1,3,3-tetramethyldisiloxane complex having a platinum content of 0.5% by weight.
  • a silicone rubber composition was prepared. The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 8.
  • a heat conductive silicone rubber composition was prepared in the same manner as in Comparative Example 24, except that the same amount of decyltrimethoxysilane was used instead of methyltrimethoxysilane in Comparative Example 24.
  • the properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 8.
  • a heat conductive silicone rubber composition was prepared in the same manner as in Comparative Example 24 except that the same amount of the organosiloxane represented by The properties of the thermally conductive silicone rubber composition and the thermally conductive silicone rubber were measured in the same manner as in Example 1, and the results are shown in Table 8.
  • the mixing device was used to obtain 70 parts by weight of a dimethylpolysiloxane having a viscosity of 30 O mPa's and capped with a trimethylsiloxy group at both ends of the molecular chain, and 552 parts by weight of a spherical alumina powder having an average particle size of 40 ⁇ m.
  • thermally conductive silicone grease was poured into a 5 O ml glass beaker, and the 1 g4 penetration of the silicone grease was measured by the method specified in JISK2220. It was shown to. Note that a large value of the likelihood means that the heat conductive silicone grease has high plasticity and is excellent in handleability.
  • the heat conductive silicone grease is wrapped in a Shii-Dani Vinylidene resin film, and the heat conductivity is measured according to the hot wire method specified in JISR 266 16 by a rapid heat conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. The measurement was performed using QTM-5Q0, and the results are shown in Table 9.
  • the mixing device was used to obtain 70 parts by weight of a dimethylpolysiloxane having a viscosity of 30 O mPa's and capped with a trimethylsiloxy group at both ends of the molecular chain, and 552 parts by weight of a spherical alumina powder having an average particle size of 40 ⁇ m.
  • thermally conductive silicone grease was mixed at room temperature to prepare a thermally conductive silicone grease.
  • the properties of this thermally conductive silicone grease were measured in the same manner as in Example 29, and the results are shown in Table 9.
  • the heat conductive silicone composition of the present invention is characterized by good handling workability even if a large amount of a heat conductive filler is contained in order to obtain a high heat conductive silicone composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 ' 熱伝導性シリコーン組成物 技術分野
本発明は、 熱伝導性シリコーン組成物に関し、 詳しくは、 高熱伝導性のシリコ 一ン組成物を得るために熱伝導性充填剤を多量に含有しても、 取扱作業性が良好 である熱伝導性シリコーン組成物に関する。 背景技術
近年、 トランジスター、 I C、 メモリー素子等の電子部品を登載したプリント 回路基板やハイプリッド I cの高密度 ·高集積化にともなって、 これらを効率よ く放熱するために各種の熱伝導性シリコーン組成物が使用されている。 このよう な熱伝導性シリコーン組成物としては、 熱伝導性シリコーングリース、 熱伝導性 シリコーンゲル糸且成物、 熱伝導性シリコーンゴム組成物が知られている。
このような熱伝導性シリコーン組成物としては、 例えば、 ビエル基を含有する オルガノポリシ口キサン、 オルガノハイドロジェンポリシロキサン、 熱伝導性充 填剤、 アミノシラン、 エポキシシランおよびアルキルチタネートから選択される 接着付与剤、 および白金系触媒からなる熱伝導性シリコーン組成物 (特開昭 6 1 - 1 5 7 5 6 9号公報参照) 、 一分子中に平均 2個のアルケニル基を含有するォ ルガノポリシロキサン、 一分子中に平均 3個以上のケィ素原子結合水素原子を含 有するオルガノポリシロキサン、 酸化亜鉛と酸ィ匕マグネシゥム力 らなる熱伝導性 充填剤、 充填剤処理剤、 および白金系触媒からなる熱伝導性シリコーン組成物 ( 特開昭 6 2— 1 8 4 0 5 8号公報参照) 、 一分子中に少なくとも 0 . 1モル%のァ ルケ二ル基を含有するオルガノポリシロキサン、 一分子中に少なくとも 2個のケ ィ素原子結合水素原子を含有するオルガノハイドロジエンポリシロキサン、 平均 粒径が 1 0〜 5 0 mである球状アルミナ粉末と平均粒径が 1 0 μ m未満である 球状または非球状アルミナ粉末、 および白金または白金系化合物からなる熱伝導 性シリコーン組成物 (特開昭 6 3 - 2 5 1 4 6 6号公報参照) 、 アルケニル基含 有オルガノポリシロキサン、 オルガノハイドロジェンポリシロキサン、 平均粒径 が 0 . 1〜5 i mである無定型アルミナ粉末と平均粒径が 5〜5 0 μ κιである球状 アルミナ粉末、 および白金系触媒からなる熱伝導性シリコーン組成物 (特開平 2 - 4 1 3 6 2号公報参照) 、 一分子中に少なくとも 2個のケィ素原子結合アルケ -ル基を含有するオルガノポリシロキサン、 一分子中に少なくとも 3個のケィ素 原子結合水素原子を含有するオルガノハイドロジヱンポリシロキサン、 平均粒径 が 5〜 2 0 ^ mの熱伝導性充填剤、 接着助剤、 および白金および白金系化合物か らなる熱伝導性シリコーン組成物 (特開平 2— 9 7 5 5 9号公報参照) が提案さ れている。
このような熱伝導性シリコーン組成物において、 熱伝導率を向上させるために は、 この組成物中の熱伝導性充填剤の含有量を多くしなければならないが、 得ら れるシリコーン組成物の取扱性および成形性が悪化するという問題があった。 また、 熱伝導性シリコーン糸且成物として、 例えば、 一分子中に少なくとも 2個 のケィ素原子結合アルケニル基を含有するオルガノポリシロキサン、 一分子中に 少なくとも 2個のケィ素原子結合水素原子を含有するオルガノハイドロジェンポ リシロキサン、 一分子中に少なくとも 1個のケィ素原子結合アルコキシ基または ケィ素原子結合水酸基を含有するオルガノシロキサン、 平均粒子径が 1 0 μ m未 満である球状または非球状アルミナ微粉末と平均粒子径が 1 0〜5 0 μ ηιである 球状または非球状アルミナ微粉末、 およぴヒドロシリル化反応用触媒からなる熱 伝導' 1·生シリコーン組成物 (特開平 8— 3 2 5 4 5 7号公報参照) 、 液状シリコー ン、 酸化亜鉛、 アルミナ、 窒化アルミニウム、 窒化ホウ素及ぴ炭化ケィ素粉末の 中から選択される少なくとも 1種の增稠剤、 1分子中にケィ素原子に直結した水 酸基を少なくとも 1個有するオルガノポリシロキサン、 およびアルコキシシラン からなる熱伝導性シリコーン組成物 (特開平 1 1一 4 9 9 5 8号公報参照) が提 案されている。
しかし、 このような熱伝導 i4シリコーン,組成物においては、 実質的に一分子中 に少なくとも 1個のケィ素原子結合水酸基を含有するオルガノシロキサンは分子 鎖両末端シラノール基封鎖ジォルガノシロキサンであり、 このようなジオルガノ シロキサンでは、 これを硬化して得られるシリコーン硬化物の熱伝導率を向上さ せるため、 この組成物中の熱伝導性充填剤の含有量を多くすると、 得られるシリ コーン組成物の取扱性および成形性が悪くなるという問題があった。
さらに、 熱伝導性シリコーン組成物において、 特開 2000— 256558号 公報、 およぴ特開 2001— 139815号公報には、 式:
Figure imgf000004_0001
(式中、 Xは 5〜: L 00の整数である。 )
で表されるジメチルポリシロキサンを用いることが提案されている。
し力 し、 このような熱伝導性シリコーン組成物において、 これを硬化して得ら れるシリコーン硬化物の熱伝導率を向上させるため、 さらにアルミナ等の熱伝導 性充填剤を高充填しようとした場合、 得られる組成物の粘度が急激に上昇して取 扱作業性や成形性が著しく低下するという問題があった。
本発明者らは、 上記の課題について鋭意検討した結果、 本発明に到達した。 すなわち、 本発明の目的は、 高熱伝導性のシリコーン組成物を得るために熱伝 導性充填剤を多量に含有しても、 取扱作業性が良好である熱伝導性シリコーン組 成物を提供することにある。 発明の開示
本発明の熱伝導性シリコーン組成物は、 (A)オルガノポリシロキサン、 (B)熱 伝導性充填剤、 および(C)(i)一般式:
[R1 aR2 (3-a)SiO(R1 bRVb)SiO)m(R2 2SiO)n]0SiRV(o+d)](OR3)d
(式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 R2は同種または 異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 R3はアルキル基、 ァ ルコキシアルキル基、 アルケニル基、 またはァシル基であり、 aは 0〜 3の整数 であり、 bは 1または 2であり、 cは 1〜3の整数であり、 dは 1〜3の整数で あり、 かつ、 c + dは 2〜4の整数であり、 mは 0以上の整数であり、 nは 0以 上の整数であり、 伹し、 aが 0である場合には、 mは 1以上の整数である。 ) で表されるオルガノシロキサン、 (i i)一分子中に 1個のケィ素原子結合水酸基を 有し、 かつ少なくとも 5個のケィ素原子を有するオルガノシロキサン、 (iii)一般 式:
Figure imgf000005_0001
(式中、 R4は同種または異種の一価炭化水素基であり、 R5は酸素原子または二価 炭化水素基であり、 R3は前記と同じであり、 pは 1 0 0〜2 0 0の整数であり、 dは前記と同じである。 )
で示されるオルガノシロキサン、 および(iv)—般式:
[HeR2 (3.e) S i O (R2 2 S i O) J c S i R2 [4.(c+d)] (O R3) d
(式中、 R2、 R3、 c、 d、 および nは前記と同じであり、 eは 1〜3の整数であ る。 )
で表されるオルガノシロキサンからなる群より選択される少なくとも 1種のオル ガノシロキサン、 から少なくともなることを特徴とする。 発明を実施するための最良の形態
本発明の熱伝導性シリコーン組成物を詳細に説明する。
本組成物は、 上記の(A)成分、 (B)成分、 および(C)成分から少なくともなる ことを特徴とする。 また、 本組成物は、 さらに(D)硬化剤を配合して、 硬化性の 組成物とすることもできる。 この場合、 本組成物の硬化機構は限定されず、 例え ば、 ヒドロシリル化反応、 縮合反応、 および有機過酸化物によるフリーラジカル 反応が挙げられ、 速やかに硬化し、 副生成物が発生しないことから、 ヒドロシリ ル化反応であることが好ましい。
( A)成分のオルガノポリシロキサンは本組成物の主剤である。 このオルガノポ リシロキサン中のケィ素原子に結合している基としては、 例えば、 メチル基、 ェ チル基、 プロピル基、 ブチル基、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチ ル基、 ノニノレ基、 デシル基、 ゥンデシル基、 ドデシル基、 トリデシル基、 テトラ デシル基、 ペンタデシル基、 へキサデシル基、 ヘプタデシル基、 ォクタデシル基 、 ノナデシル基、 エイコシル基等の直鎖状アルキル基;イソプロピル基、 ターシ ャリーブチル基、 イソブチル基、 2—メチルゥンデシル基、 1一へキシルへプチ ル基等の分岐鎖状アルキル基;シクロペンチル基、 シクロへキシル基、 シクロド デシル基等の環状アルキル基; ビュル基、 ァリル基、 ブテニル基、 ペンテュル基 、 へキセニル基等のァルケ-ル基;フエ-ル基、 トリノレ基、 キシリル基等のァリ ール基;ベンジル基、 フエネチル基、 2—(2, 4, 6—トリメチルフエエル)プロ ピル基等のァラルキル基; 3, 3, 3—トリフルォロプロピル基、 3—クロ口プロ ピル基等のハロゲン化アルキル基が挙げられ、 好ましくは、 アルキル基、 ァルケ ニル基、 ァリール基であり、 特に好ましくは、 メチル基、 ビュル基、 フエニル基 である。 また、 このオルガノポリシロキサンの 2 5 °Cにおける粘度は限定されな いが、 2 0〜1 0 0, 0 0 O mPa' sの範囲内であることが好ましく、 さらに、 5 0 〜: 1 0 0, 0 0 O mPa' sの範囲内であることが好ましく、 さらに、 5 0〜5 0, 0 0 O mPa' sの範囲内であることが好ましく、 特に、 1 0 0〜5 0, 0 0 O mPa' sの範囲 内であることが好ましい。 これは、 2 5 °Cにおける粘度が上記範囲の下限未満で あると、 得られるシリコーン組成物の物理的特性が著しく低下する傾向があるか らであり、 一方、 上記範囲の上限を超えると、 得られるシリコ^"ン組成物の取扱 作業性が著しく低下する傾向があるからである。 このようなオルガノポリシロキ サンの分子構造は限定されず、 例えば、 直鎖状、 分岐鎖状、 一部分岐を有する直 鎖状、 樹枝状 (デンドリマー状) が挙げられ、 好ましくは、 直鎖状、 一部分岐を 有する直鎖状である。 このようなオルガノポリシロキサンとしては、 例えば、 こ れらの分子構造を有する単一の重合体、 これらの分子構造からなる共重合体、 ま たはこれらの重合体の混合物が挙げられる。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端ジメチル ビニルシ口キシ基封鎖ジメチルポリシ口キサン、 分子鎖両末端メチルフヱ -ルビ エルシ口キシ基封鎖ジメチルポリシロキサン、 分子鎖両末端ジメチルビ二ルシロ キシ基封鎖ジメチルシロキサン 'メチルフエニルシロキサンコポリマー、 分子鎖 両末端ジメチルビ二ルシロキシ基封鎖ジメチルシ口キサン ·メチルビニルシ口キ サンコポリマー、 分子鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ' メチルビ-ルシロキサンコポリマー、 分子鎖両末端ジメチルビ二ルシロキシ基封 鎖メチノレ( 3, 3, 3—トリフルォロプロピル)ポリシ口キサン、 分子鎖両末端シラ ノール基封鎖ジメチルシロキサン 'メチルビニルシロキサンコポリマー、 分子鎖 両末端シラノール基封鎖ジメチルシロキサン ·メチルビユルシロキサン ·メチル フエエルシロキサンコポリマー、 式: (CH3)3 Si〇1/2で表されるシロキサン単 位と式: (CH3)2 (CH2二 CH) Si〇1/2で表されるシロキサン単位と式: CH3 Si〇3/2で表されるシロキサン単位と式: (CH3)2 SiO2/2で表されるシロキサ ン単位からなるオルガノシロキサンコポリマー、 分子鎖両末端シラノール基封鎖 ジメチルポリシロキサン、 分子鎖両末端シラノール基封鎖ジメチルシ口キサン · メチルフエニルシロキサンコポリマー、 分子鎖両末端トリメ トキシシロキシ基封 鎖ジメチルポリシロキサン、 分子鎖両末端トリメ トキシシリル基封鎖ジメチルシ ロキサン ·メチルフエエルシロキサンコポリマー、 分子鎖両末端メチルジメ トキ シシロキシ基封鎖ジメチルポリシロキサン、 分子鎖両末端トリエトキシシロキシ 基封鎖ジメチルポリシロキサン、 分子鎖両末端トリメ トキシシリルェチル基封鎖 ジメチルポリシロキサン、 およびこれらの 2種以上の混合物が挙げられる。
また、 本組成物がヒドロシリル化反応により硬化する場合には、 (A)成分は、 —分子中に平均 0. 1個以上のケィ素原子結合ァルケ-ル基を有するオルガノポリ シロキサンであることが好ましく、 さらに、 一分子中に平均 0. 5個以上のケィ素 原子結合アルケニル基を有するオルガノポリシロキサンであることが好ましく、 特に、 一分子中に平均 0.8個以上のケィ素原子結合ァルケ-ル基を有するオルガ ノポリシロキサンであることが好ましい。 これは、 一分子中のケィ素原子結合ァ ルケニル基の平均値が上記範囲の下限未満であると、 得られる組成物が十分に硬 ィ匕しなくなる傾向があるからである。 この レガノポリシロキサン中のケィ素原 子結合アルケ-ル基としては、 前記と同様のアルケニル基が例示され、 好ましく はビュル基である。 また、 このオルガノポリシロキサン中のァルケ-ル基以外の ケィ素原子に結合している基としては、 前記と同様の直鎖状アルキル基、 分岐鎖 状アルキル基、 環状アルキル基、 ァリール基、 ァラルキル基、 ハロゲン化アルキ ル基が例示され、 好ましくは、 アルキル基、 ァリール基であり、 特に好ましくは
、 メチノレ基、 フエニル基である。 また、 このオルガノポリシロキサンの 2 5 °Cに おける粘度は限定されないが、 2 0〜1 0 0, 0 0 O mPa' sの範囲内であることが 好ましく、 さらに、 5 0〜1 0 0, 0 0 O mPa' sの範囲内であることが好ましく、 さらに、 5 0〜5 0, 0 0 O mPa' sの範囲内であることが好ましく、 特に、 1 0 0 〜 5 0, 0 0 O mPa' sの範囲内であることが好ましい。 これは、 2 5 °Cにおける粘 度が上記範囲の下限未満であると、 得られるシリコーン硬化物の物理的特性が著 しく低下する傾向があるからであり、 一方、 上記範囲の上限を超えると、 得られ るシリコーン組成物の取扱作業性が著しく低下する傾向があるからである。 この ようなオルガノポリシロキサンの分子構造は限定されず、 前記と同様の構造が例 示され、 好ましくは、 直鎖状、 一部分岐を有する直鎖状である。 このようなオル ガノポリシロキサンとしては、 例えば、 これらの分子構造を有する単一の重合体 、 これらの分子構造からなる共重合体、 またはこれらの重合体の混合物が挙げら れる。 このようなオルガノポリシロキサンとしては、 前記と同様のアルケニル基 を有するオルガノポリシロキサンが例示される。
また、 本組成物が縮合反応により硬化する場合には、 (A)成分は、 一分子中に 少なくとも 2個のシラノ一ノレ基もしくはケィ素原子結合加水分解性基を有するォ ルガノポリシロキサンである。 このオルガノポリシロキサン中のケィ素原子結合 加水分角旱性基としては、 例えば、 メ トキシ基、 エトキシ基、 プロポキシ基等のァ ルコキシ基; ビニロキシ基、 プロぺノキシ基、 イソプロぺノキシ基、 1 _ェチル 一 2—メチルビニルォキシ基等のアルケノキシ基;メ トキシェトキシ基、 ェトキ シェトキシ基、 メ トキシプロポキシ基等のアルコキシアルコキシ基;ァセトキシ 基、 ォクタノィルォキシ基等のァシロキシ基;ジメチルケトォキシム基、 メチル ェチルケトォキシム基等のケトォキシム基;ジメチルァミノ基、 ジェチルァミノ 基、 ブチルァミノ基等のァミノ基; ジメチルァミノキシ基、 ジェチルァミノキシ 基等のアミノキシ基; N—メチ^/ァセトアミ ド基、 N—ェチルァセトアミ ド基等 のアミ ド基が挙げられる。 また、 このオルガノポリシロキサン中のシラノール基 およびケィ素原子結合加水分解性基以外のケィ素原子に結合している基としては 、 前記と同様の直鎖状アルキル基、 分岐鎖状アルキル基、 環状アルキル基、 アル ケ-ル基、 ァリール基、 ァラルキル基、 ハロゲン化アルキル基が例示される。 ま た、 このオルガノポリシロキサンの 2 5 °Cにおける粘度は限定されないが、 2 0 〜1 0 0, 0 0 O mPa' sの範囲内であることが好ましく、 さらに、 5 0〜1 0 0, 0 0 O mPa' sの範囲内であることが好ましく、 特に、 1 0 0〜 1 0 0 , 0 0 O mPa' sの 範囲内であることが好ましい。 これは、 2 5 °Cにおける粘度が上記範囲の下限未 満であると、 得られるシリコーン硬化物の物理的特性が著しく低下する傾向があ るからであり、 一方、 上記範囲の上限を超えると、 得られるシリコーン組成物の 取扱作業性が著しく低下する傾向があるからである。 このようなオルガノポリシ ロキサンの分子構造は限定されず、 前記と同様の構造が例示され、 好ましくは、 直鎖状、 一部分岐を有する直鎖状である。 このようなオルガノポリシロキサンと しては、 前記と同様の一分子中に少なくとも 2個のシラノール基もしくはケィ素 原子結合加水分解性基を有するオルガノポリシロキサンが例示される。
