WO2011099433A1 - 流体観察方法及び流れ観察用流体 - Google Patents

流体観察方法及び流れ観察用流体 Download PDF

Info

Publication number
WO2011099433A1
WO2011099433A1 PCT/JP2011/052477 JP2011052477W WO2011099433A1 WO 2011099433 A1 WO2011099433 A1 WO 2011099433A1 JP 2011052477 W JP2011052477 W JP 2011052477W WO 2011099433 A1 WO2011099433 A1 WO 2011099433A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
observation
flow
inorganic particles
viscosity
Prior art date
Application number
PCT/JP2011/052477
Other languages
English (en)
French (fr)
Inventor
邦彦 吉岡
聖志 石橋
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP11742177.6A priority Critical patent/EP2535723B1/en
Publication of WO2011099433A1 publication Critical patent/WO2011099433A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape

Definitions

  • the present invention relates to a fluid observation method and a flow observation fluid.
  • Particle Image Fluid Velocity Measurement Particle Image Velocity
  • PV Particle Image Velocity
  • the present invention has been made in view of such a problem, and can more reliably observe the moving state of a fluid containing inorganic particles.
  • a main object is to provide a fluid observation method and a flow observation fluid.
  • the present inventors added inorganic particles having a planar surface to the fluid, and when the fluid is irradiated with light, the state of movement of the fluid containing the inorganic particles is determined. The inventors have found that it can be observed more reliably and have completed the present invention.
  • the fluid observation method of the present invention is a fluid observation method based on the PIV (Particle Image Velocimetry) method, for flow observation including an observation target inorganic particle having a planar surface, an observation target dispersion medium, and a viscosity modifier. And a photographing step of photographing the inorganic particle image obtained through the flow observation fluid by irradiating the flow observation fluid flowing through the flow path with light.
  • PIV Particle Image Velocimetry
  • the flow observation fluid of the present invention is a flow observation fluid observed by the PIV method, and includes observation target inorganic particles having a planar surface, an observation target dispersion medium, and a viscosity modifier.
  • the fluid observation method and the flow observation fluid of the present invention can more reliably observe the moving state of a fluid containing inorganic particles.
  • the flow observation fluid contains a dispersion medium to be observed and a viscosity modifier that adjusts the viscosity of the fluid, and the concentration of inorganic particles by the dispersion medium and the viscosity by the viscosity modifier can be adjusted. For example, it is possible to further improve translucency.
  • the flow observation fluid contains observation target inorganic particles having a flat surface, when the light is irradiated, the flat portion shields the light or reflects the light. It is inferred that the visibility will increase. Therefore, the moving state of the fluid containing inorganic particles can be observed more reliably.
  • the flow observation fluid may include observation target inorganic particles having no planar surface in addition to observation target inorganic particles having a planar surface.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a fluid observation apparatus 20 according to an embodiment of the present invention.
  • This fluid observation device 20 is an observation device that executes the fluid observation method of the present invention, and is formed by a fluid supply unit 21 that can control the amount of fluid supply and a transparent member that allows the fluid to pass through and performs observation. And a transmissive cell 22.
  • the fluid observation apparatus 20 includes a digital video camera 23 that is disposed above the transmission cell 22 and captures the movement of the fluid as a moving image, and a digital camera 24 that is disposed below the transmission cell 22 and captures the fluid as a still image. And a microscope 25 that can enlarge and visually check the fluid.
  • the fluid observation apparatus 20 includes a light irradiation unit 26 that irradiates light to the transmission cell 22 from above and a light irradiation unit 27 that irradiates light to the transmission cell 22 from below.
  • the flow observation fluid 30 to be observed is supplied to the permeation cell 22 by the fluid supply unit 21, and the movement state in the permeation cell 22 is observed. Next, the flow observation fluid 30 will be described.
  • the flow observation fluid 30 of the present invention is an inorganic particle-containing slurry containing observation target inorganic particles, an observation target dispersion medium, and a viscosity modifier.
  • the flow observation fluid 30 is a non-Newtonian fluid including substantially spherical inorganic particles 31 and planar inorganic particles 32 having a planar surface.
  • the inorganic particles 31 and the planar inorganic particles 32 are collectively referred to as observation target inorganic particles.
  • the planar inorganic particles 32 are included, when the flow observation fluid 30 is irradiated with light, a light-shielded image or a reflected image is easily obtained by this plane. Cheap.
  • the viscosity is adjusted by the viscosity modifier, it is possible to increase translucency by reducing the amount of inorganic particles to be observed, and it is easier to observe the movement of the inorganic particles.
  • the observation target inorganic particles contained in the flow observation fluid 30 may be, for example, ceramic particles, metal particles, glass particles, and two or more selected from these.
  • ceramic particles alumina, zirconia, YAG and Al, Zr, Mg, Y, Sc, La, Si, Na, Cu, Fe, Ca, Ni, Li, Mn, Gd, Ce, Hf, Ti, Pb And oxides such as Ba and Nb, composite oxides, carbides such as silicon carbide, nitrides such as aluminum nitride and silicon nitride, and mixtures of two or more of these.
  • the metal particles include transition metals such as molybdenum and tungsten, noble metals such as gold, silver, and platinum, and alloys thereof.
  • glass particles examples include quartz particles and borosilicate particles.
  • the components of each inorganic particle preferably have a purity of 90% or more.
  • the inorganic particles having a planar surface can be obtained, for example, by crushing a fired body obtained by molding and firing.
  • the observation target dispersion medium contained in the flow observation fluid 30 is not particularly limited as long as it disperses the dispersion aid and the binder.
  • water hydrocarbon (toluene, xylene, solvent naphtha, etc.), ether (ethylene glycol monoethyl ether, butyl carbitol, butyl carbitol acetate, etc.), alcohol (isopropanol, 1-butanol, ethanol, 2-ethylhexanol) Terpineol, ethylene glycol, glycerin, etc.), ketones (acetone, methyl ethyl ketone, etc.), esters (butyl acetate, dimethyl glutarate, triacetin, etc.), and polybasic acids (glutaric acid, etc.).
  • a mixture of an aliphatic polyvalent ester and a polybasic acid ester is also preferable.
  • This dispersion medium preferably has a total carbon number of 20 or less from the
  • the viscosity modifier contained in the flow observation fluid 30 is not particularly limited as long as the viscosity of the flow observation fluid 30 can be adjusted.
  • the viscosity modifier may be a dispersion aid or a binder.
  • a dispersion aid is used as the viscosity modifier, an effect of reducing the viscosity is obtained, and when a binder is used as the viscosity modifier, an effect of increasing the viscosity is obtained.
  • the viscosity modifier may be, for example, a sorbitan fatty acid ester, a polycarboxylic acid copolymer, a phosphoric acid ester salt compound of a polymer, an alkyl ammonium salt compound of a polymer containing an acid group, or an alkylbenzene sulfonic acid.
  • a sorbitan fatty acid ester a polycarboxylic acid copolymer
  • a phosphoric acid ester salt compound of a polymer an alkyl ammonium salt compound of a polymer containing an acid group, or an alkylbenzene sulfonic acid.
  • Sodium etc. can be illustrated.
