WO1999011574A1 - Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres - Google Patents

Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres Download PDF

Info

Publication number
WO1999011574A1
WO1999011574A1 PCT/JP1998/003918 JP9803918W WO9911574A1 WO 1999011574 A1 WO1999011574 A1 WO 1999011574A1 JP 9803918 W JP9803918 W JP 9803918W WO 9911574 A1 WO9911574 A1 WO 9911574A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
flaky
titanium oxide
hollow fine
powder according
Prior art date
Application number
PCT/JP1998/003918
Other languages
English (en)
French (fr)
Inventor
Takayoshi Sasaki
Mamoru Watanabe
Youichi Mitigami
Masaki Iida
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Japan, As Represented By The Read Of National Institute For Research In Inorganic Materials, Science & Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27564254&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999011574(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ishihara Sangyo Kaisha, Ltd., Japan, As Represented By The Read Of National Institute For Research In Inorganic Materials, Science & Technology Agency filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to US09/516,176 priority Critical patent/US8163386B1/en
Priority to EP98941672A priority patent/EP1033347B2/en
Priority to DE69837721T priority patent/DE69837721T3/de
Priority to CA002300811A priority patent/CA2300811C/en
Priority to JP2000508621A priority patent/JP3611303B2/ja
Priority to AU89963/98A priority patent/AU743389B2/en
Publication of WO1999011574A1 publication Critical patent/WO1999011574A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0018Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings uncoated and unlayered plate-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3615Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C1/363Drying, calcination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a novel material having a titanium oxide shell, which is useful as an additive to pigments, paints, cosmetics, coating agents, resins such as nylon, additives to white paper and the like, catalysts, etc., and also useful as an ultraviolet shielding material.
  • Hollow fine powder and a method for producing the same, flaky titanium oxide fine powder obtained by pulverizing the hollow fine powder and a method for producing the same, and blending the hollow fine powder or the flaky fine powder And a seed particle for a fluid measurement system comprising the hollow fine powder.
  • the present invention relates to a method for industrially advantageously providing a flaky titania sol required for producing the hollow fine powder.
  • titanium oxide fine powders of various shapes such as granules, needles, dendrites, and flakes are known.
  • the hollow fine powder of the present invention is obtained by spray-drying a flaky titania sol as described later.
  • a layered titanate compound cesium salt obtained by mixing cesium oxide or a compound which becomes cesium oxide by heating with titanium dioxide and baking is brought into contact with an aqueous acid solution.
  • a method is known in which cesium ions between layers are replaced with hydrogen ions (the form of existence is hydronium ion), and the generated titanic acid powder is mixed and stirred with an aqueous solution of an ammonium compound or an amine compound (JP-A-9-12525). No. 123).
  • the present invention provides a hollow fine powder having a titanium oxide shell excellent in dispersibility, and a method for industrially and economically producing a flaky titanium oxide fine powder excellent in dispersibility. It is intended to be.
  • Titanium fine powder can be obtained, and by crushing the titanium oxide fine powder having this special shape, flaky oxide having the same dispersibility as that obtained by the conventional method of freeze-drying flaky titania sol. It has been found that titanium fine powder can be produced industrially and economically.
  • an object of the present invention is to provide a hollow fine powder having a titanium oxide shell. Furthermore, an object of the present invention is to provide a method for producing a flaky titanium oxide fine powder, and this method is characterized in that the hollow fine powder is pulverized. Still other objects of the present invention will become apparent in the following detailed description.
  • titanium oxide refers to a general term for hydrated titanium oxide, hydrated titanium oxide, and the like in addition to non-hydroxide titanium.
  • FIG. 1 is a view schematically showing one embodiment of a production process of a hollow fine powder and a flaky titanium oxide fine powder.
  • FIG. 2 is a projection view of a crystal structure of the mixed alkali metal salt of titanic acid of the present invention, in which M is an alkali metal having an ion size of less than or equal to potassium, onto a (100) plane, which is surrounded by a dotted line The part indicated corresponds to the unit cell.
  • FIG. 3 is a projection view of the crystal structure of the mixed alkali metal salt of titanic acid of the present invention, in which M is an alkali metal having an ion size of rubidium or more, on a (100) plane, and is surrounded by a dotted line.
  • M is an alkali metal having an ion size of rubidium or more, on a (100) plane, and is surrounded by a dotted line.
  • the portion corresponding to the unit cell corresponds to the unit cell.
  • FIG. 4 is an X-ray diffraction chart immediately after separation of a paste-like precipitate obtained by centrifuging the titania sol of sample G (a) and after drying in air (b).
  • FIG. 5 is a spectral transmittance curve of a thin film using the hollow fine powder (sample K) of the present invention.
  • FIG. 6 is a scanning electron micrograph (magnification: 1,000 times) of the hollow fine powder (sample) of the present invention.
  • Figure 7 is a scanning electron micrograph (magnification: 6.0000 times) of the sample L which was intentionally ground and broken.
  • FIG. 8 is an enlarged scanning electron micrograph (magnification: 60,000 times) of the central part of FIG.
  • FIG. 9 is an electron micrograph (magnification: 1,500 times) of the flaky titanium oxide fine powder of the present invention (sample N).
  • FIG. 10 is an electron micrograph (magnification: 60,000 times) of a plate-like titanium oxide powder (sample 0) obtained by calcining a flaky titania sol.
  • FIG. 11 is a light scattering image photograph of particles obtained by using sample L as seed particles.
  • FIG. 12 shows a water flow vector diagram obtained using the same sample L as the seed particles.
  • Figure 13 is a light scattering image photograph obtained using a comparative sample (a commercial silica glass bead) as seed particles.
  • Figure 14 is a water flow vector diagram obtained using the comparative sample (commercially available silica glass beads) as seed particles.
  • the present invention relates to a hollow fine powder having a titanium oxide shell.
  • the hollow fine powder refers to a fine powder having a shell covering a space inside the particle.
  • Specific examples include a balloon shape (balloon shape) and a ping-pong ball shape.
  • the shell it is not necessary for the shell to completely cover the inside, and even if the hollow fine powder is incomplete with some cracks or missing, the flaky titanium oxide obtained by grinding the hollow fine powder Fine powder may be contained. Further, it may contain impurities originating from raw materials or have it on the shell as long as it does not adversely affect the uses described below.
  • the hollow fine powder preferably has an outer diameter of 0.1 to 50,000 // m and a shell thickness of 1 nm to 100 ⁇ m.
  • the outer diameter (D) is 1 to 500 nm and the shell thickness (T) is 1 nm to 100 nm in terms of dispersibility and softness.
  • the outer diameter (D) is preferably 10 to 500 m, and the shell thickness (T) is preferably 10 to 100 nm.
  • the preferred range of the ratio of outer diameter (D) to shell thickness (T) (D / T) is 5 0 to 500.
  • the hollow fine powder may or may not be surface-treated by a conventionally known method.
  • surface treatments include silicone treatment, lecithin treatment, resin treatment, adhesive treatment, silane treatment, fluorine compound treatment, inorganic oxide treatment, ultraviolet absorber treatment, polyhydric alcohol treatment, amino acid treatment, pigment treatment, metal stone ⁇ Treatment, oil treatment, wax treatment, pendant treatment, etc.
  • a fluorine compound such as perfluoroalkyl phosphate.
  • the treatment method include a dry method, a wet method, and a gas phase method.After treatment with a volatile reactive silicone, an alkyl chain or a polyoxyalkylene group is added to make a pendant treatment to make the compound hydrophilic or lipophilic. It is also possible to combine multiple processes such as performing
  • the hollow fine powder is produced by spray-drying a flaky titania sol, and its formation mechanism is presumed as follows. That is, referring to FIG. 1, the sprayed flaky titania sol becomes a fine droplet 1, and this droplet is immediately exposed to a high temperature for drying. Since the entire droplet is rapidly heated, moisture is vaporized not only on the surface of the droplet but also on the inside, swelling like a balloon, and drying at the same time, and the flaky particles 2 are bonded to each other. 0 0 zm hollow fine powder 3 is formed o
  • Spraying methods for spray drying include disc type, pressure nozzle type, and two-fluid nozzle type.
  • the disk method is a method in which an undiluted solution is supplied onto a high-speed rotating disk, atomized by centrifugal force, and sprayed. This method is characterized in that even if the viscosity of the stock solution, the supply speed, and the like change greatly, the size can be reduced to a desired size by changing the number of revolutions of the disk accordingly.
  • the processable viscosity is 10,000 to tens of thousands cP, and it is widely used for small-scale test machines and mass production.
  • the pressure nozzle method is a method of applying high pressure to a stock solution and spraying it from a nozzle. Easy maintenance and suitable for mass production.
  • the viscosity that can be processed is from 1 to several thousand cP c
  • the two-fluid nozzle method is a method of atomizing and spraying the undiluted solution by ejecting it with compressed air or steam, and is a system suitable for small machines is there.
  • it passes through a relatively narrow nozzle as in the pressure nozzle type, it is a method suitable for treating low-viscosity stock solutions. You.
  • flaky titania sol droplets can be obtained as a precursor by appropriately selecting the conditions even in the above-described method of shifting, but industrially, it is also applicable to a sol having a high concentration and a high viscosity.
  • Disk type is the most preferable because it is possible and suitable for mass production.
  • the sprayed droplets are immediately dried by contact with hot air.
  • the temperature of the hot air is preferably from 100 ° C to 800 ° C, more preferably from 150 ° C to 400 ° C.
  • the temperature of the hot air is within the above range, a good hollow shape is easily obtained by sufficient vaporization of the water inside the droplet, and the hollow shape is hardly collapsed.
  • the temperature of the heat treatment is preferably 100 ° C. to 800 ° C. This heat treatment aims at crystallization of titanium oxide, removal of residual moisture, removal of residual basic substances, and improvement of light resistance. When the heat treatment temperature is in the above range, the purpose of the heat treatment is sufficiently achieved, and the hollow shape is not easily collapsed.
  • the flaky titania sol used for spray drying preferably has a viscosity of 5 to 1000 cP, more preferably 100 to 300 cP.
  • the size of the flaky titania particles constituting the sol is preferably 0.5 to 100 nm in thickness, 0.1 to 30 ⁇ m in width and length, and more preferably 0.1 to 30 ⁇ m. 5 to 10 nm, width and length are 1 to 10 m.
  • the thickness is preferably 0.5 to 50 nm, more preferably 0.5 to 1 nm.
  • the sol has an appropriate viscosity and is hard to burst even after being sprayed to be hollow and then dried.
  • the width and the length are in the above ranges, it is easy to spray, and it is easy to obtain a hollow shape.
  • an organic solvent such as methanol or acetonitrile can be used in addition to water, but water is most preferable in terms of economy.
  • the preferred concentration of the flaky titania sol during spray drying is 0.5 to 20% by weight. It is. When the concentration is in the above range, it is easy to spray, and a hollow fine powder having a shell having an appropriate thickness is obtained. Also, such a concentration is economically advantageous and is suitable for industrial production.
  • This flaky titania sol is obtained by mixing a titanium oxide or a compound that is decomposed into a metal oxide by heating with a titanium oxide or a compound that produces titanium oxide by heating and baking.
  • the resulting metal titanate salt is brought into contact with an aqueous acid solution to generate a titanate compound having a layered structure, and then the layered titanate compound is dispersed and exfoliated in a liquid medium in the presence of a base substance. Can be manufactured.
  • the alkali metal oxide at least one of oxides of lithium, sodium, potassium, rubidium, and cesium can be used.
  • carbonates, hydroxides, nitrates, sulfates, and the like of alkali metal can be used, and among these, carbonates and hydroxyls are used. ⁇ ⁇ is preferred.
  • the compound that produces titanium oxide by heating include hydrous titanium oxide such as metatitanic acid and orthotitanic acid, and organic titanium compounds such as titanium alkoxide. Hydrous titanium oxide is preferable.
  • Examples of the basic substance include alkylamines such as propylamine and getylamine, quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • Examples include alkanolamines such as monium, ethanolamine, and aminomethylpropanol. Of these, quaternary ammonium hydroxide and alkanolamine are preferable.
  • the amount of the basic substance added is preferably 0.5 equivalent to 10 equivalents, more preferably 1 equivalent to 2 equivalents, based on the layered titanate compound.
  • the layered titanic acid compound is completely separated one by one, and a single flaky titania particle (two-dimensional sheet) is applied. , And the dispersion stability is maintained. If the type and amount of the base substance are not optimal, the base substance and water enter between the layers and swell greatly (osmotic swelling). The force that the layered titanate compound may remain without being peeled off. It does not matter if it is not in the range.
  • New flaky titania sol By setting the type of base substance and the amount of addition to the optimum conditions experimentally selected, the layered titanic acid compound is completely separated one by one, and a single flaky titania particle (two-dimensional sheet) is applied. , And the dispersion stability is maintained. If the type and amount of the base substance are not optimal, the base substance and water enter between the layers and swell greatly (osmotic swelling). The force that the layered titanate compound may remain without being peeled off. It does not matter if it is not in the range.
  • the flaky titania sol has a composition formula
  • T i,. 67 represented by ⁇ 33, it is possible to use a titania sol obtained by dispersing flaky particles.
  • the composition formula T i 0 4 x (x in the formula is from 0.60 to 0.75) flaky titania sol obtained by dispersing flaky fine particles table in are known, the above titania sol Has a novel composition.
  • the titanate has more negative charges, so it has a higher ability to adsorb basic substances and disperses faster in liquid media.
  • Flaky titania particles constituting the new sols is T i 0 6 octahedra to form a chain to two-dimensional skeletal structure Ri by the edge-sharing, further, Ti 4 'seats from 9.5 to 17 % Of the flaky particles have a large negative charge.
  • the size of the particles can be set arbitrarily according to the application, but usually the thickness is 0.5 to l nm and the width and length are 0.1 to 30 m.
  • the new sol can be produced in the same manner as described above, using the following mixed alkali metal titanate as a starting material.
  • the titanic acid mixed metal salt which can be used for producing the novel sol can be specifically produced, for example, as follows. That is, alkali metal oxides M 20 and M ′ 20 (M and M ′ are different alkali metals, respectively) or compounds decomposed into M 20 and M ′ 20 by heating, respectively, Titanium dioxide or a compound capable of producing titanium dioxide by heating is preferably mixed at a molar ratio of M / M and ZTi of 3 Z 1/5 force and 3 Z 1/11, and is mixed at 500 ° C. 1 Bake at a temperature of 100 ° C, more preferably between 600 ° C and 900 ° C. In order to carry out the reaction sufficiently to reduce the residual amount of the raw material composition and to suppress the generation of a substance having another composition, the above temperature range is preferable.
  • the titanic acid mixed metal salt obtained above is one of the Ti “seats” in the host skeleton.
  • ⁇ and ⁇ ′ are different alkali metals, and X is 0.50 to 1.0
  • ⁇ and ⁇ ′ are different alkali metals, and X is 0.50 to 1.0
  • alkali metal ions indicated by ⁇ , ⁇ , and ⁇ in this substance are active, they cause exchange reactivity with other cations and incorporation of organic substances by intercalation. For this reason, when it is brought into contact with an aqueous acid solution, alkali metal ions in the interlayer ( ⁇ ) and in the host skeleton ( ⁇ ') are exchanged with hydrogen ions (existing form is hydronium ion) in a short time, and are industrially produced. In such a case, a flaky titania having a low production cost can be obtained efficiently.
  • X in the composition formula can be controlled by changing the mixing ratio of the starting materials.
  • mixing is sufficiently performed during the synthesis step, and it is preferable that the raw material powder is ground and mixed in an automatic mortar or the like.
  • compounds having various particle diameters can be obtained.
  • the mixed alkali metal salt of titanic acid has a higher reactivity with an aqueous acid solution and a faster substitution reaction with hydrogen ions than an intermediate product of a conventional method, for example, cesium titanate.