また、 本組成物が有機過酸化物によるフリ一ラジカル反応により硬化する場合 には、 (A)成分のオルガノポリシロキサンは限定されないが、 好ましくは、 一分 子中に少なくとも 1個のケィ素原子結合ァルケ-ル基を有するオルガノポリシ口 キサンである。 このオルガノポリシロキサン中のケィ素原子に結合している基と しては、 前記と同様の直鎖状アルキル基、 分岐鎖状アルキル基、 環状アルキル基 、 ァルケ-ル基、 ァリール基、 ァラルキル基、 ハロゲン化アルキル基が例示され 、 好ましくは、 アルキル基、 ァルケ-ル基、 ァリール基であり、 特に好ましくは 、 メチル基、 ビニル基、 フエニル基である。 また、 このオルガノポリシロキサン の 2 5 °Cにおける粘度は限定されないが、 2 0〜 1 0 0, 0 0 O mPa' sの範囲内で あることが好ましく、 さらに、 5 0〜1 0 0, 0 0 O mPa' sの範囲内であることカ 好ましく、 さらに、 5 0〜5 0, 0 0 O mPa' sの範囲内であることが好ましく、 特 に、 1 0 0〜 5 0, 0 0 O mPa' sの範囲内であることが好ましい。 これは、 2 5 °C における粘度が上記範囲の下限未満であると、 得られるシリコーン硬化物の物理 的特性が著しく低下する傾向があるからであり、 一方、 上記範囲の上限を超える と、 得られるシリコーン組成物の取扱作業性が著しく低下する傾向があるからで ある。 このようなオルガノポリシロキサンの分子構造は限定されず、 前記と同様 の構造が例示され、 好ましくは、 直鎖状、 一部分岐を有する直鎖状である。 この ようなオルガノポリシロキサンとしては、 例えば、 これらの分子構造を有する単 一の重合体、 これらの分子構造からなる共重合体、 またはこれらの重合体の混合 物が挙げられる。 このようなオルガノポリシロキサンとしては、 前記と同様のォ ルガノポリシ口キサンが例示される。
(B )成分の熱伝導性充填剤は、 得られるシリコーン組成物に熱伝導性を付与す るための成分であり、 例えば、 アルミニウム粉末、 銅粉末、 ニッケル粉末等の金 属系粉末;アルミナ粉末、 酸ィ匕マグネシウム粉末、 酸化ベリリゥム粉末、 酸ィ匕ク ロム粉末、 酸化チタン粉末等の金属酸化物系粉末;窒化ホウ素粉末、 窒化アルミ ニゥム粉末等の金属窒化物系粉末;炭化ホウ素粉末、 炭化チタン粉末、 炭化珪素 粉末等の金属炭化物系粉末; Fe_Si合金、 Fe- A1合金、 Fe- Si- A1合金、 Fe- Si- Cr合 金、 Fe- Ni合金、 Fe- Ni- Co合金、 Fe- Ni- Mo合金、 Fe- Co合金、 Fe- Si- Al-Cr合金、 F e_Si- B合金、 Fe-Si- Co- B合金等の軟磁性合金粉; Mn- Znフェライト、 Mn- Mg- Znフエ ライト、 Mg - Cu- Znフェライ ト、 Ni - Znフェライト、 Ni_Cu- Znフヱライト、 Cu- Znフ エライト等のフェライト、 およびこれらの 2種以上の混合物が挙げられる。 また 、 (B )成分の形状としては、 例えば、 球状、 針状、 円盤状、 棒状、 扁平形状、 不 定形状が挙げられる。 本組成物、 あるいは本組成物を硬化して得られるシリコー ン硬化物に電気絶縁性が要求される場合には、 (B )成分は、 金属酸化物系粉末、 金属窒化物系粉末、 金属炭化物系粉末であることが好ましく、 特に、 アルミナ粉 末であることが好ましい。 (B )成分の平均粒径は限定されないが、 0 . 1〜: 1 0 0 ^u mの範囲内であることが好ましく、 特に、 0 . 1〜 5 0 μ πιの範囲内であること が好ましい。 また、 (Β )成分の熱伝導性充填剤としてアルミナ粉末を用いる場合 には、 (Β 平均粒径が 5〜 5 0 m (ただし、 5 μ πιを含まなレ、。 ) である球状 のアルミナ粉末と(B 2)平均粒径が 0 . 1〜 5 mである球状もしくは不定形状の アルミナ粉末との混合物であることが好ましい。 さらに、 この混合物において、 前記の(B 成分の含有量は 3 0〜 9 0重量%の範囲内であり、 前記の(B 2)成分の 含有量は 1 0〜 7 0重量%の範囲内であることが好ましい„ 本組成物において、 (B)成分の含有量は限定されないが、 良好な熱伝導性を有 するシリコーン組成物を形成するためには、 容積%については、 本組成物中の少 なくとも 30容積%であることが好ましく、 さらに、 30〜90容積%の範囲内 であることが好ましく、 さらに、 60〜 90容積%の範囲内であることが好まし く、 特に、 80〜 90容積。 /0の範囲内であることが好ましい。 同様に、 良好な熱 伝導性を有するシリコーン組成物を形成するためには、 (B)成分の含有量は、 重 量%については、 本糸且成物中の少なくとも 50重量%であることが好ましく、 さ らに、 70〜98重量%の範囲内であることが好ましく、 特に、 90〜97重量 %の範囲内であることが好ましい。 (B)成分の含有量として、 具体的には、 (A) 成分 100重量部に対して 500-2, 500重量部の範囲内であることが好まし く、 さらに、 500〜2, 000重量部の範囲内であることが好ましく、 特に、 8 00〜2, 000重量部の範囲内であることが好ましい。 これは、 (B)成分の含有 量が上記範囲の下限未満であると、 得られるシリコーン組成物の熱伝導性が不十 分となる傾向があるからであり、 一方、 上記範囲の上限を超えると、 得られるシ リコーン組成物の粘度が高くなりすぎて、 得られるシリコーン組成物中に(B)成 分を均一に分散できなかったり、 その取扱作業性が著しく低下する傾向があるか らである。
( C )成分は、 高熱伝導性のシリコーン組成物を得るために上記( B )成分の熱伝 導性充填剤を多量に含有しても、 取扱作業性が良好である熱伝導性シリコーン組 成物を得るための特徴的な成分であり、 (i)一般式:
[R1 aR2 (3-a)SiO(R1 bRVb)SiO)m(R2 2SiO)n]cSiR2 [4_(c+d)](OR3)d
(式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 R2は同種または 異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 R3はアルキル基、 ァ ルコキシアルキル基、 ァルケ-ル基、 またはァシル基であり、 aは 0〜 3の整数 であり、 bは 1または 2であり、 cは 1〜3の整数であり、 dは 1〜3の整数で あり、 かつ、 c + dは 2〜4の整数であり、 mは 0以上の整数であり、 nは 0以 上の整数であり、 但し、 aが 0である場合には、 mは 1以上の整数である。 ) で表されるオルガノシロキサン、 (ii)一分子中に 1個のケィ素原子結合水酸基を 有し、 かつ少なくとも 5個のケィ素原子を有するオルガノシロキサン、 (iii)一般 式:
Figure imgf000012_0001
(式中、 R4は同種または異種の一価炭化水素基であり、 R5は酸素原子または二価 炭化水素基であり、 R3は前記と同じであり、 pは 100〜 200の整数であり、 dは前記と同じである。 )
で示されるオルガノシロキサン、 および(iv)—般式:
[HeR2 (3-e)SiO(R2 2SiO)n]cSiR2 [4.(c+d)](OR3)d
(式中、 R2、 R3、 c、 d、 および nは前記と同じであり、 eは 1〜3の整数であ る。 )
で表されるォ ガノシロキサンからなる群より選択される少なくとも 1種のオル ガノシロキサンである。
この( i )成分は高熱伝導性のシリコーン組成物を得るために、 ( B )成分の熱伝 導性充填剤を多量に含有しても、 本組成物の取扱性および成形性を悪化させず、 本組成物が硬化性を有する場合には、 硬化途上で接触している基材に対して良好 な接着性を付与するための成分であり、 一般式:
[R1 aR2 (3-a)SiO(R1 bR2 (2.b)SiO)ffl(R2 2SiO)n]cSiR2 [4.(c+d)](OR3)d
で表される。 上式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 例 えば、 ビニル基、 ァリル基、 ブテニル基、 へキセ-ル基、 デセニル基、 ゥンデセ ニル基、 ドデセニル基、 トリデセ -ル基、 テトラデセエル基、 ペンタデセニル基 、 へキサデセニル基、 ヘプタデセニル基、 ォクタデセエル基、 ノナデセニル基、 エイコセニル基等の直鎖状ァルケ-ル基;ィソプロぺニル基、 2—メチル— 2— プロぺ-ル基、 2—メチルー 10—ゥンデセニル基等の分岐鎖状アルケニル基; ビニルシクロへキシル基、 ビュルシクロドデシル基等の脂肪族不飽和結合を有す る環状アルキノレ基; ビュルフヱニル基等の脂肪族不飽和結合を有するァリール基
; ビュルべンジル基、 ビュルフヱネチル基等の脂肪族不飽和結合を有するァラル キル基が挙げられ、 好ましくは、 直鎖状アルケ-ル基であり、 特に好ましくは、 ビニル基、 ァリノレ基、 へキセニノレ基である。 R1中の脂肪族不飽和結合の位置は限 定されないが、 結合するケィ素原子より遠い位置であることが好ましい。 また、 上式中の R2は同種または異種の脂肪族不飽和結合を有さない一価炭化水素基であ り、 前記と同様の直鎖状アルキル基、 分岐鎖状アルキル基、 環状アルキル基、 ァ リール基、 ァラルキル基、 ハロゲン化アルキル基が例示され、 好ましくは、 アル キル基、 ァリール基であり、 さらに好ましくは、 炭素原子数 1〜4のアルキル基 であり、 特に好ましくは、 メチル基、 ェチル基である。 また、 上式中の R3はアル キル基、 アルコキシアルキル基、 ァルケ-ル基、 またはァシル基である。 R3のァ ルキル基としては、 例えば、 前記と同様の直鎖状アルキル基、 分岐鎖状アルキル 基、 環状アルキル基が挙げられ、 好ましくは、 直鎖状アルキル基であり、 特に好 ましくは、 メチル基、 ェチル基、 プロピル基である。 また、 R3のアルコキシアル キル基としては、 例えば、 メトキシェトキシ基、 エトキシエトキシ基、 メトキシ プロポキシ基が挙げられ、 好ましくはメトキシエトキシ基である。 また、 R3のァ ルケニル基としては、 前記と同様のアルケニル基が例示され、 好ましくはィソプ 口ぺニル基である。 また、 R3のァシル基としては、 例えば、 ァセトキシ基が挙げ られる。 また、 上式中の aは 0〜 3の整数であり、 好ましくは 1である。 また、 上式中の bは 1または 2であり、 好ましくは 1である。 また、 上式中の cは 1〜 3の整数であり、 好ましくは 1である。 また、 上式中の dは 1〜3の整数であり 、 好ましくは 3である。 ここで、 上式中の c + dは 2〜4の整数である。 また、 '上式中の mは 0以上の整数である。 但し、 上記 aが 0である場合、 上式中の mは 1以上の整数である。 このような mは 0〜1 0 0の整数であることが好ましく、 さらに、 1〜1 0 0の整数であることが好ましく、 さらに、 1〜5 0の整数である ことが好ましく、 さらに、 1〜2 5の整数であることが好ましく、 特に、 1〜1 0の整数であることが好ましい。 また、 上式中の nは 0以上の整数である。 この ような nは 0〜1 0 0の整数であることが好ましく、 さらに、 1〜1 0 0の整数 であることが好ましく、 さらに、 5〜1 0 0の整数であることが好ましく、 さら に、 1 0〜1 0 0の整数であることが好ましく、 特に、 1 0〜7 5の整数である ことが好ましい。
このような( i )成分のオルガノシロキサンを調製する方法としては、 例えば、 一般式:
[R1 aR2 (3-a) S i O (R1 bR2 (2_b) S i O) ra(R2 2 S i O) n3 H
で表される分子鎖片末端シラノール基封鎖オルガノシロキサンと一般式: R2 (4.f) S i (O R3) f
で表されるシラン化合物をを酢酸等の酸触媒の存在下で反応させる方法が挙げら れる。 上記のシラノール末端オルガノシロキサンにおいて、 式中の I 1、 R2は前記 と同様の基であり、 また、 式中の a、 b、 m、 nは前記と同様の整数である。 一 方、 上記のシラン化合物において、 式中の R2、 R3は前記と同様の基である。 また 、 式中の f は 2〜4の整数であり、 好ましくは 4である。 このようなシラン化合 物としては、 例えば、 ジメ トキシジメチルシラン、 ジメ トキシジェチルシラン、 ジェトキシジメチルシラン、 ジェトキシジェチルシラン等のジアルコキシジアル キルシラン; トリメ トキシメチルシラン、 トリメ トキシェチルシラン、 トリメ ト キシプロビルシラン、 トリエトキシメチルシラン、 トリエトキシェチルシラン等 のトリアルコキシアルキルシラン;テトラメ トキシシラン、 テトラエトキシシラ ン、 テトラプロボキシシラン等のテトラアルコキシシラン;メチルトリ(メ トキシ エトキシ)シラン等のアルコキシアルコキシシラン;メチルトリイソプロぺノキシ シラン等のアルケノキシシラン;メチルトリァセトキシシラン等のァシロキシシ ランが挙げられる。 また、 酸触媒としては、 例えば、 酢酸、 プロピオン酸等の脂 肪酸が挙げられる。
このような( i )成分のオルガノシロキサンとしては、 次のような化合物が例示 される。
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 5Si (0CH3) 3
(CH2=CHCH2) (CH3) 2SiO[ (CH3) 2SiO] 5Si (0CH3) 3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH3) 2SiO] 5Si (0CH3) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 7Si (0CH3) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 7Si (0C2H5) 3 (CH2=CHCH2) (CH3) 2SiO[ (CH3) 2SiO] vSi (0CH3) 3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH3) 2SiO] 7Si (0CH3) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 7SiCH3 (0CH3) 2
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 7SiCH3 (0CH3) 2
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 25Si (0CH3) 3
(CH2=CHCH2) (CH3) 2SiO [ (CH3) 2SiO] 25Si (0CH3) 3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[ (CH3) 2SiO] 25Si (0CH3) 3
(CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 2SSi (0C2H5) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 25SiCH3 (0CH3) 2
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 5。Si (0CH3) 3
(CH2=CHCH2) (CH3) 2SiO [ (CH3) 2SiO] 5。Si (0CH3) 3
(CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH3) 2SiO] 50Si (0CH3) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 5。Si (0C2H5) 3
(CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 50SiCH3 (0CH3) 2
{ (CH3) 3SiO [ (CH2=CH)
Figure imgf000015_0001
4} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CH) 2SiO] , [ (CH3) 2SiO] 4} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CH) (CH3) SiO] , [ (CH3) 2SiO] J Si (0C2H5) 3
{ (CH2=CH) (CH3) 2SiO[ (CH2=CH) (^ SiOj ^ ^ ^iO] 4} Si (0CH3) 3
{ (CH2=CH) (CH3) 2SiO [ (CH2=CH) 2SiO] , [ (CH3) 2SiO] 4} Si (0CH3) 3
{ (CH2=CH) (CH3) 2SiO[ (CH2=CH) (CH3) SiO] ^ (CH3) 2SiO] J Si (0C2H5) 3
{ (CH3) 3SiO [ (CH2=CHCH2) (CH3) SiO] ^ (CH3) 2SiO] 4} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CHCH2) 2SiO] 1 [ (CH3) 2SiO] 4} Si (0CH3) 3
{ (CH2=CHCH2) (CH3) 2SiO[ (CH2=CH) (CH3) SiO] ^ (CH3) 2SiO] 4} Si (0CH3) 3
{ (CH2=CHCH2) (CH3) 2SiO [ (CH2=CHCH2) (CH3) SiO] ^ (CH3) 2SiO] J Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CHCH2CH2CH2CH2) (CH3) SiO] (CH3) 2SiO] J Si (OCH3) 3
{ (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH2=CH) (CH3) SiO] , [ (CH3) 2SiO] J Si (OCH3) 3
{ (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH2=CHCH2CH2CH2CH2) (^ SiOl ^ ^ ^iO] 4} Si (0C ) 3 { (CH3) 3SiO [ (CH2=CH) (CH3) Si0]2[ (CH3) 2SiO] 10} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CH) 2SiO] 2 [ (CH3) 2SiO] 10} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CH) (CH3) SiO] 2 [ (CH3) 2SiO] 10} Si (0C2H5) 3
{ (CH2=CH) (CH3) 2SiO[ (CH2=CH) (CH3) SiO] 2 [ (CH3) 2SiO] 10} Si (0CH3) 3
{ (CH2=CH) (CH3) 2SiO [ (CH2=CH) 2SiO] 2 [ (CH3) 2SiO] 10} Si (0CH3) 3
{(CH2=CH) (CH3)2SiO[(CH2=CH) (CH3)SiO]2[(CH3)2SiO] 10}Si (0C2H5)3
{ (CH3) 3SiO[ (CH2=CHCH2) (CH3)SiO]2[(CH3) 2SiO] 10} Si (0CH3) 3
{ (CH3) 3SiO [ (CH2=CHCH2) 2SiO]2[(CH3) 2SiO] 10} Si (0CH3) 3
{ (CH2=CHCH2) (CH3) 2SiO[ (CH2=CH) (CH3) SiO] 2 [ (CH3) 2SiO] 10} Si (0CH3) 3
{ (CH2=CHCH2) (CH3)2SiO[(CH2=CHCH2) (CH3) Si0]2[ (CH3)2SiO] 10}Si(0CH3)3
{ (CH3) 3SiO[ (CH2=CHCH2CH2CH2CH2) (CH3) SiO]2[(CH3) 2SiO] 10} Si (0CH3) 3
{ (CH2=CHCH2CH2CH2CH2) (CH3)2SiO[(CH2=CH) (CH3)SiO]2[(CH3)2SiO] 10}Si(0CH3)3
{ (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH2=CHCH2CH2CH2CH2) (CH3)SiO]2[(CH3)2SiO] 10}Si(0C
¾)3
{(CH3)3SiO[(CH2=CH) (CH3)SiO]3[(CH3)2SiO] 22}Si(0CH3)3
{ (CH3) 3SiO[ (CH2=CH) 2SiO] 3 [ (CH3) 2SiO] 22} Si (0CH3) 3
{(CH3)3SiO[(CH2=CH) (CH3)SiO]3[(CH3)2SiO] 22}Si (0C2H6)3
{ (CH2=CH) (CH3) 2SiO[ (CH2=CH) (CH3) SiO] 3 [ (CH3) 2SiO] 22}Si (OCH3) 3
{ (CH2=CH) (CH3) 2SiO [ (CH2=CH) 2SiO] 3 [ (CH3) 2SiO] 22}Si(OCH3)3
{ (CH2=CH) (CH3)2SiO[(CH2=CH) (CH3)SiO]3[ (CH3)2SiO] 22}Si (0C2H5)3
{ (CH3) 3SiO [ (CH2=CHCH2) (CH3) SiO] 3 [ (CH3) 2SiO] 22}Si (OCH3) 3
{ (CH3) 3SiO [ (CH2=CHCH2) 2SiO] 3 [ (CH3) 2SiO] 22}Si (0CH3)3
{ (CH2=CHCH2) (CH3)2SiO[(CH2=CH) (CH3)SiO]3[ (CH3)2SiO] 22}Si(OCH3)3
{ (CH2=CHCH2) (CH3)2SiO[(CH2=CHCH2) (CH3)SiO]3[ (CH3)2SiO] 22}Si(OCH3)3
{ (CH3) 3SiO[ (CH2=CHCH2CH2CH2CH2) (CH3) SiO] 3 [ (CH3) 2SiO] 22} Si (OCH3) 3
{ (CH2=CHCH2CH2CH2CH2) (CH3)2SiO[(CH2=CH) (CH3)SiO]3[ (CH3)2SiO] 22}Si(OCH3)3 { (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH2=CHCH2CH2CH2CH2) (CH3)SiO]3[(CH3)2SiO] 22}Si(0C )3 {(CH3)3SiO[(CH2=CH) (CH3)SiO]4[(CH3)2SiO] 5。}Si(0CH3)3
{ (CH3) 3SiO[ (CH2=CH) 2SiO]4[ (CH3) 2SiO] 5。}Si (0CH3)3
{(CH3)3SiO[(CH2=CH) (CH3)SiO]4[(CH3)2SiO] 5。}Si (0C2H5)3
{ (CH2=CH) (CH3)2SiO[(CH2=CH) (CH3)SiO]4[(CH3)2SiO] 5。}Si(0C¾)3
{ (CH2=CH) (CH3) 2SiO [ (CH2=CH) 2SiO]4[ (CH3) 2SiO] 5。} Si (0CH3) 3
{ (CH2=CH) (CH3)2SiO[(CH2=CH) (CH3)SiO]4[ (CH3)2SiO] 50}Si (0C2H5)3
{(CH3)3SiO[(CH2=CHCH2) (CH3)SiO]4[(CH3)2SiO] 5。}Si(0CH3)3
{ (CH3) 3SiO [ (CH2=CHCH2) 2SiO] 4 [ (CH3) 2SiO] 5。}Si (0CH3)3
{ (CH2=CHCH2) (CH3)2SiO[(CH2=CH) (CH3)SiO]4[ (CH3)2SiO] 5。}Si(0CH3)3
{ (CH2=CHCH2) (CH3) 2SiO[ (CH2=CHCH2) (CH3) SiO] 4 [ (CH3) 2SiO] 5。} Si (0CH3) 3
{ (CH3) 3SiO[ (CH2=CHCH2CH2CH2CH2) (CH3) SiO] 4 [ (CH3) 2SiO] 50} Si (0CH3) 3