  • the binder include cellulose derivatives (methyl cellulose, carboxymethyl cellulose, ethyl cellulose, etc.), starch, polyvinyl alcohol, polyethylene glycol, butyral resin, acrylic resin, polyamide resin, isocyanate (tolylene diisocyanate, diphenylmethane
  • the flow observation fluid 30 is solidified by, for example, casting a molding slurry containing inorganic particles and an organic compound into a mold and performing a chemical reaction between the organic compounds, for example, a chemical reaction between the dispersion medium and the gelling agent or the gelling agent. It is good also as a shaping
  • examples of the resin that is cured under predetermined conditions include a resin that is cured by mixing with a curing agent, a resin that is cured by heating, and a resin that is cured by irradiation with ultraviolet rays.
  • the flow observation fluid 30 is a pseudo flow observation that approximates the particle size of the analysis target inorganic particle and the viscosity of the flow analysis target fluid of the flow analysis target fluid including the analysis target inorganic particles and the analysis target dispersion medium. It may be a fluid for use. That is, when the flow analysis target fluid whose flow state is to be analyzed is low in light transmittance or reflectivity, for example, the flow observation fluid 30 approximating the particle size and viscosity is used as an alternative fluid, and the behavior is analyzed. It may be observed. By doing so, it is possible to pseudo-observe a fluid containing inorganic particles that cannot be observed inside.
  • the analysis target inorganic particles and the observation target inorganic particles may be the same material or different materials, but the same material is more preferable.
  • the analysis target dispersion medium and the observation target dispersion medium may be the same material or different materials, but the same material is more preferable.
  • the particle size refers to a median diameter (D50) measured using a laser beam diffraction method.
  • D50 median diameter
  • the flow observation fluid 30 as the observation target is compared with the volume ratio of the analysis target inorganic particles included in the flow analysis target fluid as the analysis target.
  • the volume ratio may be smaller. In this way, the translucency can be further improved. Further, the viscosity adjusting agent can make the flow analysis target fluid and the flow observation fluid 30 have the same viscosity even if the volume ratio is small.
  • the inorganic particles to be analyzed may be zirconia particles, and the inorganic particles to be observed may be silicon carbide particles.
  • the volume ratio of the inorganic particles to be observed is preferably 20 volume% or more and 40 volume% or less, and 25 volume% or more and 35 volume% or less with respect to the volume of the entire slurry. It is more preferable. If the volume ratio is 20% by volume or more, the number of inorganic particles is sufficient and the behavior thereof is easy to observe, and if it is 40% by volume or less, light is easily transmitted and the behavior of the inorganic particles inside the fluid is easily observed.
  • the flow observation fluid 30 preferably has a viscosity at a rotation speed of 1.5 rpm in the range of 10,000 (mPa ⁇ s) to 15000 (mPa ⁇ s) in the measurement with a B-type viscometer, preferably 11000 (mPa). More preferably, it is in the range of s) to 14000 (mPa ⁇ s). In this range, for example, the viscosity is close to the viscosity of a gel casting molding slurry, and inorganic particles of the molding slurry can be observed.
  • the flow observation fluid 30 preferably has a viscosity at a rotation speed of 3.0 rpm in a range of 6000 (mPa ⁇ s) or more and 10,000 (mPa ⁇ s) or less in the measurement with a B-type viscometer, and is 7000 (mPa More preferably, it is in the range of s) to 9000 (mPa ⁇ s).
  • the viscosity at the spindle rotation speed x (rpm) of the viscometer is ⁇ x (mPa ⁇ s)
  • the viscosity at the spindle rotation speed y (rpm) larger than the spindle rotation speed x is ⁇ y (mPa ⁇ s)
  • the viscosity ratio is defined as ⁇ x / ⁇ y.
  • the viscosity ratio eta 1.5 / eta 3.0 and viscosity eta 3.0 when the viscosity eta 1.5 and spindle rotation number when the spindle rotational speed 1.5 viscometer (rpm) 3.0 (rpm) is 1.
  • This flow observation fluid 30 includes the observation target inorganic particles having a planar surface, the observation target dispersion medium, and the viscosity modifier, so that the moving state of the fluid containing the inorganic particles can be more reliably observed. .
  • the permeation cell 22 as a flow path is a ratio Lc between the flow path width Lc ( ⁇ m) of the permeation cell 22 and the particle diameter Dp ( ⁇ m) of the observation target inorganic particles contained in the flow observation fluid 30.
  • / Dp is preferably in the range of 5 or more and 200 or less.
  • This particle diameter Dp shall mean the median diameter (D50) measured using the laser beam diffraction method.
  • the flow path width Lc refers to a short width when the width is long and short in a cross section perpendicular to the flow, and may be a typical flow path width when the width is not constant.
  • the flow path width Lc may be, for example, 1.0 ⁇ m or more and 1000 ⁇ m or less.
  • the particle size Dp of the observation target inorganic particles may be, for example, 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • the permeation cell 22 preferably has a contact angle between the wall surface of the flow path for observing the flow observation fluid 30 and the flow observation fluid 30 of 50 ° or more and 100 ° or less, and 60 ° or more and 95. It is more preferable to set it to 0 ° or less.
  • the contact angle is in the range of 80 ° to 100 °, that is, in the vicinity of 90 °, the behavior of the inorganic particles flowing in the vicinity of the center of the actual flow path (for example, the mold in the gel casting method) for flowing the fluid is observed. Therefore, it is easier to grasp the actual fluid behavior.
  • the contact angle can be obtained, for example, by dropping a droplet of the flow observation fluid 30 on the wall surface of the transmission cell 22 and measuring the angle formed by the wall surface and the surface of the droplet with a microscope or the like.
  • the wettability of the wall surface can be adjusted by coating a water repellent or a hydrophilic agent.
  • the material of the transmission cell 22 is not particularly limited as long as it is transparent, but examples thereof include glass, acrylic, a resin such as PET, and silicone.
  • This fluid observation method can be performed using the fluid observation apparatus 20.
  • This fluid observation method may include a flow observation fluid preparation step and a photographing step of photographing the particle image by circulating the prepared flow observation fluid.
  • the flow observation fluid 30 including the observation target inorganic particles having a planar surface, the observation target dispersion medium, and the viscosity modifier is prepared.
  • the flow observation fluid 30 to be prepared those described above can be used as appropriate.
  • a pseudo flow observation fluid that approximates the particle size of the analysis target inorganic particles in the flow analysis target fluid and the viscosity of the flow analysis target fluid may be prepared.
  • the flow analysis target fluid is a molding slurry used for the gel casting method, and includes the analysis target inorganic particles (zirconia particles) and the analysis target dispersion medium (mixture of aliphatic polyvalent ester and polybasic acid ester), and flow observation
  • the working fluid 30 may include observation target inorganic particles (silicon carbide particles), an observation target dispersion medium (a mixture of an aliphatic polyvalent ester and a polybasic acid ester), and a viscosity modifier.
  • the flow observation fluid 30 prepared as described above is accommodated in the fluid supply unit 21, and the flow observation fluid 30 passing through the permeation cell 22 is controlled while controlling the fluid supply unit 21 so as to obtain a predetermined supply speed.
  • light is irradiated to the flow observation fluid 30 flowing through the transmission cell 22 by the light irradiation units 26 and 27, and an inorganic particle image obtained through the flow observation fluid 30 is photographed.
