WO2020157926A1 - 流速特定装置 - Google Patents

流速特定装置 Download PDF

Info

Publication number
WO2020157926A1
WO2020157926A1 PCT/JP2019/003437 JP2019003437W WO2020157926A1 WO 2020157926 A1 WO2020157926 A1 WO 2020157926A1 JP 2019003437 W JP2019003437 W JP 2019003437W WO 2020157926 A1 WO2020157926 A1 WO 2020157926A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow velocity
detection unit
blood
reflected light
light
Prior art date
Application number
PCT/JP2019/003437
Other languages
English (en)
French (fr)
Inventor
育也 菊池
敦也 伊藤
良平 加川
Original Assignee
パイオニア株式会社
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 日機装株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2019/003437 priority Critical patent/WO2020157926A1/ja
Priority to CN201980090608.9A priority patent/CN113597560A/zh
Priority to JP2020569287A priority patent/JP7175435B2/ja
Priority to US17/426,529 priority patent/US20220099696A1/en
Priority to EP19912577.4A priority patent/EP3919919A4/en
Publication of WO2020157926A1 publication Critical patent/WO2020157926A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream

Definitions

  • the laser blood flowmeter of Patent Document 1 can calculate the blood flow velocity and the blood flow direction of blood, but its configuration is not simple.
  • One of the problems to be solved by the present invention is to provide, as an example, a flow velocity identifying device that can identify the flow velocity of a mixed liquid containing a non-spherical solid and a liquid and flowing through a flow channel with a simple configuration.
  • the invention according to claim 1 is An irradiation unit that includes a non-spherical solid and a liquid, and irradiates irradiation light toward the mixed liquid flowing through the flow path, A detection unit for detecting the reflected light reflected by the mixed liquid flowing through the flow path by the irradiation unit, the plane being a virtual plane including the optical axis of the irradiation light and the optical axis of the reflected light.
  • a detection unit arranged on at least one side across the optical axis of the reflected light, Using the light amount of the reflected light detected by the detection unit, a specifying unit for specifying the flow velocity of the mixed liquid, It is a flow velocity specifying device provided with.
  • FIG. 1B is a top view of the flow velocity specifying device and the tube in the state of FIG. 1A.
  • It is a processing block diagram of a signal processing part which constitutes the flow velocity specific device of a 1st embodiment. It is a figure at the time of a blood flow velocity specific operation by the flow velocity specific device of a 1st embodiment, and is a mimetic diagram showing distribution of reflected light when blood is not flowing.
  • FIG. 1A is a diagram showing a flow velocity specifying device 10 of the present embodiment, and is a vertical cross-sectional view in a state where the flow velocity specifying device 10 is set in a tube TB (an example of a flow path).
  • FIG. 1B is a top view of the flow velocity specifying device 10 and the tube TB in the state of FIG. 1A.
  • the flow velocity specifying device 10 of the present embodiment detects the light (reflected light L2) that is applied to the blood BL flowing through the tube TB and reflected by the blood BL, and uses the detected amount of the reflected light L2 to measure the flow velocity of the blood BL. Has the function of specifying.
  • the flow velocity identification device 10 of the present embodiment includes an irradiation unit 20, a detection unit 30, and a control unit 40 (an example of the identification unit).
  • the tube TB is made of a material that can transmit the light (irradiation light L1) emitted by the irradiation unit 20 and is a tube for flowing the blood BL (see FIGS. 3A to 3C).
  • the shape of the erythrocyte BC is, for example, a diameter of 7 ⁇ m to 8 ⁇ m, a thickness of 1 ⁇ m to 2 ⁇ m, and a disk-shaped part on the peripheral side that is thicker than the inner part, which is an example of a non-spherical solid. There is.
  • the irradiation unit 20 is, for example, a laser light source, and has a function of emitting coherent light (irradiation light L1) toward the blood BL flowing through the tube TB, as shown in FIG. 1A.
  • the irradiation unit 20 is arranged such that the irradiation light L1 emitted by itself has an optical axis L1A in an oblique direction with respect to the tube TB, that is, the blood BL flowing through the tube TB.
  • the angle of the optical axis L1A with respect to the tube TB is the angle ⁇ 1 (45° as an example).
  • 1A can also be said to be a plan view of a virtual plane (not shown) including the optical axis L1A and the optical axis L2A (a view seen from a direction orthogonal to the virtual plane).
  • the first detection unit 32 and the second detection unit 34 respectively have optical axes when viewed in a plan view of a virtual plane (not shown) including the optical axes L1A and L2A. It is arranged on one side and the other side (both sides) across L2A.
  • the optical axis L2A in this case is the optical axis when the blood BL in the tube TB is not flowing.
  • the control unit 40 receives a function of controlling the irradiation unit 20 and the detection unit 30 and each detection signal transmitted from the first detection unit 32 and the second detection unit of the detection unit 30, and determines the blood flow direction of the blood BL. It has a function of specifying (flow direction), flow velocity and the like.
  • the storage device 42 of the control unit 40 accommodates the measurement program CP for exhibiting the latter function. The specific function of the control unit 40 will be described in the description of the blood flow BL flow velocity specifying operation of the present embodiment described later.
  • the flow velocity specifying operation is started. This operation is performed by the control unit 40 according to the measurement program CP.
  • the irradiation unit 20 irradiates the irradiation light L1.
  • the irradiation light L1 is reflected by the red blood cells BC contained in the blood BL to become reflected light L2.
  • the reflected light L2 is scattered due to the shape of the red blood cells BC, but this scattering distribution has regularity depending on the flow velocity of the blood BL (see FIGS. 3A to 3C).