  • a conventional method for example, cesium titanate.
  • 1 gram of cesium titanate powder is mixed with 1N hydrochloric acid 100 cm 3 in 1 gram.
  • the titanic acid mixed alkali metal salt of the present invention has a layered structure as shown in FIG. 2 when the size of the interlayer ion is not more than lithium, and as shown in FIG. 3 when the size of the interlayer ion is not less than rubidium.
  • i O (; the octahedron is linked by ridge sharing to form a two-dimensional sheet, between which it belongs to an orthorhombic crystal containing metal ions.
  • the crystallographic properties of this two-dimensional sheet The composition is T i 0 2, which is electrically neutral in nature, but 8 to 17% of the octahedral seats of T i are replaced with Al metal ions different from the Al metal in the interlayer It is negatively charged. These are compensated by the alkali metal ions between the layers.
  • (M, M,) (potassium, lithium), (rubidium, lithium), (cesium, lithium) are preferable as a combination of M and M ′.
  • the layered titanate compound can be produced by bringing the alkali metal titanate into contact with an aqueous acid solution.
  • aqueous acid solution examples include aqueous solutions of inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid and oxalic acid, and are not particularly limited.
  • the concentration is preferably from 0.5N to 6N, more preferably from 1N to 3N. The above concentration range is preferable in order to make the time required for the reaction appropriate and to prevent the decomposition of titanic acid.
  • an alkali metal titanate is converted into an acidic slurry, which is then formed into a cake using a suction filter such as a filter press or a Buchner. It is preferable to adopt a method of passing through. After the contact and reaction with the aqueous acid solution, it is preferable to remove excess acid by washing with ion-exchanged water or the like. By removing excess acid, it has excellent stability such as viscosity and dispersibility after finishing into sol.
  • the layered titanate compound may be an alkali between layers.
  • Hydrogen ions hydrogen ions as existing form
  • titanic acid compounds containing water molecules have been conventionally known between the eyebrows, but such a composition is novel.
  • Hydrogen ions in the form of hydronium ions) between layers in the substance and in the host skeleton are active, and cause reversible exchange reactions with other cations and interaction with organic substances.
  • this novel layered titanate compound is considered to be useful as an adsorbent, an ion exchange material, a catalyst, a separation material, a harmful substance treatment material, and the like.
  • Table 3 shows the X-ray diffraction data. (Table 3) X-ray diffraction data of the layered titanate compound of the present invention hk 1 dd
  • novel layered titanate compound can be produced in the same manner as described above, using the above-mentioned mixed alkali metal salt of titanate as a starting material.
  • the flaky titania sol can be used as a raw material for the hollow fine powder of the present invention.
  • a flaky titanium oxide fine powder which is a fragment thereof, is obtained.
  • Can be The pulverization does not necessarily unravel the original flaky titania particles, but forms an aggregate of several to several tens of flaky titania particles.
  • the stronger the pulverization the smaller the width and length of the flaky titanium oxide fine powder, and the degree of pulverization can control the particle shape of the obtained flaky titanium oxide fine powder.
  • a relatively weak pulverizer such as a Coroplex mill.
  • the size of the flaky titanium oxide fine powder is preferably from 1 to 100 nm in thickness, and from 0.1 to 500 zm in width and length. Further, as an ultraviolet shielding material for chemicals, the thickness is preferably 20 to 80 nm, and the width and length are 1 to 500 nm. When the thickness is within the above range, ultraviolet light is sufficiently absorbed and transparency is excellent. Width and When the length is within the above range, the skin stretches well and there is no feeling of roughness.
  • the flaky titanium oxide fine powder may or may not have been subjected to a conventionally known surface treatment similar to that of the hollow fine powder described above. These surface treatments may be performed after spray-drying the flaky titanium sol, after crushing, or simultaneously with crushing.
  • the flaky titanium oxide fine powder is preferably heat-treated before and / or after pulverization, preferably before pulverization, depending on the use. If heat treatment is performed before the pulverization, the water content is reduced and reagglomeration during the pulverization and adhesion to the pulverizer can be prevented.
  • the heat treatment temperature is preferably 100 ° C. to 800 ° C. When the temperature is in the above range, the desired purpose of the heat treatment is achieved, and the flake shape is not easily collapsed by high temperature.
  • the hollow fine powder and the flaky titanium oxide fine powder having a shell made of titanium oxide obtained by the above method have little secondary aggregation and are extremely excellent in dispersibility.
  • the hollow fine powder and the flaky titanium oxide fine powder of the present invention can be used as an ultraviolet shielding material, a fluidity-imparting material, an adsorbent, a photocatalyst, and a coloring material as various pigments, cosmetics, paints, coating agents, resins, and white. It can be used for photofunctional materials such as additives to paper and catalysts.
  • the hollow fine powder since the hollow fine powder has a shell made of titanium oxide, it can be used as an ultraviolet shielding material, an adsorbent, or a photocatalyst.
  • the apparent specific gravity is very small, the flow rate is excellent, and the heat insulation is excellent, so the seed particles for fluid measurement system, flowability imparting material, lightweight cement and mortar, lightweight Insulation material, for architectural repair putty, for heat-resistant coated putty, for explosive sensitization, for paper clay, reflective material, plastic filler, adhesive, for master model, for syntactic foam, for synthetic wood, artificial It can be used for marble and boring.
  • the thickness of the shell from submicron to nanometer level, light interference occurs, so it can be used as a coloring material.
  • the hollow fine powder of the present invention When the hollow fine powder of the present invention is used in cosmetics, for example, an oil component, a humectant, a surfactant, a pigment, a fragrance, a preservative, water, alcohols, a thickener, and the like are blended. Shape, cream, paste, stick, emulsion, etc. It can be used in a state. If the shell of the hollow particles is controlled to a submicron or less, when actually used in cosmetics, it is broken down by rubbing against the skin with a finger or the like, and becomes flaky titanium oxide fine powder. It can also be expected to have the effect of improving the adhesion to the product.
  • an oil component for example, an oil component, a humectant, a surfactant, a pigment, a fragrance, a preservative, water, alcohols, a thickener, and the like are blended. Shape, cream, paste, stick, emulsion, etc. It can be used in a state. If the shell
  • the particularly preferable range of the spray drying temperature is 150 to 250 ° C.
  • the base substance remains without being deteriorated, and is easily dispersed when added to a coating material or a coating agent.
  • the fluid measurement system that can use the hollow fine powder of the present invention as seed particles is a type that irradiates seed particles existing in a fluid with light, detects the scattered light, and measures the fluid flow. These include laser Doppler velocimeters and particle image velocimeters.
  • the hollow fine powder of the present invention has an internal space and has a small apparent specific gravity, so it has excellent followability to a flow in a fluid, and because it is made of titanium oxide having a high refractive index, it has a light scattering property. Are better. From these facts, the hollow fine powder of the present invention enables highly accurate fluid measurement.
  • the outer diameter is 5 to 50 ⁇ m and the shell thickness is 10 to 100 nm. It is preferred in that respect.
  • the flaky titania sol of the present invention is useful for producing hollow fine powder or flaky titanium oxide fine powder, and is itself expected to be used as a coating agent or a catalyst.
  • the novel mixed alkali metal titanate or layered titanate compound provided by the present invention can be used for exchanging metal ions or hydrogen ions (in the form of hydronium ions) with inorganic or organic cations or intercalating them. Because of its excellent ability to take up organic substances by curation, it is not only a starting material or an intermediate product of the above hollow fine powder or flaky titanium oxide fine powder, but also an adsorbent, ion exchange material, catalyst, and separation It is expected to be used as materials, harmful substance treatment materials, electrode materials, and dielectric materials.
  • K 2 C0 3 Potassium carbonate
  • Li 2 C0 3 lithium carbonate
  • titanium dioxide Ti 0 2
  • Sample A was formed into a coin-shaped pellet by a handy press and baked at 800 ° C for 1 hour.
  • the dimensions after firing were 6.99 mm in diameter, 0.99 mm in thickness, and 0.1324 g in weight.
  • the ionic conductivity of this pellet was measured at 200 ° C by the complex impedance method, and was found to be 4.0 X 1 Ossein- 1 . Therefore, it was found that the mixed metal salt of titanic acid of the present invention is useful for applications requiring conductivity such as electrode materials.
  • the zinc amine complex 1 100 ml comprising zinc 1 0 Oppm as Zn 2+, is dispersed sample A 1. 0 g, after stirring for 1 hour and then filtered to remove the sample, atoms Zn 2+ concentration of the filtrate As measured by the absorption method, it was reduced to 3 Oppm. Therefore, the mixed alkali metal titanate of the present invention was found to be useful as an ion exchange material, a separation material, and a material for treating an organic substance.
  • Sample B was formed into a coin-shaped pellet by a handy press and baked at 800 ° C for 1 hour.
  • the dimensions after firing were 6.99 mm in diameter, 0.99 mm in thickness, and 0.132 g in weight.
  • the Peretz bets were measured ionic conductivity at at complex impedance method 2 0 0 ° C for was 1. 4 X 1 0- 8 S cm- 1.
  • Lithium hydroxide and potassium hydroxide (K0H) (L i 0H) and titanium oxide (T i 0 2) a! (/ L i / T i and the molar ratio of 3/1 Z 6. Mixed with 5, sufficient
  • the powder was transferred to a platinum crucible and calcined at 600 ° C. for 5 hours to obtain a white powder, which was identified by powder X-ray diffraction as in Example 1.
  • Example D 1 g of the sample A obtained in Example 1 was allowed to react with 1 N hydrochloric acid (100 cm 3) with stirring at room temperature for 1 day so as to make it contact therewith. Thereafter, the resultant was filtered, washed with water, and dried to obtain a powder of a layered titanate compound (sample D).
  • sample D 1.0 g of sample D was dispersed in 100 ml of zincamine complex containing 100 ppm of zinc as Zn 2+ , and after stirring for 1 hour, the sample was separated by filtration. It was reduced to 59 ppm as measured by the absorption method.
  • the alkali metal salt mixed with titanic acid of the present invention is useful as an ion exchange material, a separation material and a material for treating organic substances. , Tsuta.
  • Example E 1N hydrochloric acid 100 cm 3 was brought into contact with sample B 1 obtained in Example 2. The reaction was allowed to proceed for 1 day at room temperature with stirring. Thereafter, the resultant was filtered, washed with water, and dried to obtain a powder of the layered titanate compound of the present invention (sample E).
  • Example F 1 g of the sample C obtained in Example 3 was reacted with 1 N hydrochloric acid (100 cm 3) with stirring at room temperature for 1 day so as to make it contact therewith. Thereafter, the resultant was filtered, washed with water, and dried to obtain a powder of the layered titanate compound of the present invention (Sample F).
  • Example D the powder of the layered titanate compound obtained in Example 4 was added to an aqueous solution of tetrabutylammonium hydroxide 0.1 lm : i (concentration: 31 O mol m :, ), and a shaker was added. in by performing 1 5 0 rev / min about shaking for 1 day to obtain T i 0 2 concentration of 5 wt%, flake titania sol viscosity 5 1 0 c P (sample G). The viscosity was measured using a BL type viscometer.
  • Fig. 4 (a) is an X-ray diffraction chart of this paste-like sediment immediately after being taken out of the centrifuge tube.It shows an amorphous pattern, and no diffraction lines based on a periodic atomic arrangement are observed. .
  • the paste-like sediment was air-dried, and the X-ray diffraction was measured. As a result, the diffraction chart shown in FIG. 4 (b) was obtained.
  • This two-dimensional sheet is a two-dimensional sheet.
  • Example H 0.5 g of the sample E obtained in Example 5 was added to 100 cm 3 of an aqueous ethanol solution (concentration: 0.14 mol dm— 3 ), and the speed was increased to about 150 rpm per minute. By shaking for 1 day, a clear milky sol (Sample H) was obtained.
  • Example 1 0.5 g of the sample F obtained in Example 6 was added to 100 cm ; i (concentration: 0.16 mol dm 3 ) of an aqueous solution of tetrabutylammonium hydroxide, and the mixture was rotated 150 times with a shaker. After shaking for about one minute for one day, a clear milky white sol (Sample I) was obtained.
  • Sample J was found to have a thickness of 0.75 nm represented by the above composition formula and a width and length of 0.1 / m. It was found that the flaky titania sol was obtained by dispersing flaky particles.
  • Example G The flaky titania sol (sample G) obtained in Example 7 was dried using a disk-type spray dryer (OC-25, manufactured by Okawara Kakoki Co., Ltd.). The disk was sprayed by using a pin-type disk and rotating it at 24000 rpm. Drying was performed with hot air at a temperature of 200 ° C. to obtain a hollow fine powder (sample K) of the present invention. According to scanning electron microscope observation, Sample K had an outer diameter of around 20 / zm, a shell thickness of around 100 nm, and a ratio of outer diameter (D) to shell thickness (T) (DZT) of around 200. It was a hollow fine powder.
  • Example 10 The sample K obtained in Example 10 was heat-treated at a temperature of 670 ° C. for 1 hour to obtain a hollow fine powder (sample) of the present invention.
  • Fig. 6 shows a scanning electron micrograph of sample L
  • Fig. 7 shows a scanning electron micrograph of sample L that was intentionally broken using a mill
  • the center of Fig. 7 is enlarged
  • Fig. 8 shows a scanning electron micrograph.
  • the sample L has an outer diameter of about 20 // m, a shell thickness of about 100 nm, and a ratio (DZT) of the outer diameter (D) to the shell thickness (T).
  • the powder was found to be about 200 hollow fine powder.
  • the flaky titanium oxide powder (sample M) of the present invention was obtained by pulverizing the sample K obtained in Example 10 with a coloplex mill (Start Mill 63Z manufactured by I-I-Shi). I got Scanning electron microscopy observation revealed that Sample M was flaky titanium oxide with a thickness of about 30 nm, a width and a length of about 10 / m.
  • a coating agent was prepared by suspending 5 g of sample M in 100 ml of ion-exchanged water and performing ultrasonic dispersion for 10 minutes. This coating agent was applied to a glass plate with a spin coater and heat-treated at a temperature of 600 ° C. for 1 hour to obtain a transparent titanium oxide thin film.
  • the flaky titanium oxide powder (sample N) of the present invention was obtained by crushing the hollow fine powder (sample) obtained in Example 11 with a Coroplex mill (manufactured by Alpine).
  • FIG. 9 An electron micrograph of Sample N is shown in FIG. From FIG. 9, it can be seen that, in Sample G, flaky titanium oxide having a thickness of about 3 Onm, a width and a length of about 10 m was dispersed in a state with almost no secondary aggregation.
  • Example 2 Preparation of platy titanium oxide powder
  • the flaky titania sol of Example 7 (sample G) was placed in a crucible, dried in an electric furnace at a temperature of 65 ° C. for 1 hour, heat-treated, and then ground using a Coroplex mill (manufactured by Alpine). As a result, a titanium oxide powder (sample 0) was obtained.
  • Sample 0 is considered to be plate-like particles having a thickness of about 300 nm.
  • silica glass beads for seed particles were used, and the angle was measured with a particle image velocimeter FLOW MA P (manufactured by DANTEC).
  • a water flow measurement test in a mold water tank was performed. Side to 1 0 cm transparent Rectangular tank, put water 8 0 0 cm 3, as shea one de particles, silica beads for seed particles of the sample L or ⁇ 0. 0 1 g was added, with magnetic stirring la one Stirred.
  • Figs. 11 and 12 show a scattered light image photograph and a calculated water flow vector diagram when using sample L, respectively.
  • Figures 13 and 14 show scattered light image photographs and calculated water flow vector diagrams when silica beads were used as comparative samples. In the measurement using the comparative sample as seed particles, the scattering image was unclear and the water flow vector was messy. Since such a turbulence cannot occur in a normal liquid flow field, it can be seen that accurate fluid measurement was not performed.
  • the hollow fine powder of the present invention and the flaky titanium oxide fine powder obtained by the present invention are excellent in dispersibility, and are suitable for pigments, paints, cosmetics, coating agents, resins such as nylon, and additives for white paper and the like. It is useful as an optical functional material such as a catalyst and a UV-ray shielding material.
  • novel mixed alkali metal titanate, layered titanate compound and flaky titania sol of the present invention are useful for industrially advantageously producing the fine powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dermatology (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cosmetics (AREA)