  • a reflected image by inorganic particles can be taken by light irradiation of the light irradiation unit 26, and a light-shielded image by inorganic particles can be taken by light irradiation by the light irradiation unit 27.
  • a light-shielded image by inorganic particles can be taken by light irradiation of the light irradiation unit 26, and a reflection image by inorganic particles can be taken by light irradiation by the light irradiation unit 27.
  • the flow observation fluid 30 is prepared with translucency, and includes planar inorganic particles 32 having a planar surface.
  • the planar inorganic particles 32 are easy to observe a reflected image or the like, and thus the inorganic particles. The movement state of can be observed.
  • 3D flow analysis may be performed using physical property values obtained by fluid observation by the PIV method.
  • an existing method such as a finite volume method, a finite element method, a finite difference method, a finite boundary method, or a particle method can be used.
  • a fluid flow simulation is performed using the physical property values obtained from the observation result. For example, the slurry inlet and the air outlet of the molding die are used. Can be set to an optimal position.
  • a molding slurry used in the gel casting method was prepared as a flow analysis target fluid to be analyzed. 100 parts by weight of zirconia particles (manufactured by Tosoh Corporation) as inorganic particles to be analyzed, 20 parts by weight of a mixture of triacetin and organic dibasic acid ester (weight ratio 1: 9) as a dispersion medium to be analyzed, dispersion aid (polycarboxylic 3 parts by weight of an acid copolymer) was mixed. The volume ratio of the raw material was 16 parts by volume for the inorganic particles, 18 parts by volume for the dispersion medium, and 3 parts by volume for the dispersion aid.
  • Table 1 collectively shows the inorganic particles contained, the composition, the specific gravity (g / cm 3 ), the volume concentration (vol%) of the inorganic particles, and the like of the fluid to be analyzed.
  • Table 1 the contents of Experimental Examples 1 to 3 to be described later, the viscosity (mPa ⁇ s) of the fluid to be analyzed, the viscosity ⁇ 1.5 when the spindle speed is 1.5 (rpm), and the spindle speed 3
  • the viscosity ratio ⁇ 1.5 / ⁇ 3.0 with respect to the viscosity ⁇ 3.0 at 0.0 (rpm), the contact angle (°), and the PIV observation results are also shown collectively.
  • Example 1 As the flow observation fluid, an inorganic particle-containing slurry prepared so as to approximate the flow analysis target fluid was prepared. 100 parts by weight of silicon carbide particles (manufactured by Superior Graphite Co., Ltd.) as inorganic particles to be observed, 50 parts by weight of a mixture of triacetin and organic dibasic acid ester (weight ratio 1: 9) as an observation target dispersion medium, and viscosity modifier 4.2 parts by weight of a dispersion aid (an alkyl ammonium salt compound of a polymer containing an acid group) was mixed. The volume ratio of this raw material was 31 parts by volume for the inorganic particles, 45 parts by volume for the dispersion medium, and 4 parts by volume for the dispersion aid.
  • silicon carbide particles manufactured by Superior Graphite Co., Ltd.
  • a mixture of triacetin and organic dibasic acid ester weight ratio 1: 9
  • viscosity modifier 4.2 parts by weight of a dispersion aid (an alkyl am
  • an inorganic particle-containing slurry prepared so as to approximate the flow analysis target fluid was prepared. 100 parts by weight of silicon carbide particles (supplied by Superior Graphite Co., Ltd.) as inorganic particles to be observed, 77.8 parts by weight of a mixture of triacetin and organic dibasic acid ester (weight ratio 1: 9) as an observation target dispersion medium, viscosity adjustment 6 parts by weight of a dispersion aid (alkyl ammonium salt compound of a polymer containing acid groups) as an agent, and 1% of polyvinyl acetal resin (molecular weight of about 23,000, butyralization degree 74 mol%) as a viscosity modifier (binder) 1 part by weight was mixed. The volume ratio of this raw material was 31 parts by volume for the inorganic particles, 71 parts by volume for the dispersion medium, 6 parts by volume for the dispersion aid, and 1 part by volume for the binder.
  • Example 3 An inorganic particle-containing slurry was prepared as a flow observation fluid. 100 parts by weight of silicon carbide particles (supplied by Superior Graphite Co., Ltd.) as the inorganic particles to be observed, 75 parts by weight of a mixture of triacetin and organic dibasic acid ester (weight ratio 1: 9) as the observation target dispersion medium, and a viscosity modifier ( 10 parts by weight of a polycarboxylic acid copolymer was mixed as a dispersion aid. The volume ratio of this raw material was 31 parts by volume for the inorganic particles, 68 parts by volume for the dispersion medium, and 10 parts by volume for the dispersion aid.
  • the particle size distribution of zirconia particles and silicon carbide particles used as inorganic particles was measured.
  • the particle size of the inorganic particles was determined as the median diameter (D50) measured using HORIBA laser diffraction / scattering particle size distribution analyzer LA-700 with water as the dispersion medium.
  • D50 median diameter measured using HORIBA laser diffraction / scattering particle size distribution analyzer LA-700 with water as the dispersion medium.
  • the median diameter (D50) of both zirconia particles and silicon carbide particles was 0.5 ⁇ m.
  • FIG. 2 is an SEM photograph of each inorganic particle and an observation photograph with an optical microscope. From this photograph, the zirconia particles were substantially spherical particles. Moreover, the particle size distribution was narrow and it was observed that the particle sizes were relatively uniform. On the other hand, although silicon carbide particles include substantially spherical particles, a relatively large number of particles having a planar surface were included.
  • Viscosity measurement The viscosity (mPa ⁇ s) of the fluids to be analyzed and the flow observation fluids of Experimental Examples 1 to 3 were measured. The measurement is performed using a B-type viscometer (BROOKFIELD main body: LVT cylindrical spindle: LV No. 4), and the viscosity at a rotational speed of 1.5, 3, 6, 12, 30, 60 rpm (mPa ⁇ s). Asked. Table 2 and FIG. 3 show the measurement results of the viscosity with respect to the number of rotations of each sample. As a result, it was found that all the samples were non-Newtonian fluids whose viscosities varied with the rotational speed. It was also found that the flow observation fluids of Experimental Examples 1 and 2 have a viscosity close to that of the analysis target fluid.
  • the fluid observation apparatus 20 was used to perform PIV observation of the fluid to be analyzed and the flow observation fluids of Experimental Examples 1 to 3 prepared above.
  • the permeation cell 22 is made of acrylic and coated with a first release agent on the wall surface through which the fluid flows.
  • the permeation cell 22 was a cell having a rectangular channel shape and a channel width Lc of 80 ⁇ m.
  • the flow rate of the flow observation fluid was set to 0.012 mm 3 / min, and continuous still images were taken with a digital camera.
  • FIG. 4 is a PIV observation result of Experimental Example 1. As shown in FIG. 4, the movement state of the inorganic particles could be sufficiently confirmed. Moreover, when the depth of focus was made deeper than the wall surface of the transmission cell 22, that is, the movement state of the inorganic particles could be confirmed even at the center side of the flow observation fluid.
  • the present invention can be used in the field of manufacturing ceramics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 流体観察装置20は、PIV法による流体観察方法を実行可能である。この流体観察方法は、平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む流れ観察用流体30を用い、流路を流通しているこの流れ観察用流体30に光を照射し、流れ観察用流体30を介して得られた無機粒子像を撮影する。この流れ観察用流体30は、粘度が高い非ニュートン性の無機粒子含有スラリーである。この流れ観察用流体30は、解析対象無機粒子と解析対象分散媒とを含む流れ解析対象流体の解析対象無機粒子の粒度と流れ解析対象流体の粘度とに近似した、流れ解析対象流体に対して擬似的な流体であるものとしてもよい。