  • the first detection unit 32 and the second detection unit 34 respectively detect the reflected light L2, and sequentially transmit the detection signals of the detected reflected light L2 to the control unit 40.
  • control unit 40 which has received the detection signals transmitted from the first detection unit 32 and the second detection unit 34, detects the detection signal of the light amount (first light amount) of the reflected light L2 detected by the first detection unit 32,
  • the flow rate of the blood BL is specified by comparing with the detection signal of the light amount (second light amount) of the reflected light L2 detected by the second detection unit 34.
  • FIG. 3A is a diagram at the time of the flow velocity specifying operation of the blood BL, and is a schematic diagram showing the distribution of the reflected light L2 when the blood BL is not flowing.
  • FIG. 3B is a schematic diagram showing the distribution of the reflected light L2 when the blood BL flows in the positive direction.
  • FIG. 3C is a schematic diagram showing the distribution of the reflected light L2 when the blood BL flows in the opposite direction.
  • the blood BL is a mixed liquid in which the blood cell (solid) portion that is substantially composed of red blood cells BC and the plasma BP that is substantially composed of water are mixed. It is known that red blood cells BC have a disk shape with a depressed central portion.
  • each red blood cell BC faces the same direction (takes the same inclined posture) (see FIGS. 3B and 3C).
  • the flow velocity identifying device 10 of the present embodiment utilizes this phenomenon to identify the blood flow direction.
  • FIG. 2 is a processing block diagram of the signal processing unit 44 included in the control unit 40 of the flow velocity specifying device 10 of the present embodiment.
  • the signal processing unit 44 includes a conversion unit 44A, a differential block unit 44B, a coefficient determination block unit 44C, and a frequency analysis block unit 44D.
  • the signal processing unit 44 performs IV conversion on the detection signals from the first detection unit 32 and the second detection unit 34 by the conversion unit 44A (converts into the voltage V A and the voltage V B , respectively), and the voltage V A and the voltage
  • the first detection unit 32 and the second detection unit 34 are arranged at positions where the respective detection outputs are eventually equal when the blood BL is not flowing (FIG. 3A).
  • the red blood cells BC are oriented as shown in FIG. 3B, and the reflected light L2 is reflected as a lump that is inclined clockwise relative to the case of FIG. To be done.
  • the detection intensity of the reflected light L2 incident on the first detection unit 32 decreases and the detection intensity of the reflected light L2 incident on the second detection unit 34 increases compared to the state of FIG. 3A. ..
  • FIG. 3A the red blood cells BC are oriented as shown in FIG. 3B, and the reflected light L2 is reflected as a lump that is inclined clockwise relative to the case of FIG. To be done.
  • the detection intensity of the reflected light L2 incident on the first detection unit 32 decreases and the detection intensity of the reflected light L2 incident on the second detection unit 34 increases compared to the state of FIG. 3A. ..
  • the detection intensity of the reflected light L2 incident on the first detection unit 32 increases compared to the state of FIG.
  • the detection intensity of the reflected light L2 incident on the 2 detection unit 34 decreases.
  • FIG. 4 is a graph showing the measurement result of the flow velocity specifying operation of the blood BL by the flow velocity specifying device 10 of the present embodiment.
  • the horizontal axis represents the flow rate per minute ml/Min.
  • the vertical axis is V diff /(V B +V A ).
  • the value sharply reverses at a flow rate of 0 per minute (flow velocity of 0). That is, the coefficient ⁇ described above can be used as a coefficient indicating the flow direction.
  • the frequency analysis block unit 44D determines the speed of the blood BL.
  • the reason why the signal processing unit 44 can make the determination as described above is that the irradiation unit 20 is a laser light source, and the first detection unit 32 and the second detection unit 34 have the light L2 that is Doppler-shifted by the flow of the blood BL. Is incident, the output by the Doppler-shifted light L2 is calculated (a calculation such as calculating a power spectrum by FFT and calculating an average frequency). Specifically, it is as follows.
  • FIG. 5 is a graph showing blood flow velocities corrected and obtained by the measurement program CP of the flow velocity specifying device 10 of the present embodiment. As shown in the graph of FIG.
  • the velocity of the blood BL is obtained by multiplying the obtained minute flow rate by the coefficient ⁇ of (conditional expression 1). Further, the blood flow rate can be obtained by calculation using parameters such as the velocity of blood and the cross-sectional area of the blood circuit (cross-sectional area of the tube TB).
  • the flow velocity of the blood BL flowing through the tube TB can be specified with a simple configuration.
  • FIG. 6 is a view showing the flow velocity specifying device 10A of the present embodiment, and is a vertical cross-sectional view in a state where the flow velocity specifying device 10A is set in the tube TB.
  • the flow velocity identifying device 10A of the present embodiment is different from the flow velocity identifying device 10 of the first embodiment (see FIG. 1A) only in that the detection unit 30 is composed of only the first detection unit 32. That is, in the case of the present embodiment, the detection unit 30 is arranged on either side of the optical axis L2A with the optical axis L2A interposed therebetween in a plan view of a virtual plane (not shown) including the optical axis L1A and the optical axis L2A. Has been done.