Description

明 細 書 中空状微粉末、 該中空状微粉末を粉砕してなる薄片状酸化チタン微粉末および それらの製造方法 技術分野
本発明は、 顔料、 塗料、 化粧料、 コーティング剤またナイロンなどの樹脂や白 色紙などへの添加材、 触媒などの光機能性材料、 さらに紫外線遮蔽材料として有 用な、 酸化チタン殻を有する新規な形態の中空状微粉末およびその製造方法、 該 中空状微粉末を粉砕してなる薄片状酸化チタン微粉末およびその製造方法、 並び に該中空状微粉末もしくは該薄片状微粉末を配合してなる化粧料、 並びに該中空 状微粉末からなる流体計測システム用シ一ド粒子に関するものである。
さらに本発明は、 該中空状微粉末の製造に必要な薄片状チタニアゾルを、 工業 的に有利に提供する方法に関する。
背景技術
これまで、 粒状、 針状、 樹枝状、 薄片状等、 様々な形状の酸化チタン微粉末が 知られている力 中空状のものは知られていなかった。
本発明の中空状微粉末は、 後述のように薄片状チタニアゾルを噴霧乾燥して得 られるものである。
ところで、 この薄片状チタニアゾルを製造する方法として、 酸化セシウム又は 加熱により酸化セシウムとなる化合物と二酸化チタンとを混合し、 焼成して得ら れる層状チタン酸化合物セシウム塩と酸水溶液とを接触させて、 層間のセシウム イオンを水素イオン (存在形態はヒドロニゥムイオン) で置換し、 生成したチタ ン酸粉末をアンモニゥム化合物またはァミン化合物水溶液と混合攪拌する方法が 知られている (特開平 9一 2 5 1 2 3号公報) 。 しかし、 この方法ではチタン酸 セシウム塩と酸水溶液との反応性が低く、 セシウムイオンを水素イオン (存在形 態はヒドロニゥムイオン) で置換するのに長時間 (3日以上) を要する (特開平 6 - 1 2 2 5 1 8号公報参照) ため、 工業的に生産するには非常に効率が悪く生 産コス卜がかかる。 また、 上記チタン酸セシウム塩のような、 ホスト骨格中の T i "席の一部が空 孔、 あるいは 2価又は 3価のアル力リ土類金属イオンや遷移金属イオンで置換さ れた層状チタン酸化合物金属化合物 (たとえば I. E. Grey, I. C. adsen and J. A. Watts, J. Sol i d State Chem 66, 7(1987)や、 D. Groul t, C. Mercey and B. Raveau, J. Sol id StateChem 32,289a980)等に記載) は、 層間イオンしか交換できないた め、 イオン交換性が不十分であり、 効率よく薄片状チタニアゾルを製造すること が困難であった。
さらに、 薄片状の酸化チタン粒子を製造する方法として、 これまで薄片状チタ 二ァゾルを凍結乾燥する方法 (特開平 9 6 7 1 2 4号公報) が知られている。 しかし、 この方法で分散性に優れた微粉末を得るには、 希薄な濃度の薄片状チタ ニァゾルを凍結乾燥する必要があり、 相対的に大量の水を一旦凍結してから真空 乾燥するために、 これに費やすエネルギーは莫大であり、 経済性に問題があった 発明の開示
本発明は、 分散性に優れた、 酸化チタン殻を有する中空状微粉末を提供し、 ま た分散性に優れた薄片状酸化チタン微粉末を工業的かつ経済的に有利に製造する 方法を提供することを目的としている。
本発明者らは、 かかる課題について鋭意研究を重ねた結果、 薄片状チタニアゾ ルを噴霧乾燥することにより、 意外にも、 これまでにない特殊な形状を有し、 し かも分散性に優れた酸化チタン微粉末が得られること、 また、 この特殊な形状の 酸化チタン微粉末を粉砕することにより、 薄片状チタニアゾルを凍結乾燥する従 来の方法で得られるものと同等の分散性を有する薄片状酸化チタン微粉末を、 ェ 業的かつ経済的に製造できることを見いだした。
さらには、 相異する二種類のアルカリ金属酸化物と二酸化チタンとを特定の割 合で混合し、 焼成して得られるチタン酸混合アルカリ金属塩を酸水溶液と接触さ せて該混合アル力リ金属塩のアル力リ金属ィォンを水素ィォン (存在形態はヒド ロニゥムイオン) で置換して層状チタン酸化合物を得、 次いでこの層状チタン酸 化合物を塩基物質の共存下で液媒体中に分散させることにより、 本発明の中空状 微粉末の製造に有用な薄片状チタニアゾルを工業的に有利に提供できることを見 いだし、 本発明を完成した。 したがって、 本発明は、 酸化チタン殻を有する中空状微粉末を提供することを 目的とする。 さらに、 本発明は薄片状酸化チタン微粉末を製造する方法を提供す ることを目的とし、 この方法は、 該中空状微粉末を粉砕することを特徴とする。 本発明のさらに他の目的は、 以下の詳細な説明で明らかになるであろう。
なお本発明でいう酸化チタンとは、 無水酸化チタンの他、 水和酸化チタン、 含 水酸化チタン等を総称したものをさす。
図面の簡単な説明
図 1は、 中空状微粉末および薄片状酸化チタン微粉末の製造工程の一実施態様 を模式的に示す図である。
図 2は、 本発明のチタン酸混合アルカリ金属塩で、 Mがイオンの大きさがカリ ゥム以下のアルカリ金属である結晶構造の (1 0 0 ) 面への投影図であり、 点線 で囲まれた部分が単位胞に相当する。
図 3は、 本発明のチタン酸混合アルカリ金属塩で、 Mがそのイオンの大きさが ルビジウム以上のアルカリ金属である結晶構造の (1 0 0 ) 面への投影図であり、 点線で囲まれた部分が単位胞に相当する。
図 4は、 試料 Gのチタニアゾルを遠心分離して得られたペース卜状沈降物の分 離直後 (a ) と、 空気中乾燥後 (b ) の X線回折チャート図である。
図 5は、 本発明の中空状微粉末 (試料 K) を用いた薄膜の分光透過率曲線であ る。
図 6は、 本発明の中空状微粉末 (試料し) の走査型電子顕微鏡写真 (倍率: 1, 0 0 0倍) である。
図 7は、 試料 Lを故意に粉砕し、 破壊した試料の走査型電子顕微鏡写真 (倍 率: 6, 0 0 0倍) である。
図 8は、 図 7の中央部分を拡大した走査型電子顕微鏡写真 (倍率: 6 0, 0 0 0倍) である。
図 9は、 本発明の薄片状酸化チタン微粉末 (試料 N) の電子顕微鏡写真 (倍 率: 1, 5 0 0倍) である。
図 1 0は、 薄片状チタニアゾルを焼成して得られた板状酸化チタン粉末 (試料 0) の電子顕微鏡写真 (倍率: 6 0 , 0 0 0倍) である。 図 1 1は、 試料 Lをシード粒子として用いて得られた粒子の光散乱イメージ写 真である。
図 1 2は、 同じく試料 Lをシ一ド粒子として用 、て得られた水流べク トル図で める。
図 1 3は、 比較試料 (巿販シリカガラスビ一ズ) をシード粒子として用いて得 られた光散乱イメージ写真である。
図 1 4は、 同じく比較試料 (市販シリカガラスビーズ) をシード粒子として用 いて得られた水流べク トル図である。
発明を実施するための最良の形態
中空状微粉末
本発明は、 酸化チタン殻を有する中空状微粉末に関する。
本発明において中空状微粉末とは、 その粒子内部の空間を覆う殻を有する微粉 末のことをいう。 具体的には、 例えば、 風船状 (バルーン状) 、 ピンポン玉状等 が挙げられる。 ただし、 殻が内部を完全に覆っている必要はなく、 一部裂け目や 欠落がある不完全な中空状微粉末であっても、 また、 上記中空状微粉末が粉砕さ れた薄片状酸化チタン微粉末が含まれていても構わない。 さらに、 後述する用途 に悪影響を与えない範囲で原材料に起因する不純物を含んだり、 殻上に有してい てもよい。
この中空状微粉末の大きさは、 好ましくは外径が 0 . 1〜5 0 0 0 // m、 殻の 厚さが 1 n m〜 1 0 0〃mである。
とくに、 化粧料に適用する場合、 分散性、 肌触りの点で、 外径 (D) が 1〜5 0 0 0 n m、 殻の厚さ (T) 力く 1 n m〜l 0 0〃mであることが好ましく、 より 好ましくは外径 (D) 力く 1 0〜 5 0 0 m、 殻の厚さ (T) 力く 1 0 n m〜 1 0 0 n mでめる。
流動性付与剤等として利用する場合には、 外径に比べて殻の厚さが薄いほど見 かけ比重が小さく、 流動性を付与する能力に優れて好ましい。 また、 吸着材ゃ光 触媒等として利用する場合も、 反応に寄与するのは表面だけで内部は不要なため、 外径に比べて殻の厚さが薄いほど重量あたりの有効表面積が大きく好ましい。 こ れらの場合、 外径 (D) と殻の厚さ (T) の比 (D/T) の好ましい範囲は、 5 0〜5 0 0 0である。
中空状微粉末は、 従来公知の方法により、 表面処理が行われていてもいなくて も構わない。 表面処理としては、 例えば、 シリコーン処理、 レシチン処理、 樹脂 処理、 粘材処理、 シラン処理、 フッ素化合物処理、 無機酸化物処理、 紫外線吸収 剤処理、 多価アルコール処理、 アミノ酸処理、 色素処理、 金属石鹼処理、 油剤処 理、 ワックス処理、 ペンダント化処理などが挙げられる。 特に、 パーフルォロア ルキルリン酸エステルなどのフッ素化合物処理が行われることが好ましい。 処理 方法としては、 乾式、 湿式、 気相法などが挙げられ、 揮発性反応性シリコーンで 処理した後、 アルキル鎖やポリオキシアルキレン基などを付加して、 親水性や親 油性にするペンダント化処理を行うなど複数の処理を組み合わせることも可能で ある。
本発明において、 中空状微粉末は、 薄片状チタニアゾルの噴霧乾燥により製造 され、 その生成機構は次のように推測される。 すなわち、 図 1を参照して、 噴霧 された薄片状チタニアゾルは、 微細な液滴 1となり、 この液滴は、 その直後に乾 燥のために高温にさらされる。 液滴全体が急激に加熱されるため、 液滴表面だけ でなく、 内部でも水分の気化が起こり、 風船のように膨らみ、 同時に乾燥されて、 薄片状粒子 2が貼り合わされて 0 . 1〜5 0 0 0 z mの中空状微粉末 3が形成さ れ o
噴霧乾燥における噴霧方法には、 ディスク式、 圧力ノズル式、 二流体ノズル式 などがある。 ディスク式は、 高速回転するディスク上に原液を供給し、 遠心力に より微粒化し、 噴霧する方法である。 この方式は、 原液の粘度や供給速度等が大 きく変ィ匕しても、 それに応じてディスクの回転数を変化させることにより所望の 大きさに微細化できることが特徴である。 処理可能な粘度は 1〜数万 c Pであり、 小型テスト機から大量生産用に幅広く採用されている。
圧力ノズル式は、 原液に高圧をかけ、 ノズルから噴霧する方法である。 メンテ ナンスが容易で、 大量生産に向いている。 処理可能な粘度は 1〜数千 c Pである c 二流体ノズル式は、 原液を圧縮空気やスチームと一緒に噴出することにより微 粒化、 噴霧する方法であり、 小型機に向いたシステムである。 また、 圧力ノズル 式と同じく比較的細いノズルを通すため、 低粘度の原液の処理に適した方法であ る。
本発明においては、 上記の 、ずれの方法でも条件を適当に選択することにより、 薄片状チタニアゾルの液滴が前駆体として得られるが、 工業的には、 高濃度で高 粘度のゾルにも対応でき、 大量生産に適していることから、 ディスク式が最も好 ましい。
上記したとおり、 噴霧された液滴は、 直ちに熱風と接触することにより乾燥さ れる。 熱風の温度は、 好ましくは 1 0 0 °C〜 8 0 0 °C、 より好ましくは 1 5 0〜 4 0 0 °Cである。 熱風の温度が上記範囲にあるときに、 液滴内部の水分の十分な 気化により、 良好な中空形状が得られやすく、 また、 この中空形状力崩れにくい 用途によっては、 噴霧乾燥された中空状微粉末を、 バンドドライヤー、 マイク 口波ドライヤー、 電気炉、 流動層焼成炉等を用いて、 さらに熱処理することが好 ましい。 熱処理の温度は、 好ましくは、 1 0 0 °C〜 8 0 0 °Cである。 この熱処理 は、 酸化チタンの結晶化、 残留水分の除去、 残留塩基物質の除去、 耐光性の向上 を目的としている。 熱処理温度が上記範囲にあるときに、 前記の熱処理の目的が 十分に達せられ、 また、 中空形状も崩れにくい。
薄片状チタニアゾル
噴霧乾燥に用いる薄片状チタニアゾルは、 粘度が好ましくは 5〜1 0 0 0 0 c P、 さらに好ましくは 1 0 0〜 3 0 0 0 c Pである。
ゾルを構成する薄片状チタニア粒子の大きさは、 好ましくは、 厚さが 0 . 5〜 1 0 0 n m、 幅及び長さが 0 . 1〜 3 0〃m、 さらに好ましくは厚さが 0 . 5〜 1 0 n m、 幅及び長さが 1〜1 0 mである。 最終的に後述の薄片状酸化チタン 微粉末を得たい場合は、 厚さは好ましくは 0 . 5〜5 0 n mであり、 さらに好ま しくは 0 . 5〜l n mである。 ゾルを構成する薄片状チタニア粒子の厚さが上記 範囲にある場合は、 ゾルの粘りが適度であり、 噴霧されて中空となった後乾燥す るまでの間も破裂しにくい。 また、 幅及び長さが上記範囲にある場合に、 噴霧し やすく、 また、 中空状の形状を得やすい。