Description

流体観察方法及び流れ観察用流体
 本発明は、流体観察方法及び流れ観察用流体に関する。
 従来、流体観察方法としては、流れに追従する粒子(トレーサ粒子)を流体に添加し、この流体にパルスレーザ光を照射してその運動を追跡し、ビデオカメラなどでトレーサ粒子群の動きを撮影し、流れのタイムスケールに比べて十分小さい時間間隔で粒子が移動した距離を撮影した画像を撮影し、その移動距離や移動方向を把握するという粒子画像流体速度測定(PIV:Particle Image Velocimetry、以下PIVと称する)が利用されている(例えば、特許文献1参照)。
特開2003-84005号公報
 ところで、流体には、ずり速度と時間に粘度が依存しないニュートン性流体と、ずり速度と時間に粘度が依存する非ニュートン性流体とがあり、非ニュートン性流体には、無機粒子を多量に含むスラリーなどがある。このような無機粒子を含むスラリーは、そのほとんどが不透明であり、内部を観察しにくく、トレーサー粒子などを添加してもうまくいって表面しか観察できないということがあった。特許文献1に記載の流体観察方法では、このような流体に対しては考慮されておらず、このような無機粒子を含む流体における粒子の移動状態を十分に観察することができなかった。
 本発明は、このような課題に鑑みなされたものであり、無機粒子を含む流体の移動状態をより確実に観察することができる。流体観察方法及び流れ観察用流体を提供することを主目的とする。
 上述した主目的を達成するために鋭意研究したところ、本発明者らは、平面状の表面を有する無機粒子を流体に添加し、この流体に光を照射すると無機粒子を含む流体の移動状態をより確実に観察することができることを見いだし、本発明を完成するに至った。
 即ち、本発明の流体観察方法は、PIV(Particle Image Velocimetry)法による流体観察方法であって、平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む流れ観察用流体を用い、流路を流通している該流れ観察用流体に光を照射し該流れ観察用流体を介して得られた無機粒子像を撮影する撮影ステップ、を含むものである。
 また、本発明の流れ観察用流体は、PIV法により観察する流れ観察用流体であって、平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含むものである。
 本発明の流体観察方法及び流れ観察用流体は、無機粒子を含む流体の移動状態をより確実に観察することができる。この理由は、流れ観察用流体には、観察対象分散媒と、流体の粘度を調節する粘度調節剤が含まれており、分散媒による無機粒子の濃度や、粘度調節剤による粘度の調整が可能であり、例えば、より透光性を高めることが可能である。また、流れ観察用流体には、平面状の表面を有する観察対象無機粒子が含まれているため、光を照射した際に、この平面部が遮光したり光を反射するなどして、粒子の視認性が高まるものと推察される。したがって、無機粒子を含む流体の移動状態をより確実に観察することができる。なお、流れ観察用流体には、平面状の表面を有する観察対象無機粒子のほか、平面状の表面を有さない観察対象無機粒子が含まれているものとしてもよい。
本発明の一実施形態である流体観察装置20の構成の概略を示す構成図である。 各無機粒子のSEM写真及び光学顕微鏡での観察写真である。 各試料の回転数に対する粘度の測定結果である。 実験例1のPIV観察結果である。
 次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である流体観察装置20の構成の概略を示す構成図である。この流体観察装置20は、本発明の流体観察方法を実行する観察装置であり、流体の供給量を制御可能な流体供給部21と、流体を通過させ観察を行う透明な部材により形成されている透過セル22とを備えている。また、流体観察装置20は、透過セル22の上方に配設され流体の移動を動画で撮影するデジタルビデオカメラ23と、透過セル22の下方に配設され流体を静止画で撮影するデジタルカメラ24と、流体を拡大して視認可能な顕微鏡25とを備えている。また、流体観察装置20は、透過セル22へ上方から光を照射する光照射部26と、透過セル22へ下方から光を照射する光照射部27とを備えている。観察する対象である流れ観察用流体30は、流体供給部21により透過セル22へ供給され、この透過セル22での移動状態が観察される。次に、この流れ観察用流体30について説明する。
 本発明の流れ観察用流体30は、観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む無機粒子含有スラリーである。この流れ観察用流体30は、略球状の無機粒子31と平面状の表面を有する平面無機粒子32とを含む非ニュートン性の流体である。ここでは、無機粒子31及び平面無機粒子32を総称して観察対象無機粒子と称するものとする。このように、平面無機粒子32が含まれていると、流れ観察用流体30へ光を照射した際に、この平面により遮光像又は反射像が得られやすいため、無機粒子の動きをより観察しやすい。また、粘度調節剤により粘度を調節するため、観察対象無機粒子の量を低減するなどして透光性などを高めることが可能であり、無機粒子の動きをより観察しやすい。
 流れ観察用流体30に含まれる観察対象無機粒子は、例えば、セラミックス粒子、金属粒子、ガラス粒子及びこれらから選択される2種以上であってもよい。例えば、セラミック粒子としては、アルミナ、ジルコニア、YAG及びAl、Zr、Mg、Y、Sc、La、Si、Na、Cu、Fe、Ca、Ni、Li、Mn、Gd、Ce、Hf、Ti、Pb、Ba、Nbなどの酸化物や複合酸化物、炭化珪素等の炭化物、窒化アルミニウム、窒化珪素などの窒化物及びこれらの2種類以上の混合物が挙げられる。また、金属粒子としては、例えば、モリブデンやタングステンなどの遷移金属、金、銀、白金などの貴金属、あるいはこれらの合金などが挙げられる。ガラス粒子としては、例えば石英粒子、ホウ珪酸粒子などが挙げられる。各無機粒子の成分は、いずれも純度が90%以上であることが好ましい。また、平面状の表面を有する無機粒子は、例えば成形して焼成して得られた焼成体を破砕するなどして得ることができる。
 流れ観察用流体30に含まれる観察対象分散媒は、分散助剤及びバインダーを溶解するものであれば特に限定されない。例えば、水、炭化水素系(トルエン、キシレン、ソルベントナフサ等)、エーテル(エチレングリコールモノエチルエーテル、ブチルカルビトール、ブチルカルビトールアセテート等)、アルコール(イソプロパノール、1-ブタノール、エタノール、2-エチルヘキサノール、テルピネオール、エチレングリコール、グリセリン等)、ケトン類(アセトン、メチルエチルケトン等)、エステル(酢酸ブチル、グルタル酸ジメチル、トリアセチン等)、多塩基酸(グルタル酸等)を例示することができる。また、脂肪族多価エステルと多塩基酸エステルの混合物なども好ましい。この分散媒は、全体の炭素数が20以下であることが低粘性の観点から好ましい。
 流れ観察用流体30に含まれる粘度調節剤は、流れ観察用流体30の粘度を調整可能であるものであれば特に限定されず、例えば、分散助剤としてもよいし、バインダーとしてもよい。粘度調節剤として分散助剤を用いると粘度を低減する効果が得られるし、粘度調節剤としてバインダーを用いると粘度を高くする効果が得られる。この粘度調節剤は、例えば、分散助剤としては、ソルビタン脂肪酸エステル、ポリカルボン酸系共重合体、重合体のリン酸エステル塩化合物、酸基を含む重合体のアルキルアンモニウム塩化合物、アルキルベンゼンスルホン酸ナトリウム等を例示できる。バインダーとしては、セルロース誘導体(メチルセルロース、カルボキシメチルセルロース、エチルセルロース等)、澱粉、ポリビニルアルコール、ポリエチレングリコール、ブチラール樹脂、アクリル系樹脂、ポリアミド樹脂、イソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリイソシアネート等)などを例示することができる。