  • FIG. 7 is a graph used for specifying the flow velocity of the blood BL by the flow velocity specifying device 10A of the present embodiment, and is the voltage V min when the flow rate per minute is 0 in the graph of FIG. 4 of the first embodiment. It is a graph normalized by. As shown in the graph of FIG. 7, the standard values V A /V min and V B /V min of the respective measured values greatly change at a flow rate of 0 (a state in which the blood BL is not flowing). Therefore, for example, by setting the broken line in the figure as a threshold value, the flow direction and flow rate of the blood BL can be specified by only one of the first detection unit 32 and the second detection unit 34.
  • the broken line in the figure is set to the first threshold value (an example of the first reference amount) and the second threshold value (an example of the second reference amount), the following things are described as a state in which the blood BL is flowing in the forward direction, It is possible to identify the stopped state and the state in which the flow is flowing in the opposite direction. Specifically, when the light amount detected by the detection unit 30 (the first detection unit 32 in this case) is larger than the first threshold value, the direction in which the blood BL flows is specified as the forward direction. When the light amount detected by the detection unit 30 (in this case, the first detection unit 32) is less than the first threshold value and more than the second threshold value, the direction in which the blood BL flows is specified as the reverse direction.
  • the first threshold value an example of the first reference amount
  • the second threshold value an example of the second reference amount
  • FIG. 8 is a view showing the flow velocity specifying device 10C of the present embodiment, and is a vertical cross-sectional view in a state where the flow velocity specifying device 10C is set in the tube TB.
  • the flow velocity identifying device 10C of the present exemplary embodiment includes an irradiation unit 20C that emits the irradiation light L1 emitted from the tube TB, that is, the tube TB. It is arranged to have an optical axis L1A in a direction perpendicular to the flowing blood BL (a radial direction of the tube TB).
  • the light L1 emitted by the irradiation unit 20C is not coherent light, but light that has an optical axis L1A in the radial direction of the tube TB and has a spread.
  • the first detection unit 32 and the second detection unit 33 are arranged on both sides of the irradiation unit 20C (both sides with the optical axis L1A in between). This is the difference between the present embodiment and the first embodiment.
  • FIG. 9A is a diagram during the flow velocity specifying operation of the blood BL by the flow velocity specifying device 10C of the present embodiment, and is a schematic diagram showing the distribution of the reflected light L2 when the blood BL is not flowing.
  • FIG. 9B is a schematic diagram showing the distribution of the reflected light L2 when the blood BL is flowing in the positive direction.
  • FIG. 9C is a schematic diagram showing the distribution of the reflected light L2 when the blood BL flows in the opposite direction.
  • the configuration of the first embodiment is different from that of the first embodiment in the points described above, but the scattering distribution of blood BL depending on the flow velocity (see FIGS. 9A to 9C) is the case of the first embodiment (see FIGS. 3A to 3C). ) Has the regularity that becomes the scattering distribution of the same tendency.
  • the present invention has been described by taking the first to third embodiments as examples, but the present invention is not limited to these embodiments.
  • the technical scope of the present invention includes, for example, the following forms (modifications).
  • the IV-converted detection signal is differentially processed (see FIG. 2), but the signal processing unit 44E of the first modification shown in FIG. 10 is used. As described above, the signal processing block unit 44F may directly process the signal without performing the differential processing.
  • the first detection unit 32 and the second detection unit 34 are used in the case of the first embodiment (see FIG. 1B).
  • the position may be offset from the position of the detection unit 30 in the circumferential direction of the tube TB.
  • the first detection unit 32 and the second detection unit 34 are used in the case of the first embodiment (see FIG. 1B).
  • the position may be offset from the position of the detection unit 30 in the circumferential direction of the tube TB and different from each other.
  • the first detection unit 32 and the second detection unit 34 are arranged so as to sandwich the optical axis L2A (see FIGS. 1A and 8).
  • one detection unit one of the first detection unit 32 and the second detection unit 34
  • the detection unit 30 may be arranged across the optical axis L2A (not shown).
  • the detection unit arranged across the above may be a PSD or a multi-division photodetector, for example.
  • each embodiment has been described individually for the sake of convenience.
  • any one of the embodiments may incorporate elements of other embodiments.
  • one of the detection units 30 (one of the first detection unit 32 and the second detection unit 33) of the flow velocity identification device 10C (see FIG. 8) of the third embodiment is eliminated, and the concept of the second embodiment (FIG. 7), the flow velocity may be specified by the modified example.
  • an example of the mixed liquid is described as blood BL.
  • the target to be measured by the flow velocity specifying device 10 or the like of each embodiment may not be the blood BL as long as it is a mixed liquid containing a non-spherical solid.
  • another example of the mixed liquid may be a magnetic fluid, a mixed liquid containing microcapsules, or the like.
  • the flow velocity specifying device 10 and the like of each embodiment specify the flow velocity of the blood BL, but may be applied to the following applications.
  • it may be installed in a blood flow circuit used for dialysis, heart-lung machine, etc., and may be applied to a device (not shown) for measuring the flow rate of blood flowing in the blood circuit in a non-contact manner.
  • a blood flow circuit used for dialysis, heart-lung machine, etc. may be applied to a blood flow backflow monitoring device (not shown) that detects backflow of blood flow and performs an alarm and an emergency operation. ..