薄片状チタニアゾルの分散媒として、 水の他にメタノール、 ァセトニトリル等 の有機溶媒を用いることができるが、 経済性の点で水が最も好ましい。
噴霧乾燥する際の薄片状チタニアゾルの好ましい濃度は、 0 . 5〜2 0重量% である。 濃度が上記範囲にある場合は、 噴霧しやすく、 また、 適度な厚みの殻を 有する中空状微粉末が得られることから、 薄片状に粉碎しゃすい。 また、 この程 度の濃度が経済的に有利であり、 工業生産に向レ、ている。
この薄片状チタニアゾルは、 アル力リ金属酸化物または加熱によりアル力リ金 属酸化物に分解される化合物と、 酸化チタンまたは加熱により酸化チタンを生ず る化合物とを混合し、 焼成して得られるチタン酸アル力リ金属塩を酸水溶液と接 触させて層状構造のチタン酸化合物を生成させ、 次いで該層状チタン酸化合物を 塩基物質の共存下で液媒体中に分散、 剥離させること等により製造することがで きる。
アルカリ金属酸化物としては、 リチウム、 ナトリウム、 カリウム、 ルビジウム、 セシウムの酸化物の中から少なくとも 1種を用いることができる。 また、 加熱に よりアル力リ金属酸化物に分解される化合物としては、 アル力リ金属の炭酸塩、 水酸化物、 硝酸塩、 硫酸塩などが使用できるが、 これらのなかでも炭酸塩、 水酸 ィ匕物が好ましい。 また、 加熱により酸化チタンを生ずる化合物としては、 メタチ タン酸、 オルトチタン酸などの含水酸化チタン、 チタンアルコキシドなどの有機 チタン化合物が挙げられるが、 含水酸化チタンが好ましい。
塩基物質としては、 プロピルァミン、 ジェチルァミン等のアルキルァミン、 水 酸化テトラメチルアンモニゥム、 水酸化テトラエチルアンモニゥム、 水酸化テト ラプロピルアンモニゥム、 水酸化テトラブチルアンモニゥム等の水酸化 4級アン モニゥム、 エタノールァミン、 アミノメチルプロパノール等のアルカノ一ルアミ ンが挙げられ、 これらの中でも、 水酸化 4級アンモニゥム、 アルカノールァミン が好ましい。 塩基物質の添加量は、 前記層状チタン酸化合物に対し、 好ましくは 0 . 5当量から 1 0当量、 より好ましくは 1当量から 2当量である。 塩基物質の 種類、 添加量がともに実験的に選択した最適な条件とすることによって、 層状チ タン酸化合物は完全に 1枚ずつに剝離して、 単独の薄片状チタニア粒子 (二次元 シート) 力、ら成るゾルになり、 さらにその分散安定性が保たれる。 塩基物質の種 類や量が最適でないと、 層間に塩基物質と水が入って大きく膨潤した (浸透圧膨 潤) 層状チタン酸化合物が剥離しきれずに残存することもある力 実用上、 支障 のない範囲であれば構わない。 新規薄片状チタニアゾル
本発明においては、 特に上記薄片状チタニアゾルとして、 組成式
T i 04 ("ハト
(式中の Xは 0. 57〜1. 0)、 具体的には T i ,.81ΟΛ 76一〜
T i ,.67ΟΛ 33 で表される、 薄片状粒子を分散してなるチタニアゾルを用いる ことができる。
従来より、 組成式 T i 04 x (式中の xは、 0. 60〜0. 75) で表 される薄片状微粒子を分散してなる薄片状チタニアゾルは知られているが、 上記 のチタニアゾルは新規な組成を有するものである。 従来品に比べ、 チタン酸ィォ ンの負電荷が多いため、 塩基物質を吸着する能力が高く、 液媒体中への分散も速 い。
この新規ゾルを構成する薄片状チタニア粒子は、 T i 06 八面体が稜共有によ り連鎖して二次元骨格構造を形成しているが、 さらに、 Ti 4'席の 9. 5〜17 %が欠陥になっているため、 薄片状粒子の負電荷が大きい構造となっている。 粒 子の大きさは、 用途により任意に設定できるが、 通常は、 厚さが 0. 5〜l nm、 幅及び長さが 0. l〜30 mである。
なお、 この新規ゾルは、 下記の新規チタン酸混合アルカリ金属塩を出発物質と して、 上記と同様にして製造することができる。
新規チタン酸混合アル力リ金属塩
上記新規ゾルの製造に使用できるチタン酸混合アル力リ金属塩は、 具体的には 例えば次のようにして製造することができる。 すなわち、 アルカリ金属酸化物 M2 0及び M'20 (M, M' は各々相異するアルカリ金属である) または加熱に より各々 M2 0及び M' 20に分解される各化合物と、 二酸化チタンまたは加熱に より二酸化チタンを生ずる化合物とを、 好ましくは、 M/M, ZTiのモル比で 3 Z 1 / 5力、ら 3 Z 1 / 1 1の割合で混合し、 500 °C〜 1 100 °C、 さらに好 ましくは 600 °C〜 900 °Cの温度で焼成する。 反応を十分に行って原料組成物 の残存量を少なく し、 また、 別の組成の物質の生成を抑えるには、 上記温度範囲 力《好ましい。
上記で得られたチタン酸混合アル力リ金属塩は、 ホスト骨格中の T i "席の一 部カ^ 眉間のアルカリ金属とは異なるアルカリ金属イオンで置換された、 組成式
Figure imgf000011_0001
(式中の Μ, Μ' は各々相違するアルカリ金属であり、 Xは 0 . 5 0〜1 . 0で ある) で示される、 斜方晶の層状構造を有する新規な組成の化合物である。
この物質中の Μと Μ, で示されたアルカリ金属イオンは活性であるので、 他の 陽イオンとの交換反応性や有機物のインタ一カレーシヨンによるとり込みを起こ す。 このため、 酸水溶液と接触させると、 層間 (Μ) およびホスト骨格中 (Μ' ) のアルカリ金属イオンが、 短時間で水素イオン (存在形態はヒドロニゥムイオン) と交換され、 工業的に生産する場合に効率良く、 生産コストの低い薄片状チタ二 ァゾルを得ることができる。
組成式中の Xは、 出発原料の混合比を変化させることにより、 コントロールで きる。 また、 均一で単相の化合物を得るためには、 前記合成工程の中、 混合を十 分に行うことが好ましく、 原料粉末を自動乳鉢などで摩砕混合することが好まし い。 また、 焼成条件を適当に変えることにより、 種々の粒子径の化合物が得られ る。
上記チタン酸混合アルカリ金属塩は、 従来法の中間生成物である、 例えばチタ ン酸セシゥムに比べ、 酸水溶液との反応性が高く、 水素イオンとの置換反応が速 い。 従来のチタン酸セシウムのセシウムを水素イオン (存在状態はヒドロニゥム イオン) で置換して層状チタン酸化合物とするには、 チタン酸セシウムの粉末 1 グラムに、 1規定の塩酸 1 0 0 cm3 を 3日間室温で接触させる必要があつたのに 対し、 例えば M= C s、 M, = L iである本発明の化合物のセシウムおよびリチ ゥムを水素イオン (存在形態はヒドロニゥムイオン) で置換するのに、 該化合物 の粉末 1グラムに 1規定の塩酸 1 0 0 cm3 を 1日間室温で接触させればよい。 本発明のチタン酸混合アル力リ金属塩は、 層間イオンの大きさが力リウム以下 の場合は図 2に、 またルビジウム以上の場合は図 3に示すような層状構造を有し ており、 T i O (; 八面体が稜共有により連鎖して二次元のシートを作り、 その間 にアル力リ金属イオンを含む斜方晶に属する結晶である。 この二次元シ一卜の結 晶学的な組成は T i 02 であり、 本来電気的に中性であるが、 T i の八面体席 の 8〜17%が、 前記層間のアル力リ金属とは異なったアル力リ金属イオンで置換 されており、 負に帯電する。 これらを層間のアルカリ金属イオンが補償する形に なっている。
この新規物質の空間群は層間イオンの大きさが力リウムイオン以下の場合は
Cm cm. ルビジウムイオン以上の場合は I mmmである。 また、 結晶学的デ一 タは、 層間のアル力リ金属イオンの種類、 ホスト骨格内の T i席のアル力リ金属 イオン置換量に依存するが、 代表的な組成、 すなわち M=K、 M' 二 L iで、 X = 0. 8の場合の粉末 X線回折データ及びリ一トベルト解析の結果をそれぞれ表 1と表 2に示す。
(表 1 ) 本発明のチタン酸混合アル力リ金属塩の X線回折デ一夕 h k 1 d d
calc (A) obs (A)
0 2 0 7. 7 7 7. 7 6
0 4 0 3. 8 8 3. 8 8
1 1 0 3. 7 1 3. 7 1
1 3 0 3. 0 7 6 3. 0 7 7
0 2 1 2. 7 7 7 2. 7 7 7
0 6 0 2. 5 8 9 2. 5 9 0
1 5 0 2. 4 1 1 2. 4 1 2
0 4 1 2. 3 6 1 2. 3 6 1
1 1 1 2. 3 2 1 2. 3 2 0
1 3 1 2. 1 3 8 2. 1 3 7
0 6 1 1. 9 5 2 1. 9 5 2
2 0 0 1. 9 1 2 1. 9 1 2
1 5 1 1. 8 7 3 1. 8 7 2
2 2 0 1. 8 5 7 1. 8 5 7 格子定数は a = 3. 8 244 (3 ) A, b= 1 5. 5 3 4 (D A, c = 2. 9 7 3 3 ( 1 ) A, V= 1 7 6. 7 2 (1) A3 であり、 単位胞中に 2組成式分 が含まれ、 計算密度は 3. 38 7 g/cm3 となる。
(表 2 ) 本発明のチタン酸混合アル力リ金属塩のリ一ベルト解析結果
Figure imgf000013_0002
g : Occupat i on factor
B : Temperature parameter
Figure imgf000013_0001
0 . 0 3 3 9 , R , = 0 . 0 4 1 2 , R F = 0 . 0 2 7 9
本発明の薄片状チタニアゾルを製造する場合、 M及び M' の組み合わせとして、 (M、 M, ) = (カリウム、 リチウム) 、 (ルビジウム、 リチウム) 、 (セシゥ ム、 リチウム) が好ましい。
層状チタン酸化合物
前記したとおり、 チタン酸アルカリ金属塩を酸水溶液と接触させることによつ て層状チタン酸化合物を生成させることができる。
酸水溶液としては、 塩酸、 硫酸などの無機酸、 酢酸、 しゅう酸などの有機酸の 水溶液が挙げられ、 特に制限はない。 濃度は好ましくは、 0 . 5規定から 6規定、 さらに好ましくは、 1規定から 3規定である。 反応に要する時間を適当なものと し、 また、 チタン酸の分解を防ぐためには上記の濃度範囲が好ましい。
酸との反応を効率よく行う方法として、 チタン酸アル力リ金属塩を酸性スラリ —とした後、 フィルタ一プレスやブフナーなどの吸引濾過器でケーキ状にし、 そ のまま吸引しながら新鮮な酸を通ずる方法を採ることが好ましい。 また、 酸水溶 液との接触 ·反応後、 イオン交換水等で洗浄して余分な酸を取り除くことが好ま しい。 余分な酸を除去することによって、 ゾルに仕上げた後の粘度、 分散性など の安定性に優れる。
新規層状チタン酸化合物
本発明においては、 上記層状チタン酸化合物として、 層と層との間のアルカリ 金属イオンが水素イオンで置換され、 かつ、 ホスト骨格中の T i 席の一部も水 素ィォンで置換された組成式
Figure imgf000014_0001
(式中 χは 0 . 5 0〜し 0であり、 ηは 0〜2である) で示される、 斜方晶の 層状構造を有する新規な組成の化合物を使用することができる。
眉間に水素イオン (存在形態としてはヒドロニゥムイオン) 、 水分子を含むチ タン酸化合物は従来より知られているが、 このような組成は新規である。 この物 質中の層間及びホスト骨格中の水素イオン (存在形態はヒドロニゥムイオン) は 活性であり、 他の陽イオンとの交換反応や有機物のィンタ一力レーションを可逆 的に起こす。
その構造は、 前掲の図 3に相当する。 これは、 T i O (; 八面体が稜共有により 連鎖して二次元のシートを作り、 その間に水素イオン (存在形態はヒドロニゥム イオン) を含む斜方晶に属する結晶である。 この二次元シ一卜の結晶学的な組成 は T i 02 であり、 本来電気的に中性であるが T i 4 +の八面体席の 8〜17%が欠 陥になっており、 負に帯電する。 これを層間の水素イオン (存在形態はヒドロ二 ゥムイオン) が補償する形になっている。
この層状チタン酸化合物では、 層間の水素イオン (存在形態はヒドロ二ゥムィ オン) だけでなく、 出発物質であるチタン酸混合アルカリ金属塩のホスト骨格中 のアルカリ金属イオンと交換された水素イオン (存在形態はヒドロニゥムイオン) も可動な状態であるので、 化合物中の活性なイオンの量が従来の化合物より多い。 従って、 この新規な層状チタン酸化合物は、 吸着材、 イオン交換材、 触媒、 分 離材、 有害物質処理材等として有用であると考えられる。