 この流れ観察用流体30は、例えば、成形型に無機粒子と有機化合物とを含む成形スラリーを鋳込み、有機化合物相互の化学反応、例えば分散媒とゲル化剤若しくはゲル化剤相互の化学反応により固化させたあと、離型するゲルキャスト法に用いる成形スラリーとしてもよい。即ち、観察対象分散媒として所定条件で硬化する樹脂を用いるものとしてもよい。こうすれば、ゲルキャスト法での成形型内部での成形スラリーの流動性などを検討することができる。ここで、所定条件で硬化する樹脂としては、例えば、硬化剤との混合により硬化する樹脂や、加熱により硬化する樹脂、紫外線などの照射により硬化する樹脂などが挙げられる。
 また、流れ観察用流体30は、解析対象無機粒子と解析対象分散媒とを含む流れ解析対象流体の、解析対象無機粒子の粒度と流れ解析対象流体の粘度とに近似した、疑似的な流れ観察用流体としてもよい。即ち、流れの状態を解析したい流れ解析対象流体が、例えば光の透過性や反射性が低いときに、その代替流体として、粒度や粘性を近似した流れ観察用流体30を用いて、その挙動を観察するものとしてもよい。こうすれば、無機粒子を含有する流体でその内部などの観察が行えないものを擬似的に観察することができる。例えば、ゲルキャスト法の成形スラリーの場合は、成形型内部での流速が比較的小さく、且つ粘度が比較的大きいことから、慣性力の作用を無視できる。そのため、流体の密度に関係する無機粒子の密度を無視することができる。即ち、ゲルキャスト法の成形スラリーでは、密度の異なる無機粒子を用いても粘度が近似すればその挙動は変化しにくいと考えられ、擬似的な流れ観察用流体に置き換えやすい。ここで、解析対象無機粒子と観察対象無機粒子とは同じ材質であってもよいし、異なる材質であってもよいが同じ材質である方がより好ましい。また、解析対象分散媒と観察対象分散媒とは同じ材質であってもよいし、異なる材質であってもよいが同じ材質である方がより好ましい。また、粒度は、レーザ光回折法を用いて測定されたメディアン径(D50)をいうものとする。このとき、観察対象としての流れ観察用流体30は、解析対象としての流れ解析対象流体に含まれる解析対象無機粒子の体積率に比して、流れ観察用流体30に含まれる観察対象無機粒子の体積率がより小さいものとしてもよい。こうすれば、より透光性を高めることができる。また、粘度調整剤により、体積率が小さくても流れ解析対象流体と流れ観察用流体30とを同程度の粘度とすることができる。このとき、解析対象無機粒子がジルコニア粒子であり、観察対象無機粒子が炭化珪素粒子であるものとしてもよい。こうすれば、遮光像や反射像が得られにくいジルコニア粒子の流体挙動を炭化珪素粒子を利用して観察することができる。
 この流れ観察用流体30は、含まれる観察対象無機粒子の体積率がスラリー全体の体積に対して、20体積%以上40体積%以下であることが好ましく、25体積%以上35体積%以下であることがより好ましい。この体積率が20体積%以上では無機粒子の数が十分でありその挙動が観察しやすく、40体積%以下では光が透過しやすく流体内部の無機粒子の挙動が観察しやすく好ましい。
 また、流れ観察用流体30は、B型粘度計の測定において回転数1.5rpmでの粘度が10000(mPa・s)以上15000(mPa・s)以下の範囲であることが好ましく、11000(mPa・s)以上14000(mPa・s)以下の範囲であることがより好ましい。この範囲では、例えばゲルキャスト法の成形スラリーの粘度に近似しており、その成形スラリーの無機粒子の観察を行うことができる。また、流れ観察用流体30は、B型粘度計の測定において回転数3.0rpmでの粘度が6000(mPa・s)以上10000(mPa・s)以下の範囲であることが好ましく、7000(mPa・s)以上9000(mPa・s)以下の範囲であることがより好ましい。
 B型粘度計の測定において、粘度計のスピンドル回転数x(rpm)のときの粘度をηx(mPa・s)とし、スピンドル回転数xよりも大きなスピンドル回転数y(rpm)のときの粘度をηy(mPa・s)とし、その粘度比をηx/ηyと定義する。このとき、粘度計のスピンドル回転数1.5(rpm)のときの粘度η1.5とスピンドル回転数3.0(rpm)のときの粘度η3.0との粘度比η1.5/η3.0は、1.3≦η1.5/η3.0≦2.0であることが好ましく、1.4≦η1.5/η3.0≦1.8であることがより好ましい。このように、スピンドル回転数によって粘度が大きく変化する、いわゆるチクソ性を有する流体は、不透明であることが多く、無機粒子の移動を確認することが困難であった。この流れ観察用流体30では、平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含んでおり、無機粒子を含む流体の移動状態をより確実に観察することができる。
 流体観察装置20において、流路としての透過セル22は、透過セル22の流路幅Lc(μm)と流れ観察用流体30に含まれる観察対象無機粒子の粒径Dp(μm)との比Lc/Dpが5以上200以下の範囲となるものが好ましい。この粒径Dpは、レーザ光回折法を用いて測定されたメディアン径(D50)をいうものとする。ここで、流路幅Lcは、流れに垂直な断面において幅に長短がある場合は、短い幅をいうものとし、一定幅でない場合は、代表的な流路の幅としてもよい。この流路幅Lcは、例えば、1.0μm以上1000μm以下としてもよい。また、観察対象無機粒子の粒径Dpは、例えば0.2μm以上5.0μm以下としてもよい。
 流体観察装置20において、透過セル22は、流れ観察用流体30を観察する流路の壁面と流れ観察用流体30との接触角が50°以上100°以下とすることが好ましく、60°以上95°以下とすることがより好ましい。また、接触角が80°以上100°以下の範囲、即ち90°近傍では、流体を流通させる実際の流路(例えばゲルキャスト法での成形型)の中央近傍を流通する無機粒子の挙動を観察することに等しいため、より実際の流体の挙動を把握しやすい。このような範囲の接触角となるよう、透過セル22の壁面のぬれ性を適宜調整することが好ましい。接触角は、例えば、透過セル22の壁面上に流れ観察用流体30の液滴を落とし、壁面と液滴の表面とのなす角を顕微鏡などで計測することにより求めることができる。また、壁面のぬれ性は、撥水剤や親水剤をコートすることにより調整することができる。透過セル22の材質は、透明なものであれば特に限定されないが、例えば、ガラス、アクリル、PETなどの樹脂、シリコーンなどが挙げられる。
 次に、PIV法による流体観察方法について説明する。この流体観察方法は、流体観察装置20を用いて行うことができる。この流体観察方法は、流れ観察用流体の調製ステップと、調製した流れ観察用流体を流通させて粒子像を撮影する撮影ステップとを含むものとしてもよい。調製ステップでは、平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む流れ観察用流体30を調製する。調製する流れ観察用流体30は、上述したものを適宜用いることができる。この調製ステップでは、その一例として、流れ解析対象流体における解析対象無機粒子の粒度と流れ解析対象流体の粘度とに近似した、疑似的な流れ観察用流体を調製してもよい。例えば、流れ解析対象流体をゲルキャスト法に用いる成形スラリーとし、解析対象無機粒子(ジルコニア粒子)と解析対象分散媒(脂肪族多価エステルと多塩基酸エステルの混合物)とを含むものとし、流れ観察用流体30を観察対象無機粒子(炭化珪素粒子)と観察対象分散媒(脂肪族多価エステルと多塩基酸エステルの混合物)と粘度調節剤とを含むものとしてもよい。