{ (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO [ (CH2=CH) (CH3) SiO]4[ (CH3) 2SiO] 5。} Si (0CH3) 3 { (CH2=CHCH2CH2CH2CH2) (CH3) 2SiO[ (CH2=CHCH2CH2CH2CH2) (CH3) SiO] 4 [ (CH3) 2SiO] 50} Si (OC (ii)成分は一分子中に 1個のケィ素原子結合水酸基を有し、 かつ少なくとも 5 個のケィ素原子を有するオルガノシロキサンであり、 高熱伝導性のシリコーン組 成物を得るために、 (B)成分の熱伝導性充填剤を多量に含有しても、 取扱性が良 好であるという本組成物の特徴を付与する成分である。 この(ii)成分は、 分子中 のケィ素原子結合水酸基により(B)成分の熱伝導性充填剤の表面を処理し、 得ら れる組成物の粘度を下げ、 より多くの充填剤の配合を可能とする処理剤、 あるい は可塑剤として機能するものと考えられる。
また、 (ii)成分は一分子中にただ 1個のケィ素原子結合水酸基を有することが 必要であり、 これが 2個以上となると、 (B)成分の粒子間結合を促進するためか 、 得られる組成物の粘度が高くなり充填量を増やすことができない。 また、 (ii) 成分は、 一分子中に少なくとも 5個のケィ素原子を有することが必要であり、 好 ましくは少なくとも 10個であり、 さらに好ましくは 10〜 500個であり、 特 に好ましくは 50〜200個である。 これは、 一分子中のケィ素原子の数が上記 範囲の下限未満であるオルガノシロキサンは分子サイズが小さすぎて、 ( B )成分 の表面を十分に処理することができない傾向があり、 また、 上記範囲の上限を超 えるオルガノシロキサンは、 (Β )成分の表面に拘束される分子体積が増えすぎ、 (
Β )成分の充填量を増やしにくくなる傾向があるからである。
このような(i i)成分のオルガノシロキサンは限定されず、 例えば、
Figure imgf000018_0001
CH3
CHつ Si-O-l— H
CH3
25
Figure imgf000018_0002
CH3
CHつ Si-O-|— H
Figure imgf000018_0003
Figure imgf000019_0001
が挙げられる。 このような(ii)成分は、 一般式
Figure imgf000019_0002
で表されるオルガノシロキサンであることが好ましレ、。 上式中の R4は同種または 異種の一価炭化水素基であり、 前記と同様の直鎖状アルキル基、 分岐鎖状アルキ ル基、 環状アルキル基、 ァリール基、 ァラルキル基、 アルケニル基、 ハロゲン化 アルキル基が例示され、 好ましくはアルキル基であり、 特に好ましくはメチル基 である。 また、 上式中の rは 5以上の整数であり、 好ましくは 1 0〜5 0◦の整 数であり、 特に好ましくは 5 0〜2 0 0の整数である。
また、 (iii)成分のオルガノシロキサンは、 分子鎖片末端にケィ素原子結合加水 分角旱性基を有するオルガノシロキサンにおいて、 このオルガノシロキサン中のジ オルガノシロキサンの繰り返し単位が特定の範囲内であるので、 高熱伝導性のシ リコーン組成物を得るために上記( B )成分の熱伝導性充填剤を多量に含有しても 、 取扱作業性が良好である熱伝導性シリコーン組成物を得ることができるという 特徴を有する成分であり、 一般式:
Figure imgf000019_0003
で表される。 式中の R4は同種または異種の一価炭化水素基であり、 前記と同様の 直鎖アルキル基、 分岐鎖状アルキル基、 環状アルキル基、 ァリール基、 ァラルキ ル基、 ァルケ-ル基、 ハロゲン化アルキル基が例示され、 好ましくは直鎖状アル キル基であり、 特に好ましくはメチル基である。 また、 上式中の R5は酸素原子ま たは二価炭化水素基である。 R5の二価炭化水素基としては、 例えば、 メチレン基 、 エチレン基、 プロピレン基、 イソプロピレン基、 ブチレン基等のアルキレン基
;エチレンォキシエチレン基、 エチレンォキシプロピレン基等のアルキレンォキ シアルキレン基が挙げられる。 特に、 R5は酸素原子であることが好ましい。 また 、 上式中の R3は前記と同様の基である。 また、 上式中の pは 1 0 0〜2 0 0の整 数であり、 好ましくは 1 0 5〜 2 0 0の整数であり、 さらに好ましくは 1 0 5〜
1 9 0の整数であり、 特に好ましくは 1 1 0〜1 9 0の整数である。 これは、 上 式中の pが上記範囲の下限未満であると、 熱伝導性のシリコーン組成物を得るた めに( B )成分を多量に含有させることができなくなる傾向があるからであり、 一 方、 上記範囲の上限を超えると、 (B )成分の表面に拘束される分子体積が増えす ぎて、 (B )成分を多量に含有させることができなくなる傾向があるからである。 特に、 本組成物中の(B )成分の含有量を 8 0容積%以上のような極めて高い含有 量にすると、 (B )成分の粒子間距離が平均的に短くなるために、 この傾向は顕著 である。 また、 上式中の dは 1〜3の整数であり、 好ましくは 3である。
このような(iii)成分のオルガノシロキサンとしては、 例えば、
Figure imgf000020_0001
CH3-Si-0 -Si-0- -Si— C2H4— Si(OCH3)3
CH3-Si-0-+-Si-o-HSi— C2H4— Si(OCH3)3
CH3-Si-0-kSi-oH— Si— C2H4 ~ SiCH3(OCH3)2
CH,-Si-0- Si-o-HSi-0-SiCH3(OCH3)2
CH -Si-O- Si-o Si(OCH3)3
CH -Si-o -Si-o Si(OCH3)3 が挙げられる t また、 (iv)成分のオルガノシロキサンは、 高熱伝導性のシリコーン組成物を得 るために、 (B)成分の熱伝導性充填剤を多量に含有しても、 本組成物の取扱性を 悪化させず、 本組成物が硬化性を有する場合には、 成形性が優れ、 また硬化途上 で接触している基材に対して良好な接着性を付与するための成分であり、 一般式 :
[HeR2(3e)SiO(R2 2SiO)丄 SiR2 [4— (e+d)](OR3)d
で表される。 上式中の R2は同種または異種の脂肪族不飽和結合を有さない一価炭 化水素基であり、 前記と同様の基が例示され、 好ましくは、 アルキル基、 ァリー ル基であり、 さらに好ましくは、 炭素原子数 1〜4のアルキル基であり、 特に好 ましくは、 メチル基、 ェチル基である。 また、 上式中の R3はアルキル基、 アルコ キシアルキル基、 ァルケ-ル基、 またはァシル基であり、 前記と同様の基が例示 され、 好ましくはアルキル基であり、 特に好ましくは、 メチル基、 ェチル基、 プ 口ピル基である。 また、 上式中の eは 1〜3の整数であり、 好ましくは 1である 。 また、 上式中の cは 1〜3の整数であり、 好ましくは 1である。 また、 上式中 の dは 1〜3の整数であり、 好ましくは 3である。 ここで、 上式中の c + dは 2 〜 4の整数である。 また、 上式中の nは 0以上の整数であり、 好ましくは 0〜1 00の整数であり、 より好ましくは 1〜100の整数であり、 さらに好ましくは 5〜 100の整数であり、 より好ましくは 10〜 100の整数であり、 特に好ま しくは 10〜75の整数である。
このような(iv)成分のオルガノシロキサンを調製する方法としては、 例えば、 一般式:
[HeR2 (3-e)SiO(R2 2SiO)n]H
で表される分子鎖片末端シラノール基封鎖オルガノシロキサンと一般式: R2 (4.f)Si(OR3)f
で表されるシラン化合物を酢酸等の酸触媒の存在下で反応させる方法が挙げられ る。 上記のシラノール末端オルガノシロキサンにおいて、 式中の R2は同種または 異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 前記と同様の基が例 示される。 また、 上式中の eは 1〜3の整数であり、 好ましくは 1である。 また 、 上式中の nは 0以上の整数であり、 好ましくは 0〜1 0 0の整数であり、 より 好ましくは 1〜 1 0 0の整数であり、 さらに好ましくは 5〜 1 0 0の整数であり 、 より好ましくは 1 0〜1 0 0の整数であり、 特に好ましくは 1 0〜 7 5の整数 である。 一方、 上記のシラン化合物において、 式中の R2は同種または異種の脂肪 族不飽和結合を有さない一価炭化水素基であり、 前記と同様の基が例示される。 また、 上式中の R3はアルキル基、 アルコキシアルキル基、 ァルケ-ル基、 または ァシル基であり、 前記と同様の基が例示される。 また、 上式中の f は 2〜4の整 数であり、 好ましくは 4である。 このようなシラン化合物としては、 例えば、 ジ メ トキシジメチルシラン、 ジメ トキシジェチルシラン、 ジエトキシジメチルシラ ン、 ジェトキシジェチルシラン等のジアルコキシジアルキルシラン; トリメ トキ シメチルシラン、 トリメ トキシェチルシラン、 トリメ トキシプロビルシラン、 ト リエトキシメチルシラン、 トリエトキシェチルシラン等のトリアルコキシアルキ ルシラン;テトラメ トキシシラン、 テトラエトキシシラン、 テトラプロボキシシ ラン等のテトラアルコキシシラン;メチルトリ (メ トキシエトキシ)シラン等のァ ルコキシアルコキシシラン;メチルトリイソプロぺノキシシラン等のアルケノキ シシラン;メチルトリァセトキシシラン等のァシロキシシランが挙げられる。 ま た、 酸触媒としては、 例えば、 酢酸、 プロピオン酸等の脂肪酸が挙げられる。 このような(iv)成分のオルガノシロキサンとしては、 次のような化合物が例示 される。
H (CH3) 2SiO [ (CH3) 2SiO] 5Si (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 5Si (0C2H5) 3
H (C2H5) 2SiO [ (CH3) 2SiO] 5Si (0CH3) 3
H (C6H13) 2SiO [ (CH3) 2SiO] 5Si (OCH3) 3
H (CH3) 2SiO[ (CH3) 2S i 0] 10S i (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 25Si (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 25Si (0C2H5) 3
H (C2H5) 2SiO [ (CH3) 2SiO] 25Si (0CH3) 3
H(CH3) (C2H5) SiO[ (CH3) 2SiO] 25Si (0CH3) 3 H (C6H13) 2SiO [ (CH3) 2SiO] 25Si (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 5。Si (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 5。Si (0C2H5) 3
H (C2H5) 2SiO [ (CH3) 2SiO] 5。Si (OCH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 75Si (0CH3) 3
H (CH3) 2SiO [ (CH3) 2SiO] 100Si (OCH3) 3
H (CH3) (C2H5) SiO [ (CH3) 2SiO] 100Si (0CH3) 3
H (C2H5) 2SiO [ (CH3) 2SiO] 100Si (0C2H5) 3
H (C6H13) 2SiO[ (CH3) 2SiO] 100Si (OCH3) 3
H(CH3) 2SiO[ (CH3) 2SiO] 12。Si (0CH3) 3
本組成物において、 (C)成分の含有量は限定されず、 (B )成分の表面を処理し て、 得られる熱伝導性シリコーン組成物中への分散性を向上できる量であればよ く、 具体的には、 (B )成分 1 0 0重量部に対して 0 . 1〜1 0重量部の範囲内であ ることが好ましく、 特に、 (B )成分 1 0 0重量部に対して 0 . 1〜5重量部の範囲 内であることが好ましい。 これは、 (C)成分の含有量が上記範囲の下限未満であ ると、—(B )成分を多量に含有した場合に、 得られるシリコーン組成物の成形性が 低下したり、 '得られるシリコーン組成物の貯蔵中に(B )成分が沈降分離する傾向 があるからであり、 一方、 上記範囲の上限を超えると、 得られるシリコーン組成 物の物理的特性が低下する傾向があるからである。
また、 本糸且成物においては、 上記(C)成分として上記(i )成分〜(iv)成分のい ずれか 1種もしくは 2種以上を併用して用いることができる。 また、 高熱伝導性 のシリコーン組成物を得るために上記( B )成分の熱伝導性充填剤を多量に含有し ても、 取 作業性が良好である熱伝導性シリコーン組成物を得るために、 上記(C
)成分に加えて、 一般式:
Figure imgf000024_0001
(式中、 R4は一価炭化水素基であり、 R3はアルキル基、 アルコキシアルキル基、 アルケニル基、 またはァシル基であり、 ' gは 1〜 3の整数である。 )
で表されるシラン化合物、 あるいは一般式:
Figure imgf000025_0001
(式中、 R4は同種または異種の一価炭化水素基であり、 R5は酸素原子または二価 炭化水素基であり、 R3はアルキル基、 アルコキシアルキル基、 アルケニル基、 ま たはァシル基であり、 yは 0〜 9 9の整数であり、 dは 1〜 3の整数である。 ) で表されるオルガノシロキサンを併用してもよい。
このシラン化合物において、 式中の R4は一価炭化水素基であり、 前記と同様の 基が例示される。 また、 式中の R3はアルキル基、 アルコキシアルキル基、 ァルケ ニル基、 またはァシル基であり、 前記と同様の基が例示される。 また、 式中の g は 1〜3の整数であり、 好ましくは 2、 3である。 このようなシラン化合物とし ては、 メチルトリメ トキシシラン、 ジメチルジメ トキシシラン、 ェチルトリメ ト キシシラン、 ォクチノレトリメ トキシシラン、 ノエルトリメ トキシシラン、 デシル トリメ トキシシラン、 ビュルトリメ トキシシラン、 フエニルトリメ トキシシラン 、 メチルトリエトキシシラン等のアルコキシシラン;メチルトリ (メ トキシェト キシ) シラン等のアルコキシアルコキシラン;メチルトリイソプロぺノキシシラ ン等のアルケノキシシラン;メチルトリァセトキシシラン等のァシロキシシラン が例示される。
また、 このオルガノシロキサンにおいて、 式中の R4は同種または異種の一価炭 化水素基であり、 前記と同様の基が例示される。 また、 式中の R5は酸素原子また は二価炭化水素基であり、 前記と同様の基が例示される。 また、 式中の R3はアル キル基、 アルコキシアルキル基、 アルケニル基、 またはァシル基であり、 前記と 同様の基が例示される。 また、 式中の yは 0〜 9 9の整数であり、 好ましくは 0 〜8 0の整数であり、 特に好ましくは 0〜6 0の整数である。 また、 式中の dは :!〜 3の整数であり、 好ましくは 3である。 このようなオルガノシロキサンとし ては、 例えば、
Figure imgf000026_0001
が例示される。
本組成物において、 上記のシラン化合物もしくはオルガノシロキサンの含有量 は限定されず、 上記(C)成分と共に(B )成分の表面を処理して、 得られる熱伝導 性シリコーン組成物中への分散性を向上できる量であればよく、 具体的には、 (B
)成分 1 0 0重量部に対して 0 . 0 0 1〜1 0重量部の範囲内であることが好まし く、 特に、 (B )成分 1 0 0重量部に対して 0 . 0 0 1〜5重量部の範囲内であるこ とが好ましい。 これは、 上記のシラン化合物もしくはオルガノシロキサンの含有 量が上記範囲の下限未満であると、 (B )成分を多量に含有した場合に、 得られる シリコーン糸且成物の成形性が低下したり、 得られるシリコーン組成物の貯蔵中に( B )成分が沈降分離したり、 ちょう度が著しく低下する傾向があるからであり、 一 方、 上記範囲の上限を超えると、 得られるシリコーン組成物の物理的特性が低下 する傾向があるからである。
本組成物中に(C)成分、 あるいは(C)成分と上記のシラン化合物もしくはオル ガノシロキサンを添加する方法としては、 例えば、 (B )成分と(C)成分、 必要に 応じてさらに上記のシラン化合物もしくはオルガノシロキサンを混合して、 ( B ) 成分の表面を予め処理して添加する方法、 (A)成分と(B )成分を混合した後、 (C )成分、 必要に応じてさらに上記のシラン化合物もしくはオルガノシロキサンを混 合して、 (A)成分中で(B )成分の表面を処理して添加する方法が挙げられ、 特に 、 後者の方法であることが好ましい。 このように本組成物中に(C)成分、 あるい は( C )成分と上記のシラン化合物もしくはオルガノシロキサンは( B )成分の表面 を処理した状態で含有されている力、 または本組成物中に単に含有されていても よい。 また、 (B )成分を(C)成分、 あるいは(C)成分と上記のシラン化合物もし くはオルガノシロキサンにより処理する際、 その処理を促進するために、 加熱し たり、 あるいは酢酸、 リン酸などの酸性物質や、 トリアルキルァミン、 4級アン モニゥム塩類、 アンモニアガス、 炭酸アンモニゥムなどの塩基性物質を併用して もよい。
本糸且成物には、 さらに(D)硬化剤を配合して、 硬化性の組成物とすることもで きる。 本組成物がヒドロシリルイ匕反応により硬化する場合には、 (D)成分の硬化 剤は、 一分子中に平均 2個以上のケィ素原子結合水素原子を有するオルガノポリ シロキサンと白金系触媒からなるものである。 このオルガノポリシロキサン中の ケィ素原子結合に結合している基としては、 前記と同様の直鎖状アルキル基、 分 岐鎖状アルキル基、 環状アルキル基、 ァリール基、 ァラルキル基、 ハロゲン化ァ ルキル基が例示され、 好ましくは、 アルキル基、 ァリール基であり、 特に好まし くは、 メチル基、 フエニル基である。 また、 このオルガノポリシロキサンの 2 5 °Cにおける粘度は限定されないが、 1〜 1 0 0, 0 0 O mPa' sの範囲内であること が好ましく、 特に、 1〜5, 0 0 O mPa' sの範囲内であるヒとが好ましい。 このよ うなオルガノポリシロキサンの分子構造は限定されず、 例えば、 直鎖状、 分岐鎖 状、 一部分岐を有する直鎖状、 環状、 樹枝状 (デンドリマー状) が挙げられる。 このようなオルガノポリシロキサンとしては、 例えば、 これらの分子構造を有す る単一重合体、 これらの分子構造からなる共重合体、 またはこれらの混合物が挙 げられる。
このようなオルガノポリシロキサンとしては、 例えば、 分子鎖両末端ジメチル ハイドロジェンシロキシ基封鎖ジメチルポリシ口キサン、 分子鎖両末端トリメチ ルシロキシ基封鎖ジメチルシロキサン ·メチルハイドロジェンシロキサンコポリ マー、 分子鎖両末端ジメチルハイドロジェンシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジェンシロキサンコポリマー、 式: (C H3 ) 3 S i〇1 / 2で表され るシロキサン単位と式: (C H3 ) 2 H S i〇1 / 2で表されるシロキサン単位と式: S i
04 / 2で表されるシロキサン単位からなるオルガノシロキサンコポリマー、 および これらの 2種以上の混合物が挙げられる。 本組成物において、 このオルガノポリシロキサンの含有量は、 本組成物の硬化 に必要な量であり、 具体的には、 (A)成分中のケィ素原子結合アルケニル基 1モ ルに対して、 本成分中のケィ素原子結合水素原子が 0 . 1〜1 0モルの範囲内とな る量であることが好ましく、 さらに、 0 . 1〜5モルの範囲内となる量であること が好ましく、 特に、 0 . 1〜3 . 0モルの範囲内となる量であることが好ましい。 これは本成分の含有量が上記範囲の下限未満となる量であると、 得られるシリコ ーン組成物が十分に硬化しなくなる傾向があるからであり、 一方、 上記範囲の上 限を超えると、 得られるシリコーン硬ィ匕物が非常に硬質となり、 表面に多数のク ラックを生じたりする傾向があるからである。
また、 白金系触媒は本組成物の硬化を促進するための触媒であり、 例えば、 塩 ィ匕白金酸、 塩化白金酸のアルコール溶液、 白金のォレフィン錯体、 白金のァルケ -ルシロキサン錯体、 白金のカルボ二ル錯体が挙げられる。
本組成物において、 白金系触媒の含有量は、 本組成物の硬化に必要な量であり
、 具体的には、 (A)成分に対して本成分中の白金金属が重量単位で 0 . 0 1〜1, 0 0 O ppmの範囲内となる量であることが好ましく、 特に、 0 .:!〜 5 0 0 ppmの範 囲内となる量であることが好ましい。 これは、 本成分の含有量が上記範囲の下限 未満であると、 得られるシリコーン組成物が十分に硬ィ匕しなくなる傾向があるか らであり、 一方、 上記範囲の上限を超える量を配合しても得られるシリコーン組 成物の硬化速度は顕著に向上しないからである。
また、 本組成物が縮合反応により硬化する場合には、 (D)成分は、 一分子中に 少なくとも 3個のケィ素原子結合加水分解性基を有するシランもしくはその部分 加水分解物、 および必要に応じて縮合反応用触媒からなることを特徴とする。 こ のシラン中のケィ素原子結合加水分解性基としては、 前記と同様のアルコキシ基 、 アルコキシアルコキシ基、 ァシロキシ基、 ケトォキシム基、 アルケノキシ基、 アミノ基、 アミノキシ基、 アミド基が例示される。 また、 このシランのケィ素原 子には上記の加水分解性基以外に、 例えば、 前記と同様の直鎖状アルキル基、 分 岐鎖状アルキル基、 環状アルキル基、 アルケニル基、 ァリール基、 ァラルキル基 、 ハロゲン化アルキル基を結合していてもよい。 このようなシランもしくはその 部分ィ匕水分解物としては、 例えば、 メチルトリエトキシシラン、 ビュルトリエト キシシラン、 ビュルトリァセトキシシラン、 ェチルオルソシリゲートが挙げられ る。
本組成物において、 このシランもしくはその部分加水分解物の含有量は、 本組 成物の硬化に必要な量であり、 具体的には、 (A)成分 1 0 0重量部に対して 0 . 0 1〜2 0重量部の範囲内であることが好ましく、 特に、 0 . 1〜1 0重量部の範囲 内であることが好ましい。 これは、 このシランもしくはその部分加水分解物の含 有量が上記範囲の下限未満の量であると、 得られる組成物の貯蔵安定性が低下し たり、 また、 接着性が低下する傾向があるからであり、 一方、 上記範囲の上限を こえる量であると、 得られる組成物の硬化が著しく遅くなつたりする傾向がある からである。
また、 縮合反応用触媒は任意の成分であり、 例えば、 アミノキシ基、 アミノ基 、 ケトォキシム基等の加水分解性基を有するシランを硬化剤として用いる場合に は必須ではない。 このような縮合反応用触媒としては、 例えば、 テトラプチルチ タネ一ト、 テトライソプロピルチタネート等の有機チタン酸エステル;ジィソプ 口ポキシビス(ァセチルァセテート)チタン、 ジィソプロポキシビス(ェチルァセト アセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(ァセチ ルァセトネー ト)、 アルミニウムトリス(ェチルァセトァセテート)等の有機アルミ -ゥム化合物;ジノレコニゥムテトラ(ァセチルァセトネー ト)、 ジルコニウムテト ラブチレ一ト等の有機アルミニウム化合物;ジブチルスズジォクトエート、 ジブ チルスズジラゥレート、 ブチルスズー 2—ェチルへキソエート等の有機スズィ匕合 物;ナフテン酸スズ、 ォレイン酸スズ、 ブチル酸スズ、 ナフテン酸コバルト、 ス テアリン酸亜鉛等の有機カルボン酸の金属塩;へキシルァミン、 燐酸ドデシルァ ミン等のアミン化合物、 およびその塩;ベンジルトリェチルアンモニゥムァセテ ート等の 4級アンモニゥム塩;酢酸カリウム、 硝酸リチウム等のアルカリ金属の 低級脂肪酸塩;ジメチルヒドロキシルァミン、 ジェチルヒ ドロキシルァミン等の ジアルキルヒドロキシルァミン;グァュジル基含有有機ケィ素化合物が挙げられ る。 本組成物において、 この縮合反応用触媒の含有量は任意量であり、 本組成物の 硬化に必要な量であればよく、 具体的には、 (A)成分 1 0 0重量部に対して 0 . 0 1〜 2 0重量部の範囲内であることが好ましく、 特に、 0 . 1〜 1 0重量部の範囲 内であることが好ましい。 これは、 この触媒が必須である場合、 この触媒の含有 量が上記範囲の下限未満の量であると、 得られる組成物が十分に硬化しなくなる 傾向があるからであり、 一方、 上記範囲の上限をこえると、 得られる組成物の貯 蔵安定性が低下する傾向があるからである。
また、 本組成物が有機過酸化物によるフリ一ラジカル反応により硬化する場合 には、 (D)成分は有機過酸化物である。 この有機過酸ィ匕物としては、 例えば、 ベ ンゾィルパーオキサイド、 ジクミルパーオキサイド、 2, 5—ジメチルビス(2, 5 - t—ブチルパーォキシ)へキサン、 ジー t—プチルパーォキサイド、 t一プチ ルパーべンゾエートが挙げられる。 この有機過酸ィヒ物の含有量は、 本組成物の硬 化に必要な量であり、 具体的には、 上記(A)成分のオルガノポリシロキサン 1 0 0重量部に対して◦. 1〜 5重量部の範囲内であることが好ましい。
さらに、 本組成物には、 本発明の目的を損なわない限り、 その他任意の成分と して、 例えば、 ヒュームドシリカ、 沈降性シリカ、 ヒュームド酸ィ匕チタン等の充 填剤、 この充填剤の表面を有機ケィ素化合物により疎水化処理した充填剤; 3 - グリシドキシプロピルトリメ トキシシラン、 3—メタクリロキシプロピルトリメ トキシシラン等の接着付与剤;その他、 顔料、 染料、 蛍光染料、 耐熱添加剤、 ト リアゾール系化合物等の難燃性付与剤、 可塑剤を含有してもよい。
特に、 本組成物がヒドロシリルィヒ反応により硬化する場合、 本組成物の硬化速 度を調節し、 取扱作業性を向上させるため、 2—メチルー 3—プチン一 2—ォー ノレ、 2—フエニノレー 3—ブチン一 2—ォーノレ、 1ーェチニノレー 1—シクロへキサ ノール等のアセチレン系化合物; 3—メチルー 3—ペンテン一 1—イン、 3 , 5— ジメチルー 3—へキセン一 1—イン等のェンーイン化合物;その他、 ヒドラジン 系化合物、 フォスフィン系化合物、 メルカブタン系化合物等の硬化反応抑制剤を 含有することが好ましい。 この硬化反応抑制剤の含有量は限定されないが、 本組 成物に対して 0 . 0 0 0 1〜: 1 . 0重量%の範囲内であることが好ましい。 本組成物が硬化性のものである場合、 それを硬化させる方法は限定されず、 例 えば、 本組成物を成形後、 室温で放置する方法、 本組成物を成形後、 50〜20 0°Cに加熱する方法が挙げられる。 また、 このようにして得られるシリコーンゴ ムの性状は限定されないが、 例えば、 ゲル状、 低硬度のゴム状、 あるいは高硬度 のゴム状が挙げられる。 : 実施例
本発明の熱伝導性シリコーン組成物を実施例により詳細に説明する。 なお、 実 施例中の特性は 25°Cにおける値である。
[実施例 1 ]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビ-ルシロキ シ基封鎖ジメチルポリシロキサン (ビニル基の含有量 = 0.44重量%) 84. 7 重量部、 平均粒径が 10 imである球状のアルミナ粉末 900重量部、 および式
(CH2=CH) (CH3)2SiO[(CH3)2SiO]25Si(OCH3)3
で表されるオルガノシロキサン 10重量部を混合した。 次いで、 この混合物に、 粘 度が 5 mPa · sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子 鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジェン シロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重量%) 4.
3重量部、 および硬化反応抑制剤として、 1ーェチュル一 1—シク口へキサノー ル 0.5重量部を混合した。 最後に、 この混合物に白金含有量が 0. 5重量%であ る白金の 1, 3—ジビニル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重 量部を混合して熱伝導性シリコーンゴム組成物を調製した。
この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を次 のようにして測定し、 それらの結果を表 1に示した。
[熱伝導性シリコーンゴム組成物のちょう度]
この熱伝導性シリコーンゴム組成物の 1 4ちょう度を J I S K 2220 に規定の方法に準じて測定した。 なお、 ちょう度の値が大きいということは、 熱 伝導性シリコーンゴム組成物の可塑性が大きく、 取扱性が優れることを意味する [熱伝導性シリコーンゴム組成物の成形性]
この熱伝導性シリコーンゴム組成物を厚さ 2蘭となるように厚さ 0. 2膽の四フ ッ化エチレン樹脂製フィルムの間に挟み込み、 150°CX 15分間加熱硬化させ た。 その後、 四フッ化工チレン樹脂製フィルムを剥がし取り、 シリコーンゴムシ ートを成形できたかどうかを観察した。 均一なシリコーンゴムシートを成形でき た場合を成形性良好として:〇、 シート状には成形できたももの、 部分的に強度 が弱い個所があった場合を成形性やや良好として:△、 シート状の成形できなか つたり、 成形できたとしても強度が弱い場合を成形性不良として: X、 として評 価した。
[熱伝導性シリコーンゴムの熱伝導率]
この熱伝導性シリコーンゴム組成物を 150°CX 15分間加熱硬化させること により得られた熱伝導性シリコーンゴムの熱伝導率を J I S R 2616に規 定の熱線法に従って、 京都電子工業株式会社製の迅速熱伝導率計 QTM— 50 0により測定した。
[熱伝導性シリコーンゴムの接着強さ]
この熱伝導性シリコーンゴム組成物を、 同種の被着体の間に挟み込んだ後、 1 50°CX 30分間加熱することにより硬化させた。 被着体として、 株式会社パル テック社製アルミニウム板( J I S H 4000、 A 1050 P)、 ニッケル板( S PCC— S B)、 およびステンレススチール板(SUS— 304 2B)を用いた 。 また、 接着面積は 25 mmX 10 mmとし、 接着層の厚さは 1 mmとした。 この熱伝 導性シリコーンゴムの引張りせん断接着強さを J I S K 6249の規定に従 つて測定した。
[実施例 2]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビエルシ口キ シ基封鎖ジメチルポリシロキサン (ビニル基の含有量 = 0.44重量%) 85.4 重量部、 平均粒径が 10 imである球状のアルミナ粉末 900重量部、 および式 (CH2=CH) (CH3)2SiO[(CH3)2SiO]5。Si(OCH3)3
で表されるオルガノシロキサン 10重量部を混合した。 次いで、 この混合物に、 粘 度が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子 鎖両末端トリメチルシ口キシ基封鎖ジメチルシ口キサン ·メチルハイドロジェン シロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0.74重量%) 3. 6重量部、 および硬化反応抑制剤として、 1ーェチニル一 1ーシク口へキサノー ル 0. 5重量部を混合した。 最後に、 この混合物に白金含有量が 0.5重量%であ る白金の 1, 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重 量部を混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコ ーンゴム組成物およぴ熱伝導性シリコーンゴムの特'生を実施例 1と同様にして測 定し、 それらの結果を表 1に示した。
[実施例 3 ]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビ二ルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 83. 7 重量部、 平均粒径が 10 μ mである球状のアルミナ粉末 900重量部、 および式
{ (CH3) 3SiO [ (C¾=CH) (CH3) SiO] 2.7 [ (CH3) 2SiO] 22} Si (0CH3) 3
で表されるオルガノシロキサン 10重量部を混合した。 次いで、 この混合物に、 粘 度が 5mPa'Sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子 鎖両末端トリメチルシ口キシ基封鎖ジメチノレシロキサン ·メチルハイドロジェン シロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0.74重量。/。) 5. 3重量部、 および硬ィヒ反応抑制剤として、 1一ェチニルー 1ーシク口へキサノー ル 0. 5重量部を混合した。 最後に、 この混合物に白金含有量が 0. 5重量%であ る白金の 1, 3—ジビ-ルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重 量部を混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコ ーンゴム組成物および熱伝導性シリコーンゴムの特性を実施例 1と同様にして測 定し、 それらの結果を表 1に示した。
[実施例 4] 混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 42.4 重量部、 平均粒径が 40 mである球状のアルミナ粉末 552重量部、 平均粒径 が 2. 2 mである不定形状のアルミナ粉末 368重量部、 および式:
{ (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 30重量部を混合した。 次いで、 この混合物に粘 度が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子 鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジェン シロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重量%) 4. 6重量部、 および硬化反応抑制剤として、 1一ェチニルー 1—シクロへキサノー ル 0. 5重量部、 接着付与剤として、 3—グリシドキシプロピルトリメ トキシシラ ン 1.0重量部、 および一分子中に平均 2個のケィ素原子結合ビュル基を有する分 子鎖両末端ヒドロキシジメチル基封鎖ジメチルシロキサン ·メチルビニルシロキ サンコポリマー (ビニル基の含有 =9.6重量%) 1.0重量部を混合した。 最後 に、 この混合物に白金含有量が 0. 5重量%である白金の 1, 3—ジビュル一 1, 1 , 3, 3—テトラメチルジシロキサン錯体 0. 5重量部を混合して熱伝導性シリコー ンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導性シ リコーンゴムの特^ ·生を実施例 1と同様にして測定し、 それらの結果を表 1に示し た。
[比較例 1 ]
混合装置により、 粘度が 400 mPa · sである分子鎖両末端ジメチルビュルシ口キ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 85.4 重量部、 平均粒径が 10 μπιである球状のアルミナ粉末 900重量部、 およぴメ チルトリメ トキシシラン 10重量部を混合した。 次いで、 この混合物に、 粘度が 5 raPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子鎖両末 端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジヱンシロキ サンコポリマー (ケィ素原子結合水素原子の含有量 =0.74重量%) 3.6重量 部、 および硬化反応抑制剤として、 1—ェチニル一 1—シクロへキサノール 0. 5 重量部を混合した。 最後に、 この混合物に白金含有量が 0. 5重量%である白金の 1, 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0.5重量部を混 合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーンゴム 組成物およぴ熱伝導性シリコーンゴムの特性を実施例 1と同様に測定し、 それら の結果を表 1に示した。
[比較例 2]
比較例 1において、 メチノレトリメトキシシランの代わりにデシルトリメトキシ シランを同量用いた以外は比較例 1と同様にして熱伝導性シリコーンゴム組成物 を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導†生シリコーンゴム の特性を実施例 1と同様にして測定し、 それらの結果を表 1に示した。
[比較例 3]
比較例 1において、 メチルトリメ トキシシランの代わりに、 式:
(CH3)3SiO[(CH3)2SiO]5。Si(OCH3)3
で表されるオルガノシロキサンを同量用いた以外は比較例 1と同様にして熱伝導 性シリコーンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物おょぴ 熱伝導性シリコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果を 表 1に示した。
表 1
Figure imgf000036_0002
[実施例 5]
ロスミキサーにより、 粘度が 40 OmPa'sである分子鎖末端ジメチルビ二ルシロ キシ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 100 重量部、 平均粒径が 10 mである真球状のアルミナ粉末 1200重量部、 平均 粒径が 2. 2 mである不定形状のアルミナ粉末、 800重量部、 およぴ式:
Figure imgf000036_0001
で表される分子鎖片末端シラノール基封鎖ジメチルシロキサン 20重量部を室温 で 30分間混合した。 次いで、 これに粘度が 1 OmPa'sである分子鎖両末端ジメチ ルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン (ケィ素原子結合水素 原子の含有量 =0. 12重量%) 4.4重量部、 粘度が 5mPa'sである分子鎖両末端 トリメチルシ口キシ基封鎖ジメチルシロキサン .メチルハイドロジヱンシロキサ ンコポリマー (ケィ素原子結合水素原子の含有量 =0.64重量%) 0. 5重量部 、 およぴ硬化反応抑制剤として、 2 _フエニノレー 3ーブチン一 2一オール 0.02 重量部を室温で 15分間混合することにより熱伝導性シリコーンゴムベースを調 製した。
このシリコーンゴムベースの一部を 5 Omlのガラス製ビーカーに注入し、 J I S K 2220に規定の方法により、 このシリコーンゴムベースの 1Z4ちょ う度を測定し、 その結果を表 2に示した。 なお、 このちよう度の値が大きいとい うことは、 熱伝導性シリコーンゴム組成物の可塑性が大きく、 取扱性が優れるこ とを意味する。
次に、 このシリコーンゴムベースに、 白金含有量が 0.5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0.2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。
この熱伝導性シリコーンゴム組成物おょぴ熱伝導性シリコーンゴムの特性を次 のようにして測定し、 それらの結果を表 2に示した。
[熱伝導性シリコーンゴム組成物の成形性]
この熱伝導性シリコーンゴム組成物を厚さ 1mmとなるように厚さ 50 μπιのポリ エチレンテレフタレート樹脂フィルム (PETフィルム) の間に挟み込み、 10 0°CX 30分間で加熱硬化させた。 その後、 PETフィルムを剥がし取り、 シリ コーンゴムシートを成形できたかどうかを観察し、 均一なシリコーンゴムシート を成形できた場合を成形性良好:〇、 シート状には成形できたものの、 部分的に 強度が弱い個所があった場合を成形性やや不良: △、 シート状に成形できなかつ たり、 部分的に成形できたとしても強度が弱い場合を成形性不良: X、 として評 価した。
[熱伝導性シリコーンゴムの熱伝導率]
この熱伝導性シリコーンゴム組成物を 100°CX 30分間で加熱硬化させ、 得 られた熱伝導性シリコーンゴムの熱伝導率を J I S R 2616に規定の熱線 法に従って、 京都電子工業株式会社製の迅速熱伝導率計 Q TM- 500により 測定した。
[熱伝導 1"生シリコーンゴムの硬さ]
この熱伝導性シリコーンゴム組成物を 100°CX 30分間で加熱硬化させ、 得 られた熱伝導性シリコーンゴムの硬さを、 J I S K 6 2 5 3に規定のタイプ Eデュロメータにより測定した。
[実施例 6 ]
実施例 5において、 分子鎖片末端シラノール基封鎖ジメチルシロキサンの代わ りに、 式:
Figure imgf000038_0001
で表される分子鎖片末端シラノール基封鎖ジメチルシロキサンを同量用いた以外 は実施例 5と同様にして熱伝導性シリコーンゴムベースを調製した。 この熱伝導 性シリコーンゴムベースのちょう度を実施例 5と同様にして測定し、 その結果を 表 2に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニル _ 1, 1 , 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム組成物およぴ熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。
[実施例 7 ]
実施例 5において、 分子鎖片末端シラノール基封鎖ジメチルシロキサンの代わ りに、 式:
Figure imgf000038_0002
で表される分子鎖片末端シラノール基封鎖ジメチルシロキサンを同量用いた以外 は実施例 5と同様にして熱伝導性シリコーンゴムベースを調製した。 この熱伝導 性シリコーンゴムベースのちょう度を実施例 5と同様にして測定し、 その結果を 表 2に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム組成物および熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。
[実施例 8]
実施例 5において、 分子鎖片末端シラノール基封鎖ジメチルシロキサンの代わ りに、 式:
Figure imgf000039_0001
で表される分子鎖片末端シラノール基封鎖ジメチルシロキサンを同量用いた以外 は実施例 5と同様にして熱伝導性シリコーンゴムベースを調製した。 この熱伝導 性シリコーンゴムベースのちょう度を実施例 5と同様にして測定し、 その結果を 表 2に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0. 5重量0 /0である白金の 1 , 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム,組成物および熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。
[比較例 4]
ロスミキサーにより、 粘度が 4 0 OmPa'sである分子鎖両末端ジメチルビニルシ 口キシ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0. 44重量%) 1 0 0重量部、 平均粒径が 1 0 μ mである真球状のアルミナ粉末 1 0 0 8重量部、 平 均粒径が 2. 2 μ mである不定形状のアルミナ粉末 6 7 2重量部を室温で 3 0分間 混合した。 次いで、 これに粘度が 1 OmPa'sである分子鎖両末端ジメチルハイド口 ジヱンシロキシ基封鎖ジメチルポリシロキサン (ケィ素原子結合水素原子の含有 量 = 0. 1 2重量%) 4. 4重量部、 粘度が 5mPa'sである分子鎖両末端トリメチル シロキシ基封鎖ジメチノレシロキサン · メチルハイ ドロジェンシロキサンコポリマ 一 (ケィ素原子結合水素原子の含有量 = 0. 6 4重量%) 0. 5重量部、 およぴ硬 化反応抑制剤として、 2—フエ-ルー 3—ブチン _ 2—オール 0. 0 2重量部を室 温で 1 5分間混合することにより熱伝導性シリコーンゴムベースを調製した。 こ の熱伝導性シリコーンゴムベースのちょう度を実施例 5と同様にして測定し、 そ の結果を表 2に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0. 5重量0 /0である白金の 1 , 3—ジビニルー 1 , 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム組成物および熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。 実施例 5〜8の結果と比較して、 硬化前のちょ う度が高く取扱性が悪い上に、 同じ架橋密度を持つにもかかわらず、 硬化後の硬 さが高く弾力が失われていることがわかった。
[比較例 5 ]
実施例 5において、 分子鎖片末端シラノール基封鎖ジメチルシロキサンの代わ りに、 式:
Figure imgf000040_0001
で表される分子鎖両末端シラノール基封鎖ジメチルシ口キサンを同量用いた以外 は実施例 5と同様にして熱伝導性シリコーンゴム組成物を調製しようとしたが、 組成物の粘度が上がりすぎて、 平均粒径が 1 0 / mである真球状のアルミナ粉末 1 , 2 0 0重量部、 および平均粒径が 2. 2 μ ηιである不定形状のアルミナ粉末 8 0 0重量部を全量混合することができず、 熱伝導性シリコーンゴムベースのちょ う度の測定、 熱伝導性シリコーンゴム組成物の成形性の評価、 および熱伝導性シ リコーンゴムの熱伝導率および硬さの測定を行うことができなかった。
[比較例 6 ]
比較例 5において、 平均粒径が 1 0 μ mである真球状のアルミナ粉末を 9 9 0 重量部、 平均粒径が 2. 2 μ πιであるアルミナ粉末を 6 6 0重量部に減量し、 合計 含有量が 9 3重量%となるようにした以外は比較例 5と同様にして熱伝導性シリ コーンゴムベースを調製した。 この熱伝導性シリコーンゴムベースのちょう度を 実施例 5と同様にして測定し、 その結果を表 2に示した。 次に、 このシリコーンゴムベースに、 白金含有量が 0. 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 2重量都を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム組成物および熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。 実施例 5〜8の結果と比較して、 平均粒径が 1 0 μ πιである真球状のアルミナ粉末、 および平均粒径が 2. 2 μ πιである不定形状 のアルミナ粉末の充填量を減らしたことにより熱伝導率が下がつているにもかか わらず、 硬化前のちょう度が高く取扱性が悪い上に、 硬化後の硬さが高く弾力が 失われていることがわかった。 ';
[比較例 7 ]
実施例 5において、 分子鎖片末端シラノール基封鎖ジメチルシ口キサンの代わ りに、 式:
Figure imgf000041_0001
で表される分子鎖片末端シラノール基封鎖ジメチルシロキサンを同量用いた以外 は実施例 5と同様にして熱伝導性シリコーンゴムベースを調製した。 この熱伝導 性シリコーンゴムベースのちょう度を実施例 5と同様にして測定し、 その結果を 表 2に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0. 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部を均一 に混合して熱伝導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーン ゴム組成物およぴ熱伝導性シリコーンゴムの特性を実施例 5と同様にして測定し 、 それらの結果を表 2に示した。 ここで用いた分子鎖片末端シラノール基封鎖ジ メチルシ口キサンは、 実施例 5〜 8で使用した分子鎖片末端シラノール基封鎖ジ メチルシ口キサンと同じようなジメチルシロキサンであるが、 重合度が小さいた め有効な処理ができず、 得られた組成物は、 硬化前のちょう度が高く取扱性が悪 い上に、 硬化後の硬さが高く弾力が失われていることがわかった。 表 2
Figure imgf000042_0002
[実施例 9]
ロスミキサーにより、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシ 口キシ基封鎖ジメチルポリシロキサン (ビニル基の含有量 = 0.44重量%) 10
0重量部、 平均粒径が 10 μπιである真球状のアルミナ粉末 1200重量部、 平 均粒径が 2. 2 μπιである不定形状のアルミナ粉末 800重量部、 および式:
Figure imgf000042_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリ
0重量部を室温で 30分間混合した後、 粘度が 1 OmPa'sである分子鎖両末端ジメ チルハイドロジェンシロキシ基封鎖ジメチルポリシ口キサン (ケィ素原子結合水 素原子の含有量 =0. 12重量%) 4.4重量部 (上記の分子鎖両末端ジメチルビ 二ルシロキシ基封鎖ジメチルポリシロキサン中のビュル基 1モノレに対して、 この ジメチルポリシロキサン中のケィ素原子結合水素原子が 0. 3モルとなる量) 、 粘 度が 5 mPa'sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン · メチルハイドロジェンシロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 64重量%) 0. 5重量部 (上記の分子鎖両末端ジメチルビ二ルシロキシ基 封鎖ジメチルポリシロキサン中のビエル基 1モルに対して、 このジメチルシ口キ サン ·メチルハイドロジェンシロキサンコポリマー中のケィ素原子結合水素原子 が 0.2モルとなる量) 、 およぴ硬化反応抑制剤として、 2—フエ二ルー 3—ブチ ンー 2—オール 0.02重量部 (本組成物中、 0. 001重量%となる量) を室温 で 15分間混合して熱伝導性シリコーンゴムベースを調製した。
このシリコーンゴムベースの一部を 50mlのガラス製ビーカーに注入し、 J I S K 2220に規定の方法によりこのシリコーンゴムベースの 1ノ4ちょう 度を測定し、 その結果を表 3に示した。 なお、 このちよう度の値が大きいという ことは、 熱伝導性シリコーンゴム組成物の可塑性が大きく、 取扱性が優れること を意味する。
次に、 このシリコーンゴムベースに、 白金含有量が 0.5重量。 /0である白金の 1 , 3—ジビエル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0.2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 Oppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この組成物中のアルミナ粉末の含有量は 94.0重量% (79.4容積%)であ つた。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーンゴムの特性 を次のようにして測定し、 それらの結果を表 3に示した。
[熱伝導性シリコーンゴム組成物の成形性]
この熱伝導性シリコーンゴム組成物を厚さ 1mmとなるように厚さ 50 / mのポリ エチレンテレフタレート樹脂製フィルム (PETフィルム) の間に挟み込み、 1 00°Cで 30分間加熱して硬化させた。 その後、 PETフィルムを剥がし取り、 シリコーンゴムシートを成形できたかどうかを観察し、 シートを問題無く成形で きた場合を成形性良好として" 〇"、 シートに成形できたものの、 一部分凝集破 壊した場合を成形性やや不良として" △" 、 大部分が凝集破壊してシートに成形 できなかった場合を成形性不良として" X" で示した。
[熱伝導性シリコーンゴムの熱伝導率]
この熱伝導性シリコーンゴム組成物を 100°Cで 30分間加熱して硬化させて 得られた熱伝導性シリコーンゴムの熱伝導率を J I S R 2616に規定の熱 線法に従って、 京都電子工業株式会社製の迅速熱伝導率計 Q TM— 5 0 0によ り測定した。
[熱伝導性シリコーンゴムの硬さ]
この熱伝導性シリコーンゴム組成物を 1 0 0 °Cで 3 0分間加熱して硬化させて 得られた熱伝導性シリコーンゴムの硬さを、 J I S K 6 2 5 3に規定のタイ プ Eデュロメータにより測定した。
[実施例 1 0 ]
実施例 9において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000044_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに白金含有量が 0 . 5重量0 /0である白金の 1, 3—ジビニルー 1 , 1 , 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ-ルシロキシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[実施例 1 1 ]
実施例 9において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000045_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビエルシ口キシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[比較例 8 ]
実施例 9において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000045_0002
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ-ルシロキシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[比較例 9 ]
実施例 9において、 分子鎖片末端トリメトキシシ口キシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000046_0001
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビ-ルー 1 , 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 Ο ρρηιとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[比較例 1 0 ]
実施例 9において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000046_0002
で表される分子鎖片末端トリメトキシシ口キシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量%である白金の 1 , 3一ジビニルー 1 ; 1 , 3 , 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ-ルシロキシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[比較例 1 1 ]
実施例 9において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000047_0001
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ-ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特生を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。
[比較例 1 2 ]
実施例 9において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000048_0001
で表される分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し ようとしたが、 ベースの粘度が上がりすぎたため、 平均粒径が 1 0 μ mである真 球状のアルミナ粉末 1 , 2 0 0重量部、 および平均粒径が 2 . 2 μ mである不定形 状のアルミナ粉末 8 0 0重量部を全量混合することができなかった。
[比較例 1 3 ]
実施例 9において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシ ロキサンの代わりに、 式:
Figure imgf000048_0002
で表される分子鎖両末端トリメトキシシロキシ基封鎖,
同量用いた以外は実施例 9と同様にして熱伝導性シリコーンゴムベースを調製し た。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 その 結果を表 3に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1 , 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビエルシ口キシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 3に示した。 表 3
Figure imgf000049_0001
表 3は、 熱伝導性シリコーンゴム組成物において、 アルミナ粉末の含有量を 7 9 . 4容積%としたものである。 実施例 9〜1 1、 比較例 8〜1 1を比較すると、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンのジメチルシ ロキサンの繰り返し単位数の違いにより、 熱伝導性シリコーンゴム組成物のちょ う度が大きく変化し、 また、 硬化して得られるシリコーンゴムの硬さも大きく変 化することがわかった。 また、 実施例 9と比較例 1 3を比較すると、 ジメチルポ リシロキサン中のジメチルシロキサンの繰り返し単位数が等しくても、 分子鎖片 末端がトリメトキシシロキシ基で封鎖されている力、 分子鎖両末端がトリメトキ シシロキシ基で封鎖されているかの違いにより、 熱伝導性シリコーンゴム組成物 のちよう度が大きく変化し、 また、 硬化して得られるシリコーンゴムの硬さも大 きく変化することがわかった。 さらに、 比較例 1 2と比較例 1 3を比較すると、 ジメチルポリシロキサンの分子鎖両末端がトリメトキシシロキシ基で封鎖されて レ、れば、 ジメチルシ口キサンの繰り返し単位数によらず、 熱伝導性シリコーンゴ ム組成物のちよう度が大きくなり、 取扱作業性が低下することがわかつた。
[実施例 1 2 ]
ロスミキサーにより、 粘度が 4 0 O mPa' sである分子鎖両末端ジメチルビニルシ 口キシ基封鎖ジメチルポリシロキサン (ビニル基の含有量 = 0 . 4 4重量%) 1 0 0重量部、 平均粒径が 10 μ mである真球状のアルミナ粉末 1, 500重量部、 平 均粒径が 2.2 /imである不定形状のアルミナ粉末 1, 000重量部、 およぴ式:
Figure imgf000050_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサン 2 6重量部を室温で 30分間混合した後、 粘度が 1 OmPa'sである分子鎖両末端ジメ チルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン (ケィ素原子結合水 素原子の含有量 =0. 12重量%) 4.4重量部 (上記の分子鎖両末端ジメチルビ 二ルシロキシ基封鎖ジメチルポリシロキサン中のビュル基 1モルに対して、 この ジメチルポリシロキサン中のケィ素原子結合水素原子が 0. 3モルとなる量) 、 粘 度が 5mPa'sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン · メチルハイドロジェンシロキサンコポリマー (ケィ素原子結合水素原子の含有量 = 0. 64重量%) 0.5重量部 (上記の分子鎖両末端ジメチルビュルシ口キシ基 封鎖ジメチルポリシロキサン中のビュル基 1モルに対して、 このジメチルシ口キ サン .メチルハイドロジェンシロキサンコポリマー中のケィ素原子結合水素原子 が 0. 2モルとなる量) 、 および硬化反応抑制剤として、 2—フエ-ルー 3—ブチ ンー 2—オール 0.02重量部 (本組成物中、 0.001重量%となる量) を室温 で 15分間混合して熱伝導性シリコーンゴムベースを調製した。 このシリコーン ゴムベースのちょう度を実施例 9と同様にして測定し、 その結果を表 4に示した 次に、 このシリコーンゴムベースに、 白金含有量が 0. 5重量0 /0である白金の 1 , 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 Oppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この組成物中のアルミナ粉末の含有量は 95. 0重量%(82.4容積%)であ つた。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性 を実施例 9と同様にして測定し、 それらの結果を表 4に示した。 [実施例 1 3 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000051_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 した。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 そ の結果を表 4に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3一ジビュル一 1 , 1, 3 , 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビエルシ口キシ基封鎖ジメチルポリシ口キサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この組成物中のアルミナ粉末の含有量は 9 5 . 0重量% ( 8 2 . 4容積%)であ つた。 この熱伝導性シリコーンゴム組成物おょぴ熱伝導性シリコーンゴムの特性 を実施例 9と同様にして測定し、 それらの結果を表 4に示した。
[実施例 1 4 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000051_0002
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 した。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 そ の結果を表 4に示した。 次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1 , 3 , 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 4に示した。
[比較例 1 4 ]
実施例 1 2において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000052_0001
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルシロキサンを同量 用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製しよ うとしたが、 ベースの粘度が上がりすぎたため、 平均粒径が 1 0 μ mである真球 状のアルミナ粉末 1 , 5 0 0重量部、 および平均粒径が 2 . 2 /z mである不定形状 のアルミナ粉末 1, 0 0 0重量部を全量混合することができなかった。
[比較例 1 5 ]
実施例 1 2において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000052_0002
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 した。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 そ の結果を表 4に示した。 次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3 -ジビ-ルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 4に示した。
[比較例 1 6 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000053_0001
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 した。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 そ の結果を表 4に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーンゴムの特生を 実施例 9と同様にして測定し、 それらの結果を表 4に示した。
[比較例 1 7 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000054_0001
で表される分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 した。 このシリコーンゴムベースのちょう度を実施例 9と同様にして測定し、 そ の結果を表 4に示した。
次に、 このシリコーンゴムベースに、 白金含有量が 0 . 5重量0 /0である白金の 1 , 3—ジビニルー 1 , 1 , 3 , 3—テトラメチルジシロキサン錯体 0 . 2重量部 (上記 の分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポリシロキサンに対して 白金金属が 1 O ppmとなる量) を混合して熱伝導性シリコーンゴム組成物を調製し た。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シリコーンゴムの特性を 実施例 9と同様にして測定し、 それらの結果を表 4に示した。
[比較例 1 8 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000054_0002
で表される分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 しょうとしたが、 ベースの粘度が上がりすぎたため、 平均粒径が 1 0 mである 真球状のアルミナ粉末 1 , 5 0 0重量部、 および平均粒径が 2 . 2 μ ιηである不定 形状のアルミナ粉末 1 , 0 0 0重量部を全量混合することができなかった。
[比較例 1 9 ]
実施例 1 2において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
Figure imgf000055_0001
で表される分子鎖両末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサンを 同量用いた以外は実施例 1 2と同様にして熱伝導性シリコーンゴムベースを調製 しょうとしたが、 ベースの粘度が上がりすぎたため、 平均粒径が 1 0 μ mである 真球状のアルミナ粉末 1, 5 0 0重量部、 および平均粒径が 2 . 2 である不定 形状のアルミナ粉末 1 , 0 0 0重量部を全量混合することができなかった。 表 4
Figure imgf000055_0002
表 4は、 熱伝導性シリコーンゴム組成物において、 アルミナ粉末の含有量を 8 2 . 4容積%と極めて高充填したものである。 実施例 1 2〜1 4、 比較例 1 5〜1 7を比較すると、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキ サン中のジメチルシロキサンの繰り返し単位数の違いにより、 熱伝導性シリコー ンゴム組成物のちょう度が大きく変化し、 また、 硬化して得られるシリコーンゴ ムの硬さも大きく変化することがわかった。 また、 実施例 1 2と比較例 1 9を比 較すると、 ジメチルポリシロキサン中のジメチルシロキサンの繰り返し単位数が 等しくても、 分子鎖片末端がトリメトキシシロキシ基で封鎖されているか、 分子 鎖両末端がトリメトキシシロキシ基で封鎖されているかの違いにより、 熱伝導性 シリコーンゴム組成物のちょう度が大きく変化し、 また、 硬化して得られるシリ コーンゴムの硬さも大きく変化することがわかった。 さらに、 比較例 18と比較 例 19を比較すると、 ジメチルポリシロキサン中のジメチルシロキサンの繰り返 し単位数が等しくても、 分子鎖両末端がトリメトキシシロキシ基で封鎖されてい れば、 ジメチルシロキサンの繰り返し単位数によらず、 熱伝導性シリコーンゴム 組成物のちょう度が大きくなり、 取扱作業性が低下することがわかった。
[実施例 1 5]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビ二ルシロキ シ基封鎖ジメチルポリシロキサン (ビニル基の含有量 == 0.44重量%) 86.8 重量部、 平均粒径が 10 mである球状のアルミナ粉末 900重量部、 および式
H(CH3)2SiO[(CH3)2SiO]25Si(OCH3)3
で表されるオルガノシロキサン 10重量部を混合した。 次いで、 この混合物に、 粘 度が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子基を有する分 子鎖両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジェ ンシロキサンコポリマー (ケィ素原子結合水素原子基の含有量 =0.74重量%) 2. 2重量部、 および硬化反応抑制剤として、 1一ェチニノレ一 1一シク口へキサノ ール 0. 5重量部を混合した。 最後に、 この混合物に白金含有量が 0. 5重量%で ある白金の 1, 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0.5 重量部を混合して熱伝導性シリコーンゴム組成物を調製した。
この熱伝導性シリコーンゴム組成物おょぴ熱伝導性シリコーンゴムの特性を次 のようにして測定し、 それらの結果を表 5に示した。
[熱伝導性シリコーンゴム組成物のちょう度]
この熱伝導性シリコーンゴム組成物の 1/4ちょう度を J I S K 2220 に規定の方法に準じて測定した。 なお、 ちょう度の値が大きいということは、 熱 伝導性シリコーンゴム組成物の可塑性が大きく、 取扱性が優れることを意味する
[熱伝導性シリコーンゴム組成物の成形性] この熱伝導性シリコーンゴム組成物を厚さ 2mmとなるように厚さ 0. 2mmの四フ ッ化エチレン樹脂製フィルムの間に挟み込み、 150°CX 1 5分間加熱硬化させ た。 その後、 四フッ化工チレン樹脂製フィルムを剥がし取り、 シリコーンゴムシ ートを成形できたかどうかを観察した。 均一なシリコーンゴムシートを成形でき た場合を成形性良好として:〇、 シート状には成形できたももの、 部分的に強度 が弱い個所があった場合を成形性やや良好として:△、 シート状の成形できなか つたり、 成形できたとしても強度が弱い場合を成形性不良として: X、 として評 価した。
[熱伝導性シリコーンゴムの熱伝導率]
この熱伝導性シリコーンゴム組成物を 150°CX 15分間加熱硬化させること により得られた熱伝導性シリコーンゴムの熱伝導率を J I S R 2616に規 定の熱線法に従って、 京都電子工業株式会社製の迅速熱伝導率計 QTM— 50 0により測定した。
[熱伝導性シリコーンゴムの接着強さ ]
この熱伝導性シリコーンゴム組成物を、 同種の被着体の間に挟み込んだ後、 1 50 °C X 30分間加熱することにより硬化させた。 被着体として、 株式会社パル テック社製アルミニウム板( J I S H 4000、 A 1050 P)、 ニッケル板( SPCC_SB)、 およびステンレススチール板(SUS— 304 2B)を用いた 。 また、 接着面積は 25mmX 10舰とし、 接着層の厚さは 1 mmとした。 この熱伝 導性シリコーンゴムの引張りせん断接着強さを J I S K 6249の規定に従 つて測定した。
表 5
Figure imgf000058_0002
[実施例 16]
混合装置により、 粘度が 30 OmPa'sである分子鎖両末端ト
封鎖ジメチルポリシロキサン 75重量部、 平均粒径が 0.4 mである球状のアル ミナ粉末 137重量部、 平均粒径が 2 μ mである球状のアルミナ粉末 167重量 部、 平均粒径が 18 Hiである球状のアルミナ粉末 616重量部、 およぴ式:
Figure imgf000058_0001
で表される分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリシロキサン 5 重量部を室温で混合して熱伝導性シリコーングリースを調製した。
この熱伝導性シリコーングリースの一部を 50mlのガラス製ビーカーに注入し 、 J I S K 2220に規定の方法によりこのシリコーングリースの 1/4ち よう度を測定し、 その結果を表 6に示した。 なお、 このちよう度の値が大きいと いうことは、 熱伝導性シリコーングリースの可塑性が大きく、 取扱性が優れるこ とを意味する。 また、 この熱伝導性シリコーングリースを塩ィヒビ二リデン榭脂フ イルムに包み、 熱伝導率を J I S R 2616に規定の熱線法に従って、 京都 電子工業株式会社製の迅速熱伝導率計 Q TM- 500により測定し、 その結果 を表 6に示した。
[実施例 17]
実施例 16において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
(CH2=CH) (CH3)2SiO[(CH3)2SiO]29Si(OCH3)3
で表されるオルガノシロキサンを同量用いた以外は実施例 16と同様にして熱伝 導性シリコーングリースを調製した。 この熱伝導性シリコーングリースのちよう 度および熱伝導率を実施例 16と同様にして測定し、 それらの結果を表 6に示し た。
[実施例 18 ]
実施例 16において、 分子鎖片末端トリメトキシシ口キシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
H(CH3)2SiO[(CH3)2SiO]25Si(OCH3)3
で表されるオリゴシロキサンを同量用いた以外は実施例 16と同様にして熱伝導 性シリコーングリースを調製した。 このシリコーングリースのちよう度おょぴ熱 伝導率を実施例 16と同様にして測定し、 それらの結果を表 6に示した。
[実施例 19]
実施例 16において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチ < /レポリ シロキサンの代わりに、 式:
(CH3)3SiO[(CH2=CH) CH3SiO]3[(CH3)2SiO]22Si(OCH3)3 で表されるオリゴシロキサンを同量用いた以外は実施例 16と同様にして熱伝導 性シリコーングリースを調製した。 この熱伝導性シリコーングリースのちよう度 および熱伝導率を実施例 16と同様にして測定し、 それらの結果を表 6に示した [実施例 20]
実施例 16において、 粘度が 30 OraPa'sである分子鎖両末端トリメチルシ口キ シ基封鎖ジメチルポリシロキサンの代わりに、 粘度が 40 OmPa'sである分子鎖両 末端ジメチルビエルシ口キシ基封鎖ジメチルポリシロキサン (ビニル基の含有量 =0.44重量%) を同量用いた以外は実施例 16と同様にして熱伝導性シリコー ングリースを調製した。 この熱伝導性シリコーングリースのちよう度および熱伝 導率を実施例 16と同様にして測定し、 それらの結果を表 6に示した。
[実施例 21]
実施例 16において、 粘度が 30 OmPa'sである分子鎖両末端トリメチルシ口キ シ基封鎖ジメチルポリシロキサンの代わりに、 粘度が 50 OmPa'sであり、 式: ( CH3)3 Si〇1/2で表されるシロキサン単位 2.22モル0 /0と式: (CH3)2 (CH2 = CH) Si〇1/2で表されるシロキサン単位 0. 9モル0 /0と式: CH3 Si〇3/2で表 されるシロキサン単位 3. 28モル%と式: (CH3)2 SiO2/2で表されるシロキサ ン単位 93. 6モル%からなるオルガノシロキサンコポリマーを同量用いた以外は 実施例 16と同様にして熱伝導性シリコーングリースを調製した。 この熱伝導性 シリコーングリースのちよう度および熱伝導率を実施例 16と同様にして測定し 、 それらの結果を表 6に示した。
[比較例 20]
実施例 16において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 メチルトリメトキシシランを同量用いた以外は実施例 1 6と同様にして熱伝導性シリコーングリースを調製しようとしたが、 組成物の粘 度が上がりすぎて、 アルミナ粉末を所定量混合することができず、 熱伝導性シリ コーングリースのちよう度の測定および熱伝導率の測定を行うことができなかつ た。
[比較例 21]
実施例 16において、 分子鎖片末端トリメトキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 式:
(CH3)3SiO[(CH3)2SiO]3Si(OCH3)3
で表されるオリゴシロキサンを同量用いた以外は実施例 16と同様にして熱伝導 性シリコーングリースを調製しょうとしたが、 組成物の粘度が上がりすぎて、 ァ ルミナ粉末を所定量混合することができず、 熱伝導性シリコーングリースのちよ う度おょぴ熱伝導率の測定を行うことができなかつた。 [比較例 2 2 ]
実施例 1 6において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリ シロキサンの代わりにデシルトリメ トキシシランを同量用いた以外は実施例 1 6 と同様にして熱伝導性シリコーングリースを調製した。 この熱伝導性シリコ—一ン グリースのちよう度および熱伝導率を実施例 1 6と同様にして測定し、 それらの 結果を表 6に^した。
[比較例 2 3 ]
実施例 2 1において、 分子鎖片末端トリメ トキシシロキシ基封鎖ジメチルポリ シロキサンの代わりに、 デシルトリメ トキシシランを同量用いた以外は実施例 2 1と同様にして熱伝導性シリコーングリースを調製した。 このシリコーンダリー スのちよう度おょぴ熱伝導率を実施例 1 6と同様にして測定し、 それらの結果を 表 6に示した。 表 6
Figure imgf000061_0001
[実施例 2 2 ]
ロスミキサーにより、 粘度が 3 0 O raPa' sである分子鎖両末端トリメチルシロキ シ基封鎖ジメチルポリシロキサン 7 4 . 5重量部、 平均粒径が 0 . 4 μ mである球状 のアルミナ粉末 1 3 7重量部、 平均粒径が 2 / mである球状のアルミナ粉末 1 6 7 . 6重量部、 平均粒径が 1 8 /i mである球状のアルミナ粉末 6 1 5 . 4重量部、 式: { (CH3) 3SiO[ (CH3) 2SiO] 110} Si (0CH3) 3
で表されるオルガノポリシロキサン 5 . 0重量部、 およぴメチルトリメ トキシシラ ン 0 . 5重量部を減圧下、 1 5 0 °Cで 1時間加熱混合した後、 室温まで冷却し、 さ らに 1時間混合して熱伝導性シリコーングリースを調製した。 この熱伝導性シリ コーングリースの初期のちょう度、 および 105 °Cで 24時間加熱処理後のちょ う度を実施例 16と同様にして測定し、 それらの結果を表 7に示した。 また、 こ の熱伝導性シリコーングリースの熱伝導率を実施例 16と同様にして測定し、 そ の結果を表 7に示した。
[実施例 23]
ロスミキサーにより、 粘度が 30 OmPa'sである分子鎖両末端トリメチルシロキ シ基封鎖ジメチルポリシロキサン 72.05重量部、 平均粒径が 0.4 mである球 状のアルミナ粉末 137重量部、 平均粒径が 2 / mである球状のアルミナ粉末 16 7. 6重量部、 平均粒径が 18 μ mである球状のアルミナ粉末 615.4重量部、 式
{ (CH3) 3SiO [ (CH3) 2SiO] 110} Si (0CH3) 3
で表される: レガノポリシロキサン 7. 5重量部、 およびメチルトリメ トキシシラ ン 0.45重量部を減圧下、 150°Cで 1時間加熱混合した後、 室温まで冷却し、 さらに 1時間混合して熱伝導性シリコーングリースを調製した。 この熱伝導性シ リコーングリースのちよう度および熱伝導率を実施例 16と同様にして測定し、 それらの結果を表 7に示した。
[実施例 24]
ロスミキサーにより、 粘度が 30 OmPa'sである分子鎖両末端トリメチルシロキ シ基封鎖ジメチルポリシロキサン 75重量部、 平均粒径が 0.4 μ mである球状の アルミナ粉末 1 37重量部、 平均粒径が 2 μηιである球状のアルミナ粉末 167. 6重量部、 平均粒径が 18 μπιである球状のアルミナ粉末 6 15.4重量部、 およ ぴ式:
{ (CH3) 3SiO [ (CH3) 2SiO] 110}Si (OCH3) 3
で表されるオ^^ガノポリシロキサン 5.0重量部を減圧下、 150 °Cで 1時間加熱 混合した後、 室温まで冷却し、 さらに 1時間混合して熱伝導性シリコーンダリー スを調製した。 この熱伝導性シリコーングリースのちよう度および熱伝導率を実 施例 16と同様にして測定し、 それらの結果を表 7に示した。 表 7
Figure imgf000063_0001
[実施例 2 5]
混合装置により、 粘度が 40 OraPa'sである分子鎖両末端ジメチルビ-ルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0. 44重量%) 4 3. 6 重量部、 平均粒径が 4 0 ^ mである球状のアルミナ粉末 5 5 2重量部、 平均粒径 が 2. 2 mである不定形状のアルミナ粉末 3 6 8重量部、 式:
{ (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 15重量部、 式:
(CH3) 3SiO [ (CH3) 2SiO] 110Si (0CH3) 3
で表されるオルガノシロキサン 15重量部を混合した。 次いで、 この混合物に粘度 が 5mPa'Sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子鎖 両末端トリメチルシ口キシ基封鎖ジメチルシ口キサン ·メチルハイドロジェンシ ロキサンコポリマー (ケィ素原子結合水素原子の含有量 = 0. 74重量%) 3. 4 重量部、 および硬化反応抑制剤として、 1—ェチュル一 1—シク口へキサノール 0. 5重量部、 接着付与剤として、 3—グリシドキシプロピルトリメトキシシラン 1. 0重量部、 および一分子中に平均 2個のケィ素原子結合ビュル基を有する分子 鎖両末端ヒ ドロキシジメチル基封鎖ジメチルシロキサン 'メチルビニルシロキサ ンコポリマー (ビュル基の含有 = 9. 6重量%) 1. 0重量部を混合した。 最後に 、 この混合物に白金含有量が 0. 5重量%である白金の 1, 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重量部を混合して熱伝導性シリコー ンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導性シ リコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示し た。
[実施例 26]
混合装置により、 粘度が 400 mPa' sである分子鎖両末端ジメチルビ-ルシロキ シ基封鎖ジメチルポリシロキサン (ビニル基の含有量 = 0.44重量%) 42. 9 重量部、 平均粒径が 40 μ mである球状のアルミナ粉末 552重量部、 平均粒径 力 S2. 2 /imである不定形状のアルミナ粉末 368重量部、 式:
{ (CH2=CH) (CH3) 2SiO[ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 24重量部、 式:
(CH3) 3SiO[(CH3) 2SiO] 110Si (0CH3) 3
で表されるオルガノシロキサン 6重量部を混合した。 次いで、 この混合物に粘度 が 5mPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子鎖 両末端トリメチルシ口キシ基封鎖ジメチルシ口キサン 'メチルハイドロジェンシ ロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重量%) 4. 1 重量部、 および硬化反応抑制剤として、 1一ェチニルー 1ーシクロへキサノール 0. 5重量部、 接着付与剤として、 3—グリシドキシプロピルトリメトキシシラン 1.0重量部、 および一分子中に平均 2個のケィ素原子結合ビニル基を有する分子 鎖両末端ヒドロキシジメチル基封鎖ジメチルシロキサン ·メチルビエルシロキサ ンコポリマー (ビエル基の含有 =9. 6重量%) 1.0重量部を混合した。 最後に 、 この混合物に白金含有量が 0. 5重量%である白金の 1, 3—ジビュル一 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重量部を混合して熱伝導性シリコー ンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シ リコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示し た。
[実施例 27]
混合装置により、 粘度が 4.0 OmPa'sである分子鎖両末端ジメチルビ-ルシロキ シ基封鎖ジメチルポリシロキサン (ビエル基の含有量 = 0.44重量%) 44.0 重量部、 平均粒径が 40 である球状のアルミナ粉末 552重量部、 平均粒径 が 2. 2 Aimである不定形状のアルミナ粉末 368重量部、 式: { (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 10重量部、 式:
(CH3) 3SiO [ (CH3) 2SiO] 110Si (0CH3) 3
で表されるオルガノシロキサン 20重量部を混合した。 次いで、 この混合物に粘 度が 5mPa'Sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子 鎖両末端トリメチルシ口キシ基封鎖ジメチルシ口キサン 'メチルハイドロジェン シロキサンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重量%) 3. 0重量部、 および硬化反応抑制剤として、 1—ェチュル一 1ーシク口へキサノー ル 0. 5重量部、 接着付与剤として、 3—グリシドキシプロピルトリメトキシシラ ン 1. 0重量部、 および一分子中に平均 2個のケィ素原子結合ビュル基を有する分 子鎖両末端ヒドロキシジメチル基封鎖ジメチルシ口キサン ·メチルビュルシロキ サンコポリマー (ビエル基の含有 =9. 6重量%) 1.0重量部を混合した。 最後 に、 この混合物に白金含有量が 0. 5重量%でぁる白金の1, 3—ジビュル一 1, 1 , 3, 3—テトラメチルジシロキサン錯体 0. 5重量部を混合して熱伝導性シリコー ンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導性シ リコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示し た。
[実施例 28]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量%) 43. 2 重量部、 平均粒径が 40 である球状のアルミナ粉末 552重量部、 平均粒径 が 2. 2 μηιである不定形状のアルミナ粉末 368重量部、 式:
{ (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 20重量部、 式:
(CH3) 3SiO [ (CH3) 2SiO] 110Si (0CH3) 3
で表されるオルガノシロキサン 10重量部を混合した。 次いで、 この混合物に粘度 が 5raPa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子鎖 両末端トリメチルシ口キシ基封鎖ジメチルシロキサン ·メチルハイドロジェ: ロキサンコポリマー (ケィ素原子結合水素原子の含有量 = 0.74重量%) 3.8 重量部、 および硬化反応抑制剤として、 1—ェチニル一 1—シク口へキサノール 0.5重量部、 接着付与剤として、 3—グリシドキシプロピルトリメ トキシシラン 1.0重量部、 および一分子中に平均 2個のケィ素原子結合ビニル基を有する分子 鎖両末端ヒ ドロキシジメチル基封鎖ジメチルシロキサン ·メチルビ-ルシロキサ ンコポリマー (ビニル基の含有 =9.6重量%) 1.0重量部を混合した。 最後に 、 この混合物に白金含有量が 0. 5重量%である白金の 1, 3—ジビ-ルー 1, 1, 3, 3—テトラメチルジシロキサン錯体 0. 5重量部を混合して熱伝導性シリコー ンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物およぴ熱伝導性シ リコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示し た。
[比較例 24]
混合装置により、 粘度が 40 OmPa'sである分子鎖両末端ジメチルビニルシロキ シ基封鎖ジメチルポリシロキサン (ビュル基の含有量 = 0.44重量 °Z。) 85.4 重量部、 平均粒径が 10 mである球状のアルミナ粉末 900重量部、 およびメ チルトリメトキシシラン 10重量部を混合した。 次いで、 この混合物に粘度が 5m Pa'sであり、 一分子中に平均 5個のケィ素原子結合水素原子を有する分子鎖両末 端トリメチノレシ口キシ基封鎖ジメチルシロキサン · メチルハイ ドロジェンシロキ サンコポリマー (ケィ素原子結合水素原子の含有量 =0. 74重量%) 3.6重量 部、 および硬化反応抑制剤として、 1—ェチニル一 1ーシクロへキサノール 0. 5 重量部、 接着付与剤として、 3—グリシドキシプロピルトリメトキシシラン 1.0 重量部、 および一分子中に平均 2個のケィ素原子結合ビュル基を有する分子鎖両 末端ヒドロキシジメチル基封鎖ジメチルシロキサン'メチルビ-ルシロキサンコ ポリマー (ビュル基の含有 =9. 6重量0 /0) 1.0重量部を混合した。 最後に、 こ の混合物に白金含有量が 0.5重量0 /0である白金の 1, 3—ジビュル一 1, 1, 3, 3 ーテトラメチルジシロキサン錯体 0.5重量部を混合して熱伝導性シリコーンゴム 組成物を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコー ンゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示した。 [比較例 2 5 ]
比較例 2 4において、 メチルトリメトキシシランの代わりにデシルトリメトキ シシランを同量用いた以外は比較例 2 4と同様にして熱伝導性シリコーンゴム組 成物を調製した。 この熱伝導性シリコーンゴム組成物および熱伝導性シリコーン ゴムの特性を実施例 1と同様にして測定し、 それらの結果を表 8に示した。
[比較例 2 6 ]
比較例 2 4において、 メチルトリメトキシシランの代わりに、 式:
(CH3) 3SiO [ (CH3) 2SiO] S0Si (0CH3) 3
で表されるオルガノシロキサンを同量用いた以外は比較例 2 4と同様にして熱伝 導性シリコーンゴム組成物を調製した。 この熱伝導性シリコーンゴム組成物およ ぴ熱伝導性シリコーンゴムの特性を実施例 1と同様にして測定し、 それらの結果 を表 8に示した。
表 8
Figure imgf000067_0001
[実施例 2 9 ]
混合装置により、 粘度が 3 0 O mPa' sである分子鎖両末端トリメチルシロキシ基 封鎖ジメチルポリシロキサン 7 0重量部、 平均粒径が 4 0 μ mである球状のアル ミナ粉末 5 5 2重量部、 平均粒径が 2 . 2 mである不定形状のアルミナ粉末 3 6 8重量部、 式:
{ (CH2=CH) (CH3) 2SiO [ (CH3) 2SiO] 29} Si (0CH3) 3
で表されるオルガノシロキサン 5 . 0重量部、 および式:
(C¾) 3SiO [ (CH3) 2SiO] 110Si (0CH3) 3 で表される^ レガノシロキサン 5 . 0重量部を室温で混合して熱伝導性シリコーン グリースを調製した。
この熱伝導性シリコーングリースの一部を 5 O mlのガラス製ビーカーに注入し 、 J I S K 2 2 2 0に規定の方法によりこのシリ ーングリースの 1 Z 4ち よう度を測定し、 その結果を表 9に示した。 なお、 このちよう度の値が大きいと いうことは、 熱伝導性シリコーングリースの可塑性が大きく、 取扱性が優れるこ とを意味する。 また、 この熱伝導性シリコーングリースを塩ィ匕ビ二リデン榭脂フ イルムに包み、 熱伝導率を J I S R 2 6 1 6に規定の熱線法に従って、 京都 電子工業株式会社製の迅速熱伝導率計 Q TM— 5 Q 0により測定し、 その結果 を表 9に示した。
[実施例 3 0 ]
混合装置により、 粘度が 3 0 O mPa' sである分子鎖両末端トリメチルシロキシ基 封鎖ジメチルポリシロキサン 7 0重量部、 平均粒径が 4 0 μ mである球状のアル ミナ粉末 5 5 2重量部、 平均粒径が 2 . 2 /i mである不定形状のアルミナ粉末 3 6 8重量部、 およぴ式:
(CH3) 3SiO [ (CH3) 2SiO] U0Si (0CH3) 3
で表されるオルガノシロキサン 1 0重量部を室温で混合して熱伝導性シリコーン グリースを調製した。 この熱伝導性シリコーングリースの特性を実施例 2 9と同 様にして測定し、 それらの結果を表 9に示した。
表 9
Figure imgf000068_0001
産業上の利用可能性
本発明の熱伝導性シリコーン組成物は、 高熱伝導性のシリコーン組成物を得る ために熱伝導性 填剤を多量に含有しても、 取扱作業性が良好であるという特徴 がある。

Claims

請求の範囲
(A)オルガノポリシロキサン、 (B)熱伝導性充填剤、 および(C) ( i )一 般式:
[R1 aR2 (3-a)SiO(R1 bR2 (2_b)SiO)m(R2 2SiO)n]cSiR2 [4.(c+d)](OR3)d
(式中、 R1は脂肪族不飽和結合を有する一価炭化水素基であり、 R2は同種または 異種の脂肪族不飽和結合を有さない一価炭化水素基であり、 R3はアルキル基、 ァ ルコキシアルキル基、 ァルケ-ル基、 またはァシル基であり、 aは 0〜 3の整数 であり、 bは 1または 2であり、 cは 1〜3の整数であり、 dは 1〜3の整数で あり、 かつ、 c + dは 2〜4の整数であり、 mは 0以上の整数であり、 nは 0以 上の整数であり、 但し、 aが 0である場合には、 mは 1以上の整数である。 ) で表されるオルガノシロキサン、 (ii)一分子中に 1個のケィ素原子結合水酸基を 有し、 かつ少なくとも 5個のケィ素原子を有するオルガノシロキサン、 (iii)—般 式:
Figure imgf000069_0001
(式中、 R4は同種または異種の一価炭化水素基であり、 R5は酸素原子または二価 炭化水素基であり、 R3は前記と同じであり、 pは 100〜 200の整数であり、 dは前記と同じである。 )
で示されるオルガノシロキサン、 および(iv)—般式:
[HeR2 (3_e)SiO(R2 2SiO)丄 SiR2 [4(c+d)](OR3)d
(式中、 R2、 R3、 c、 d、 および nは前記と同じであり、 eは 1〜3の整数であ る。 )
で表されるオルガノシロキサンからなる群より選択される少なくとも 1種のオル ガノシロキサン、 から少なくともなる熱伝導性シリコーン組成物。
2. (B)成分の平均粒径が 0. 1〜: L 00 μπιであることを特徴とする、 請求 項 1記載の熱伝導性シリコーン組成物。
3. (B)成分がアルミナ粉末であることを特徴とする、 請求項 1記載の熱伝 導性シリコーン組成物。
4. (B)成分が、 (B 平均粒径が 5〜50 m (伹し、 5 μηιを含まない。 ) である球状のアルミナ粉末と(Β2)平均粒径が 0. :!〜 5 μπιである球状もしく は不定形状のアルミナ粉末との混合物からなることを特徴とする、 請求項 3記載 の熱伝導性シリコーン組成物。
5. (Β)成分が、 (Β^成分 30〜90重量%と(Β2)成分 10〜70重量%力 らなることを特徴とする、 請求項 4記載の熱伝導性シリコーン組成物。
6. (Β)成分の含有量が、 (Α)成分 100重量部に対して 500〜2, 500 重量部であることを特徴とする、 請求項 1記載の熱伝導性シリコーン組成物。
7. (ii)成分が、 一般式:
Figure imgf000070_0001
(式中、 R4は前記と同じであり、 rは 5以上の整数である。 )
で表されるオルガノシロキサンであることを特徴とする、 請求項 1記載の熱伝導 性シリコーン組成物。
8. (C)成分の含有量が、 (B)成分 100重量部に対して 0. 1〜10重量部 であることを特徴とする、 請求項 1記載の熱伝導性シリコーン組成物。
9. (B)成分が、 (A)成分中で(C)成分により表面処理されていることを特 徴とする、 請求項 1記載の熱伝導性シリコーン組成物。
10. 熱伝導性シリコーン組成物が、 さらに、 (D)硬化剤を含有し、 硬化す ることを特敫とする、 請求項 1記載の熱伝導性シリコーン組成物。
1 1. 熱伝導性シリコーン組成物が、 ヒ ドロシリル化反応、 縮合反応、 また は有機過酸化物によるフリ一ラジカル反応により硬化することを特徴とする、 請 求項 10記載の熱伝導性シリコーン組成物。
12. 熱伝導性シリコーン組成物が、 ヒドロシリルイ匕反応により硬化するこ とを特徴とする、 請求項 10記載の熱伝導性シリコーン組成物。
1 3 . 熱伝導性シリコーン組成物が、 硬化して、 熱伝導性シリコーンゲルま たは熱伝導性シリコーンゴムを形成することを特徴とする、 請求項 1 0記載の熱 伝導性シリコーン組成物。
PCT/JP2002/004642 2001-05-14 2002-05-14 Composition de silicone thermoconductrice WO2002092693A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60230142T DE60230142D1 (de) 2001-05-14 2002-05-14 Wärmeleitende silikonzusammensetzung
KR1020037014852A KR100858836B1 (ko) 2001-05-14 2002-05-14 열전도성 실리콘 조성물
JP2002589569A JP4255287B2 (ja) 2001-05-14 2002-05-14 熱伝導性シリコーン組成物
US10/476,998 US7329706B2 (en) 2001-05-14 2002-05-14 Heat-conductive silicone composition
EP02769587A EP1403326B1 (en) 2001-05-14 2002-05-14 Heat-conductive silicone composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001143109 2001-05-14
JP2001-143109 2001-05-14
JP2001151356 2001-05-21
JP2001-151356 2001-05-21
JP2001-221952 2001-07-23
JP2001221952 2001-07-23

Publications (1)

Publication Number Publication Date
WO2002092693A1 true WO2002092693A1 (fr) 2002-11-21

Family

ID=27346699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004642 WO2002092693A1 (fr) 2001-05-14 2002-05-14 Composition de silicone thermoconductrice

Country Status (7)

Country Link
US (1) US7329706B2 (ja)
EP (1) EP1403326B1 (ja)
JP (1) JP4255287B2 (ja)
KR (1) KR100858836B1 (ja)
AT (1) ATE416235T1 (ja)
DE (1) DE60230142D1 (ja)
WO (1) WO2002092693A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348483A (ja) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2003213133A (ja) * 2002-01-25 2003-07-30 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物
WO2003095560A1 (fr) * 2002-05-14 2003-11-20 Dow Corning Toray Silicone Co., Ltd. Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous
JP2004262972A (ja) * 2003-02-13 2004-09-24 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーン組成物
JP2005325211A (ja) * 2004-05-13 2005-11-24 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及び成型品
JP2005325212A (ja) * 2004-05-13 2005-11-24 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及び成型品
JP2006503166A (ja) * 2002-10-17 2006-01-26 ダウ・コーニング・コーポレイション 熱軟化熱伝導性組成物およびその調製方法
US7135232B2 (en) * 2003-07-04 2006-11-14 Fuji Polymer Industries Co., Ltd. Thermal conductive composition, a heat dissipating putty sheet and heat dissipating structure using the same
JP2007177001A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
WO2009136542A1 (ja) 2008-05-08 2009-11-12 富士高分子工業株式会社 熱伝導性樹脂組成物
US7695817B2 (en) 2003-11-05 2010-04-13 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
US7737212B2 (en) 2005-05-25 2010-06-15 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition
US7823647B2 (en) 2005-10-06 2010-11-02 Baker Hughes Incorporated Process for foaming a wet hydrocarbon composition
US8119758B2 (en) 2006-08-30 2012-02-21 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition and cured product thereof
JP2012052137A (ja) * 2011-11-28 2012-03-15 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2012077256A (ja) * 2010-10-06 2012-04-19 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2013028742A (ja) * 2011-07-29 2013-02-07 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2013091683A (ja) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
US8618211B2 (en) 2009-03-16 2013-12-31 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
JP2015110792A (ja) * 2015-01-22 2015-06-18 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
WO2016121563A1 (ja) * 2015-01-29 2016-08-04 ポリマテック・ジャパン株式会社 熱伝導性組成物
JPWO2016190189A1 (ja) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
JPWO2016190188A1 (ja) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
JP2019077843A (ja) * 2017-10-27 2019-05-23 信越化学工業株式会社 熱伝導性シリコーンポッティング組成物およびその硬化物
WO2020261958A1 (ja) 2019-06-24 2020-12-30 信越化学工業株式会社 高熱伝導性シリコーン組成物及びその硬化物
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
KR20240037182A (ko) 2021-07-29 2024-03-21 세키수이 폴리머텍 가부시키가이샤 열전도성 조성물 및 경화물
JP7551649B2 (ja) 2019-04-23 2024-09-17 ハネウェル・インターナショナル・インコーポレーテッド 低い硬化前粘度及び硬化後の弾性特性を有するゲルタイプ熱界面材料