この層状チタン酸化合物の結晶学的データは、 ホスト骨格内の T i 4 +席の欠陥 の量に依存するが、 代表的組成、 すなわち x = 0 . 8、 n = l . 0の場合の粉末 X線回折デ一夕を表 3に示す。 (表 3) 本発明の層状チタン酸化合物の X線回折データ h k 1 d d
calc (A) obs (A)
0 2 0 9 . 1 9 9 . 2 1
0 4 0 4 . 5 9 4 • 6 0
1 1 0 リ 7 1 3リ 7 1
1 3 0 3 . 2 1 9 3 . 2 1 9
0 6 0 3 , 0 6 2 3 . 0 6
0 3 1 2 . 6 9 3 2 . 6 9 3
1 5 0 2 . 6 3 6 2 . 6 3 6
1 0 2 , 3 5 0 2 . 3 5 1
0 5 2 . 3 2 3 2 . 3 2 3
1 2 2 . 2 7 7 2 . 2 7 7
1 4 2 . 0 9 2 2 . 0 9 2
0 7 1 . 9 7 5 1 . 9 7 5
2 0 0 1 . 8 9 2 1 . 8 9 2
1 6 1 1 . 8 6 4 1 . 8 6 4
2 2 0 1 . 8 5 3 1 . 8 5 4 格子定数は a = 3. 7 8 3 6 (3) 人, b= 1 8. 3 7 1 (2) 人, c = 2. 9 9 8 4 ( 2 ) A, V= 2 0 8. 4 2 ( 2 ) Α であり、 単位胞中に 2組成式分 が含まれ、 計算密度は 2. 3 5 9 g/cm3 となる。
なお、 この新規層状チタン酸化合物は、 上記の新規チタン酸混合アルカリ金属 塩を出発材料として上記と同様にして製造することができる。
薄片状酸化チタン微粉末
上記の薄片状チタニアゾルは、 前述したように、 本発明の中空状微粉末の原料 とすることができ、 この中空状微粉末を粉砕することによって、 その破片である 薄片状酸化チタン微粉末が得られる。 粉砕によって、 必ずしも元の薄片状チタ二 ァ粒子までほぐれるわけではなく、 薄片状チタニア粒子が数枚〜数十枚積み重な つた集合体となっている。 ここで、 粉砕が強い程、 薄片状酸化チタン微粉末の幅 及び長さは小さくなり、 粉砕の程度により得られる薄片状酸化チタン微粉末の粒 子形状をコントロールすることができる。 薄片状酸化チタン微粉末を得るうえで は、 コロプレックスミルなどの比較的弱い粉砕機を用いることが好ましい。 薄片状酸化チタン微粉末の大きさは、 好ましくは厚さが 1〜 1 0 0 nm、 幅及 び長さが 0. 1〜5 0 0 zmである。 さらに、 化桩料用の紫外線遮蔽材料として 好ましくは、 厚さが 2 0〜8 0 nm、 幅及び長さが 1〜5 0 0〃mである。 厚さ が上記範囲であると、 十分に紫外線を吸収し、 また、 透明性にも優れる。 幅及び 長さが上記範囲であると肌での伸びがよく、 ざらつき感も無い。
この薄片状酸化チタン微粉末は、 前述の中空状微粉末と同様の従来公知の表面 処理が行われていてもいなくても構わない。 これらの表面処理は、 薄片状チタ二 ァゾルを噴霧乾燥した後に実施しても、 また、 粉砕した後に実施しても、 更には、 粉碎と同時に実施しても構わない。
薄片状酸化チタン微粉末も中空状微粉末と同様に、 用途によっては、 粉砕の前 及び Z又は後に、 好ましくは粉碎の前に熱処理することが好ましい。 粉砕前に熱 処理をすると、 水分が減少して粉砕時の再凝集や粉砕装置への付着を防ぐことが できる。 熱処理温度は好ましくは 1 0 0 °C〜 8 0 0 °Cである。 上記温度範囲にあ るときは、 所望する熱処理の目的を達成し、 また、 薄片形状が高温によって崩れ にくい。
用途
以上の方法により得られる酸化チタンからなる殻を有する中空状微粉末および 薄片状酸化チタン微粉末は、 二次凝集が少なく、 非常に分散性に優れている。 本発明の中空状微粉末および薄片状酸化チタン微粉末は、 紫外線遮蔽材ゃ流動 性付与材、 吸着剤、 光触媒、 色材として、 種々の顔料や化粧料、 塗料、 コーティ ング剤、 樹脂、 白色紙などへの添加剤、 触媒などの光機能性材料に利用できる。 特に、 中空状微粉末は、 酸化チタンからなる殻を有するため、 紫外線遮蔽材、 吸着剤、 光触媒として利用することができる。 また、 内部が空間になっているた めに見かけ比重が非常に小さく、 流動 ¾k、 断熱性に優れているため、 流体計測シ ステム用シード粒子、 流動性付与材、 軽量セメント ·モルタル用、 軽量断熱材、 建築補修パテ用、 耐熱被覆パテ用、 爆薬増感用、 紙粘土用、 反射材、 プラスチッ ク用フイラ一、 接着剤用、 マスタ一モデル用、 シンタクチックフォーム用、 合成 木材用、 人工大理石用、 ボーリング用として利用することができる。 さらに、 殻 の厚さをサブミクロンからナノメートルレベルにコントロールすることにより、 光干渉が起こるため、 色材としての利用も可能である。
本発明の中空状微粉末を、 化粧料に利用する場合には、 例えば油性成分、 保湿 剤、 界面活性剤、 顔料、 香料、 防腐剤、 水、 アルコール類、 増粘剤等と配合し、 ローション状、 クリーム状、 ペースト状、 スティック状、 乳液状など、 各種の形 態で用いることができる。 該中空状粒子の殻をサブミクロン以下にコントロール すると、 実際に化粧料に配合して使用する際に、 指などで肌に擦り付けることに よって崩壊し、 薄片状酸化チタン微粉末となって、 肌への密着性が向上するなど の効果も期待できる。
中空状微粉末や薄片状酸化チタン微粉末を塗料ゃコーティング剤の添加剤等に 使用する場合、 前記噴霧乾燥温度の特に好ましい範囲は、 1 5 0〜2 5 0 °Cであ る。 この範囲で噴霧されると、 塩基物質が変質せずに残存しており、 塗料ゃコー ティング剤に添加したときに分散が容易である。
本発明の中空状微粉末をシ一ド粒子として利用できる流体計測システムは、 流 体の中に存在するシード粒子に光を照射し、 散乱された光を検知し、 流体の流れ を測定するタイプのもので、 レ一ザ一 ' ドップラー流速計や、 粒子イメージ流速 計などがある。 本発明の中空状微粉末は、 内部が空間になっていて見かけ比重が 小さいため、 流体中において流れに対する追随性に優れており、 また屈折率の高 い酸化チタンから成るため、 光散乱性に優れている。 これらのことから、 本発明 の中空状微粉末は、 精度の高い流体計測を可能にする。 流体計測システム用シ一 ド粒子としては、 外径 5〜5 0〃m、 殻の厚さが 1 0〜1 0 0 n mであること力く、 流体への追随性と光散乱性のバランスの点で好ましい。
本発明の薄片状チタニアゾルは中空状微粉末や薄片状酸化チタン微粉末を製造 するのに有用であり、 また、 それ自体も、 コーティング剤、 触媒としての用途が 期待される。 また、 本発明によって提供される新規なチタン酸混合アルカリ金属 塩や層状チタン酸化合物は、 金属イオンまたは水素イオン (存在形態としてはヒ ドロニゥムイオン) を無機あるいは有機陽イオンと交換したり、 あるいはインタ —カレーシヨンにより有機物をとり込む能力に優れていることから、 単なる上記 中空状微粉末や薄片状酸化チタン微粉末の出発原料や中間生成物としてだけでは なく、 吸着剤、 イオン交換材、 触媒、 分離材、 有害物質処理材、 電極材料、 誘電 体材料としての利用が期待される。
実施例
次に実施例によつて本発明をさらに説明するが、 これらは本発明を限定するも のではない。 実施例 1 チタン酸混合アル力リ金属塩の合成
炭酸カリウム (K2 C03 ) と炭酸リチウム (L i 2 C03 ) と二酸化チタン (T i 02 ) を K/L i/T iのモル比にして 3/1 Z6. 5で混合し、 十分に 摩砕した。 これを白金るつぼに移し、 800 °Cの温度で 5時間焼成したところ、 白色の粉末が得られた (試料 A)。
この粉末について元素分析したところ、 K/L i/T iのモル比は 3/ 1/6. 5に保たれていた。 また、 X線回折パターンを測定したところ、 C底心の斜方格 子で指数付けでき、 次いでリートベルト解析を行った結果、 組成式
Figure imgf000018_0001
(但し、 x=0. 8) で表されるレビドク口サイ ト型層状チタン酸化合物混合ァ ルカリ金属塩であることが判明した。
試料 Aをハンディプレスでコイン状のペレツ 卜に成形し、 800 °Cで 1時間焼 成した。 焼成後の寸法は、 直径 6. 99 mm、 厚み 0. 99 mmで重量は 0. 1 324 gであった。 このペレツ トについて複素インピーダンス法にて 200 °Cで のイオン伝導度を測定したところ、 4. 0 X 1 Ossein—1であった。 したがって、 本発明のチタン酸混合アル力リ金属塩は、 電極材料など導電性を必要とする用途 に有用であることがわかつた。
また、 Zn2+として 1 0 Oppmの亜鉛を含む亜鉛アミン錯体 1 00mlに、 試料 A 1. 0 gを分散させ、 1時間攪拌後、 試料を濾別し、 ろ液の Zn2+濃度を原子吸光 法にて測定したところ、 3 Oppmに減少していた。 したがって、 本発明のチタン 酸混合アルカリ金属塩は、 イオン交換材、 分離材、 有機物質処理材として有用で あることがわかった。
実施例 2 チタン酸混合アル力リ金属塩の合成
炭酸セシウム(Cs2C03)と炭酸リチウム(U2C03)と二酸化チタン (Ti02)を Cs/Li/ Tiのモル比にして 3/ 1/7. 57で混合し、 十分に摩砕した。 これを白金るつ ぼに移し、 900 °Cで 5時間焼成したところ、 白色の粉末が得られ、 実施例 1と 同様に粉末 X線回折法により同定したところ、 組成式
Figure imgf000018_0002
(但し、 χ=0. 7) で表されるレビドク口サイ ト型層状チタン酸化合物混合ァ ルカリ金属塩であることが判明した (試料 B ) 。
試料 Bをハンディプレスでコイン状のペレツ 卜に成形し、 8 0 0 °Cで 1時間焼 成した。 焼成後の寸法は、 直径 6 . 9 9 mm, 厚み 0 . 9 9 mmで重量は 0 . 1 3 2 4 gであった。 このペレツ トについて複素インピーダンス法にて 2 0 0 °Cで のイオン伝導度を測定したところ、 1 . 4 X 1 0— 8 S cm— 1であった。
実施例 3 チタン酸混合アル力リ金属塩の合成
水酸化カリウム (K0H) と水酸化リチウム(L i 0H)と酸化チタン(T i 02 )を! (/L i /T i のモル比にして 3 / 1 Z 6 . 5で混合し、 十分に摩砕した。 これを白金るつぼに 移し、 6 0 0 °Cで 5時間焼成したところ、 白色の粉末が得られた。 実施例 1と同 様に粉末 X線回折法により同定したところ、 組成式
Figure imgf000019_0001
(但し、 x = 0 . 8 ) で表されるレビドク口サイ ト型層状チタン酸化合物混合ァ ルカリ金属塩に若干の酸化チタンの残存する混合物になつていることがわかつた 、 斗 Cノ 。
実施例 4 層状チタン酸化合物の合成
実施例 1で得られた試料 A 1 gに対して、 1規定の塩酸 1 0 0 cm3 を接触させ るべく、 1日間室温で攪拌しながら反応させた。 その後、 濾過、 水洗、 乾燥して、 層状チタン酸化合物の粉末を得た (試料 D) 。
試料 Dについて蛍光 X線分析をしたところ、 リチウムおよび力リウムの含有量 は、 塩酸を接触させる前の含有量に対し、 それぞれ 1 0 0 0分の 1以下 (検出限 界以下) および 1 0 0分の 1まで減少しており、 アルカリ金属イオンはほとんど すべて水素ィオンに置換されていることが確認された。
Zn2 +として 1 0 0 ppmの亜鉛を含む亜鉛ァミン錯体 1 0 0 mlに、 試料 D 1 . 0 gを分散させ、 1時間攪拌後、 試料を濾別し、 ろ液の Zn"濃度を原子吸光法にて 測定したところ、 5 9 ppm まで減少していた。 したがって、 本発明のチタン酸混 合アルカリ金属塩は、 イオン交換材、 分離材、 有機物質処理材として有用である こと 、わ力、つた。
実施例 5 層状チタン酸化合物の合成
実施例 2で得られた試料 B 1 に対して、 1規定の塩酸 1 0 0 cm3 を接触させ るべく、 1日間室温で攪拌しながら反応させた。 その後、 濾過、 水洗、 乾燥して、 本発明の層状チタン酸化合物の粉末を得た (試料 E ) 。
実施例 6 層状チタン酸化合物の合成
実施例 3で得られた試料 C 1 gに対して、 1規定の塩酸 1 0 0 cm3 を接触させ るべく、 1日間室温で攪拌しながら反応させた。 その後、 濾過、 水洗、 乾燥して、 本発明の層状チタン酸化合物の粉末を得た (試料 F ) 。
試料 E、 Fについても、 試料 Dと同様の分析を行った結果、 出発物質であるチ タン酸混合アル力リ金属塩に含まれていたアル力リ金属イオンのほとんどすべて が水素イオンに置換されていることが確認された。
実施例 7 薄片状チタニアゾルの合成
次いで、 実施例 4で得られた層状チタン酸化合物 (試料 D) の粉末 6 k gを水 酸化テトラプチルアンモニゥム水溶液 0 . l m:i (濃度: 3 1 O mol m :,) に加え、 シェーカーで 1 5 0回転/分程度の振盪を 1日間行うことにより、 T i 02 濃度 5重量%、 粘度 5 1 0 c Pの薄片状チタニアゾル (試料 G) を得た。 なお、 粘度 は、 B L型粘度計を用いて測定した。
試料 Gをしばらく放置しても、 固形物の沈降は認められなかった。
試料 Gを 1 5, 0 0 0 r p mで 3 0分間遠心分離すると、 ほぼ透明な上澄み液 と、 ペースト状の沈降物に分かれた。 沈降物は、 ゾル中に分散していた粒子の集 合体と考えられる。 図 4 ( a ) は、 このペースト状の沈降物を遠沈管から採り出 した直後の X線回折チャートであるが、 アモルファス的なパターンであり、 周期 的な原子配列に基づく回折線は観られない。 次いで、 ペースト状沈降物を自然乾 燥してから、 X線回折を測定したところ、 図 4 ( b ) の回折チャートが得られた。 二次元シート内の構造に起因する 2 0、 0 2バンドが観測されることから、 二次 元シート内の原子配列が保持されていること、 および、 明瞭な O k 0 ( kは整数) 底面反射シリーズが観られることから、 その二次元シートが乾燥により積み重な つていることが明らかになった。 これらのことと、 ペースト状態でアモルファス 的な回折線しか観られなかったことを考え合わせると、 ゾル中に分散していた薄 片状粒子は、 1枚単位の二次元シートに剝離していたと考えるのが妥当である。 図 4 ( a ) で 2 0、 0 2バンドが観測されなかったのは、 サンプルを試料板にの せる過程で、 二次元シート力試料板に対して平行に配列してしまう、 いわゆる選 択配向をするためと解釈される。
この二次元シ一トは、
I 1 -x リ
(x=0. 8) で表され、 その厚みは、 ホスト層の結晶構造解析の結果より、 0. 75 nmと見積もることができる。 さらに、 試料 Cを希釈して凍結乾燥し、 走査 型電子顕微鏡で観察したところ、 幅及び長さ 1 mの薄片状粒子を確認した。 実施例 8 薄片状チタニアゾルの合成
実施例 5で得られた試料 E 0. 5 gをエタノ一ルァミン水溶液 1 00 cm3 (濃 度: 0. 1 4mol dm— 3) に加え、 シヱ一力一で 1 50回転/分程度の振盪を 1日 間行うことにより、 透明感のある乳白色のゾル (試料 H) が得られた。
試料 Hをしばらく放置しても、 固形物の沈降は認められなかった。
試料 Gと同様に、 X線回折測定、 および走査型電子顕微鏡観察をしたところ、 上記組成式で表される厚さ 0. 75 nm、 幅及び長さ 20 mの薄片状粒子を分 散してなる薄片状チタニアゾルであることが分かつた。
実施例 9 薄片状チタニアゾルの合成
実施例 6で得られた試料 F 0. 5 gを水酸化テトラプチルァンモニゥム水溶液 1 00cm;i (濃度: 0. 1 6mol dm 3) に加え、 シヱ一カーで 1 50回転 Z分程度 の振盪を 1日間行うことにより、 透明感のある乳白色のゾル (試料 I) が得られ た。
試料 Iをしばらく放置すると、 底に白色微粒子の沈降がわずかに認められた。 シェーカーによる振盪をさらに 2日間行つても白色微粒子の沈降量は減少しなか つたことから、 この白色微粒子は、 出発物質から持ち込まれた酸化チタン粒子で あると考えられる。
試料 Iをしばらく放置して、 沈降物をデカンテ―シヨンで取り除き、 試料 Gと 同様に、 X線回折測定、 および走査型電子顕微鏡観察をしたところ、 上記組成式 で表される厚さ 0. 75 nm、 横幅 1 mの薄片状粒子を分散してなる薄片 状チタニアゾルであることが分かつた。
比較例 1 薄片状チタニアゾルの合成 炭酸セシウム(Cs2C03)と二酸化チタン(Ti02)を Cs/Ti のモル比にして 1 Z5.3 で混合し、 十分に摩砕した。 これを白金るつぼに移し、 800 °Cで 40時間焼成 することにより、 組成式 Csx Ti2 x/4( (x=0.7 ) で表されるチタン酸アル力 リ金属塩の白色粉末を得た。 次いで、 得られた粉末 1グラムに対して、 1規定の 塩酸 1 00cm3 を接触させるベく、 3日間室温で攪拌しながら反応させた。 なお、 1日間および 2日間反応させた時点では、 セシウムの水素イオンへの置換は十分 ではなかった。 その後、 濾過、 水洗、 乾燥して、 組成式 Hx Ti2x/404 · H2 0 (x=0.7 ) で表される層状チタン酸化合物の粉末を得た。 次いで、 得られた層 状チタン酸化合物の粉末 0.5 gを水酸化テトラプチルアンモニゥム水溶液 1 00 cm3 (濃度: 0.1 mol dm—3) に加え、 シヱ一カーで 1 50回転 Z分程度の振盪を 3 日間行うことにより、 透明感のある乳白色のゾル (試料 J) を得た。
試料 Jをしばらく放置しても、 固形物の沈降は認められなかったが、 1日間お よび 2日間振盪した時点では、 しばらく放置すると固体が沈殿していることが確 認され、 分散が十分ではなかった。
試料 Gと同様に、 X線回折測定、 および走査型電子顕微鏡観察をしたところ、 試料 Jは、 上記組成式で表される厚さ 0. 75 nm. 幅及び長さ 0. 1 /mの薄 片状粒子を分散してなる薄片状チタニアゾルであることが分かった。
実施例 1 0 中空状微粉末の合成
実施例 7で得られた薄片状チタニアゾル (試料 G) をディスク式噴霧乾燥機 (大川原化工機社製 OC— 25) により乾燥した。 ディスクはピン型のものを用 い、 24000 r pmで回転させることにより噴霧を行った。 乾燥は、 200 °C の温度の熱風で行うことにより、 本発明の中空状微粉末 (試料 K) を得た。 走査 型電子顕微鏡観察により、 試料 Kは、 外径 20 /zm前後、 殻の厚さ 1 00 nm前 後、 外径 (D) と殻の厚さ (T) の比 (DZT) 力 200前後の中空状微粉末で あつた。
試料 K5 gをイオン交換水 95 gに懸濁させ、 超音波分散を 1 0分間行い、 さ らにエチルアルコール 1 50 gを添加して、 コーティング剤を作成した。 このコ —ティング剤をスピンコータ一でガラス板に塗布し、 650 °Cの温度で 20分熱 処理を行ったところ、 透明な酸化チタン薄膜が得られた。 この酸化チタン薄膜の 分光透過率曲線を測定したところ図 5が得られ、 紫外線遮蔽能に優れることが分 かつた。 さらに、 この酸化チタン薄膜に 1 mW/ c m2 のブラックライトを照射 したところ、 水の接触角が、 照射前の 3 7度から、 3 . 4度に変化し、 超親水性 を示した。
実施例 1 1 中空状微粉末の合成
実施例 1 0で得られた試料 Kを 6 7 0 °Cの温度で 1時間熱処理することにより、 本発明の中空状微粉末 (試料し) を得た。
試料 Lの走査型電子顕微鏡写真を図 6に、 また、 試料 Lを粉碎機を用 、て故意 に破壊した物の走査型電子顕微鏡写真を図 7に、 さらに図 7の中央部分を拡大し た走査型電子顕微鏡写真を図 8に示す。 図 6および図 8より、 試料 Lは、 外径 2 0 // m前後、 殻の厚さ 1 0 0 n m前後、 外径 (D ) と殻の厚さ (T) の比 (DZ T) が 2 0 0前後の中空状微粉末であることが分かった。
実施例 1 2 薄片状酸化チタン微粉末の作成
実施例 1 0で得られた試料 Kをコロプレックスミル (アイ 'ィ一' シ一社製ス タツ ドミル 6 3 Z ) で粉砕することにより、 本発明の薄片状酸化チタン粉末 (試 料 M) を得た。 走査型電子顕微鏡観察により、 試料 Mは、 厚さ 3 0 n m前後、 幅 及び長さ 1 0 / m前後の薄片状酸化チタンであることがわかった。
試料 M 5 gをイオン交換水 1 0 0 m lに懸濁させ、 超音波分散を 1 0分間行う ことにより、 コーティング剤を作成した。 このコーティング剤をスピンコ一タ一 でガラス板に塗布し、 6 0 0 °Cの温度で 1時間熱処理を行ったところ、 透明な酸 化チタン薄膜が得られた。
実施例 1 3 薄片状酸化チタン微粉末の作成
実施例 1 1で得られた中空状微粉末 (試料し) をコロプレックスミル (アルピ ネ社製) で粉砕することにより、 本発明の薄片状酸化チタン粉末 (試料 N) を得 た。
試料 Nの電子顕微鏡写真を図 9に示す。 図 9より、 試料 Gは、 厚さ 3 O n m前 後、 幅及び長さ 1 0 m前後の薄片状酸化チタンが、 二次凝集のほとんどない状 態で分散していることがわかる。
比較例 2 板状酸化チタン粉末の作成 実施例 7の薄片状チタニアゾル (試料 G ) を坩堝に入れ、 電気炉にて 6 5 0 °C の温度で 1時間乾燥、 熱処理し、 次いでコロプレックスミル (アルピネ社製) を 用いて粉砕することにより、 酸化チタン粉末 (試料 0) を得た。
試料 0の電子顕微鏡写真を図 1 0に示す。 図 1 0より、 試料 0は、 厚さ 3 0 0 n m前後の板状粒子とみられる。
試験例 1
試料 、 N、 0を下記製法にて粉末状ファンデーションに仕上げ、 化粧料し n、 oを得た。 タルク 1 5 0
マイ力 2 5 0
力オリン 5 0
s¾斗 3 8 0
二酸化チタン 2 0
ステアリン酸亜鉛 1 0
ポリメタクリル酸メチル粉末 3 0
スクヮラン 5 0
流動パラフィ ン 1 0
酢酸ラノ リン 1 0
トリイソォクタン酸グリセリン 2 0
ミ リスチン酸ォクチルドデシル 2 0
(製法)
( 1 ) から (7 ) をヘンシヱルミキサーで混合する。 これに、 Ί 0 °Cで加熱溶 解した (8 ) から (1 2 ) を加え、 自動乳鉢で十分に混合した後、 篩を通す。 評価
化粧料し n、 0について、 実際、 使用した際の肌での伸びと透明感を、 1 0 名のパネラーが 1 0点満点で採点した。 伸びまたは透明感が優れているほど高い 得点をつけた。 1 0名の採点を平均し、 表 4および 5に示す結果を得た。 すなわ ち、 本発明の方法により得られた薄片状酸化チタンは、 化粧料にしたときの肌で の伸びや透明感に優れていることが明らかになった。
(表 4 ) 中空状微粉末を配合した化粧料の評価結果
Figure imgf000025_0001
(表 5 ) 薄片状酸化チタン微粉末及び板状酸化チタン粉末を 配合した化粧料の評価結果
Figure imgf000025_0002
試験例 2
試料 L及び比較試料として市販のシ一ド粒子用シリカガラスビーズ (平均粒子 径 2 0 / m、 平均厚み 1 /m) を用い、 粒子イメージ流速計 FLOW MA P (D ANT EC社製) による角型水槽内水流測定試験を行った。 一辺 1 0 cm の透明角型水槽に、 水 8 0 0 cm3 をいれ、 シ一ド粒子として、 試料 L又は巿販 のシード粒子用シリカビーズを 0. 0 1 g添加し、 マグネティックスタラ一で撹 拌した。 水槽上部より YAGパルスレーザ一を照射し、 水槽側面から見た粒子の 散乱光イメージを 0. 1 秒間隔で CCDカメラによって読み取り、 これを画像 処理して水槽側面から見た水流べク トルを計算した。 試料 Lを用いた場合の散乱 光イメージ写真及び計算された水流べク トル図をそれぞれ図 1 1、 図 1 2に示し た。 また、 比較試料としてシリカビーズを用いた場合の散乱光イメージ写真およ び計算された水流べク トル図をそれぞれ図 1 3、 図 1 4に示した。 比較試料をシ ード粒子とした測定では、 散乱イメージが不明瞭であり、 水流べク トルが乱雑に なっている。 このような乱れは、 通常の液体の流れ場ではありえないことから、 正確な流体計測がなされなかったことがわかる。 これに対し、 試料 Lをシード粒 子とした測定では、 粒子の散乱イメージが明瞭で、 水流べク トルの配列がなめら 力、な流線形を描いており、 正確な測定がなされたことがわかる。 すなわち、 本発 明の中空状微粉末は、 光散乱性に優れたシード粒子として、 精度の高い流体計測 に有用であることがわかった。
産業上の利用可能性
本発明の中空状微粉末及び本発明により得られる薄片状酸化チタン微粉末は、 分散性に優れ、 顔料、 塗料、 ィ匕粧料、 コーティング剤またナイロンなどの樹脂や 白色紙などへの添加材、 触媒などの光機能性材料、 さらに紫外線遮蔽材料として 有用なものである。
さらに、 本発明の新規なチタン酸混合アルカリ金属塩、 層状チタン酸化合物、 薄片状チタニアゾルは、 上記微粉末を工業的に有利に製造するのに有用である。

Claims

請求の範囲
1. 酸化チタン殻を有する中空状微粉末。
2. 酸化チタン殻の外径 (D) が 0. 1〜5 0 0 0〃m、 厚さ (T) 力く 1 n m〜 1 0 0〃 mである請求項 1に記載の中空状微粉末。
3. 酸化チタン殻の外径 (D) と厚さ (T) の比 (DZT) が 5 0〜5 0 0 0である請求項 1記載の中空状微粉末。
4. 薄片状チタニアゾルを噴霧乾燥する工程を含む請求項 1記載の中空状微 粉末の製造方法。
5. 薄片状チタニアゾルの粘度が 5〜 1 0 0 0 0 c Pである請求項 4記載の 中空状微粉末の製造方法。
6. 薄片状チタニアゾルが組成式
T i 04 <4x 3) -
(式中の Xは 0. 5 7〜 0である) で表される薄片状粒子の分散物を含む請 求項 4記載の中空状微粉末の製造方法。
7. 組成式
T i 2x/3 04 (4 x/3) -
(式中の Xは 0. 5 7〜 0である) で表される薄片状粒子の分散物を含む薄 片状チタニアゾル。
8. 薄片状チタニアゾルが厚さが 0. 5〜 1 nm、 幅及び長さが 0. 1〜3
0 n mの薄片状粒子の分散物を含む請求項 4記載の中空状微粉末の製造方法。
9. 噴霧乾燥した後、 1 0 0〜8 0 0 °Cの温度で熱処理する工程をさらに含 む請求項 4記載の中空状微粉末の製造方法。
1 0. 薄片状チタニアゾルが下記の工程を含む方法により製造されたものであ る請求項 4記載の中空状微粉末の製造方法;
アル力リ金属酸化物または加熱によりアル力リ金属酸化物に分解される化合物 と、 酸化チタンまたは加熱により酸化チタンを生ずる化合物とを混合し、 焼成し てチタン酸アル力リ金属塩を得る工程;該チタン酸アル力リ金属塩を酸水溶液と 接触させて層状チタン酸化合物を得る工程;および該層状チタン酸化合物を塩基 物質の共存下で液媒体中に分散させて薄片状チタニアゾルを得る工程。
1 1. チタン酸アルカリ金属塩を得る工程が M2 0及び M' 20 (M, M, は各 各相違するアルカリ金属である) で表されるアルカリ金属酸化物、 または加熱に より各々 M2 0及び M' 20に分解される各化合物を、 二酸化チタンまたは加熱に より二酸化チタンを生ずる化合物と、 M/M' ZT iのモル比で 3Z1/5から 3/1/1 1の割合で混合し、 これを 5 0 0 °C〜1 1 0 0°Cの温度で焼成するェ 程を含む請求項 1 0に記載の中空状微粉末の製造方法。
1 2. チタン酸アルカリ金属塩が組成式
M [Μ' x/3Ti2χ/3]04
(式中の M、 M' は各々相違するアルカリ金属であり、 Xは 0. 5 0〜1. 0で ある) で表される斜方晶の層状構造を有するチタン酸混合アル力リ金属塩である 請求項 1 0記載の中空状微粉末の製造方法。
1 3. 組成式
Figure imgf000028_0001
(式中の M、 M' は各々相違するアルカリ金属であり、 Xは 0. 5 0〜し 0で ある) で表される斜方晶の層状構造を有するチタン酸混合アル力リ金属塩。
1 4. 層状チタン酸化合物が組成式
Figure imgf000028_0002
(式中 χは 0. 5 0〜 0であり、 η は 0〜2である) で表される斜方晶の層 状構造を有する化合物である請求項 1 0記載の中空状微粉末の製造方法。
1 5. 組成式
Η4χ/3Τ — χ/304 · nH20
(式中 χは 0. 5 0〜1. 0であり、 η は 0〜2である) で表される斜方晶の層 状構造を有する層状チタン酸化合物。
1 6. 請求項 1記載の中空状微粉末を粉砕してなる薄片状酸化チタン微粉末。
1 7. 薄片状酸化チタン微粉末の大きさが、 厚さ 1〜1 0 0 nm、 幅及び長さ 0. 1〜 5 0 0〃 mである請求項 1 6記載の薄片状酸化チタン微粉末。
1 8. 請求項 1記載の中空状微粉末を粉碎する工程を含む薄片状酸化チタン微 粉末の製造方法。
1 9. 粉砕する工程の前及び/又は後に 1 0 0~ 8 0 0 °Cの温度で熱処理する 工程をさらに含む請求項 1 8記載の薄片状酸化チタン微粉末の製造方法。
2 0. 請求項 1記載の中空状微粉末または請求項 1 6記載の薄片状酸化チタン 微粉末を配合してなる化粧料。
2 1. 請求項 1記載の中空状微粉末からなる流体計測システム用シード粒子。
PCT/JP1998/003918 1997-09-02 1998-09-02 Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres WO1999011574A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/516,176 US8163386B1 (en) 1997-09-02 1998-09-02 Fine hollow powder thin flaky titanium oxide powder obtained by pulverization of the fine hollow powder and processes for producing the same
EP98941672A EP1033347B2 (en) 1997-09-02 1998-09-02 Hollow fine powder, flaky fine titanium oxide powder prepared by pulverizing said hollow fine powder, and process for preparing the both
DE69837721T DE69837721T3 (de) 1997-09-02 1998-09-02 HERSTELLUNG VON FEINEM, SCHUPPENFÖRMIGEN TITANDIOXYDPULVER DURCH PULVERISATION VON FEINEM, HOHLEN TiO2-PULVER UND HERSTELLUNGSVERFAHREN FÜR BEIDE PULVER
CA002300811A CA2300811C (en) 1997-09-02 1998-09-02 Fine hollow powder, thin flaky titanium oxide powder obtained by pulverization of the fine hollow powder and processes for producing the same
JP2000508621A JP3611303B2 (ja) 1997-09-02 1998-09-02 中空状微粉末、該中空状微粉末を粉砕してなる薄片状酸化チタン微粉末およびそれらの製造方法
AU89963/98A AU743389B2 (en) 1997-09-02 1998-09-02 Fine hollow powder,thin flaky titanium oxide powder obtained by pulverization of the fine hollow powder and processes for producing the same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP25426897 1997-09-02
JP25426797 1997-09-02
JP9/254267 1997-09-02
JP9/254266 1997-09-02
JP9/254268 1997-09-02
JP25426697 1997-09-02
JP9/364908 1997-12-18
JP36490997 1997-12-18
JP9/364909 1997-12-18
JP36490897 1997-12-18
JP3054298 1998-01-27
JP3054198 1998-01-27
JP10/30542 1998-01-27
JP10/30541 1998-01-27

Publications (1)

Publication Number Publication Date
WO1999011574A1 true WO1999011574A1 (fr) 1999-03-11

Family

ID=27564254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003918 WO1999011574A1 (fr) 1997-09-02 1998-09-02 Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres

Country Status (10)

Country Link
US (4) US8163386B1 (ja)
EP (1) EP1033347B2 (ja)
JP (1) JP3611303B2 (ja)
KR (1) KR100443451B1 (ja)
CN (1) CN1330577C (ja)
AT (1) ATE361263T1 (ja)
AU (1) AU743389B2 (ja)
CA (1) CA2300811C (ja)
DE (1) DE69837721T3 (ja)
WO (1) WO1999011574A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110535A3 (en) * 1999-12-17 2001-07-11 Kao Corporation Cosmetic composition containing a hollow metal oxide plate powder
JP2002338424A (ja) * 2001-05-23 2002-11-27 Kao Corp 化粧料
WO2003037797A1 (fr) * 2001-10-29 2003-05-08 Otsuka Chemical Co., Ltd. Titanate de potassium de lithium de type repidocrocite, procede de fabrication et matiere de frottement
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
JP2006182588A (ja) * 2004-12-27 2006-07-13 Kao Corp 層状チタン酸ナノシートの製造方法
JP2006206426A (ja) * 2004-12-27 2006-08-10 Kao Corp 層状チタン酸ナノシート有機溶媒分散液
WO2006098309A1 (ja) 2005-03-16 2006-09-21 Otsuka Chemical Co., Ltd. 光輝性顔料水性媒体分散液および光輝性塗料
JP2007039373A (ja) * 2005-08-03 2007-02-15 Pola Chem Ind Inc 毛穴の補正作用を有する下地化粧料に好適な化粧料
JP2007045772A (ja) * 2005-08-11 2007-02-22 Pola Chem Ind Inc 夏用の化粧料
WO2007023679A1 (ja) 2005-08-25 2007-03-01 Otsuka Chemical Co., Ltd. 耐光性チタン酸塗膜及び耐光性チタン酸膜コーティング樹脂基板
WO2007062356A1 (en) * 2005-11-22 2007-05-31 Altairnano, Inc. Method for manufacturing high surface area nano-porous catalyst and catalyst support structures
WO2007114284A1 (ja) * 2006-03-31 2007-10-11 Ishihara Sangyo Kaisha, Ltd. 摩擦材およびその製造方法
JP2007291090A (ja) * 2006-03-31 2007-11-08 Kose Corp 粉末化粧料
WO2007138967A1 (ja) 2006-05-30 2007-12-06 Otsuka Chemical Co., Ltd. 顆粒状板状チタン酸塩、その製造方法及び顆粒状板状チタン酸塩を含有する樹脂組成物
WO2008023625A1 (fr) 2006-08-21 2008-02-28 Otsuka Chemical Co., Ltd. Agent compatibilisant pour alliage de polymère, alliage de polymère et lot-maître pour la préparation d'alliage de polymère
JP2008105943A (ja) * 2001-07-20 2008-05-08 Altairnano Inc チタン酸リチウムの製造方法
WO2008108197A1 (ja) 2007-03-02 2008-09-12 Otsuka Chemical Co., Ltd. チタン酸アルカリ金属塩固着チタン酸塩、その製造方法及びチタン酸アルカリ金属塩固着チタン酸塩を含有する樹脂組成物
JP2008273836A (ja) * 2001-08-20 2008-11-13 Otsuka Chemical Co Ltd 層状チタン酸、薄片状チタン酸、薄片状酸化チタン及び薄片状チタン酸の製造方法
CN100434517C (zh) * 2006-07-07 2008-11-19 中国科学院上海硅酸盐研究所 一种纳米片状氧化钛可逆组装酶的方法
JP2009029645A (ja) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd 薄片状含水酸化チタン及びその製造方法並びに薄片状酸化チタン
WO2009031622A1 (ja) 2007-09-07 2009-03-12 Ishihara Sangyo Kaisha, Ltd. 薄片状酸化チタンを配合した有機溶媒分散体及びその製造方法並びにそれを用いた酸化チタン膜及びその製造方法
US7629063B2 (en) 2004-01-16 2009-12-08 Otsuka Chemical Co., Ltd. Flame retardant and flame-retardant resin composition
CN101111546B (zh) * 2005-01-31 2010-05-19 大塚化学株式会社 涂有钛酸膜的树脂基板的制造方法
WO2011099433A1 (ja) * 2010-02-12 2011-08-18 日本碍子株式会社 流体観察方法及び流れ観察用流体
JP2012224588A (ja) * 2011-04-21 2012-11-15 Nippon Menaade Keshohin Kk 化粧料
US8343455B2 (en) 2005-08-25 2013-01-01 Otsuka Chemical Co., Ltd. Flaky titanic acid having polymerizable functional groups, suspension of the same, and coating films made therefrom
JP2013023676A (ja) * 2011-07-26 2013-02-04 General Co Ltd インクジェット用白インク
JP5173424B2 (ja) * 2005-09-14 2013-04-03 株式会社コーセー 化粧料
JP2018517692A (ja) * 2016-02-02 2018-07-05 Cqv株式会社Cqv Co., Ltd. 紫外線遮断効果に優れた化粧品及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033177A1 (ja) * 2004-09-24 2006-03-30 Kiichirou Sumi チタンボールの製造方法及びチタンボール
TW200631899A (en) 2005-03-09 2006-09-16 Tokai Ryokaku Tetsudo Kk Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP4979211B2 (ja) * 2005-08-25 2012-07-18 大塚化学株式会社 複合チタン酸塗膜及び複合チタン酸膜コーティング樹脂基板
JP4559948B2 (ja) * 2005-09-30 2010-10-13 花王株式会社 層状チタン酸ナノシート分散液
WO2013125724A1 (ja) 2012-02-21 2013-08-29 帝人株式会社 鱗片状の金属酸化物微粒子からなるトップコート層を有する積層体
JP5985217B2 (ja) * 2012-03-12 2016-09-06 石原産業株式会社 薄片状チタン酸を含む塗膜及びその製造方法
TWI513794B (zh) * 2013-06-19 2015-12-21 Hon Hai Prec Ind Co Ltd 膠帶
WO2016112210A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. High entropy alloys with non-high entropy second phases
CA2973155A1 (en) * 2015-03-11 2016-09-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses
CN108605101B (zh) * 2016-01-25 2021-07-06 肖特玻璃科技(苏州)有限公司 用于参数的光学检测的系统
CN107496187A (zh) * 2017-08-22 2017-12-22 上海蔻沣生物科技有限公司 一种贴肤性极好疏水疏油的化妆品颜料粉末及其制备方法和应用
CN115247006B (zh) * 2021-11-12 2023-03-24 立邦涂料(中国)有限公司 一种轻质复合钛白粉及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223606A (ja) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd 金属酸化物中空超微小球体の製造方法
JPH05154374A (ja) * 1991-12-11 1993-06-22 Kawatetsu Mining Co Ltd 中空粒子及びその製造方法
JPH06142491A (ja) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd 複合粒子、中空粒子とそれらの製造方法
JPH06285358A (ja) * 1993-04-06 1994-10-11 Kao Corp 徐放性金属酸化物中空微粒子及びその製造方法
JPH0925123A (ja) * 1995-07-10 1997-01-28 Natl Inst For Res In Inorg Mater チタニアゾルとその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325242A (en) 1967-06-13 Process for dyeing and printing with reactive dyestuffs
DE1278411B (de) * 1963-06-14 1968-09-26 Basf Ag Verfahren zur Herstellung von Katalysatoren oder Katalysatortraegern in Form von Hohlkugeln
US3331658A (en) * 1963-11-14 1967-07-18 Du Pont Process for producing fibrous alkali metal titanates
US3395203A (en) * 1965-07-06 1968-07-30 Koppers Co Inc Method of making titanium dioxide nacreous pigment
US3325243A (en) * 1965-09-29 1967-06-13 Bichowsky Foord Von Process for the preparation of a titanate containing lithium and potassium
US4239646A (en) * 1974-09-23 1980-12-16 Champion International Corporation Microspheric opacifying agents and method for their production
US4349456A (en) * 1976-04-22 1982-09-14 Minnesota Mining And Manufacturing Company Non-vitreous ceramic metal oxide microcapsules and process for making same
US5212143A (en) * 1978-08-28 1993-05-18 Torobin Leonard B Hollow porous microspheres made from dispersed particle compositions
US4192691A (en) * 1978-10-26 1980-03-11 The Mearl Corporation Metal oxide platelets as nacreous pigments
US4450184A (en) * 1982-02-16 1984-05-22 Metco Incorporated Hollow sphere ceramic particles for abradable coatings
US4448599A (en) * 1982-03-22 1984-05-15 Atlantic Richfield Company Hollow spheres produced from natural zeolites
US4546090A (en) * 1983-04-27 1985-10-08 Minnesota Mining And Manufacturing Company Hollow zeolite-containing particles useful as refining catalysts
US4564556A (en) * 1984-09-24 1986-01-14 Minnesota Mining And Manufacturing Company Transparent non-vitreous ceramic particulate
JPS61118311A (ja) 1984-11-12 1986-06-05 Teikoku Kako Kk 球状酸化チタンを含有してなるメイクアツプ化粧料
JPH0662387B2 (ja) * 1985-01-11 1994-08-17 住友化学工業株式会社 化粧料
US5427771A (en) * 1987-10-28 1995-06-27 L'oreal Transparent cosmetic composition that reflects infrared radiation based on titanium dioxide flakes and its use for protecting the human epidermis against infrared radiation
US4985380A (en) * 1989-04-17 1991-01-15 Minnesota Mining And Manufacturing Method of making thin refractory flakes
CA2061910C (en) 1991-03-01 1999-03-16 Masamichi Ipponmatsu Method for measuring the flow of fluids
JPH0688786B2 (ja) 1991-05-10 1994-11-09 科学技術庁無機材質研究所長 斜方晶の層状構造を有するチタン酸及びその製造方法
JPH05229900A (ja) 1992-02-20 1993-09-07 Natl Inst For Res In Inorg Mater HxMyTi2−yO4・nH2Oで示される斜方晶系の層状チタン酸板状結晶の製造法
JP3248278B2 (ja) 1992-08-31 2002-01-21 ソニー株式会社 光磁気記録媒体
KR100292362B1 (ko) * 1992-12-11 2001-11-14 세야 히로미치 결정성미소중공구의제조방법및그에의해제조된미소중공구
JP2803961B2 (ja) * 1993-04-05 1998-09-24 株式会社神戸製鋼所 密閉式混練機
US5622682A (en) 1994-04-06 1997-04-22 Atmi Ecosys Corporation Method for concentration and recovery of halocarbons from effluent gas streams
US5492870A (en) * 1994-04-13 1996-02-20 The Board Of Trustees Of The University Of Illinois Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology
DE19513056B4 (de) * 1995-04-07 2005-12-15 Zimmer Ag Titanhaltige Katalysatoren und Verfahren zur Herstellung von Polyester
JP2979132B2 (ja) * 1995-08-29 1999-11-15 科学技術庁無機材質研究所長 薄片状酸化チタン
JPH09132514A (ja) 1995-11-10 1997-05-20 Catalysts & Chem Ind Co Ltd 薄片状微粉末および化粧料
WO1997030952A1 (fr) 1996-02-21 1997-08-28 Mikuni Corporation Granules ceramiques
JP2958440B2 (ja) 1996-02-23 1999-10-06 科学技術庁無機材質研究所長 薄片状酸化チタンおよびその集合多孔体とそれらの製造方法
DE19618564A1 (de) * 1996-05-09 1997-11-13 Merck Patent Gmbh Plättchenförmiges Titandioxidpigment
EP0918045A1 (en) * 1997-02-18 1999-05-26 Mikuni Corporation Ceramic granules
US6004525A (en) * 1997-10-06 1999-12-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Hollow oxide particle and process for producing the same
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
JP2002087818A (ja) * 2000-09-14 2002-03-27 Sumitomo Chem Co Ltd 酸化チタンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223606A (ja) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd 金属酸化物中空超微小球体の製造方法
JPH05154374A (ja) * 1991-12-11 1993-06-22 Kawatetsu Mining Co Ltd 中空粒子及びその製造方法
JPH06142491A (ja) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd 複合粒子、中空粒子とそれらの製造方法
JPH06285358A (ja) * 1993-04-06 1994-10-11 Kao Corp 徐放性金属酸化物中空微粒子及びその製造方法
JPH0925123A (ja) * 1995-07-10 1997-01-28 Natl Inst For Res In Inorg Mater チタニアゾルとその製造方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110535A3 (en) * 1999-12-17 2001-07-11 Kao Corporation Cosmetic composition containing a hollow metal oxide plate powder
JP2002338424A (ja) * 2001-05-23 2002-11-27 Kao Corp 化粧料
JP2008105943A (ja) * 2001-07-20 2008-05-08 Altairnano Inc チタン酸リチウムの製造方法
JP4671998B2 (ja) * 2001-07-20 2011-04-20 アルテアナノ インコーポレイテッド チタン酸リチウムの製造方法
JP2008273836A (ja) * 2001-08-20 2008-11-13 Otsuka Chemical Co Ltd 層状チタン酸、薄片状チタン酸、薄片状酸化チタン及び薄片状チタン酸の製造方法
US7455826B2 (en) 2001-08-20 2008-11-25 Otsuka Chemical Co., Ltd. Layered titanic acid, lamellar titanic acid, lamellar titanium oxide and method for producing lamellar titanic acid
WO2003037797A1 (fr) * 2001-10-29 2003-05-08 Otsuka Chemical Co., Ltd. Titanate de potassium de lithium de type repidocrocite, procede de fabrication et matiere de frottement
US7078009B2 (en) 2001-10-29 2006-07-18 Otsuka Chemical Co., Ltd. Lepidocrocite type lithium potassium titanate, method for preparation thereof, and friction material
US7629063B2 (en) 2004-01-16 2009-12-08 Otsuka Chemical Co., Ltd. Flame retardant and flame-retardant resin composition
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
JP2006206426A (ja) * 2004-12-27 2006-08-10 Kao Corp 層状チタン酸ナノシート有機溶媒分散液
JP4504177B2 (ja) * 2004-12-27 2010-07-14 花王株式会社 層状チタン酸ナノシートの製造方法
JP2006182588A (ja) * 2004-12-27 2006-07-13 Kao Corp 層状チタン酸ナノシートの製造方法
CN101111546B (zh) * 2005-01-31 2010-05-19 大塚化学株式会社 涂有钛酸膜的树脂基板的制造方法
US7767264B2 (en) 2005-01-31 2010-08-03 Otsuka Chemical Co., Ltd. Method for producing resin substrate coated with titanic acid film
WO2006098309A1 (ja) 2005-03-16 2006-09-21 Otsuka Chemical Co., Ltd. 光輝性顔料水性媒体分散液および光輝性塗料
TWI399412B (zh) * 2005-03-16 2013-06-21 Otsuka Chemical Co Ltd 光亮性顏料水性媒體分散液及光亮性塗料
US7846249B2 (en) 2005-03-16 2010-12-07 Otsuka Chemical Co., Ltd. Pigment aqueous-medium dispersion and coating material
JP4731242B2 (ja) * 2005-08-03 2011-07-20 ポーラ化成工業株式会社 毛穴の補正作用を有する下地化粧料に好適な化粧料
JP2007039373A (ja) * 2005-08-03 2007-02-15 Pola Chem Ind Inc 毛穴の補正作用を有する下地化粧料に好適な化粧料
JP2007045772A (ja) * 2005-08-11 2007-02-22 Pola Chem Ind Inc 夏用の化粧料
WO2007023679A1 (ja) 2005-08-25 2007-03-01 Otsuka Chemical Co., Ltd. 耐光性チタン酸塗膜及び耐光性チタン酸膜コーティング樹脂基板
US8343455B2 (en) 2005-08-25 2013-01-01 Otsuka Chemical Co., Ltd. Flaky titanic acid having polymerizable functional groups, suspension of the same, and coating films made therefrom
JP5173424B2 (ja) * 2005-09-14 2013-04-03 株式会社コーセー 化粧料
WO2007062356A1 (en) * 2005-11-22 2007-05-31 Altairnano, Inc. Method for manufacturing high surface area nano-porous catalyst and catalyst support structures
WO2007114284A1 (ja) * 2006-03-31 2007-10-11 Ishihara Sangyo Kaisha, Ltd. 摩擦材およびその製造方法
JP2007291090A (ja) * 2006-03-31 2007-11-08 Kose Corp 粉末化粧料
KR101353176B1 (ko) * 2006-05-30 2014-01-17 오츠카 가가쿠 가부시키가이샤 과립상 판상 티탄산염, 그의 제조 방법 및 과립상 판상 티탄산염을 함유하는 수지 조성물
WO2007138967A1 (ja) 2006-05-30 2007-12-06 Otsuka Chemical Co., Ltd. 顆粒状板状チタン酸塩、その製造方法及び顆粒状板状チタン酸塩を含有する樹脂組成物
JP2007321009A (ja) * 2006-05-30 2007-12-13 Otsuka Chemical Co Ltd 顆粒状板状チタン酸塩、その製造方法及び顆粒状板状チタン酸塩を含有する樹脂組成物
CN100434517C (zh) * 2006-07-07 2008-11-19 中国科学院上海硅酸盐研究所 一种纳米片状氧化钛可逆组装酶的方法
US8258242B2 (en) 2006-08-21 2012-09-04 Otsuka Chemical Co., Ltd. Compatibilizing agent for polymer alloy, polymer alloy, and master batch for preparation of polymer alloy
WO2008023625A1 (fr) 2006-08-21 2008-02-28 Otsuka Chemical Co., Ltd. Agent compatibilisant pour alliage de polymère, alliage de polymère et lot-maître pour la préparation d'alliage de polymère
WO2008108197A1 (ja) 2007-03-02 2008-09-12 Otsuka Chemical Co., Ltd. チタン酸アルカリ金属塩固着チタン酸塩、その製造方法及びチタン酸アルカリ金属塩固着チタン酸塩を含有する樹脂組成物
JP2009029645A (ja) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd 薄片状含水酸化チタン及びその製造方法並びに薄片状酸化チタン
WO2009031622A1 (ja) 2007-09-07 2009-03-12 Ishihara Sangyo Kaisha, Ltd. 薄片状酸化チタンを配合した有機溶媒分散体及びその製造方法並びにそれを用いた酸化チタン膜及びその製造方法
JP5659371B2 (ja) * 2007-09-07 2015-01-28 石原産業株式会社 薄片状酸化チタンを配合した有機溶媒分散体及びその製造方法並びにそれを用いた酸化チタン膜及びその製造方法
US9187339B2 (en) 2007-09-07 2015-11-17 Ishihara Sangyo Kaisha, Ltd. Organic solvent dispersion containing flaky titanium oxide, method for production of the dispersion, titanium oxide film using the dispersion, and method for production of the titanium oxide film
JP2011164021A (ja) * 2010-02-12 2011-08-25 Ngk Insulators Ltd 流体観察方法及び流れ観察用流体
WO2011099433A1 (ja) * 2010-02-12 2011-08-18 日本碍子株式会社 流体観察方法及び流れ観察用流体
US8692982B2 (en) 2010-02-12 2014-04-08 Ngk Insulators, Ltd. Method for observing fluid and fluid flow observation
JP2012224588A (ja) * 2011-04-21 2012-11-15 Nippon Menaade Keshohin Kk 化粧料
JP2013023676A (ja) * 2011-07-26 2013-02-04 General Co Ltd インクジェット用白インク
JP2018517692A (ja) * 2016-02-02 2018-07-05 Cqv株式会社Cqv Co., Ltd. 紫外線遮断効果に優れた化粧品及びその製造方法

Also Published As

Publication number Publication date
US20080008645A1 (en) 2008-01-10
CA2300811A1 (en) 1999-03-11
CN1269768A (zh) 2000-10-11
KR100443451B1 (ko) 2004-08-09
US7943114B2 (en) 2011-05-17
US7947249B2 (en) 2011-05-24
AU743389B2 (en) 2002-01-24
DE69837721D1 (de) 2007-06-14
ATE361263T1 (de) 2007-05-15
US7531160B2 (en) 2009-05-12
EP1033347A1 (en) 2000-09-06
JP3611303B2 (ja) 2005-01-19
EP1033347B2 (en) 2012-06-20
EP1033347A4 (en) 2002-01-30
US20080003176A1 (en) 2008-01-03
US20080031807A1 (en) 2008-02-07
AU8996398A (en) 1999-03-22
US8163386B1 (en) 2012-04-24
DE69837721T3 (de) 2012-12-06
EP1033347B1 (en) 2007-05-02
CN1330577C (zh) 2007-08-08
CA2300811C (en) 2006-03-21
DE69837721T2 (de) 2008-01-10
KR20010023471A (ko) 2001-03-26

Similar Documents

Publication Publication Date Title
WO1999011574A1 (fr) Poudre fine creuse, poudre d&#39;oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres
JP5086186B2 (ja) 層状チタン酸、薄片状チタン酸、薄片状酸化チタン及び薄片状チタン酸の製造方法
TWI504568B (zh) A petaloid cerium oxide powder, a method for producing the same, and a cosmetic
JP2011184274A (ja) 薄片状チタン酸化物を配合した有機溶媒分散体及びその製造方法並びにそれを用いたチタン酸化物薄膜及びその製造方法
JP2004511611A (ja) 向上した色素接着力を有する効果顔料
EP2206682B1 (en) Organic solvent dispersion containing flaky titanium oxide, method for production of the dispersion, titanium oxide film using the dispersion, and method for production of the titanium oxide film
CA3091321A1 (en) Flaky titanate acid and method for production thereof, and use thereof
JP2000072432A (ja) シリカ−金属酸化物微粒子複合体およびそれに使用するシリカ凝集体粒子の製造方法
JPH10251018A (ja) 導電性酸化スズ微粉末及び導電性酸化スズゾルの製造方法
JP2020023419A (ja) 薄片状チタン酸の有機溶剤分散体およびその製造方法並びにその用途
JPH09124319A (ja) 高隠蔽力を有する二酸化チタン粉末およびその製造方法
CN108946796A (zh) 一种掺杂钛酸盐及其制备方法
JPH09227122A (ja) 薄片状酸化チタンおよびその集合多孔体とそれらの製造方法
JP2007055858A (ja) 耐光性チタン酸塗膜及び耐光性チタン酸膜コーティング樹脂基板
JP2010132493A (ja) 複合粉体及びその製造方法
JP2012193048A (ja) 酸化チタン微粒子の製造方法、およびその製造方法によって製造される酸化チタン微粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98808797.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 89963/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2300811

Country of ref document: CA

Ref document number: 2300811

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998941672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007002116

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09516176

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998941672

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002116

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 89963/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007002116

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998941672

Country of ref document: EP