 撮影ステップでは、流体供給部21に上記調製した流れ観察用流体30を収容し、所定の供給速度となるように流体供給部21を制御しながら、透過セル22を通過する流れ観察用流体30をデジタルビデオカメラ23やデジタルカメラ24で撮影する。このとき、透過セル22を流通している流れ観察用流体30に光照射部26,27により光を照射し、流れ観察用流体30を介して得られた無機粒子像を撮影する。ここで、デジタルビデオカメラ23では、光照射部26の光照射により無機粒子による反射像を撮影することができ、光照射部27の光照射により無機粒子による遮光像を撮影することができる。また、デジタルカメラ24では、光照射部26の光照射により無機粒子による遮光像を撮影することができ、光照射部27の光照射により無機粒子による反射像を撮影することができる。流体観察装置20において、上述したジルコニア粒子を含むゲルキャスト法に用いる成形スラリーをそのままデジタルビデオカメラ23で撮影すると、反射も透過もない真っ暗な画像しか撮影することができない。しかしながら、流れ観察用流体30では、透光性が調製されると共に、平面状の表面を有する平面無機粒子32が含まれており、この平面無機粒子32が反射像などを観察しやすく、無機粒子の移動状態を観察することができるのである。
 PIV法による流体観察により得られた物性値を用いて、3次元の流れ解析を行うものとしてもよい。3次元の流れ解析は、例えば、有限体積法、有限要素法、有限差分法、有限境界法、粒子法など既存の方法を用いることができる。また、ゲルキャスト法の成形スラリーをPIV法で観察した場合は、その観察結果から得られた物性値を用いて流体の流れシミュレーションを行い、例えば成形型におけるスラリーの流入口、空気の排出口などを最適な位置に設定することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 以下には、流れ観察用流体を具体的に製造した例を実験例として説明する。
[解析対象流体]
 解析対象である流れ解析対象流体として、ゲルキャスト法に用いる成形スラリーを作製した。解析対象無機粒子としてジルコニア粒子(東ソー株式会社製)を100重量部、解析対象分散媒としてトリアセチン及び有機二塩基酸エステルの混合物(重量比率1:9)を20重量部、分散助剤(ポリカルボン酸系共重合体)を3重量部混合した。なお、この原料の体積比率は、無機粒子が16体積部、分散媒が18体積部、分散助剤が3体積部であった。この解析対象流体の、含まれる無機粒子、配合、比重(g/cm3)、無機粒子の体積濃度(vol%)などをまとめて表1に示す。なお、この表1には、後述する実験例1~3の内容や、解析対象流体の粘度(mPa・s)、スピンドル回転数1.5(rpm)のときの粘度η1.5とスピンドル回転数3.0(rpm)のときの粘度η3.0との粘度比η1.5/η3.0、接触角(°)、PIV観察結果についてもまとめて示した。
Figure JPOXMLDOC01-appb-T000001
[実験例1]
 流れ観察用流体として、流れ解析対象流体に近似するよう調製した無機粒子含有スラリーを作製した。観察対象無機粒子として炭化珪素粒子(スーペリア・グラファイト社製)を100重量部、観察対象分散媒としてトリアセチン及び有機二塩基酸エステルの混合物(重量比率1:9)を50重量部、粘度調整剤として分散助剤(酸基を含む重合体のアルキルアンモニウム塩化合物)を4.2重量部混合した。なお、この原料の体積比率は、無機粒子が31体積部、分散媒が45体積部、分散助剤が4体積部であった。
[実験例2]
 流れ観察用流体として、流れ解析対象流体に近似するよう調製した無機粒子含有スラリーを作製した。観察対象無機粒子として炭化珪素粒子(スーペリア・グラファイト社製)を100重量部、観察対象分散媒としてトリアセチン及び有機二塩基酸エステルの混合物(重量比率1:9)を77.8重量部、粘度調整剤として分散助剤(酸基を含む重合体のアルキルアンモニウム塩化合物)を6重量部、粘度調整剤(バインダー)としてポリビニルアセタール樹脂(分子量が約2.3万、ブチラール化度74mol%)を1.1重量部混合した。なお、この原料の体積比率は、無機粒子が31体積部、分散媒が71体積部、分散助剤が6体積部、バインダーが1体積部であった。
[実験例3]
 流れ観察用流体として、無機粒子含有スラリーを作製した。観察対象無機粒子として炭化珪素粒子(スーペリア・グラファイト社製)を100重量部、観察対象分散媒としてトリアセチン及び有機二塩基酸エステルの混合物(重量比率1:9)を75重量部、粘度調整剤(分散助剤)としてポリカルボン酸系共重合体を10重量部混合した。なお、この原料の体積比率は、無機粒子が31体積部、分散媒が68体積部、分散助剤が10体積部であった。
(粒度分布測定)
 無機粒子として用いたジルコニア粒子と炭化珪素粒子との粒度分布を測定した。無機粒子の粒径は、HORIBA製レーザ回折/散乱式粒度分布測定装置LA-700を用い、水を分散媒として測定したメディアン径(D50)として求めた。その結果、ジルコニア粒子も炭化珪素粒子もメディアン径(D50)が0.5μmであった。
(無機粒子観察)
 無機粒子として用いたジルコニア粒子と炭化珪素粒子との無機粒子観察を行った。この無機粒子観察は、電子顕微鏡(SEM)観察及び光学顕微鏡による観察を行った。SEM観察は、電子顕微鏡(日立ハイテク社製 S-3000N)を用い、倍率を5000倍として行った。図2は、各無機粒子のSEM写真及び光学顕微鏡での観察写真である。この写真より、ジルコニア粒子は、略球状の粒子であった。また、粒度分布は狭く、粒径が比較的揃っているように観察された。一方、炭化珪素粒子は、略球状の粒子も含むが、平面状の表面を有する粒子が比較的多数含まれていた。また、2μm程度の比較的大きな粒子も存在することがわかった。また、スラリーを落射光で観察すると、ジルコニア粒子のスラリーは粒子の確認が困難であったが、炭化珪素粒子のスラリーは平面状の表面を有する粒子(扁平状の粒子)と思われる粒子像が明確に観察された。
(粘度測定)
 上記作製した解析対象流体、実験例1~3の流れ観察用流体の粘度(mPa・s)を測定した。測定は、B型粘度計(BROOKFIELD社製 本体:LVT 円筒形スピンドル:LV No.4)を用い、回転数を1.5,3,6,12,30,60rpmでの粘度(mPa・s)を求めた。表2及び図3は、各試料の回転数に対する粘度の測定結果である。その結果、すべての試料が回転数に対して粘度が変化する非ニュートン性の流体であることがわかった。また、実験例1,2の流れ観察用流体が解析対象流体に近い粘性を有していることがわかった。
Figure JPOXMLDOC01-appb-T000002
(接触角測定)
 上記作製した解析対象流体、実験例1~3の流れ観察用流体の接触角(°)を測定した。透過セルの観測面に撥水剤としての離型剤をコーティングし、各試料の液滴を落として顕微鏡を用いて接触角を測定した。離型剤としては、FやSiなどを含む化合物を適宜用いた。ここでは第1の離型剤(フッ素系離型剤)及び第2の離型剤(シリコーン系離型剤
)を用いた。その結果、実験例1,2の流れ観察用流体が解析対象流体に近い接触角を示すことがわかった。また、実験例3では、クリーム状になり接触角の測定はできなかった。この接触角は、90°近傍であると流体を流通させる実際の流路の中央近傍を流通する無機粒子の挙動を観察することに等しいことから、第1の離型剤を用いることが好ましいことがわかった。
(PIV観察)
 上記作製した解析対象流体、実験例1~3の流れ観察用流体のPIV観察を流体観察装置20を用いて行った。PIV観察では、透過セル22は、その材質をアクリルとし、第1の離型剤を流体が流れる壁面にコーティングしたものを用いた。この透過セル22は、流路の形状を矩形とし、流路幅Lcを80μmに形成したものを用いた。流体観察装置20では、流れ観察用流体の供給速度を0.012mm3/minとし、デジタルカメラにより連続的な静止画を撮影した。図4は、実験例1のPIV観察結果である。図4に示すように、無機粒子の移動状態を十分確認することができた。また、焦点深度を透過セル22の壁面よりも深くした場合、即ち、流れ観察用流体のより中央側でも無機粒子の移動状態を確認することができた。
 本出願は、2010年2月12日に出願された日本国特許出願第2010-29043号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、セラミックスの製造分野などに利用可能である。