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Hematology (AREA)
  • Multimedia (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)

Abstract

【解決手段】本発明の流速特定装置(10)は、非球形の固体(BC)と液体(BP)とを含み、流路(TB)を流れる混合液(BL)に向けて照射光(L1)を照射する照射部(20)と、照射部(20)が照射して流路(TB)を流れる混合液(BL)により反射された反射光(L2)を検出する検出部(30)であって、照射光(L1)の光軸(L1A)と反射光(L2)の光軸(L2A)とを含む仮想平面の平面視にて、反射光(L2)の光軸(L2A)を挟んで少なくとも一方側に配置されている検出部(32)と、検出部(32)が検出した反射光(L2)の光量を用いて、混合液(BL)の流速を特定する特定部(40)と、を備える。

Description

流速特定装置
 本発明は、流速特定装置に関する。
 特許文献1には、生体表皮下任意の深度にある組織の所望の部位の血流速度のスカラー量と血流の三次元流速方向とを、生体表皮上から無侵襲かつリアルタイムで算出することにより、所望の測定領域の血流量の絶対値及び血流方向をリアルタイムで測定するレーザー血流計が開示されている。
 このレーザー血流計は、レーザー光源により各二本で一組のレーザー光線を照射しかつ信号処理手段により該当測定領域に発生した干渉波を観測した光電センサーからの電気信号の演算処理をする動作を繰り返し行う。そのため、このレーザー血流計は、直交した各三方向の血流速度を逐次算出することで、血流速度及び血流方向を逐次算出する。
特開平10-085195号公報
 特許文献1のレーザー血流計は、血液の血流速度及び血流方向を算出することができるが、その構成が簡単なものではない。
 本発明が解決しようとする課題としては、簡単な構成で、非球形の固体と液体とを含み流路を流れる混合液の流速を特定することができる流速特定装置を提供することが一例として挙げられる。
 請求項1に記載の発明は、
 非球形の固体と液体とを含み、流路を流れる混合液に向けて照射光を照射する照射部と、
 前記照射部が照射して前記流路を流れる前記混合液により反射された反射光を検出する検出部であって、前記照射光の光軸と前記反射光の光軸とを含む仮想平面の平面視にて、前記反射光の光軸を挟んで少なくとも一方側に配置されている検出部と、
 前記検出部が検出した前記反射光の光量を用いて、前記混合液の流速を特定する特定部と、
 を備える流速特定装置である。
 上述した目的及びその他の目的、特徴並びに利点は、以下に述べる好適な実施の形態及びそれに付随する以下の図面によって更に明らかになる。
第1実施形態の流速特定装置を示す図であって、流速特定装置をチューブにセットした状態における縦断面図である。 図1Aの状態の流速特定装置及びチューブの上面図である。 第1実施形態の流速特定装置を構成する信号処理部の処理ブロック図である。 第1実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が流れていない場合の反射光の分布を示す模式図である。 第1実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が正方向に流れている場合の反射光の分布を示す模式図である。 第1実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が逆方向に流れている場合の反射光の分布を示す模式図である。 第1実施形態の流速特定装置による血液の流速特定動作の計測結果を示すグラフである。 第1実施形態の流速特定装置により補正して得られる血流速度を示すグラフである。 第2実施形態の流速特定装置を示す図であって、流速特定装置をチューブにセットした状態における縦断面図である。 第2実施形態の流速特定装置による血液の流速特定動作の流速の特定に用いられるグラフである。 第3実施形態の流速特定装置を示す図であって、流速特定装置をチューブにセットした状態における縦断面図である。 第3実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が流れていない場合の反射光の分布を示す模式図である。 第3実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が正方向に流れている場合の反射光の分布を示す模式図である。 第3実施形態の流速特定装置による血液の流速特定動作時の図であって、血液が逆方向に流れている場合の反射光の分布を示す模式図である。 第1変形例の信号処理部の処理ブロック図である。 第2変形例の流速特定装置及びチューブの配置例を示す上面図である。 第3変形例の流速特定装置及びチューブの配置例を示す上面図である。 第4変形例の流速特定装置及びチューブの配置例を示す横断面図である。
≪概要≫
 以下、本発明の第1、第2及び第3実施形態について図面を参照しながら説明する。次いで、各実施形態の変形例について図面を参照しながら説明する。なお、参照するすべての図面では同様の機能を有する構成要素に同様の符号を付し、明細書では適宜説明を省略する。
≪第1実施形態≫
 以下、第1実施形態について説明する。まず、本実施形態の流速特定装置10の機能及び構成について図1A、図1B等を参照しながら説明する。次いで、本実施形態の流速特定装置10による血液BL(混合液の一例、図1A等参照)の流速特定動作について図3A~図3B等を参照しながら説明する。なお、本実施形態の効果については、血液BLの流速特定動作の説明の中で説明する。
<第1実施形態の機能及び構成>
 図1Aは、本実施形態の流速特定装置10を示す図であって、流速特定装置10をチューブTB(流路の一例)にセットした状態における縦断面図である。図1Bは、図1Aの状態の流速特定装置10及びチューブTBの上面図である。
 本実施形態の流速特定装置10は、チューブTBを流れる血液BLに照射され血液BLに反射された光(反射光L2)を検出し、検出した反射光L2の光量を用いて、血液BLの流速を特定する機能を有する。
 本実施形態の流速特定装置10は、照射部20と、検出部30と、制御部40(特定部の一例)とを備えている。
〔血液及び流路〕