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587636B2 (ja) * 2002-11-08 2010-11-24 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
US20060079634A1 (en) * 2003-05-30 2006-04-13 Shin-Etsu Chemical Co., Ltd. RTV heat conductive silicone rubber compositions
JP2004352947A (ja) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 室温硬化型熱伝導性シリコーンゴム組成物
DE102004046179A1 (de) * 2004-09-23 2006-03-30 Wacker Chemie Ag Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
JP4590253B2 (ja) * 2004-12-16 2010-12-01 東レ・ダウコーニング株式会社 オルガノポリシロキサンおよびシリコーン組成物
JP4880615B2 (ja) 2004-12-23 2012-02-22 ダウ・コーニング・コーポレイション 架橋可能なサッカライド−シロキサン組成物、ならびにこれから形成された網目状構造体、コーティング、および製品
JP4931350B2 (ja) 2005-01-05 2012-05-16 東レ・ダウコーニング株式会社 複合シリコーンゴム粉末、その製造方法、塗料、および化粧料
JP4828146B2 (ja) * 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
JP4828145B2 (ja) * 2005-03-30 2011-11-30 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
JP5004433B2 (ja) 2005-04-27 2012-08-22 東レ・ダウコーニング株式会社 硬化性シリコーン組成物およびその硬化物
US20060264566A1 (en) * 2005-05-19 2006-11-23 Wacker Chemical Corporation HCR room temperature curable rubber composition
JP5122444B2 (ja) 2005-05-23 2013-01-16 ダウ・コーニング・コーポレイション サッカリド−シロキサンコポリマーを含むパーソナルケア組成物
AU2006294663B2 (en) * 2005-09-26 2012-03-22 Medarex, Inc. Human monoclonal antibodies to CD70
US7527873B2 (en) * 2006-02-08 2009-05-05 American Standard Circuits Thermally and electrically conductive interface
KR100729412B1 (ko) * 2006-03-15 2007-06-15 대일소재(주) 자기점착형 열전도성 젤 조성물 및 그 성형체
CN101449206A (zh) * 2006-04-11 2009-06-03 陶氏康宁公司 热变形低的硅氧烷复合模具
US8968773B2 (en) 2006-05-23 2015-03-03 Dow Corning Corporation Silicone film former for delivery of actives
TWI419931B (zh) * 2006-06-16 2013-12-21 Shinetsu Chemical Co 導熱聚矽氧潤滑脂組成物
AU2007333098A1 (en) * 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
JP5197631B2 (ja) * 2007-02-20 2013-05-15 ダウ コーニング コーポレーション 水素結合性ポリオルガノシロキサンベースの充填材処理剤
JP2008239719A (ja) * 2007-03-26 2008-10-09 Dow Corning Toray Co Ltd シリコーンエラストマー組成物およびシリコーンエラストマー
US7462294B2 (en) * 2007-04-25 2008-12-09 International Business Machines Corporation Enhanced thermal conducting formulations
CN101835830B (zh) * 2007-08-31 2013-02-20 卡伯特公司 热界面材料
US8062742B2 (en) * 2007-12-03 2011-11-22 Seoung Kyu Oh Method for manufacturing silicone foam having an air permeable structure
JP4623322B2 (ja) * 2007-12-26 2011-02-02 信越化学工業株式会社 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物並びに光半導体ケース及びその成形方法
KR100973701B1 (ko) * 2008-05-13 2010-08-04 성시민 호흡용 공기 압축기를 위한 공기 공급 장치
JP2010018786A (ja) * 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2010021533A (ja) * 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP6014299B2 (ja) * 2008-09-01 2016-10-25 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物及び半導体装置
US20100213415A1 (en) * 2009-02-26 2010-08-26 Nitto Denko Corporation Metal oxide fine particles, silicone resin composition and use thereof
EP2498987A1 (en) * 2009-11-09 2012-09-19 UPM Raflatac Oy Release liner for label laminate
JP2011140566A (ja) * 2010-01-07 2011-07-21 Dow Corning Toray Co Ltd 熱伝導性シリコーングリース組成物
JP5619487B2 (ja) * 2010-06-24 2014-11-05 東レ・ダウコーニング株式会社 熱伝導性シリコーングリース組成物
EP2609138B1 (en) 2010-08-23 2017-05-17 Dow Corning Corporation Saccharide siloxanes stable in aqueous environments and methods for the preparation and use of such saccharide siloxanes
CN103154138B (zh) 2010-08-25 2016-01-06 日产化学工业株式会社 成膜用组合物
JP4917184B1 (ja) * 2010-10-01 2012-04-18 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 高電圧電気絶縁部品用液状シリコーンゴム組成物
KR101043201B1 (ko) * 2010-11-08 2011-06-21 성시민 공기 충전 압축기용 흡입 필터
JP5553006B2 (ja) * 2010-11-12 2014-07-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
CN102408869B (zh) * 2011-08-04 2013-07-24 绵阳惠利电子材料有限公司 无卤阻燃电子电器用加成型有机硅灌封胶
JP5664563B2 (ja) * 2012-01-23 2015-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP5783128B2 (ja) 2012-04-24 2015-09-24 信越化学工業株式会社 加熱硬化型熱伝導性シリコーングリース組成物
JP6440615B2 (ja) 2012-07-30 2018-12-19 ダウ シリコーンズ コーポレーション 熱伝導性縮合反応硬化型ポリオルガノシロキサン組成物、並びに該組成物の調製及び使用のための方法
CN104968728B (zh) 2013-01-22 2017-09-22 信越化学工业株式会社 导热性有机硅组合物、导热性层和半导体装置
US9070660B2 (en) 2013-03-15 2015-06-30 Intel Corporation Polymer thermal interface material having enhanced thermal conductivity
JP5898139B2 (ja) 2013-05-24 2016-04-06 信越化学工業株式会社 熱伝導性シリコーン組成物
JP6075261B2 (ja) * 2013-10-02 2017-02-08 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
US9688869B2 (en) * 2013-10-17 2017-06-27 Dow Corning Toray Co., Ltd. Curable silicone composition, and optical semiconductor device
KR101688407B1 (ko) * 2013-10-17 2016-12-22 다우 코닝 도레이 캄파니 리미티드 경화성 실리콘 조성물 및 광 반도체 장치
WO2015155948A1 (ja) * 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物および電気・電子機器
US20170283677A1 (en) 2014-09-25 2017-10-05 Shin-Etsu Chemical Co., Ltd. Uv-thickening thermally conductive silicone grease composition
JP6524879B2 (ja) 2015-10-13 2019-06-05 信越化学工業株式会社 付加一液硬化型熱伝導性シリコーングリース組成物
JP6642145B2 (ja) 2016-03-14 2020-02-05 信越化学工業株式会社 付加一液加熱硬化型熱伝導性シリコーングリース組成物の硬化物の製造方法
US10002857B2 (en) * 2016-04-12 2018-06-19 Qualcomm Incorporated Package on package (PoP) device comprising thermal interface material (TIM) in cavity of an encapsulation layer
US9725577B1 (en) * 2016-08-30 2017-08-08 International Business Machines Corporation Self-healing thermal interface materials
KR101872199B1 (ko) * 2016-12-13 2018-06-28 비엔비머티리얼 주식회사 천연흑연, 알루미나 및 질화알루미늄을 포함하는 실리콘 복합조성물 및 이를 사용한 열전도 구리스 제조방법
KR102166470B1 (ko) 2017-05-16 2020-10-16 주식회사 엘지화학 수지 조성물
US11578245B2 (en) * 2017-07-24 2023-02-14 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
CN111051434B (zh) 2017-07-24 2022-03-29 陶氏东丽株式会社 多成分硬化型导热性硅酮凝胶组合物、导热性部件及散热构造体
US11674040B2 (en) 2017-07-24 2023-06-13 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
EP3688097B1 (en) 2017-09-29 2024-05-15 Dow Silicones Corporation Silicone composition comprising filler
KR102601088B1 (ko) 2017-11-09 2023-11-13 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 그리스 조성물
US10968351B2 (en) * 2018-03-22 2021-04-06 Momentive Performance Materials Inc. Thermal conducting silicone polymer composition
US10941251B2 (en) * 2018-03-22 2021-03-09 Momentive Performance Materials Inc. Silicone polymer and composition comprising the same
JP6866877B2 (ja) 2018-05-31 2021-04-28 信越化学工業株式会社 低熱抵抗シリコーン組成物
WO2020093258A1 (en) 2018-11-07 2020-05-14 Dow Global Technologies Llc Thermally conductive composition and methods and devices in which said composition is used
CN109722218B (zh) * 2018-12-25 2021-05-04 烟台德邦科技股份有限公司 一种耐电解液密封胶及其制备方法
JP7444856B2 (ja) * 2019-03-29 2024-03-06 ダウ・東レ株式会社 多成分型硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体
WO2020203299A1 (ja) 2019-03-29 2020-10-08 ダウ・東レ株式会社 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
KR102172003B1 (ko) * 2019-11-28 2020-11-02 (주)매그나텍 접착제 대체 기판 제조 방법
CN111393855A (zh) * 2020-03-18 2020-07-10 平湖阿莱德实业有限公司 一种具有优异耐候性的高导热凝胶组合物
US11655369B2 (en) * 2020-10-28 2023-05-23 Dow Silicones Corporation Trialkoxy functional branched siloxane compositions
CN116888192A (zh) 2021-02-23 2023-10-13 毕克化学有限公司 聚硅氧烷分散剂
WO2023283819A1 (en) * 2021-07-14 2023-01-19 Dow Silicones Corporation Thermal conductive silicone composition
KR20240056092A (ko) * 2022-10-21 2024-04-30 부산대학교 산학협력단 방열용 피커링 에멀젼 조성물, 이를 이용한 방열 페이스트 및 이의 제조방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297559A (ja) * 1988-10-03 1990-04-10 Toshiba Silicone Co Ltd 熱伝導性シリコーン組成物
JPH0413767A (ja) * 1990-05-07 1992-01-17 Shin Etsu Chem Co Ltd 硬化性シリコーン組成物及び硬化物
JPH04147847A (ja) * 1990-10-11 1992-05-21 Shin Etsu Chem Co Ltd シリコーンゴム積層体及びその製造方法
JPH051237A (ja) * 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JPH08325457A (ja) * 1995-05-29 1996-12-10 Toray Dow Corning Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JPH10130504A (ja) * 1996-10-29 1998-05-19 Toray Dow Corning Silicone Co Ltd シリコーンゴム組成物
JPH1112481A (ja) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd 熱伝導性ポリマー組成物
JPH1149958A (ja) * 1997-08-06 1999-02-23 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物
JP2000256558A (ja) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2001139815A (ja) * 1999-11-15 2001-05-22 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2001294752A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 電磁波吸収性熱伝導性シリコーンゴム組成物
JP2001348483A (ja) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2002003831A (ja) * 2000-06-26 2002-01-09 Shin Etsu Chem Co Ltd 放熱用部材
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251466A (ja) * 1987-04-06 1988-10-18 Shin Etsu Chem Co Ltd 熱伝導性液状シリコ−ンゴム組成物
JP2876017B2 (ja) * 1987-10-27 1999-03-31 松下電工株式会社 モニタカメラ用方向調整装置及び人体検出器用方向調整装置
JP2857725B2 (ja) * 1991-08-05 1999-02-17 株式会社日立製作所 樹脂封止型半導体装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297559A (ja) * 1988-10-03 1990-04-10 Toshiba Silicone Co Ltd 熱伝導性シリコーン組成物
JPH0413767A (ja) * 1990-05-07 1992-01-17 Shin Etsu Chem Co Ltd 硬化性シリコーン組成物及び硬化物
JPH04147847A (ja) * 1990-10-11 1992-05-21 Shin Etsu Chem Co Ltd シリコーンゴム積層体及びその製造方法
JPH051237A (ja) * 1991-06-24 1993-01-08 Shin Etsu Chem Co Ltd 表面処理アルミナ及びそれを含有する熱伝導性シリコーン組成物
JPH08325457A (ja) * 1995-05-29 1996-12-10 Toray Dow Corning Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JPH10130504A (ja) * 1996-10-29 1998-05-19 Toray Dow Corning Silicone Co Ltd シリコーンゴム組成物
JPH1112481A (ja) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd 熱伝導性ポリマー組成物
JPH1149958A (ja) * 1997-08-06 1999-02-23 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物
JP2000256558A (ja) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2001139815A (ja) * 1999-11-15 2001-05-22 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2001294752A (ja) * 2000-04-11 2001-10-23 Shin Etsu Chem Co Ltd 電磁波吸収性熱伝導性シリコーンゴム組成物
JP2001348483A (ja) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2002003831A (ja) * 2000-06-26 2002-01-09 Shin Etsu Chem Co Ltd 放熱用部材
JP2002129019A (ja) * 2000-10-25 2002-05-09 Shin Etsu Chem Co Ltd 電磁波吸収性シリコーンゴム組成物

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348483A (ja) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP4646357B2 (ja) * 2000-06-08 2011-03-09 東レ・ダウコーニング株式会社 熱伝導性シリコーンゴム組成物
JP2003213133A (ja) * 2002-01-25 2003-07-30 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物
US6844393B2 (en) * 2002-01-25 2005-01-18 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone rubber composition
WO2003095560A1 (fr) * 2002-05-14 2003-11-20 Dow Corning Toray Silicone Co., Ltd. Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous
JP2006503166A (ja) * 2002-10-17 2006-01-26 ダウ・コーニング・コーポレイション 熱軟化熱伝導性組成物およびその調製方法
JP2004262972A (ja) * 2003-02-13 2004-09-24 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーン組成物
JP4646496B2 (ja) * 2003-02-13 2011-03-09 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
US7135232B2 (en) * 2003-07-04 2006-11-14 Fuji Polymer Industries Co., Ltd. Thermal conductive composition, a heat dissipating putty sheet and heat dissipating structure using the same
CN100402626C (zh) * 2003-07-04 2008-07-16 富士高分子工业株式会社 导热性组合物及使用其的腻子状散热片和散热结构体
KR101155940B1 (ko) 2003-11-05 2012-07-05 다우 코닝 코포레이션 열 전도성 그리스, 당해 그리스가 사용되는 방법 및디바이스
US7695817B2 (en) 2003-11-05 2010-04-13 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
JP2005325211A (ja) * 2004-05-13 2005-11-24 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及び成型品
US7547743B2 (en) 2004-05-13 2009-06-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone rubber composition and molded article
JP4557137B2 (ja) * 2004-05-13 2010-10-06 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及び成型品
JP4557136B2 (ja) * 2004-05-13 2010-10-06 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及び成型品
KR101237558B1 (ko) 2004-05-13 2013-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 고무 조성물 및 성형품
JP2005325212A (ja) * 2004-05-13 2005-11-24 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及び成型品
KR101235385B1 (ko) 2005-05-25 2013-02-20 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 조성물
US7737212B2 (en) 2005-05-25 2010-06-15 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition
US7823647B2 (en) 2005-10-06 2010-11-02 Baker Hughes Incorporated Process for foaming a wet hydrocarbon composition
US8017684B2 (en) 2005-12-27 2011-09-13 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease compositions
JP2007177001A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
US8119758B2 (en) 2006-08-30 2012-02-21 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition and cured product thereof
JPWO2009136542A1 (ja) * 2008-05-08 2011-09-08 富士高分子工業株式会社 熱伝導性樹脂組成物
WO2009136508A1 (ja) * 2008-05-08 2009-11-12 富士高分子工業株式会社 熱伝導性樹脂組成物
US8324313B2 (en) 2008-05-08 2012-12-04 Fuji Polymer Industries Co., Ltd. Thermally conductive resin composition
CN101981130B (zh) * 2008-05-08 2013-04-17 富士高分子工业株式会社 导热性树脂组合物
WO2009136542A1 (ja) 2008-05-08 2009-11-12 富士高分子工業株式会社 熱伝導性樹脂組成物
US8618211B2 (en) 2009-03-16 2013-12-31 Dow Corning Corporation Thermally conductive grease and methods and devices in which said grease is used
JP2012077256A (ja) * 2010-10-06 2012-04-19 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2013028742A (ja) * 2011-07-29 2013-02-07 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
US9238734B2 (en) 2011-07-29 2016-01-19 Shin-Etsu Chemical Co., Ltd. Room temperature and humidity thickening thermo-conductive silicon grease composition
JP2013091683A (ja) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2012052137A (ja) * 2011-11-28 2012-03-15 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2015110792A (ja) * 2015-01-22 2015-06-18 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
WO2016121563A1 (ja) * 2015-01-29 2016-08-04 ポリマテック・ジャパン株式会社 熱伝導性組成物
JPWO2016190189A1 (ja) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
JPWO2016190188A1 (ja) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
JP2019077843A (ja) * 2017-10-27 2019-05-23 信越化学工業株式会社 熱伝導性シリコーンポッティング組成物およびその硬化物
JP7551649B2 (ja) 2019-04-23 2024-09-17 ハネウェル・インターナショナル・インコーポレーテッド 低い硬化前粘度及び硬化後の弾性特性を有するゲルタイプ熱界面材料
WO2020261958A1 (ja) 2019-06-24 2020-12-30 信越化学工業株式会社 高熱伝導性シリコーン組成物及びその硬化物
KR20220024818A (ko) 2019-06-24 2022-03-03 신에쓰 가가꾸 고교 가부시끼가이샤 고열전도성 실리콘 조성물 및 그 경화물
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
KR20240037182A (ko) 2021-07-29 2024-03-21 세키수이 폴리머텍 가부시키가이샤 열전도성 조성물 및 경화물

Also Published As

Publication number Publication date
US7329706B2 (en) 2008-02-12
US20040254275A1 (en) 2004-12-16
JPWO2002092693A1 (ja) 2004-08-26
EP1403326A1 (en) 2004-03-31
EP1403326A4 (en) 2005-06-01
JP4255287B2 (ja) 2009-04-15
KR20030097869A (ko) 2003-12-31
ATE416235T1 (de) 2008-12-15
EP1403326B1 (en) 2008-12-03
KR100858836B1 (ko) 2008-09-17
DE60230142D1 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2002092693A1 (fr) Composition de silicone thermoconductrice
JP4828145B2 (ja) 熱伝導性シリコーンゴム組成物
JP4828146B2 (ja) 熱伝導性シリコーンゴム組成物
JP6610429B2 (ja) 熱伝導性シリコーン組成物、その硬化物及びその製造方法
JP4727017B2 (ja) 熱伝導性シリコーンゴム組成物
JP4590253B2 (ja) オルガノポリシロキサンおよびシリコーン組成物
JP5507059B2 (ja) 熱伝導性シリコーン組成物および電子装置
KR20090130005A (ko) 실리콘 엘라스토머 조성물 및 실리콘 엘라스토머
JP2001348483A (ja) 熱伝導性シリコーンゴム組成物
JP2004262972A (ja) 熱伝導性シリコーン組成物
JP2010059237A (ja) 熱伝導性シリコーン組成物及び半導体装置
WO2003095560A1 (fr) Composition au silicium pouvant etre soumise a traitement, pour la production de materiaux magnetiques composites mous, et materiaux magnetiques composites mous
JP2001139818A (ja) 熱伝導性シリコーンゴム組成物
JP2003261769A (ja) 耐熱熱伝導性熱圧着用シリコーンゴムシート
JP3127093B2 (ja) 熱伝導性シリコーンゴム組成物
JP4553562B2 (ja) 接着性ポリオルガノシロキサン組成物
KR20240047480A (ko) 열전도성 실리콘 조성물 및 상기 조성물을 사용하여 갭 충전제를 제조하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002589569

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037014852

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002769587

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002769587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10476998

Country of ref document: US