Claims (11)

  1.  PIV法による流体観察方法であって、
     平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む流れ観察用流体を用い、流路を流通している該流れ観察用流体に光を照射し該流れ観察用流体を介して得られた無機粒子像を撮影する撮影ステップ、を含む流体観察方法。
  2.  前記撮影ステップでは、前記観察対象無機粒子の体積率が20体積%以上40体積%以下である前記流れ観察用流体を用いる、請求項1に記載の流体観察方法。
  3.  前記撮影ステップでは、B型粘度計の測定において回転数1.5rpmのときの粘度η1.5と回転数3.0rpmのときの粘度η3.0との粘度比η1.5/η3.0が、1.3≦η1.5/η3.0≦2.0の範囲の前記流れ観察用流体を用いる、請求項1又は2に記載の流体観
    察方法。
  4.  前記撮影ステップでは、前記流路の幅Lc(μm)と前記流れ観察用流体に含まれる前記観察対象無機粒子の粒径Dp(μm)との比Lc/Dpが5以上200以下の範囲となる前記流路へ前記流れ観察用流体を流通させる、請求項1~3のいずれか1項に記載の流体観察方法。
  5.  前記撮影ステップでは、前記流れ観察用流体を観察する前記流路の壁面と前記流れ観察用流体との接触角が50°以上100°以下となる前記流路へ前記流れ観察用流体を流通させる、請求項1~4のいずれか1項に記載の流体観察方法。
  6.  前記撮影ステップでは、解析対象無機粒子と解析対象分散媒とを含む流れ解析対象流体の該解析対象無機粒子の粒度と該流れ解析対象流体の粘度とに近似した、前記平面状の表面を有する観察対象無機粒子と前記観察対象分散媒と前記粘度調節剤とを含む流体を疑似的な流れ観察用流体として用い、該擬似的な流れ観察用流体に光を照射し該流れ観察用流体を介して得られた無機粒子像を撮影する、請求項1~5のいずれか1項に記載の流体観察方法。
  7.  前記撮影ステップでは、前記解析対象無機粒子がジルコニア粒子であり、前記観察対象無機粒子が炭化珪素粒子である、請求項6に記載の流体観察方法。
  8.  前記撮影ステップでは、前記流れ解析対象流体に含まれる前記解析対象無機粒子の体積率に比して、前記流れ観察用流体に含まれる前記観察対象無機粒子の体積率がより小さい該流れ観察用流体を用いる、請求項6又は7に記載の流体観察方法。
  9.  前記撮影ステップでは、前記観察対象分散媒として所定条件で硬化する樹脂を用いる、請求項1~8のいずれか1項に記載の流体観察方法。
  10.  PIV法により観察する流れ観察用流体であって、
     平面状の表面を有する観察対象無機粒子と観察対象分散媒と粘度調節剤とを含む、流れ観察用流体。
  11.  解析対象無機粒子と解析対象分散媒とを含む流れ解析対象流体の該解析対象無機粒子の粒度と該流れ解析対象流体の粘度とに近似した、前記平面状の表面を有する観察対象無機粒子と前記観察対象分散媒と前記粘度調節剤とを含み、該流れ解析対象流体に対して擬似的な流体である、請求項10に記載の流れ観察用流体。
PCT/JP2011/052477 2010-02-12 2011-02-07 流体観察方法及び流れ観察用流体 WO2011099433A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11742177.6A EP2535723B1 (en) 2010-02-12 2011-02-07 Method of fluid observation and fluid for observing flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010029043A JP5452271B2 (ja) 2010-02-12 2010-02-12 流体観察方法及び流れ観察用流体
JP2010-029043 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099433A1 true WO2011099433A1 (ja) 2011-08-18

Family

ID=44367707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052477 WO2011099433A1 (ja) 2010-02-12 2011-02-07 流体観察方法及び流れ観察用流体

Country Status (4)