 ここで、血液BL及びチューブTBは、本実施形態の流速特定装置10の構成要素ではない。しかしながら、血液BLの流速は本実施形態の流速特定装置10の特定対象であり、チューブTBは流速特定装置10により血液BLの流速を特定する(測定する)際に血液BLを流すための部材として利用される。そこで、本実施形態の流速特定装置10の各構成要素の説明の前に、血液BL及びチューブTBについて説明する。
 血液BLは、赤血球BC(非球形の固体の一例)と血漿BP(液体の一例)とを含んで構成されている(図1A、図3A~図3C等参照)。チューブTBは、一例として照射部20が照射する光(照射光L1)を透過可能な材料で形成され、血液BLを流すための管とされている(図3A~図3C参照)。赤血球BCの形状は、一例として、直径7μm~8μm、厚さ1μm~2μmで、周縁側の部分が内側の部分よりも厚い円盤状とされていることで、非球形の固体の一例とされている。
〔照射部〕
 照射部20は、一例としてレーザー光源とされ、図1Aに示されるように、チューブTBを流れる血液BLに向けてコヒーレントな光(照射光L1)を照射する機能を有する。照射部20は、自身が出射する照射光L1がチューブTB、すなわち、チューブTBを流れる血液BLに対して斜め方向に光軸L1Aを有するように配置されている。本実施形態では、チューブTBに対する光軸L1Aの角度を角度θ1(一例として45°)とする。
〔検出部〕
 検出部30は、照射部20が照射してチューブTBを流れる血液BLにより反射された光(反射光L2)を検出する機能を有する。本実施形態の検出部30は、図1Aに示されるように、反射光L2の光軸L2Aを挟んで一方側に配置されている第1検出部32と、他方側に配置されている第2検出部34とを有している。ここで、チューブTBに対する光軸L2Aの角度を角度θ2とすると、角度θ2は―45°、すなわち、―θ1である。
また、図1Aは、光軸L1Aと光軸L2Aとを含む仮想平面(図示省略)を平面視した図(当該仮想平面に直交する方向から見た図)ともいえる。そうすると、図1Aに示されるように、第1検出部32と第2検出部34とは、光軸L1Aと光軸L2Aとを含む仮想平面(図示省略)の平面視にて、それぞれ、光軸L2Aを挟んで、一方側及び他方側(両側)に配置されている。この場合の光軸L2Aとは、チューブTBの中の血液BLが流れていない場合の光軸とされる。別言すると、本実施形態では、第1検出部32と第2検出部34とは、光軸L2Aを挟んで、チューブTBの中の血液BLが流れていない場合の光軸L2Aを対象線として、線対称に配置されている関係を有する。
 なお、第1検出部32及び第2検出部は、後述する血液BLの流速特定動作時に、それぞれ、血液BLによって反射した光を検出すると、それぞれの検出信号を制御部40に送信するようになっている。
〔制御部〕
 制御部40は、照射部20及び検出部30を制御する機能と、検出部30の第1検出部32及び第2検出部から送信された各検出信号を受信して、血液BLの血流方向(流れる方向)、流速等を特定する機能とを有する。そして、制御部40の記憶装置42には、後者の機能を発揮するための測定プログラムCPが収容されている。
 なお、制御部40の具体的な機能については、後述する本実施形態の血液BLの流速特定動作の説明の中で説明する。
 以上が、本実施形態の流速特定装置10の機能及び構成についての説明である。
<第1実施形態の流速特定動作>
 次に、本実施形態の流速特定装置10による血液BLの流速特定動作について、主に図3A~図3Bを参照しながら説明する。
 まず、測定者が流速特定装置10の測定準備(機械のセッティング等)をした後に測定開始ボタン(図示省略)を押すと、流速特定動作が開始される。本動作は、制御部40が測定プログラムCPに従って行われる。全体としては、まず、照射部20が照射光L1を照射する。照射光L1は血液BLに含まれる赤血球BCにより反射され反射光L2となる。この場合、反射光L2は赤血球BCの形状に起因して散乱するが、この散乱分布は血液BLの流速により規則性を有する(図3A~図3C参照)。
 次いで、第1検出部32及び第2検出部34は、それぞれ反射光L2を検出しつつ、逐次、検出した反射光L2の検出信号を制御部40に送信する。
 次いで、第1検出部32及び第2検出部34から送信された検出信号を受信した制御部40は、第1検出部32が検出した反射光L2の光量(第1光量)の検出信号と、第2検出部34が検出した反射光L2の光量(第2光量)の検出信号とを比較して、血液BLの流速を特定する。
 ここで、図3Aは、血液BLの流速特定動作時の図であって、血液BLが流れていない場合の反射光L2の分布を示す模式図である。図3Bは、血液BLが正方向に流れている場合の反射光L2の分布を示す模式図である。図3Cは、血液BLが逆方向に流れている場合の反射光L2の分布を示す模式図である。
 血液BLは、前述のとおり、ほぼ赤血球BCで構成される血球(固体)部分と、ほぼ水分からなる血漿BPが混じり合った混合液である。赤血球BCはその中央部分が凹んだ円盤状の形状をしていることが知られている。そして、このような形状の固体が液体とともに流れた場合に、各赤血球BCが同一の方向を向く(同じように傾いた姿勢になる)ことも知られている(図3B及び図3C参照)。本実施形態の流速特定装置10は、この現象を利用して血流方向を特定する。
 ここで、図2は、本実施形態の流速特定装置10の制御部40が有する信号処理部44の処理ブロック図である。信号処理部44は、変換部44Aと、差動ブロック部44Bと、係数決定ブロック部44Cと、周波数解析ブロック部44Dとを有している。信号処理部44は、第1検出部32及び第2検出部34からの検出信号を変換部44AでI―V変換し(それぞれ電圧V及び電圧Vに変換し)、電圧V及び電圧Vが入力された差動ブロック部44Bにより電圧V及び電圧VはVdiff=V-Vに変換される。そして、係数決定ブロック部44Cは、Vdiffが下記(条件式1)で1の場合は血流方向を正方向(第1方向、図3Bの血流方向)、Vdiffが下記(条件式1)で-1の場合は血流方向を逆方向(第2方向、図3Cの血流方向)、Vdiffが下記(条件式1)で0の場合は血流停止(血液BLが流れていない、図3A参照)と判断する。係数決定ブロック部44CではVdiffの大きさ判定が行われVdiffの大きさに応じて係数を決定する。
   (条件式1)
          -1:Vdiff<-|α|
           0:Vdiff≦|α|
           1:Vdiff>|α|

          ここで、αは、設定した定数である。
 具体的には、第1検出部32及び第2検出部34は、血液BLが流れていない状態(図3A)では、結果的にそれぞれの検出出力が等しくなる位置に配置されている。
 血液BLが正方向に流れている状態(図3B参照)では、赤血球BCが図3Bのように配向した状態となり反射光L2は図3Aの場合に対して時計回りに傾いた塊となって反射される。これに伴い、図3Aの状態に比べて、第1検出部32に入射する反射光L2の検出強度は減少し、第2検出部34に入射する反射光L2の検出強度は増大することになる。
 また、図3Cの場合、すなわち、血流方向が図3Bの場合と逆方向の場合、図3Aの状態に比べて、第1検出部32に入射する反射光L2の検出強度は増大し、第2検出部34に入射する反射光L2の検出強度は減少することになる。
 図4は、本実施形態の流速特定装置10による血液BLの流速特定動作の計測結果を示すグラフである。このグラフは、横軸が毎分流量ml/Min.であり、縦軸がVdiff/(V+V)である。毎分流量0(流速0)で急峻に値が反転する。すなわち、前述の係数αは、流れの方向を示す係数として使用することが可能である。
 ここで、横軸の毎分流量ml/Min.が正の場合、すなわち、Vdiff(=V-V)>0の場合は血液BLの流れる方向は正方向と特定される。これに対して、横軸の毎分流量ml/Min.が負の場合、すなわち、Vdiff(=VB-VA)<0の場合は血液BLの流れる方向は逆方向と特定される。さらに、Vdiff≦|α|の場合、すなわち、VとVとの差が定められた差α(基準差の一例)以下の場合、血液BLは流れていないと特定される。
 周波数解析ブロック部44Dは、血液BLの速さを判断する。なお、信号処理部44が上記のとおりの判断をできる理由は、照射部20がレーザー光源であり、第1検出部32及び第2検出部34には血液BLの流れによってドップラーシフトされた光L2が入射するので、このドップラーシフトした光L2による出力を演算(FFTによりパワースペクトルを求め、平均周波数を求める等の演算)することによる。具体的には、以下のとおりである。
 図5は、本実施形態の流速特定装置10の測定プログラムCPにより補正して得られる血流速度を示すグラフである。図4のグラフのとおり、得られた毎分流量に(条件式1)の係数αを乗じることで血液BLの速度が得られる。さらに、この血液の速度と血液回路の断面積(チューブTBの断面積)等の大きさのパラメータを用いて計算することで血流量を求めることができる。
 以上のとおり、本実施形態の流速特定装置10によれば、簡単な構成で、チューブTBを流れる血液BLの流速を特定することができる。
 以上が、本実施形態の流速特定動作についての説明である。また、以上が、第1実施形態についての説明である。
≪第2実施形態≫
 次に、第2実施形態について図6及び図7を参照しながら説明する。本実施形態の説明では、本実施形態の構成要素に、第1実施形態の構成要素と同等の構成要素を用いる場合、同じ名称、符号等を用いることとする。以下、本実施形態における第1実施形態と異なる部分について説明する。
 図6は、本実施形態の流速特定装置10Aを示す図であって、流速特定装置10AをチューブTBにセットした状態における縦断面図である。
 本実施形態の流速特定装置10Aは、第1実施形態の流速特定装置10の場合(図1A参照)に対して、検出部30が第1検出部32のみで構成されている点のみ異なる。すなわち、本実施形態の場合、検出部30は、光軸L1Aと光軸L2Aとを含む仮想平面(図示省略)の平面視にて、光軸L2Aを挟んで、両側のいずれか一方側に配置されている。
 ここで、図7は、本実施形態の流速特定装置10Aによる血液BLの流速の特定に用いられるグラフであって、第1実施形態の図4のグラフを毎分流量0のときの電圧Vminで正規化したグラフである。図7のグラフに示されるように、各計測値の規格値V/Vmin、V/Vminは流量0(血液BLが流れていない状態)を境に大きく変化する。したがって、例えば、図中の破線を閾値に設定することで、第1検出部32及び第2検出部34のいずれか一方のみでも血液BLの流れる方向及び流量を特定することができる。
 さらに、図中の破線を第1閾値(第1基準量の一例)、第2閾値(第2基準量の一例)とすることで、以下のことを血液BLが正方向に流れている状態、停止している状態及び逆方向に流れている状態を特定することができる。具体的には、検出部30(この場合、第1検出部32)が検出した光量が第1閾値よりも多い場合、血液BLの流れる方向を正方向と特定する。また、検出部30(この場合、第1検出部32)が検出した光量が第1閾値よりも少なくかつ第2閾値よりも多い場合、血液BLの流れる方向を逆方向と特定する。さらに、検出部30(この場合、第1検出部32)が検出した光量が第2閾値以下の場合、血液BLは停止している(流れていない)と特定する。また、図7のグラフの値から、毎分流量も特定できる。
 以上のとおりであるから、本実施形態の場合、第1実施形態の場合(図1A参照)に比べて、より簡単な構成(第1検出部32及び第2検出部34のいずれか一方のみの構成)で第1実施形態と同じ効果を奏する。
 以上が、第2実施形態についての説明である。
≪第3実施形態≫
 次に、第3実施形態について図8及び図9A~図9Cを参照しながら説明する。本実施形態の説明では、本実施形態の構成要素に、第1実施形態の構成要素と同等の構成要素を用いる場合、同じ名称、符号等を用いることとする。以下、本実施形態における第1実施形態と異なる部分について説明する。
 図8は、本実施形態の流速特定装置10Cを示す図であって、流速特定装置10CをチューブTBにセットした状態における縦断面図である。
 本実施形態の流速特定装置10Cは、第1実施形態の流速特定装置10の場合(図1A参照)と異なり、照射部20Cは、自身が出射する照射光L1がチューブTB、すなわち、チューブTBを流れる血液BLに対して垂直方向(チューブTBの径方向)に光軸L1Aを有するように配置されている。また、照射部20Cが照射する光L1は、コヒーレントな光ではなく、チューブTBの径方向に光軸L1Aを有しつつ広がりを有する光とされている。また、本実施形態の場合、第1検出部32及び第2検出部33は、照射部20Cの両側(光軸L1Aを挟んで両側)に配置されている。
 本実施形態において第1実施形態の場合と異なる点は以上である。
 ここで、図9Aは、本実施形態の流速特定装置10Cによる血液BLの流速特定動作時の図であって、血液BLが流れていない場合の反射光L2の分布を示す模式図である。また、図9Bは、血液BLが正方向に流れている場合の反射光L2の分布を示す模式図である。さらに、図9Cは、血液BLが逆方向に流れている場合の反射光L2の分布を示す模式図である。
 本実施形態の場合、前述の点で第1実施形態の構成と異なるが、流速による血液BLの散乱分布(図9A~図9C参照)は、第1実施形態の場合(図3A~図3C参照)と同じ傾向の散乱分布となる規則性を有する。
 以上のとおりであるから、本実施形態の場合、第1実施形態の場合と同様の効果を奏する。
 以上のとおり、本発明について第1~第3実施形態を一例として説明したが、本発明はこれらの実施形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
 例えば、第1実施形態の場合には、I-V変換された検出信号を差動してから処理していたが(図2参照)、図10に示される第1変形例の信号処理部44Eのように、差動してから処理せずに、信号処理ブロック部44Fにより直接処理してもよい。
 また、図11に示される第2変形例の流速特定装置10Dの場合のように、第1検出部32及び第2検出部34(検出部30)を第1実施形態の場合(図1B参照)の検出部30の位置よりもチューブTBの周方向にオフセットさせて配置してもよい。
 また、図12に示される第3変形例の流速特定装置10Eの場合のように、第1検出部32及び第2検出部34(検出部30)を第1実施形態の場合(図1B参照)の検出部30の位置よりもチューブTBの周方向における互いに異なる方向にオフセットさせて配置してもよい。
 また、図13に示される第4変形例の流速特定装置10Fの場合のように、チューブTBの横断面図を見た場合に、照射部20と検出部30とがそれぞれチューブTBの径方向に対して傾斜した位置に配置されていてもよい。
 また、第1及び第3実施形態では、第1検出部32と第2検出部34とは、光軸L2Aを挟んで配置されていると説明した(図1A及び図8参照)。しかしながら、一方の検出部(第1検出部32及び第2検出部34のいずれか一方)が光軸L2Aを跨いで配置されていてもよい(図示省略)。また、第2実施形態の検出部30(図6参照)が光軸L2Aを跨いで配置されていてもよい(図示省略)。これらの場合、跨いで配置される検出部を反射光L2の強度分布の変化を検出可能とするために、例えば、PSDや多分割の光検出器とすればよい。
 また、本明細書では、便宜上、各実施形態を個別に説明したが、例えば、各実施形態のいずれか1つに他の実施形態の要素を組み込んでもよい。例えば、第3実施形態の流速特定装置10C(図8参照)の検出部30の1つ(第1検出部32及び第2検出部33の一方)をなくして、第2実施形態の思想(図7参照)で当該変形例により流速の特定を行ってもよい。
 また、各実施形態では、混合液の一例を血液BLとして説明した。しかしながら、非球形の固体を含む混合液であれば、各実施形態の流速特定装置10等により測定される対象は血液BLでなくてもよい。例えば、混合液の他の一例は、磁性流体、マイクロカプセルを含む混合液等であってもよい。
 また、各実施形態の流速特定装置10等は、血液BLの流速を特定するものであるが、以下のようなアプリケーションに適用してもよい。例えば、透析、人工心肺等に用いられる血流回路に設置し、血液回路に流れる血液の流量を非接触で測定する装置(図示省略)に提要してもよい。また、透析、人工心肺等に用いられる血流回路に設置し、血流が逆流することを検知し、警報、緊急時動作を行う血流の逆流監視装置(図示省略)に適用してもよい。

Claims (8)

  1.  非球形の固体と液体とを含み、流路を流れる混合液に向けて照射光を照射する照射部と、
     前記照射部が照射して前記流路を流れる前記混合液により反射された反射光を検出する検出部であって、前記照射光の光軸と前記反射光の光軸とを含む仮想平面の平面視にて、前記反射光の光軸を挟んで少なくとも一方側に配置されている検出部と、
     前記検出部が検出した前記反射光の光量を用いて、前記混合液の流速を特定する特定部と、
     を備える流速特定装置。
  2.  前記検出部は、前記仮想平面の平面視にて、前記反射光の光軸を挟んで一方側に配置されている第1検出部と、他方側に配置されている第2検出部とを有し、
     前記特定部は、前記第1検出部が検出した反射光の第1光量と前記第2検出部が検出した反射光の第2光量とを比較して、前記混合液の流速を特定する、
     請求項1に記載の流速特定装置。
  3.  前記特定部は、前記第1光量が第2光量よりも多くかつ前記第1光量と第2光量との差が基準差よりも大きい場合、前記混合液の流れる方向を前記流路の一方から他方に向く第1方向と特定し、前記第1光量が第2光量よりも少なくかつ前記第1光量と第2光量との差が前記基準差よりも大きい場合、前記混合液の流れる方向を第1方向と逆の第2方向と特定する、
     請求項2に記載の流速特定装置。
  4.  前記特定部は、前記第1光量と前記第2光量との差が前記基準差以下の場合、前記混合液が流れていないと特定する、
     請求項3に記載の流速特定装置。
  5.  前記特定部は、前記検出部が検出した前記反射光の光量を、前記流路を流れていない状態の前記混合液により反射された前記反射光の光量と比較して、前記混合液の流速を特定する、
     請求項1に記載の流速特定装置。
  6.  前記特定部は、前記検出部が検出した前記反射光の光量が第1基準量よりも多い場合、前記混合液の流れる方向を前記流路の一方から他方に向く第1方向と特定し、前記検出部が検出した前記反射光の光量が前記第1基準量より少ない第2基準量よりも多くかつ前記第1基準量以下の場合、前記混合液の流れる方向を前記第1方向と逆の第2方向と特定する、
     請求項1又は5に記載の流速特定装置。
  7.  前記特定部は、前記検出部が検出した前記反射光の光量が前記第2基準量以下の場合、前記混合液が流れていないと特定する、
     請求項6に記載の流速特定装置。
  8.  前記混合液は、前記固体を赤血球とする血液とされている、
     請求項1~7のいずれか1項に記載の流速特定装置。
PCT/JP2019/003437 2019-01-31 2019-01-31 流速特定装置 WO2020157926A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/003437 WO2020157926A1 (ja) 2019-01-31 2019-01-31 流速特定装置
CN201980090608.9A CN113597560A (zh) 2019-01-31 2019-01-31 流速确定装置
JP2020569287A JP7175435B2 (ja) 2019-01-31 2019-01-31 流速特定装置
US17/426,529 US20220099696A1 (en) 2019-01-31 2019-01-31 Flow velocity determining apparatus
EP19912577.4A EP3919919A4 (en) 2019-01-31 2019-01-31 SYSTEM FOR SPECIFICATION OF FLOW RATES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003437 WO2020157926A1 (ja) 2019-01-31 2019-01-31 流速特定装置

Publications (1)

Publication Number Publication Date
WO2020157926A1 true WO2020157926A1 (ja) 2020-08-06

Family

ID=71840392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003437 WO2020157926A1 (ja) 2019-01-31 2019-01-31 流速特定装置

Country Status (5)

Country Link
US (1) US20220099696A1 (ja)
EP (1) EP3919919A4 (ja)
JP (1) JP7175435B2 (ja)
CN (1) CN113597560A (ja)
WO (1) WO2020157926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189750A1 (ja) * 2022-03-30 2023-10-05 公立大学法人公立諏訪東京理科大学 輸液注入装置及び輸液注入方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085195A (ja) 1996-09-19 1998-04-07 Advance Co Ltd レーザー血流計
JP2004506919A (ja) * 2000-08-25 2004-03-04 アムニス コーポレイション 細胞などの小さな移動物体の速度測定
WO2011099433A1 (ja) * 2010-02-12 2011-08-18 日本碍子株式会社 流体観察方法及び流れ観察用流体
US20110285984A1 (en) * 2010-05-21 2011-11-24 Teledyne Technologies Incorporated Velocity measuring system
US20130016335A1 (en) * 2011-07-12 2013-01-17 Lo Yu-Hwa Optical space-time coding technique in microfluidic devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259576A (ja) * 1989-03-31 1990-10-22 Mazda Motor Corp レーザ流速計
US5106184A (en) * 1990-08-13 1992-04-21 Eye Research Institute Of Retina Foundation Retinal laser doppler apparatus having eye tracking system
JPH05273225A (ja) * 1992-03-24 1993-10-22 Kowa Co 流速測定装置
CN1279394A (zh) * 2000-08-11 2001-01-10 清华大学 颗粒物排放流速在线监测装置及其信号处理方法
JP2007033306A (ja) * 2005-07-28 2007-02-08 Tokyo Electric Power Co Inc:The 流体の流動計測システム及びその計測方法
EP2586366B1 (en) * 2010-06-24 2016-04-06 Pioneer Corporation Photo-detection device and fluid measurement device
CN102565002A (zh) * 2011-04-08 2012-07-11 曾春雨 一种激光散斑管道气体颗粒测量设备及方法
CN104168823B (zh) * 2014-02-28 2017-01-18 深圳市斯尔顿科技有限公司 一种血液流速的测量装置及方法
JP6426199B2 (ja) * 2014-12-11 2018-11-21 愛知時計電機株式会社 血流センサ
WO2016151787A1 (ja) * 2015-03-25 2016-09-29 オリンパス株式会社 血管認識用血流測定方法
JP6852730B2 (ja) * 2016-04-05 2021-03-31 ソニー株式会社 スペックル測定装置およびスペックル測定方法
CN107260155A (zh) * 2016-04-07 2017-10-20 动心医电股份有限公司 检测血液流速的方法及其装置
CN109247945A (zh) * 2017-07-12 2019-01-22 松下知识产权经营株式会社 计测装置
CN107389786B (zh) * 2017-07-28 2019-10-29 电子科技大学 一种基于时域的气侵检测信号处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085195A (ja) 1996-09-19 1998-04-07 Advance Co Ltd レーザー血流計
JP2004506919A (ja) * 2000-08-25 2004-03-04 アムニス コーポレイション 細胞などの小さな移動物体の速度測定
WO2011099433A1 (ja) * 2010-02-12 2011-08-18 日本碍子株式会社 流体観察方法及び流れ観察用流体
US20110285984A1 (en) * 2010-05-21 2011-11-24 Teledyne Technologies Incorporated Velocity measuring system
US20130016335A1 (en) * 2011-07-12 2013-01-17 Lo Yu-Hwa Optical space-time coding technique in microfluidic devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919919A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189750A1 (ja) * 2022-03-30 2023-10-05 公立大学法人公立諏訪東京理科大学 輸液注入装置及び輸液注入方法

Also Published As

Publication number Publication date
EP3919919A4 (en) 2022-09-07
CN113597560A (zh) 2021-11-02
US20220099696A1 (en) 2022-03-31
EP3919919A1 (en) 2021-12-08
JP7175435B2 (ja) 2022-11-21
JPWO2020157926A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
Norgia et al. Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study
US4210809A (en) Method and apparatus for the non-invasive determination of the characteristics of a segmented fluid stream
CN102356322A (zh) 用于测量流体速度的方法及相关设备
US20220050037A1 (en) Analysis apparatus and method for analyzing a viscosity of a fluid
EP2517624A2 (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
US9717471B2 (en) Method and apparatus for multiple-wave doppler velocity meter
JP2006510902A (ja) 血中測定のための方法及び装置
US20130135608A1 (en) Apparatus and method for improved processing of food products
WO2020157926A1 (ja) 流速特定装置
CN113382677A (zh) 用于管路流体表征的系统和方法
CN103069265B (zh) 粒径测量装置与粒径测量方法
Zhao et al. Real-time red blood cell counting and osmolarity analysis using a photoacoustic-based microfluidic system
US11480522B2 (en) Optical vortex transmissometer
US20230366816A1 (en) Turbidimeter
CN108240973A (zh) 一种全血血红蛋白浓度检测方法及装置
EP3012613A1 (en) Analyzing system and analyzing appratus
Ishida et al. Measurement of swirling flow in a blood chamber by laser Doppler imaging system
JP2011226966A (ja) 計測方法、計測装置
De Jong et al. A directional quantifying Doppler system for measurement of transport velocity of blood
JP2022529308A (ja) 光学式流体速度測定
EP3690425B1 (en) Measurement device and measurement method for hematoctrit
US12000818B2 (en) Device for water examination
JP2018197732A (ja) 流体測定装置
JPS6191509A (ja) 管内スケ−ル厚さの測定方法
US20220317104A1 (en) Device for water examination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912577

Country of ref document: EP

Effective date: 20210831