Country Link
US (1) US8692982B2 (ja)
EP (1) EP2535723B1 (ja)
JP (1) JP5452271B2 (ja)
WO (1) WO2011099433A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017591A1 (ja) * 2014-08-01 2016-02-04 シャープ株式会社 検査器具、検査装置、検査キット、および測定方法
WO2020157926A1 (ja) * 2019-01-31 2020-08-06 パイオニア株式会社 流速特定装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049104B (zh) * 2014-07-01 2016-08-24 山东理工大学 陶瓷泥浆流速检测装置及检测方法
US10126266B2 (en) 2014-12-29 2018-11-13 Concentric Meter Corporation Fluid parameter sensor and meter
US10107784B2 (en) 2014-12-29 2018-10-23 Concentric Meter Corporation Electromagnetic transducer
WO2016109447A1 (en) 2014-12-29 2016-07-07 Concentric Meter Corporation Fluid parameter sensor and meter
WO2016183375A1 (en) * 2015-05-14 2016-11-17 Concentric Meter Corporation Radial mode fluid process meter
CN105334347B (zh) * 2015-11-20 2019-05-31 中国计量学院 一种基于无人机的粒子图像测速检测系统及方法
US9718562B1 (en) 2016-01-29 2017-08-01 General Electric Company System and method of evaluating the effect of dust on aircraft engines
US10099804B2 (en) 2016-06-16 2018-10-16 General Electric Company Environmental impact assessment system
CN107764701B (zh) * 2017-10-19 2019-08-13 中南大学 一种分析剪切应力流场颗粒随流性的实验装置及实验方法
CN108627673B (zh) * 2018-04-24 2021-03-16 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种piv示踪粒子壁面播撒装置
CN108982265B (zh) * 2018-07-16 2021-03-02 浙江大学 一种基于piv技术的桩土剪切作用观察和测量的实验装置
CN110631966B (zh) * 2019-09-27 2020-12-29 重庆大学 高温液态熔滴与壁面接触角测量装置及方法
CN112844850A (zh) * 2020-12-31 2021-05-28 中国矿业大学 一种适用于湍流场中微细颗粒运动过程观测的装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141072U (ja) * 1979-03-30 1980-10-08
JPH0552861A (ja) * 1991-08-28 1993-03-02 Osaka Gas Co Ltd 液体の流れの計測方法
JPH08313549A (ja) * 1995-05-17 1996-11-29 Ube Ind Ltd 溶融樹脂の管内流動速度分布計測方法
WO1999011574A1 (fr) * 1997-09-02 1999-03-11 Ishihara Sangyo Kaisha, Ltd. Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres
JP2003084005A (ja) 2001-09-14 2003-03-19 Tokyo Electric Power Co Inc:The 流体の流動計測システムおよびその計測方法
JP2005040299A (ja) * 2003-07-28 2005-02-17 Koichi Nishino 流れ場可視化装置、液体流路モデルの製造方法及び血流シミュレーション方法
JP2010029043A (ja) 2008-07-24 2010-02-04 Panasonic Corp 情報処理装置および電源制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664513A (en) * 1984-09-25 1987-05-12 Cornell Research Foundation, Inc. Multidimensional vorticity measurement optical probe system
CA2061910C (en) * 1991-03-01 1999-03-16 Masamichi Ipponmatsu Method for measuring the flow of fluids
US5131741A (en) * 1991-12-09 1992-07-21 Zweben Ronald J Refractive velocimeter apparatus
US6211956B1 (en) * 1998-10-15 2001-04-03 Particle Sizing Systems, Inc. Automatic dilution system for high-resolution particle size analysis
JP4536943B2 (ja) * 2000-03-22 2010-09-01 日本碍子株式会社 粉体成形体の製造方法
US7488451B2 (en) * 2003-09-15 2009-02-10 Millipore Corporation Systems for particle manipulation
JP2007254276A (ja) * 2006-02-27 2007-10-04 Kyocera Corp アルミナ質焼結体とその製造方法及びそれらを用いた液晶製造装置
JP4816976B2 (ja) * 2007-08-09 2011-11-16 セイコーエプソン株式会社 光硬化型インク組成物
US7880883B2 (en) * 2007-10-12 2011-02-01 Interactive Flow Studies Corporation Fluid flow computation, visualization, and analysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141072U (ja) * 1979-03-30 1980-10-08
JPH0552861A (ja) * 1991-08-28 1993-03-02 Osaka Gas Co Ltd 液体の流れの計測方法
JPH08313549A (ja) * 1995-05-17 1996-11-29 Ube Ind Ltd 溶融樹脂の管内流動速度分布計測方法
WO1999011574A1 (fr) * 1997-09-02 1999-03-11 Ishihara Sangyo Kaisha, Ltd. Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres
JP2003084005A (ja) 2001-09-14 2003-03-19 Tokyo Electric Power Co Inc:The 流体の流動計測システムおよびその計測方法
JP2005040299A (ja) * 2003-07-28 2005-02-17 Koichi Nishino 流れ場可視化装置、液体流路モデルの製造方法及び血流シミュレーション方法
JP2010029043A (ja) 2008-07-24 2010-02-04 Panasonic Corp 情報処理装置および電源制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2535723A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017591A1 (ja) * 2014-08-01 2016-02-04 シャープ株式会社 検査器具、検査装置、検査キット、および測定方法
JPWO2016017591A1 (ja) * 2014-08-01 2017-06-01 シャープ株式会社 検査器具、検査装置、検査キット、および測定方法
WO2020157926A1 (ja) * 2019-01-31 2020-08-06 パイオニア株式会社 流速特定装置
JPWO2020157926A1 (ja) * 2019-01-31 2021-11-25 パイオニア株式会社 流速特定装置
JP7175435B2 (ja) 2019-01-31 2022-11-21 エア・ウォーター・バイオデザイン株式会社 流速特定装置

Also Published As

Publication number Publication date
US20110199603A1 (en) 2011-08-18
JP5452271B2 (ja) 2014-03-26
JP2011164021A (ja) 2011-08-25
EP2535723A1 (en) 2012-12-19
EP2535723A4 (en) 2013-08-07
EP2535723B1 (en) 2016-01-13
US8692982B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
JP5452271B2 (ja) 流体観察方法及び流れ観察用流体
Wang et al. Fabrication of zirconia ceramic parts by using solvent-based slurry stereolithography and sintering
Hu et al. Design of a shaping system for stereolithography with high solid loading ceramic suspensions
Travitzky et al. Additive manufacturing of ceramic‐based materials
Willems et al. Additive manufacturing of zirconia ceramics by material jetting
EP3390322B1 (en) Geopolymeric formulations and associated methods for the manufacturing of three-dimensional structures
Chang et al. Co-axial capillaries microfluidic device for synthesizing size-and morphology-controlled polymer core-polymer shell particles
JP6443536B2 (ja) 立体造形用粉末材料、立体造形材料セット、立体造形物の製造方法、立体造形物の製造装置、及び立体造形物
EP3659989A1 (de) Schlicker und verfahren zur herstellung von keramischen und glaskeramischen 3d strukturen
US11667053B2 (en) Support material for energy-pulse-induced transfer printing
Mamatha et al. Digital light processing of ceramics: An overview on process, materials and challenges
Hossain et al. Extrusion-based 3D printing alumina-silica inks: adjusting rheology and sinterability incorporating waste derived nanoparticles
CN113165207B (zh) 陶瓷制品的制造方法及陶瓷制品
Rieger et al. Slurry development for lithography-based additive manufacturing of cemented carbide components
JP2024528691A (ja) 鋳造モールドの積層造形方法
CN110869148A (zh) 包括金属纳米颗粒粘结剂的棕色体
Pires et al. Improvement of processability characteristics of porcelain-based formulations toward the utilization of 3D printing technology
Sokola et al. Kinetic stability and rheological properties of photosensitive zirconia suspensions for DLP printing
Zhang et al. Fabrication and characterization of ZrO2 (3Y)/Al2O3 micro-ceramic gears with high performance by vat photopolymerization 3D printing
JP2023122568A (ja) 散乱電離放射線用遮蔽マスクおよびその製造方法
WO2011045137A1 (en) Process for the infiltration of porous ceramic components
Mapar Selective laser melting of ceramic-based materials for dental applications
Liu et al. Studies on the TiO2 modified microchannels for microfluidic applications
Derevianko et al. 3D printing of porous glass products using the robocasting technique
Camargo Additive manufacturing of advanced ceramics by digital light processing: equipment, slurry, and 3D printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011742177

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE