WO1998039186A1 - Regulateur de freinage - Google Patents

Regulateur de freinage Download PDF

Info

Publication number
WO1998039186A1
WO1998039186A1 PCT/JP1998/000797 JP9800797W WO9839186A1 WO 1998039186 A1 WO1998039186 A1 WO 1998039186A1 JP 9800797 W JP9800797 W JP 9800797W WO 9839186 A1 WO9839186 A1 WO 9839186A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
braking force
wheel
control device
assist
Prior art date
Application number
PCT/JP1998/000797
Other languages
English (en)
French (fr)
Inventor
Shin Koike
Nobuyasu Nakanishi
Akiyoshi Yamada
Satoshi Shimizu
Hideyuki Aizawa
Masahiro Hara
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE69830710T priority Critical patent/DE69830710T2/de
Priority to EP98905672A priority patent/EP0965508B1/en
Priority to US09/331,910 priority patent/US6312064B1/en
Publication of WO1998039186A1 publication Critical patent/WO1998039186A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/06Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure
    • B60K31/10Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means
    • B60K31/102Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/105Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/107Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a braking force control device, and more particularly, to a braking force control device that, when an emergency brake operation is performed on a vehicle, generates a larger braking force than normal.
  • the braking force required by the driver after the start of the emergency braking operation is not always constant. That is, if the brake pedal is further depressed after the emergency braking operation is started, it can be determined that the driver intends to increase the braking force. When the operation amount of the brake pedal is held or decreased, it can be determined that the driver intends to maintain or decrease the braking force, respectively.
  • the brake fluid pressure in order to generate a braking force that accurately reflects the driver's intention after the emergency brake operation is started, the brake fluid pressure must be increased to a level larger than normal, and then the brake pedal It is appropriate to increase or decrease the brake fluid pressure depending on the operating state of the vehicle.
  • Such functions for example, for example, in the conventional braking force control device, when the operation amount of the brake pedal increases, the brake fluid pressure is increased, and when the operation amount is maintained, the brake fluid pressure is maintained, and This can be realized by adding a function of reducing the brake fluid pressure when the operation amount is reduced.
  • An object of the present invention is to provide a braking force control device that can always accurately obtain a driver's intended braking force during execution of an emergency braking operation.
  • the object of the present invention is to provide a braking force control device that executes a brake assist control for supplying a larger brake fluid pressure to a wheel cylinder of a vehicle than usual when an emergency braking operation is performed by a driver.
  • a target deceleration to be generated during the execution of the brake assist control and a deviation detecting means for detecting a deviation from the deceleration
  • a braking force control device including: a hydraulic pressure control unit that controls a brake hydraulic pressure supplied to the wheel cylinder during execution of the brake assist control based on the deviation.
  • the braking force control device includes: ⁇ a brake operation amount detecting means for detecting a brake operation amount;
  • Target deceleration setting means for setting the target deceleration based on the brake operation amount
  • the target deceleration is set based on the amount of brake operation by the driver. If a large brake operation occurs during the execution of the brake assist control, it can be determined that the driver is requesting a large deceleration. In this case, it is appropriate to set the target deceleration to a large value. On the other hand, if the brake operation amount occurring during the execution of the brake assist control is not so large, it can be determined that the driver has not requested a large deceleration. In this case, it is appropriate to set the target deceleration to a small value. According to the present invention, the target deceleration that satisfies the above requirement can always be set during the execution of the brake assist control.
  • the target deceleration setting means includes: basic deceleration detection means for detecting a deceleration obtained at a normal time based on the brake operation amount; and adding the deceleration and a predetermined assist deceleration to the target deceleration.
  • Assist deceleration adding means for calculating the speed
  • the target deceleration is set to the value obtained by adding the deceleration corresponding to the brake operation amount (deceleration obtained at normal times) to the Assist deceleration. Therefore, during the execution of the brake assist control, it is possible to generate a deceleration larger by a predetermined assist deceleration than the deceleration obtained at the normal time.
  • the braking force control device further includes an ABS mechanism that executes an ABS control for reducing the wheel cylinder pressure P w / c of any one of the wheels when an excessive slip rate occurs on any of the wheels.
  • the fluid pressure control means inhibits the wheel cylinder pressure P w / C from increasing when the ABS control is being executed.
  • a pressure increase inhibiting means may be provided.
  • the wheel cylinder pressure P w / c of the wheel is reduced by executing the ABS control.
  • the ABS control is started, it can be determined that the wheel cylinder pressure P w / C of each wheel has been increased to some extent.
  • the increase in the wheel cylinder pressure P w / C is prohibited even when the deceleration of the vehicle is smaller than the target deceleration.
  • the wheel cylinder pressure P w / c is not increased to an unreasonably high hydraulic pressure when the vehicle is traveling on a road with a low friction coefficient. Therefore, when the brake assist control is executed while the vehicle is traveling on a road with a low friction coefficient, it is possible to prevent the wheel cylinder pressure P w / c from being increased to an unnecessarily high hydraulic pressure. .
  • ABS interlocking pressure increase inhibiting means may inhibit the increase of the wheel cylinder pressure P w / c when the ABS control is being performed on at least one of the left and right front wheels.
  • the increase in the wheel cylinder pressure P w / c is prohibited only when the ABS control is being performed on any of the left and right front wheels. If the ABS control is being performed for either of the left and right front wheels, increasing the wheel cylinder pressure P w / C of the other wheels will not produce much effect in increasing the braking force. Therefore, in such a situation, it is effective to prohibit increasing the wheel cylinder pressure P W / C in order to ensure vehicle stability. On the other hand, when the ABS control is not performed for any of the left and right front wheels, a greater braking force may be obtained by increasing the wheel cylinder pressure P w / c of those vehicles.
  • the pressure increase of the wheel cylinder pressure P w / C should not be prohibited.
  • the above two requirements _ Can be satisfied together. Therefore, after the ABS control is started: Hoirushiri Nda ⁇ P in if an increase can be expected in the braking force by pressure increase the w / C allows pressure increase of Hoirushiri Nda ⁇ P w / C, the increase in the braking force The pressure increase can be prohibited only when it is not possible.
  • the hydraulic pressure control means may control a brake hydraulic pressure supplied to a wheel cylinder based on the deviation and a brake operation by a driver.
  • the brake fluid pressure should not be increased if the driver performs a braking operation intended to reduce the braking force.
  • the brake fluid pressure should not be reduced when the driver performs a braking operation intended to increase the braking force.
  • the fluid pressure control considering brake operation is performed, also c can be accurately reflect the intention of the driver to the brake fluid pressure, the fluid pressure control means, the deceleration the When the brake deceleration is greater than the first predetermined value and is greater than the second predetermined value and the brake operation speed is lower than the second predetermined value, the wheel cylinders of all wheels and all hydraulic pressure sources are shut off. Is also good.
  • the deceleration if the deceleration is larger than the first predetermined value compared to the target deceleration, it is determined that the current brake fluid pressure is excessive with respect to the brake fluid pressure for obtaining the target deceleration. I can judge.
  • the brake operation speed is equal to or lower than the second predetermined value, it can be determined that the driver does not intend to increase the braking force.
  • the foil cylinder is shut off from all hydraulic sources.
  • the increase in wheel cylinder pressure P is prohibited. Therefore, when excessive deceleration occurs compared to the target deceleration and the driver does not intend to increase the braking force. It is possible to reliably prevent the deviation between the deceleration and the target deceleration from further expanding.
  • the hydraulic pressure control means may include a correction holding stop means for stopping correction of brake fluid pressure by the correction holding means when a brake operation intended to increase or decrease a braking force is executed.
  • the correction holding state when a brake operation intended to increase or decrease the braking force is performed by the driver, it is appropriate to increase or decrease the brake fluid pressure according to the intention.
  • the wheel cylinder is shut off from all hydraulic pressure sources (hereinafter referred to as the correction holding state)
  • the brake fluid pressure cannot be increased or decreased according to the driver's intention.
  • the correction holding state is immediately released after the above-described brake operation is performed. Therefore, the driver's intention can be reflected in the brake fluid pressure.
  • the hydraulic pressure control means supplies the wheel cylinder with the deceleration when the deceleration is smaller than a third predetermined value as compared with the target deceleration and the brake operation speed is equal to or more than a fourth predetermined value. It is also possible to provide a correction pressure increasing means for increasing and correcting the brake fluid pressure to be increased.
  • the deceleration if the deceleration is smaller than the third predetermined value compared to the target deceleration, the current brake fluid pressure is insufficient for the brake fluid pressure for obtaining the target deceleration. Can be determined.
  • the brake operation speed is equal to or higher than the fourth predetermined value, it can be determined that the driver does not intend to reduce the braking force.
  • the pressure increase correction of the brake fluid pressure is performed.
  • the brake fluid pressure increase correction is executed as described above, the deviation between the deceleration and the target deceleration is reduced. Therefore, when the deceleration is insufficient compared to the target deceleration and the driver does not intend to reduce the braking force, the deviation between the deceleration and the target deceleration can be reduced. .
  • the hydraulic pressure control means compensates for the brake hydraulic pressure by the correction pressure increasing means when a brake operation intended to increase or decrease a braking force is performed.
  • ⁇ Correction pressure increase stop means for stopping the positive pressure may be provided.
  • the brake fluid pressure increase correction is immediately stopped after the above-described brake operation is performed. Therefore, the driver's intention can be reflected in the brake fluid pressure.
  • a master cylinder that communicates with the foil cylinder
  • the pump may supply the wheel cylinder with the brake fluid sucked from the master cylinder.
  • the brake fluid discharged from the pump is supplied to the wheel cylinder.
  • the discharge capacity of the pump varies according to the liquid pressure supplied to the discharge side, that is, the master cylinder pressure P M / C. Therefore, it is not possible to properly increase the brake fluid pressure by controlling the pressure increase time and pressure increase pattern.
  • the brake fluid pressure is controlled based on the deviation between the deceleration and the target deceleration, the brake fluid pressure is controlled during the execution of the brake assist control regardless of the change in the pumping capacity. The pressure can be increased appropriately.
  • FIG. 1 is a system configuration diagram showing a normal braking state of the braking force control device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an ABS operating state of the braking force control device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an assist pressure increasing state realized during BA control or BA + ABS control in the braking force control device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an assist pressure holding state realized during BA control or BA + ABS control in the braking force control device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the assist pressure correction holding state realized during BA control or BA + ABS control in the braking force control device according to the first embodiment of the present invention.
  • FIG. 7A is a diagram illustrating a change that occurs in the change rate ⁇ pMC of the output signal pMC when an emergency braking operation is performed in the braking force control device of the present invention.
  • FIG. 7B is a diagram illustrating changes that occur in the output signal pMC of the hydraulic pressure sensor and the wheel cylinder pressure Pw / c when an emergency braking operation is performed in the braking force control device of the present invention.
  • FIG. 8 (A) is a time chart showing changes in the brake operation.
  • FIG. 8B is a time chart showing changes in the output signal pMC of the hydraulic pressure sensor.
  • FIG. 8C is a time chart showing a state change realized in the braking force control device of the present invention.
  • FIG. 9 is a flowchart of an example of a control routine that is executed to determine whether the first standby state is established in the braking force control device of the present invention.
  • FIG. 10 is a flowchart illustrating an example of a control routine that is executed to determine whether the second standby state is established in the braking force control device of the present invention.
  • FIG. 11 is a flowchart of an example of a control routine executed in the braking force control device of the present invention to determine whether the BA control start condition is satisfied and calculate the pressure increase time of the start pressure increase mode. It is.
  • FIG. 12 shows the reference pressure increase time T STA referred to in the control routine shown in FIG. FIG.
  • FIG. 13 is a flowchart (part 1) of an example of a control routine executed to achieve BA control in the braking force control devices according to the first to third embodiments of the present invention.
  • FIG. 14 is a flowchart (part 2) of an example of a control routine executed to realize the BA control in the braking force control device of the present invention.
  • FIG. 15 is a flowchart (part 3) of an example of a control routine executed to realize BA control in the braking force control device of the present invention.
  • FIG. 16 is a flowchart (part 4) of an example of a control routine executed to realize the BA control in the braking force control device of the present invention.
  • FIG. 17 is a flowchart (part 5) of an example of a control routine executed to realize BA control in the braking force control device of the present invention.
  • FIG. 18 is a flowchart (part 6) of an example of a control routine executed to realize the BA control in the braking force control device of the present invention.
  • FIG. 19 is a flowchart (part 7) of an example of a control routine executed to achieve the BA control in the braking force control device of the present invention.
  • FIG. 20 is a flowchart illustrating an example of a control routine executed to correct the brake fluid pressure to an appropriate fluid pressure in the braking force control device of the present invention.
  • FIG. 21 is a table showing a control mode executed after the start pressure increasing mode when BA control is executed in the braking force control device of the present invention.
  • FIG. 22 is a table showing a control mode executed next to the assist pressure increasing mode when BA control is executed in the braking force control device of the present invention.
  • FIG. 23 is a table showing a control mode executed next to the assist pressure reduction mode when BA control is executed in the braking force control device of the present invention.
  • FIG. 24 is a table showing a control mode executed next to the assist pressure holding mode when BA control is executed in the braking force control device of the present invention.
  • FIG. 25 is a table showing a control mode executed after the assist pressure gradual increase mode when BA control is executed in the braking force control device of the present invention.
  • FIG. 26 is a table showing a control mode executed next to the assist pressure gradual decrease mode when the BA control is executed in the braking force control device of the present invention.
  • FIG. 27 is a table showing a control mode to be executed when the assist pressure correction mode is the request mode in the braking force control device according to the second embodiment of the present invention.
  • FIG. 28 is a system configuration diagram showing a normal braking state and an ABS operating state of the braking force control device according to the second embodiment of the present invention.
  • FIG. 29 is a diagram illustrating an assist pressure increasing state realized during BA control in the braking force control device according to the second embodiment of the present invention.
  • FIG. 30 is a diagram illustrating an assist pressure holding state realized during BA control in the braking force control device according to the second embodiment of the present invention.
  • FIG. 31 shows an assist pressure reduction state realized during BA control or BA + ABS control in the braking force control device according to the second embodiment of the present invention.
  • FIG. FIG. 32 is a diagram showing an assist pressure increasing state realized during BA + ABS control in the braking force control device according to the second embodiment of the present invention.
  • FIG. 33 is a diagram showing an assist pressure holding state realized during BA + ABS control in the braking force control device according to the second embodiment of the present invention.
  • FIG. 34 is a system configuration diagram showing a normal braking state and an ABS operating state of the braking force control device according to the third embodiment of the present invention.
  • FIG. 35 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device according to the third embodiment of the present invention.
  • FIG. 36 is a diagram illustrating an assist pressure holding state realized during BA control in the braking force control device according to the third embodiment of the present invention.
  • FIG. 37 is a diagram illustrating a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device according to the third embodiment of the present invention.
  • FIG. 38 is a diagram illustrating an assist pressure increasing state realized during BA + ABS control in the braking force control device according to the third embodiment of the present invention.
  • FIG. 39 is a diagram illustrating an assist pressure holding state realized during BA + ABS control in the braking force control device according to the third embodiment of the present invention.
  • FIG. 40 is a system configuration diagram showing a normal braking state and an ABS operating state of the braking force control device according to the fourth embodiment of the present invention.
  • FIG. 41 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device according to the fourth embodiment of the present invention.
  • FIG. 42 is a diagram showing an assist pressure holding state realized during BA control in the braking force control device according to the fourth embodiment of the present invention.
  • FIG. 43 is a diagram illustrating a reduced assist pressure state realized during BA control in the braking force control device according to the fourth embodiment of the present invention.
  • FIG. 44 is a diagram showing the relationship between the discharge capacity of the pump provided in the braking force control device according to the fourth embodiment of the present invention and the master cylinder pressure PM / C.
  • FIG. 45 shows the BA control in the braking force control device according to the fourth embodiment of the present invention. A flowchart of an example of a control routine that is executed to achieve control will be described. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a system configuration diagram of a hydro-booster type braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to one embodiment of the present invention.
  • the braking force control device of the present embodiment is controlled by an electronic control unit 10 (hereinafter, referred to as ECU 10).
  • the braking force control device includes a brake pedal 12.
  • a brake switch 14 is disposed near the brake pedal 12.
  • the brake switch 14 outputs an ON signal when the brake pedal 12 is depressed.
  • the output signal of the brake switch 14 is supplied to ECU10.
  • the ECU 10 determines whether or not the brake pedal 12 is depressed based on the output signal of the brake switch 14.
  • the brake pedal 12 is connected to the master cylinder 16.
  • a reservoir tank 18 is provided above the master cylinder 16.
  • the reservoir tank 18 communicates with a return passage 20 for returning the brake fluid to the reservoir tank 18.
  • the supply tank 22 communicates with the reservoir tank 18.
  • the supply passage 22 communicates with the suction side of the pump 24.
  • An accumulator passage 26 communicates with the discharge side of the pump 24.
  • a constant-pressure release valve 27 that opens when excessive pressure is generated in the accumulator passage 26 is provided between the overnight passage 26 and the supply passage 22.
  • An accumulator 28 for storing the hydraulic pressure discharged from the pump 24 communicates with the accumulator passage 26.
  • An upper-limit pressure switch 30 and a lower-limit pressure switch 32 are connected to the accumulator passage 26.
  • Upper lateral pressure Kasui Tutsi 3 0, the pressure of Accu stuffiness Isseki passage 2 6 (hereinafter, referred to as an accumulator pressure P ACC) If one exceeds a predetermined upper limit, an ON output is generated.
  • the lower limit elevation f pressure switch 32 generates an ON output when the accumulator pressure P ACC exceeds a predetermined lower limit.
  • the pump 24 After the pump 24 outputs the ON output from the lower pressure switch 32, the pump 24 returns to the upper value until the ON output is generated by the upper pressure switch 30, that is, after the accumulator pressure P ACC falls below the lower limit. It stays on until it reaches. For this reason, the accumulator pressure P is always maintained between the upper limit and the lower limit.
  • the master cylinder 16 incorporates a regi- ure night 34 in one.
  • An accumulator passageway 26 communicates with Regyuyura 34.
  • the master cylinder 16 and the regi-yure 34 are collectively referred to as the hide booster 36.
  • a piston 40 is provided inside the hide port booster 36.
  • An assist hydraulic chamber 46 is formed on the brake pedal 12 side of the piston 40.
  • a first hydraulic chamber 56 and a second hydraulic chamber 58 are formed inside the hide port booster 36.
  • the hydraulic pump 36 uses the accumulator passage pressure P ACC supplied through the accumulator passage 26 as a hydraulic pressure source to apply a brake to both the first hydraulic chamber 56 and the second hydraulic chamber passage 58. It is configured to generate a hydraulic pressure having a predetermined boosting ratio with respect to the pedaling force.
  • the hydraulic pressure generated in the first hydraulic chamber 56 and the second hydraulic chamber 58 of the hydraulic cylinder 36 will be referred to as a mass cylinder pressure PM / C.
  • a first hydraulic passage 82 and a second hydraulic passage 84 communicate with the first hydraulic chamber 56 and the second hydraulic chamber 58 of the hydrobooster 36, respectively.
  • the second fluid pressure passage 8 4, third Assist Tosorenoi de 9 0 (hereinafter, be referred as SA - 3 9 0) is communicated.
  • a control pressure passage 92 communicates with S A!! 86 and S A-288.
  • the control pressure passage 92 communicates with the accumulator passage 26 via a solenoid switch 94 (hereinafter, referred to as STR 94) for switching between regulation.
  • the STR 94 is turned off to disconnect the accumulator passage 26 and the control pressure passage 92 from each other, and is turned on to turn them on. Solenoid valve.
  • S86 communicates with a hydraulic passage 96 provided corresponding to the right front wheel FR.
  • SA - 2 8 8 8 8 8 8 hydraulic pressure passage 9 8 provided in correspondence to the front left wheel FL is communicated.
  • SA—, 86 realizes the first state in which the hydraulic path 96 is connected to the first hydraulic path 82 by being turned off, and the hydraulic path by being turned on. This is a two-position solenoid valve that realizes a second state in which the valve 96 is connected to the control pressure passage 92.
  • SA - 2 8 8 achieves a first state to conduct a hydraulic passage 9 8 to the first fluid pressure passage 82 by being turned off, and liquid by being turned on
  • the SA - 3 9 0, left and rear-right wheels RL, is a hydraulic passage 1 0 0 provided corresponding to the RR communicates.
  • the second hydraulic passage 84 and the hydraulic passage 100 are brought into conduction, and when turned on, they are shut off. It is a 2-position solenoid valve.
  • a check valve 1 that allows only fluid flow from the second hydraulic passage 84 to the hydraulic passage 100 between the second hydraulic passage 84 and the hydraulic passage 100. 0 2 is provided.
  • a right front wheel holding solenoid 104 (hereinafter, referred to as SF RH 104) communicates with the hydraulic passage 96 corresponding to the right front wheel FR.
  • a left front wheel holding solenoid 106 (hereinafter referred to as SF LH 106) is provided in the hydraulic passage 96 corresponding to the left front wheel FL, and a hydraulic passage 1 corresponding to the left and right rear wheels RL and RR.
  • 0 0 0 includes the right rear wheel holding solenoid 108 (hereinafter referred to as SR RH 108) and the left rear wheel holding solenoid 110 (hereinafter S R LH 110) are in communication with each other.
  • SR RH 108 right rear wheel holding solenoid 108
  • S R LH 110 left rear wheel holding solenoid 110
  • the right front wheel decompression solenoid 1 1 2 (hereinafter, referred to as SF R 1 1 2) communicates with the S FRH 104.
  • the SFLH 106, SRRH 108 and SRLH 110 have left front wheel decompression solenoids 114 (hereinafter referred to as SFLR 114) and right rear wheel decompression solenoids 11 respectively.
  • 6 hereinafter referred to as SRRR 116
  • SRLR 118 left rear wheel decompression solenoid 118
  • the wheel cylinder 120 of the right front wheel FR communicates with the SFR H104.
  • the left front wheel FL wheel cylinder 122 force is applied to SF LH 106
  • the right rear wheel RR wheel cylinder 124 force is applied to SRRH 108
  • the left is applied to SRLH 110.
  • the wheel cylinders 1 26 of the rear wheel RL communicate with each other.
  • a non-return valve is provided between the hydraulic passage 966 and the foil cylinder 120 to allow the flow of fluid from the foil cylinder 120 side to the hydraulic passage 966 bypassing the SFRH 104.
  • Valves 128 are provided c
  • SF RH 104 is a two-position electromagnetic switch that turns off the hydraulic passage 96 and the foil cylinder 120 by turning it off, and shuts off it by turning it on. It is a valve.
  • -SFLH 106, SRRH 108 and SRLH 110 are turned on, respectively, so that the path connecting hydraulic passage 98 and foil cylinder 122, hydraulic passage 10 Path connecting 0 and foil Sinda 1 2 4- And a two-position solenoid valve that shuts off the path connecting the hydraulic passageway 100 and the foil cylinder 126.
  • a return passage 20 communicates with the SFRR 1 1 2, the SFL 1 1 4, the SR R 1 1 6 and the SLR 1 1 8.
  • the foil cylinder 120 and the return passage 20 are cut off, and when turned on, the foil cylinder 120 and the return passage 20 are turned off.
  • This is a two-position solenoid valve that turns on and off.
  • SFLR 114, SRRR 116, and SRLR 118 are turned on, respectively, so that a path connecting the foil cylinder 122 and the return passage 220, a foil cylinder 124 A two-position solenoid valve that conducts a path connecting the return cylinder 20 and the path connecting the foil cylinder 126 and the return path 20.
  • a wheel speed sensor 136 In the vicinity of the right front wheel FR, a wheel speed sensor 136 is provided. The wheel speed sensor 1 36 outputs a pulse signal at a cycle corresponding to the rotation speed of the right front wheel FR. Similarly, near the left front wheel FL, near the right rear wheel RR, and near the left rear wheel RL, a wheel speed sensor 1 3 8 that outputs a pulse signal at a cycle corresponding to the rotation speed of the corresponding wheel. , 140, and 142 are provided. The output signals of the wheel speed sensors 1336 to 142 are supplied to the ECU 10.
  • ECU 1 the second communicating with the second hydraulic chamber 5 8 c Hyde port booster 3 6 for detecting the rotational speed V w of each wheel based on the output signal of the wheel speed sensor 1 3 6-1 4 2
  • a hydraulic pressure sensor 144 is disposed in the hydraulic pressure passage 84. Fluid pressure sensor 1 4 4 hydraulic pressure generated inside the second hydraulic chamber 5 8, i.e., outputs an electrical signal PMC in accordance with the master serial Nda ⁇ P M / c produced by Hydro booster 3 6.
  • the output signal pMC of the hydraulic pressure sensor 144 is supplied to the ECU 10.
  • the ECU 10 detects the master cylinder pressure PM / C based on the output signal pMC.
  • the braking force control device further includes a deceleration sensor 146. Decrease The speed sensor 146 outputs an electric signal corresponding to the forward / backward deceleration generated in the vehicle equipped with the braking force control device. The output signal of the deceleration sensor 146 is supplied to the ECU 10. The ECU 10 detects the deceleration G generated in the vehicle based on the output signal of the deceleration sensor 146.
  • the braking force control device of the present embodiment switches the states of various solenoid valves disposed in the hydraulic circuit to (1) function as a normal brake device, (2) function as an anti-lock brake system, and (3) Realizes a function (brake assist function) that generates a larger braking force than normal when a rapid rise in braking force is required.
  • Figure 1 shows (1) the state of the braking force control device for realizing the function as a normal brake device (hereinafter referred to as the normal brake function). That is, (1) The normal braking function is realized by turning off all solenoid valves provided in the braking force control device as shown in Fig. 1. Hereinafter, the state shown in Fig. 1 is called the normal brake state. Also, the control for realizing the normal brake function in the braking force control device is referred to as normal brake control.
  • the wheel cylinders 120 and 122 of the left and right front wheels FL and FR communicate with the first hydraulic chamber 56 of the hydrobooster 34 through the first hydraulic passage 82.
  • the wheel cylinders 124, 126 of the left and right rear wheels RL, RR communicate with the second hydraulic chamber 58 of the hydro booth 36 via the second hydraulic passage 84.
  • the wheel cylinder pressure P w / c of the wheel cylinders 120 to 126 is always controlled to be equal to the master cylinder pressure P M / C. Therefore, according to the state shown in FIG. 1, the normal braking function is realized.
  • Fig. 2 shows the state of the braking force control device for realizing (2) the function as an anti-lock brake system (hereinafter referred to as the ABS function) (that is, ( 2) the ABS function, as shown in Fig. 2, And S ⁇
  • ABS control The control for realizing the ABS function in the braking force control device is referred to as ABS control.
  • the ECU 10 starts the ABS control when the vehicle is in a braking state and an excessive slip rate is detected for any of the wheels.
  • the hydraulic passages 96, 98 provided for the front wheels are the same as the hydraulic passages 100 provided for the rear wheels, and the It communicates with the hydraulic chamber 58. Therefore, during the ABS control, the wheel cylinder pressures Pw / C of all the wheels are boosted using the second hydraulic chamber 58 as a hydraulic pressure source.
  • the ECU 10 appropriately sets (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode for each wheel according to the slip state of each wheel.
  • the holding solenoid S ** H and the decompression solenoid S ** R are controlled so that the mode is realized.
  • the wheel cylinder pressure P w / C of all the wheels causes an excessive slip rate on the corresponding wheels. Is controlled to a pressure that does not occur. Therefore, the above control According to one, an ABS function can be realized in the braking force control device.
  • the ECU 10 terminates the ABS control when it is no longer necessary to execute the ABS control for all wheels, for example, when entering a high road from a low / road, and sets the braking force control device to the normal braking state. I do.
  • the wheel cylinder pressure P w / C of the wheels subject to the ABS control (hereinafter referred to as the ABS target wheels) is lower than the master cylinder pressure P M / C. And is controlled to a low pressure. For this reason, if the normal braking state is realized immediately after the end condition of the ABS control is satisfied, a sharp change occurs in the wheel cylinder pressure P W / C of the ABS target wheel.
  • the ECU 10 performs a predetermined period of time on the ABS target wheels for a predetermined period after the ABS control termination condition is satisfied. (Ii) After the holding solenoid S ** H and the pressure reducing solenoid S ** R are driven so that the holding mode is repeated, the braking force control device is brought into the normal braking state.
  • ABS end control the above control that is executed after the ABS control end condition is satisfied is referred to as ABS end control.
  • the wheel cylinder pressure Pw / c of the ABS target wheel can be gradually increased to the master cylinder pressure PM / C. Therefore, according to the braking force control device of the present embodiment, the ABS control can be terminated without causing a sudden change in the wheel cylinder pressure Pw / c of the ABS target wheel.
  • the brake fluid in the wheel cylinders 120 to 126 is discharged to the return passage 20 each time the decompression mode is performed on each wheel. Then, each time the pressure increase mode is performed on each wheel, the brake fluid is supplied from the hydrobooth 36 to the wheel cylinders 120 to 126. For this reason, a larger amount of brake fluid flows out of the hydro booster 36 during ABS control than during normal braking.
  • the first hydraulic chamber 56 of the high-pressure booster 36 does not communicate with a hydraulic pressure source such as the accumulators 2-8.
  • the first hydraulic chamber 56 is used as a hydraulic pressure source during the execution of the ABS control, a large amount of brake fluid inside the first hydraulic chamber 56 flows out, and as a result, the brake pedal 12 Excessive stroke may occur.
  • the second hydraulic chamber 58 communicating with the accumulator 28 via the spool 54 is used as a hydraulic pressure source during the ABS control. Therefore, according to the system of the present embodiment, an excessive stroke does not occur on the brake pedal 12 during execution of the ABS control.
  • FIGS. 3 to 5 show the state of the braking force control device for realizing the 3 brake assist function (hereinafter referred to as the BA function).
  • the ECU 10 realizes the BA function by appropriately realizing the states shown in FIGS. 3 to 5 after the brake operation that requires the driver to promptly raise the braking force, that is, after the emergency braking operation is performed.
  • BA control the control for realizing the BA function in the braking force control device.
  • FIG. 3 shows an assist pressure increasing state realized during the execution of the BA control.
  • the assist pressure increasing state is realized when it is necessary to increase the wheel cylinder pressure P w / C of each wheel during the execution of the BA control.
  • Assist pressure increasing state as shown in FIG. 3, SA -. I 8 6 SA- 2 8 8, SA- 3 9 0 and STR 9 realized by 4 to the ON state Is done.
  • the hydraulic pressure passages 96, 98, 100 communicate with the accumulator passage 26 as described above, and also through the check valve 102. To the second hydraulic passage 84. Therefore, the master cylinder pressure P guided to the second hydraulic pressure passage 84
  • M / C is greater than the Hoirushiri Nda ⁇ Pw / C of each wheel is to boost the Hoirushiri Nda ⁇ P w / C also high Dorobusu evening 3 6 as a fluid pressure source in ⁇ cysts pressure increasing state Can be.
  • FIG. 4 shows the assist pressure holding state realized during the execution of the BA control.
  • the assist pressure holding state is realized when it is necessary to hold the wheel cylinder pressure Pw / c of each wheel during execution of the BA control.
  • the assist pressure holding state is SA-! 8 6, SA- 2 8 8, while the SA - 3 9 0 and S TR 9 4 ON state, further, by all the holding Sorenoi de S * * H ON state (closed state) Realized.
  • FIG. 5 shows a reduced assist pressure state realized during the execution of the BA control.
  • the assist pressure reduction state is realized when it is necessary to reduce the wheel cylinder pressure P w / C of each wheel during the execution of the BA control.
  • Assist pressure decreasing state is realized by the SA -! 8 6 and SA - 2 8 8 and O emission state.
  • the accumulator 28 and the foil cylinders 120 to 126 are cut off, and the return passage 20 and the foil cylinder are closed.
  • the cylinders 120 to 126 are cut off, and the hydro booth 36 and the foil cylinders 120 to 126 are turned on. Therefore, according to the assist pressure decreasing state, the wheel cylinder pressure Pw / c of all the wheels can be reduced with the master cylinder pressure ⁇ / C as a lower limit.
  • FIG. 6 shows an assist pressure correction holding state realized during execution of the BA control.
  • the assist pressure correction holding state is realized when it is necessary to prohibit the increase of the wheel cylinder pressure P w / C of all the wheels during the execution of the BA control.
  • Assist pressure correction holding state as shown in FIG. 6, SA-, 8 6, S A- 2 8 8 and S A-39 0
  • the Ru is achieved by an on state.
  • FIG. 7 shows an example of a time chart realized when the driver performs an emergency braking operation in the braking force control device of the present embodiment.
  • the curve shown in FIG. 7 (A) shows the change in the amount of change A pMC of the output signal pMC per unit time (hereinafter, referred to as the rate of change A pMC).
  • the curve shown by the broken line and the curve shown by the solid line in FIG. 7 (B) show the change in the output signal pMC and the change in the wheel cylinder pressure P w / c, respectively.
  • the output signal pMC and its change speed ⁇ pMC are characteristic values of the operation amount of the brake pedal 12 and the operation speed of the brake pedal 12, respectively.
  • the output signal pMC When an emergency braking operation is performed by the driver, the output signal pMC rapidly rises to an appropriate value after the braking operation is started, as indicated by a broken line in FIG. 7 (B). At this time, as shown in Fig. 7 ( ⁇ ), the rate of change ⁇ is determined by the output signal pMC after the brake operation is started. -Increase toward the maximum value ⁇ in synchronization with the sudden increase, and: Decrease to a value near “0” in synchronization with the time when the output signal pMC converges to an appropriate pressure.
  • the ECU 10 executes the BA control when an emergency brake operation by the driver is detected.
  • the ECU 10 first determines whether or not an operation speed exceeding a predetermined speed has occurred on the brake pedal 12, specifically, It is determined whether or not a change rate ⁇ exceeding the predetermined speed ⁇ 1 of 1 has occurred.
  • the ECU 10 detects the change rate ⁇ pMC that satisfies ⁇ room P1
  • the ECU 10 determines that the emergency braking operation may have been performed, and shifts to the first standby state (FIG. 7 (B) middle period). 1).
  • the ECU 10 determines that the driver has performed the emergency braking operation and shifts to the second standby state (FIG. 7 (B)).
  • the ECU 10 determines that the deviation Pdiff has become a sufficiently small value, that is, in order to quickly increase the wheel cylinder pressure PW / C .
  • the BA control is started when the state in which the booster 36 is used as the hydraulic pressure source is switched to the state in which the use of the accumulator 28 as the hydraulic pressure source is more advantageous. others Therefore, according to the braking force control device, it is possible to efficiently and quickly raise the wheel cylinder pressure P w / C after the emergency braking operation is started.o
  • a start pressure increasing mode is executed (FIG. 7B, middle period 3).
  • the start pressure increase mode is realized by maintaining the assist pressure increase state shown in FIG. 3 for a predetermined pressure increase time T STA . ⁇ above rather, according to Assist pressure increasing state, it is possible to pressure increase the Hoirushiri Nda ⁇ Pw / c of each wheel to a pressure exceeding the master serial Nda ⁇ P M / c accumulator 2 8 as a fluid pressure source.
  • the pressure increase time T STA is calculated based on the maximum value ⁇ P MAX of the rate of change ⁇ pMC generated during the emergency braking operation. Specifically, the pressure increase time T STA is set to be longer as the maximum value ⁇ P MAX of the rate of change ⁇ pMC is larger, and is set to be shorter as the maximum value ⁇ ⁇ ⁇ is smaller.
  • the wheel cylinder pressure Pw is set such that the driver intends to quickly increase the braking force and after the emergency braking operation is detected.
  • / c is increased greatly compared to the mass cylinder pressure PM / C.
  • the assist pressure Pa can be generated. Therefore, according to the braking force control device of the present embodiment, (I) the wheel cylinder pressure Pw / c in which the driver's intention is accurately reflected is immediately increased after the execution of the start pressure increase mode is started. Can be generated.
  • the assist pressure increasing mode when (I) the start pressure increasing mode ends, thereafter, in response to the driver's brake operation, (II) the assist pressure increasing mode, and (III) the assist pressure.
  • One of the pressure reduction mode, (IV) assist pressure hold mode, (V) assist pressure slow increase mode, and (VI) assist pressure slow decrease mode is executed.
  • the assist pressure increasing mode is executed (FIG. 7 (B), middle period 7).
  • Assist pressure increasing mode is realized by setting the braking force control device to the assist pressure increasing state, similarly to the above (I) Start increasing pressure mode. According to Assist pressure increasing state can be rapidly increased toward the Hoirushiri Nda ⁇ Pw / c of the accumulator one evening pressure P ACC of each wheel. Therefore, according to the above-described processing, the driver's intention can be accurately reflected on the wheel cylinder pressure Pw / c.
  • the assist pressure reducing mode is executed (FIG. 7B, middle period 9).
  • the assist pressure reduction mode is realized by maintaining the assist pressure reduction state shown in FIG. According to the assist pressure reduced state, as described above, the wheel cylinder pressure Pw / C of each wheel can be quickly reduced toward the master cylinder pressure PM / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure Pw / c.
  • the assist pressure holding mode is executed (FIG. 7 (B), middle periods 4 and 8).
  • the assist pressure holding mode is realized by maintaining the assist pressure holding state shown in FIG. According to the assist pressure holding state, as described above, the wheel cylinder pressure P W / C of each wheel can be maintained at a constant value. Therefore, according to the above processing, the intention of the driver can be accurately reflected on the wheel cylinder pressure Pw / c.
  • the assist pressure decreasing mode (not shown) is executed.
  • the assist pressure gradual increase mode is realized by repeating the assist pressure increasing state shown in FIG. 3 and the assist pressure maintaining state shown in FIG. (V) According to the assist pressure moderately increasing mode, it is possible to stepwise boosted towards the Hoirushiri Nda ⁇ Pw / c of each wheel to accumulator one evening pressure P ACC. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
  • the assist pressure gradual decrease mode is executed (FIG. 7B, middle period 5).
  • the assist pressure gradual decrease mode is realized by repeating the assist pressure decreasing state shown in FIG. 5 and the assist pressure holding state shown in FIG. (VI)
  • the wheel cylinder pressure Pw / c of each wheel can be reduced stepwise toward the master cylinder pressure PM / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
  • the assist pressure Pa that accurately reflects the driver's intention can be generated immediately after the driver performs the emergency braking operation.
  • (I) start When the driver operates the brake after the assist pressure Pa is generated by the pressure increasing mode, the brake operation is performed in response to the brake operation.
  • the wheel cylinder pressure P w / C can be increased or decreased. Therefore, according to the above process, the driver's intention is appropriately reflected in the wheel cylinder pressure P w / C while maintaining the assist pressure Pa at a substantially constant value during the execution of the BA control. Can be done.
  • the braking force control device realizes the assist pressure reduction state shown in FIG. 5 when the brake operation intended to reduce the brake fluid pressure during the BA control is performed, that is, when the pressure reduction operation is performed.
  • the wheel cylinder pressure P w / c of each wheel is released to the hydraulic booster 36.
  • the hydraulic cylinder 36 cannot instantaneously absorb a large amount of brake fluid. For this reason, when the braking force control device is brought into the assist pressure decreasing state, a phenomenon that the detection value of the hydraulic pressure sensor 144 temporarily rises thereafter occurs.
  • FIG. 8 shows an example of a time chart realized when an operation intended to maintain the brake fluid pressure is performed after the driver performs the pressure reducing operation.
  • FIGS. 8 (A) to 8 (C) show changes in the brake operation by the driver, changes in the output signal pMC, and changes in the state of the braking force control device, respectively.
  • the braking operation is performed for a very short time by the driver while the braking force control device is maintained in the assist pressure holding state shown in FIG. 4, and then the holding operation is performed. Is realized by executing.
  • the hydraulic pressure in the second hydraulic pressure passage 84 that is, the master cylinder pressure PM / C decreases, and the output is reduced.
  • the signal p MC tends to decrease.
  • the braking force control device changes the state to the assist pressure decreasing state (FIG. 5) (time t in FIG. 8).
  • the wheel cylinders 120 to 126 of each wheel communicate with the second hydraulic passage 84 and flow into the wheel cylinders 120 to 126.
  • the brake fluid flows out to the second hydraulic passage 84.
  • the output signal pMC of the hydraulic pressure sensor 144 shows a rising tendency after the assist pressure reduction state is realized (after time t.).
  • the braking force control device determines that the driver's pressure reducing operation has been completed, and changes the state from the assist pressure reducing state to the assist pressure holding state (see FIG. Time at 8).
  • the state of the braking force control device changes to the assist pressure holding state as described above, the flow of the brake fluid from the wheel cylinder of each wheel toward the second hydraulic passage 84 is cut off, and the output signal p MC is reduced. Shows a sharp decline.
  • the braking force control device of the present embodiment reduces the wheel cylinder pressure Pw / c of each wheel. It is determined that the pressure has been excessively reduced (VII), and the assist pressure correction pressure increase mode is executed.
  • the assist pressure increasing mode is the same as the assist pressure increasing state shown in Fig. 3 under the condition that the (IV) assist pressure holding mode is required.
  • (I) It is realized by repeating the assist pressure holding state shown in FIG. (VII)
  • the assist pressure compensation pressure increase mode it is possible to increase the wheel cylinder pressure P w / C of each wheel. Therefore, according to the braking force control device of the present embodiment, the excessive reduction in the wheel cylinder pressure P w / C due to the pulsation of the master cylinder pressure P M / C is corrected, and the intention of the driver is corrected. It can be accurately reflected on the foil cylinder pressure P W / C.
  • the wheel cylinder pressure Pw / c of each wheel is rapidly increased thereafter, so that an excessive slip ratio for any of the wheels is obtained. May occur.
  • the ECU 10 performs the BA control for the wheel without the excessive slip ratio and the ABS control for the wheel with the excessive slip ratio. At the same time.
  • this control is referred to as BA + ABS control.
  • the BA + ABS control realizes any one of the states shown in FIGS. 3 to 6 above and appropriately performs the above-described (i) pressure increasing mode, (ii) holding mode, and (iii) for the ABS target wheel. ) It is realized by controlling the holding solenoid S ** H and the decompression solenoid S ** R so that the decompression mode is realized.
  • the holding mode and (iii) the decompression mode can be realized for all the wheels.
  • the assist pressure decreasing state shown in FIG. 5 is realized when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure Pw / c of any wheel. It is in a state where it is done.
  • the assist pressure correction holding state shown in FIG. 6 is a state that is realized in a situation in which increasing the wheel cylinder pressure P w / C for all wheels should be prohibited. Therefore, if these conditions are realized, if (ii) holding mode and (iii) depressurization mode can be realized for the ABS target wheel, the requirements of BA + ABS control can be properly satisfied. .
  • the braking force control device of the present embodiment even when any of the states shown in FIGS. 3 to 6 is required by the BA control, the requirements of the BA ten ABS control are properly satisfied. be able to. Therefore, according to the braking force control device of the present embodiment, the wheel cylinder pressures P w / C of all the wheels are sufficiently reduced during the execution of the BA + ABS control so as not to generate an excessive slip ratio. Can be controlled to a large hydraulic pressure.
  • the ECU 10 terminates the ABS control and again executes the BA control independently.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled to be lower than the wheel cylinder pressure P W / c of the ABS non-target wheel. For this reason, if the holding solenoid S ** H of the ABS target wheel is immediately opened after the ABS control termination condition is satisfied, the wheel cylinder pressure of the ABS target wheel will be maintained.
  • the above-described hydraulic pressure increase that occurs in the wheel cylinder pressure P w / C of the ABS target wheel is, for example, the above-mentioned ABS end control even when the BA + ABS control ends (for the ABS target wheel (i) (Ii) control to repeat the holding mode and).
  • the braking force control device may be in the assist pressure holding state shown in FIG. 4 at the end of the BA + ABS control. If the above-described ABS end control is executed when the braking force control device is in the assist pressure holding state, a phenomenon occurs in which the wheel cylinder of the ABS target wheel is intermittently communicated with the accumulator 28.
  • Hoirushiri Nda ⁇ Pw / c of the A BS target wheel, beyond Hoirushiri Nda ⁇ P w / C of other wheels may occur a situation that is boosted to a maximum ⁇ Kyumure Yu ⁇ P ACC.
  • the assist pressure correction holding mode is achieved by (IV) setting the braking force control device to the assist pressure correction holding state shown in FIG. 6 in a situation where the assist pressure holding mode is required. Is achieved.
  • the assist pressure correction holding state as described above, it is possible to prohibit the wheel cylinder pressures P w / c from increasing for all wheels. Therefore, according to the braking force control device of the present embodiment, even if the ABS end control is executed at the end of the BA + ABS control, the wheel cylinder pressure P w / C of the ABS target wheel is excessively increased. None.
  • FIG. 9 shows the condition determination for shifting to the first standby state
  • 1 shows a flowchart of an example of a control routine executed by the ECU 0 in order to determine a condition for maintaining a first standby state.
  • the routine shown in FIG. 9 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 9 is started, first, the processing of step 200 is executed.
  • step 200 it is determined whether or not the flag XSTANBY1 is in the ON state.
  • the value THNC is set.
  • the condition for transition to the first standby state is satisfied when the output signal pMC and the rate of change ⁇ pMC satisfy pMC ⁇ THP1, and ⁇ 1 and ⁇ THNC, as described later. Is determined.
  • the processing of step 204 is next performed. .
  • step 204 it is determined whether or not the output signal p MC is equal to or greater than the first predetermined amount T P1. As a result, if it is determined that pMC ⁇ THPl is not satisfied, it is determined that the condition for shifting to the first standby state is not satisfied, and the current routine is terminated. On the other hand, if it is determined that p MC ⁇ THP 1 holds, the process of step 206 is executed next.
  • step 206 it is determined whether or not the change rate ApMC is larger than the first predetermined speed ⁇ P1 and smaller than the noise cut value THNC. As a result, ⁇ 1 ⁇ ApMC ⁇ THN If it is determined that C is not satisfied, it is determined that the transition to the first standby state—the condition is not satisfied, and the current routine is ended. On the other hand, when it is determined that the above condition is satisfied, the process of step 208 is executed next.
  • step 208 the flag XSTANBY1 is turned on to indicate that the condition for shifting to the first standby state has been satisfied.
  • step 210 a process of incrementing the counter C STANBY 1 is executed.
  • the counter C STANBY 1 is a counter for counting the elapsed time after the condition for shifting to the first standby state is satisfied.
  • the counting time of the counter C STANBY 1 has been reset to "0" by initial processing when the vehicle starts.
  • step 212 it is determined whether the time counted by the counter C STANBY 1 is less than or equal to a predetermined time.
  • the predetermined time period is a small value compared to the time period during which the rate of change ⁇ pMC is maintained at a large value when the emergency braking operation is performed. Therefore, when an emergency braking operation is performed by the driver, the change rate ApMC should always be maintained at a large value while C STANBY 1 ⁇ hi holds. If it is determined that C STANBY 1 ⁇ H is satisfied as a result of the above determination, the process of step 214 is executed next.
  • step 214 it is determined whether or not the change rate ⁇ pMC is smaller than a predetermined value S. As a result, if ⁇ pMC ⁇ ⁇ holds, It is possible to determine that the rate of change ⁇ p MC has become a small value very shortly after the condition for shifting to the first standby state is satisfied. In this case, it is determined that the driver's brake operation has not been an emergency brake operation, and then the process of step 216 is executed.
  • step 2 16 a process of turning off the flag XSTANBY 1 to release the first standby state is executed. After the processing of this step 216 is executed, the processing of step 218 is executed next.
  • step 2 18 a process of resetting the counting time of the count C STANBY 1 to “0” is executed.
  • the current routine is completed.
  • step 220 if it is determined that CS TANBY 1 is not established in step 2 12 and if it is determined that ⁇ pMC ⁇ S is not established in step 2 14 above, the first standby state is established. After the conditions for transition to the state are satisfied, it can be determined that the change rate ApMC has maintained a large value for a certain period. In this case, the process of step 220 is executed next.
  • step 220 it is determined whether or not the count value of the counter C STANBY 1 is equal to or longer than a second predetermined time THT2.
  • the second predetermined time THT 2 is an upper limit value of the duration of the first standby state. Therefore, if it is determined in this step 220 that CS TANBY 1 ⁇ THT 2, the duration of the first standby state has reached the upper limit. In this case, after the processing of the above steps 2 16 and 2 18 is performed, the current routine is terminated. On the other hand, if it is determined in step 220 that CSTNBY 1 ⁇ THT 2 is not established, it can be determined that the duration of the first standby state has not yet reached the upper limit. In this case, the process of step 222 is executed next.
  • step 2 2 2 the flag XS TANBY 2 is on Is determined.
  • FIG. 10 shows a flowchart of an example of a control routine executed by the ECU 10 to determine the conditions for shifting to the second standby state.
  • the routine shown in FIG. 10 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 10 is started, first, the processing of step 230 is executed.
  • the count time of the counter CS TANBY 1, that is, the elapsed time after the condition for transition to the first standby state is satisfied is equal to or longer than the first predetermined time THT1, and It is determined whether or not the predetermined time THT 2 or less.
  • the second predetermined time THT 2 is, as described above, the upper limit of the time during which the first standby state is to be maintained.
  • the first predetermined time THT 1 is a value that determines the lower limit time during which the high-speed operation of the brake pedal 12 continues when the emergency braking operation is performed.
  • step 230 when the operation speed of the brake pedal 12 becomes a sufficiently small value after the brake operation is started and before THT 1 ⁇ C STANB Y 1 is satisfied, however, it can be determined that the brake operation was not an emergency brake operation. If it is determined in step 230 that THT 1 ⁇ CS TANBY 1 ⁇ T HT 2 does not hold, no further processing is performed thereafter. This routine is ended without being performed. On the other hand, if it is determined that the above condition is satisfied, then the processing of step 232 is executed and o
  • step 2 32 the rate of change ApMC exceeds the second predetermined speed ⁇ 2 from the previous processing cycle to the current processing cycle, and the second predetermined speed ⁇ ⁇ 2 or less. It is determined whether or not it has changed.
  • the second predetermined speed ⁇ 2 is a threshold value for determining whether or not the master cylinder pressure PM / C is rapidly increasing, that is, whether or not the brake pedal 12 is operated at a high speed. is there.
  • step 2 32 When it is determined in the above step 2 32 that the rate of change ⁇ pMC has not changed from a speed exceeding TH P2 to a speed P ⁇ P 2 or less from the previous processing cycle to the current processing cycle. Can determine that the high-speed operation period of the brake pedal 12 has not ended from the previous processing cycle to the current processing cycle. In this case, the current routine ends without any further processing.
  • step 2 32 determines whether the rate of change ⁇ pMC has changed from a speed exceeding ⁇ 2 to a speed of ⁇ ⁇ 2 or less from the previous processing cycle to the current processing cycle.
  • the process of step 234 is executed next.
  • step 234 the maximum value pMCMAX generated in the output signal pMC after the transition condition to the first standby state is satisfied, and the output value pMC immediately after the condition in step 232 described above is satisfied. It is determined whether the difference "pMCMA X-PMC" is smaller than a predetermined value 7 or not. As a result, if it is determined that pMCMAX—pMC ⁇ 7 holds, it is determined that a large pedaling force F is still being applied to the brake pedal 12. -Can be determined. In this case, the process of step 236 is performed next. On the other hand, if it is determined that the condition of step 234 is not satisfied, it can be determined that the depression of the brake pedal 12 has already been loosened. In this case, the current routine ends without proceeding to the second standby state.
  • step 236 the flag XSTAN ⁇ ⁇ 2 is turned on to indicate that the transition condition to the second standby state has been satisfied.
  • FIG. 11 shows a flowchart of an example of a control routine executed by the ECU 10 in order to perform the condition determination for starting the BA control and (I) the calculation of the pressure increase time T SAT in the start pressure increase mode.
  • the routine shown in FIG. 11 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 11 is started, first, the processing of step 240 is executed.
  • Step 2 4 2 reference pressure increase between T STA is a reference value of the pressure increasing time T STA. Is calculated. Reference pressure increase time T STA .
  • the ECU refers to the map stored in the ECU 10 and, based on the operation speed of the brake pedal 12 generated during the emergency braking operation, specifically, the condition for shifting to the first standby state. Is determined based on the maximum value ⁇ PMCMAX that appears in the change rate ⁇ pMC after the condition is satisfied.
  • -Fig. 12 shows an example of the map referred to in step 2 42 above.
  • the map of the reference pressure increase time TSTAO indicates that the larger the maximum change speed ⁇ P MCMAX is, the larger the reference pressure increase time T is.
  • STA . Is set to be long. Therefore, the reference pressure increase time T STA . Is set to a longer time so that a higher operating speed of the brake pedal 12 occurs during the emergency brake operation.
  • the process of 244 is executed.
  • step 244 it is determined whether or not the BA control start timing has arrived.
  • the BA control start timing As described above, in this embodiment, in order to increase the wheel cylinder pressure P w / C after the emergency brake operation is performed, it is better to use the accumulator 28 as the hydraulic pressure source in order to increase the hydraulic booth.
  • BA control is performed. To start. In this step 244, it is determined whether or not the start timing has arrived.c As a result, if it is determined that the BA control start timing has not arrived, no further processing is performed. This routine ends without proceeding. On the other hand, if it is determined that the BA control start timing has arrived, the process of step 246 is performed next.
  • the output signal pMC is the predetermined pressure P. It is determined whether or not it is larger than.
  • the wheel cylinder pressure P w / C is increased using the accumulator 28 as a hydraulic pressure source. If e Irushiri Nda ⁇ P w / C is boosted accumulator 2 8 as a fluid pressure source, Hoirushiri Nda ⁇ P w / C of pressure increase gradient is the Hoirushiri Sunda pressure P w / C and the accumulator pressure P ACC It decreases as the differential pressure decreases.
  • step 2 4 6 if pMC> P Q is determined to be taken, it can be determined that the high-pressure Hoirushiri Nda ⁇ P W / C is generated at the start of the BA control. In this case, to increase the pressure increase time T STA , the process of step 248 is performed next. On the other hand, if it is determined that P M / C > P 0 is not established, it can be determined that the wheel cylinder pressure P W / C at the start of the BA control is low. In this case, next, the processing of step 250 is executed to shorten the pressure increase time T STA .
  • step 248 the reference pressure increase time T STA calculated in step 242 above. Is multiplied by the correction count to calculate the pressure increase time T sta .
  • the correction count is a correction count set in advance to set the long pressure increase time T STA .
  • Step 2 5 the pressure increasing time T STA is calculated by multiplying the correction factor K S in the step 2 4 2 computed reference pressure increase time T STA0.
  • the correction coefficient K S is a correction coefficient set in advance to set a short pressure increase time TSTA.
  • step 252 a process for turning off the flag XSTANBY2 is executed, and a process for permitting the start of the BA control is executed.
  • the BA control can be executed in the braking force control device.
  • the processing of step 25 is completed, the current routine ends.
  • the flowcharts shown in FIGS. 13 to 19 and the flowchart shown in FIG. 20 show flowcharts of a control routine executed by the ECU 10 for realizing the BA function in the braking force control device.
  • the ECU 10 repeatedly executes the control routines shown in FIG. 13 to FIG. 19 after the execution of the BA control is permitted in the above step 252.
  • the control routine shown in FIGS. 13 to 19 is started, first, the step The processing of 260 is executed.
  • -In step 260 after the BA control is started, it is determined whether or not the (I) start pressure increasing mode has already been completed. As a result, if it is determined that the (I) start pressure increase mode has not been completed yet, the process of step 262 is executed next.
  • step 262 the timer TM0DE is reset.
  • the timer T MODE is a timer that constantly counts up toward a predetermined upper limit.
  • the timer TM0DE is used as a timer for counting the duration of each control mode for realizing the BA function.
  • step 264 a process is performed to bring the braking force control device into the assist pressure increasing state shown in FIG. After the processing of this step 264 is performed, thereafter, the wheel cylinder pressure Pw / c of each wheel starts increasing at a predetermined rate of change using the accumulator 28 as a hydraulic pressure source.
  • step 266 the processing of step 266 is executed next.
  • Step 2 6 6 In the evening Ima T M. It is determined whether or not the count value of DE exceeds the pressure increase time T STA calculated in the above step 248 or 250. As a result, if it is determined that T M0DE > T STA does not hold, the process of step 264 is performed again. According to the above processing, after the BA control is started, the braking force control device can be continuously maintained in the assist pressure increasing state until the pressure increasing time T STA elapses. In the present embodiment, the processing of the above steps 260 to 260 realizes (I) the start pressure increasing mode.
  • the pressure-increasing time T STA increases as the brake pedal 12 is operated at a higher speed during the emergency braking operation, that is, as the emergency braking operation requires a quicker increase in the braking force.
  • the pressure increase time T STA is calculated as follows: (I) Start pressure increase mode Considering the pressure gradient of wheel cylinder pressure P w / C during execution of _ command: Corrected based on master cylinder pressure P M / C at the start of BA control. Therefore, according to the braking force control device of the present embodiment, (I) the assist pressure Pa in which the driver's intention is accurately reflected can be generated by executing the start pressure increasing mode.
  • step S266 when the pressure increase time T STA has elapsed after the start pressure increase mode is started, T M is obtained in step S266. It is determined that DE > T STA holds. In this case, (I) the start pressure increasing mode is ended and another control mode is started, and thereafter, the processing after step 268 is executed.
  • FIG. 21 is a table showing the control mode executed after (I) the start pressure increase mode in relation to (I) the rate of change ⁇ pMC at the end of the start pressure increase mode (hereinafter referred to as “PMC”). This is referred to as a start pressure increase end time table.
  • PMC the rate of change ⁇ pMC at the end of the start pressure increase mode
  • step 268 the rate of change ⁇ p MC is captured.
  • the change rate ApMC captured in this step 268 is (I) the change rate ⁇ pMC that has occurred in the output signal PMC at the end of the start pressure increase mode. It is determined whether or not the acquired change rate ApMC exceeds a positive predetermined value ⁇ . As a result, when it is determined that ⁇ pMC> ⁇ P, (> 0) holds, it can be determined that the driver is required to increase the braking force. In this case, the control mode following the start pressure increasing mode is determined to be (II) assist pressure increasing mode, and then the process of step 272 is executed.
  • step 272 (II) the process of setting the braking force control device to the assist pressure increasing state shown in FIG. 4 is executed to start the assist pressure increasing mode.
  • step 27 the wheel cylinder pressure P w / C of each wheel is thereafter set using the accumulator 28 as the hydraulic pressure source. ⁇ The pressure is quickly increased.
  • step 274 the processing in step 274 is performed next.
  • step 274 a process of turning on the flag XPAINC is performed to indicate that the currently executed control mode is the (II) assist pressure increasing mode.
  • the current routine ends.
  • step 270 If it is determined in step 270 that ⁇ does not hold, then the process of step 276 is executed.
  • Step 2 7 6 taken in the above Step 2 6 8 change rate ⁇ pMC is, whether less than the negative predetermined value [Delta] [rho] 2 is determined.
  • the control mode following (I) the starting pressure increasing mode is determined to be (II I) the assist pressure decreasing mode, and then the process of step 278 is executed.
  • step 278, (III) the process of setting the braking force control device to the assist pressure reduced state shown in FIG. 5 is executed to start the assist pressure reduced mode.
  • step 278 the wheel cylinder pressure P W / C of each wheel is thereafter reduced with the master cylinder pressure PM / C as the lower limit.
  • step 280 the process of step 280 is executed.
  • step 280 a process of turning on the flag XPARED to indicate that the currently executed control mode is ( ⁇ ) the assist pressure reduction mode is executed.
  • the current routine is completed.
  • step 2 76 ⁇ . ⁇ When [Delta] [rho] 2 is determined not satisfied, i.e., if the start pressurizing mode is the rate of change ⁇ [rho MC upon completion is determined to be maintained in the vicinity of "0", depending on the driver It can be determined that it is required to maintain the braking force. this In this case, the process of step 282 is executed next.
  • step 282 (IV) to start the assist pressure holding mode, a process of setting the braking force control device to the assist pressure holding state shown in FIG. 4 is executed. After the process of step 282 is executed, the wheel cylinder pressure P w / C of each wheel is maintained at a constant value without being increased or decreased.
  • the process of step 284 is executed.
  • step 284 processing is performed to set the flag X PAHO LD to the ON state to indicate that the currently executed control mode is the (IV) assist pressure holding mode.
  • step 284 processing is performed to set the flag X PAHO LD to the ON state to indicate that the currently executed control mode is the (IV) assist pressure holding mode.
  • step 260 When the routine is started again after the processing of the above steps 260 to 284 is executed, the (I) start pressure increase mode has already been ended in the step 260 above. Is determined. In this case, after step 260, the process of step 286 is executed.
  • step 286 the output signal pMC and its rate of change A pMC are read.
  • step 288 the control mode currently executed in the braking force control device is determined.
  • step 288 when the flag XPANC is in the ON state, it is determined that the control mode currently being executed is the ( ⁇ ) assist pressure increasing mode.
  • the process of step 290 shown in FIG. 14 is executed after step 288.
  • Fig. 22 is a table showing the control mode to be executed next in relation to the change rate ApMC when the control mode currently being executed is the (II) assist pressure increase mode (hereinafter referred to as the increase mode). Pressure table).
  • the control mode to be executed after the (II) assist pressure increasing mode is determined by the processing of step 290 and subsequent steps so as to correspond to the pressure increasing table shown in FIG.
  • Step 2 9 a positive predetermined value delta [rho 3 to the output signal pMC exceeds It is determined whether a change rate ApMC occurs. As a result, when it is determined that ⁇ 3 (> 0) is established, it can be determined that the driver is required to increase the braking force. In this case, the process of step 292 is performed after step 290. On the other hand, when it is determined that the change rate ⁇ pMC that satisfies the above condition has not occurred, it can be determined that the driver is required to maintain the braking force. In this case, the processing of step 294 is executed following step 290.
  • step 292 in order to enable a further increase in the braking force, the process of continuously requesting the execution of the (II) assist pressure increasing mode, that is, the (II) assist pressure increasing mode is set to the request mode. Is performed.
  • step 294 (IV) a process for requesting execution of the assist pressure holding mode, that is, (IV) a process for setting the assist pressure holding mode to the request mode, is executed so that the braking force can be held. You. When the processing of step 292 or the processing of step 294 is completed, the processing of step 342 shown in FIG. 19 is thereafter performed.
  • step 288 if it is determined in step 288 that the flag XPARED is in the ON state, it is determined that the control mode currently being executed ( ⁇ ) is the assist pressure reduction mode. You. In this case, the process of step 2966 shown in FIG. 15 is executed following the above-mentioned step 2888.
  • Fig. 23 shows a table in which the control mode to be executed next is expressed in relation to the change rate ApMC when the currently executed control mode is the (III) assist pressure reduction mode (hereinafter referred to as the pressure reduction table ).
  • the control mode to be executed after the (III) assist pressure reduction mode is determined by the processing in step 296 and subsequent steps so as to correspond to the pressure reduction table shown in FIG.
  • step 296 it is determined whether or not the output signal pMC has a rate of change ⁇ pMC lower than the negative predetermined value ⁇ ⁇ 4 .
  • If it is determined that ⁇ ⁇ 4 ( ⁇ 0) holds, it can be determined that the driver is required to reduce the braking force.
  • the process of step 298 is executed after step 296.
  • the process of step 300 is executed after step 2966.
  • step 298 in order to make it possible to further reduce the braking force, (III) the process of requesting the execution of the assist pressure reducing mode, that is, ( ⁇ ) the process of setting the assist pressure reducing mode to the request mode is continued.
  • step 300 in order to enable the braking force to be maintained, (IV) a process for requesting execution of the assist pressure holding mode, that is, (IV) the assist pressure holding mode is set to the request mode. Is performed.
  • the processing in step 342 shown in FIG. 19 is thereafter performed.
  • step 288 if it is determined in step 288 that the flag XPAHOLD is on, it is determined that the control mode currently being executed is the (IV) assist pressure holding mode. In this case, the processing of step 302 shown in FIG. 16 is executed after step 288 described above.
  • Figure 24 shows the following control modes to be executed when the control mode currently being executed is the assist pressure holding mode: (1) the change rate ApMC of the output signal pMC, and (2) the output signal pMC and the output at the start. Shows a table (hereinafter referred to as the “holding table”) expressed in relation to the difference “pMC_pMCSTA” from the value pMCSTA.
  • the starting output value "pMCSTA” is the value of the output signal pMC at the time when the current control mode is started. Therefore, "pMC-pMCSTA” shown in FIG. 24 corresponds to the amount of change in the output signal pMC after the current control mode is started.
  • the processing after step 302 The control mode to be executed after the (IV) assist pressure holding mode is determined so as to correspond to the holding time table shown.
  • Step 3 0 2 the output signal pMC, positive and a predetermined value [Delta] [rho] 5 a is exceeded change rate APMC, variation exceeds a predetermined positive value PMC-p MC whether STA and occurs is determined.
  • APMC change rate
  • PMC-p MC predetermined positive value
  • step 304 in order to enable the braking force to rise quickly, (II) the process of requesting the execution of the assist pressure increasing mode, that is, the (II) assist pressure increasing mode is set to the request mode. The processing is executed. When the process of step 304 is completed, the process of step 342 shown in FIG. 19 is executed.
  • step 306 is executed next.
  • Step 3 0 6 the output signal pMC, whether the change rate ApMC which falls below a predetermined negative value [Delta] [rho] 6, the variation pMC- p MCSTA below a predetermined negative value P 4 is generated is discriminated .
  • the process of step 308 is executed following step 306.
  • step 308 in order to quickly reduce the braking force, (III) a process for requesting execution of the assist pressure reduction mode, that is, (III) a process for setting the assist pressure reduction mode to the request mode is executed. Is done. Book ⁇
  • step 308 the processing of step 308 is completed, the processing of step 342 shown in FIG. 19 is next executed.
  • step 310 is executed next.
  • step 310 the timer T M is set .
  • the count value of DE is a predetermined time T M. It is determined whether or not DE1 has been reached.
  • the predetermined time T M0DE1 when the driver operates the brake pedal 1 2 intended to alter quickly the brake force, the amount of change pMC - pMC S TA is higher than a predetermined value, or a predetermined value P 4 below This value is almost equal to the upper limit value of the time required to reach. Therefore, if T M0DE ⁇ T M0DE1 is not satisfied, the braking force should be changed promptly even if neither the condition of step 302 nor the condition of step 303 is satisfied. The possibility of the intended brake operation cannot be denied. In this case, the process of step 312 is executed next.
  • step 312 a process for requesting the execution of the (IV) assist pressure holding mode, that is, a process for setting the (IV) assist pressure holding mode to the request mode, is executed.
  • step 312 the process of step 312 is completed, the process of step 342 shown in FIG. 19 is next performed.
  • step 310 If it is determined in step 310 that T MODE ⁇ T M0DE1 is satisfied in a situation where neither the condition of step 302 nor the condition of 360 is satisfied, the driver immediately increases the braking force. Thus, it can be determined that the brake operation intended to change to the above has not been performed. In this case, the process of step 314 is executed following step 310.
  • Step 3 1 4 the output signal pMC, whether positive variation P MC- p CSTA which exceeds a predetermined value P 2 is generated is determined. As a result, if pMC—pMC S TA> P 2 (> 0) holds, the driver intended to maintain the braking force gradually increases the braking force. You can judge that you have started to intend to do so. In this case, the process of step 316 is performed after step 314.
  • step 316 in order to gradually increase the braking force, a process of requesting the execution of the (V) assist pressure gradual increase mode, that is, a process of setting the (V) assist pressure gradual increase mode to the request mode Is executed.
  • a process of step 316 ends, the process of step 342 shown in FIG. 19 is next executed.
  • step 314 determines whether the driver has not requested execution of the (V) assist pressure gradual increase mode. In this case, the process of step 318 is performed subsequent to step 314 described above.
  • Step 3 1 8 the output signal pMC, whether that falls below a predetermined negative value P 3 variation PMC-pMC ST A has occurred is determined. As a result, if pMC-pMC STA ⁇ P 2 ( ⁇ 0) holds, it is determined that the driver who intended to maintain the braking force has begun to intend to gradually reduce the braking force. Can be. In this case, the process of step 320 is performed after step 318.
  • step 320 in order to gradually reduce the braking force, (VI) a process of requesting execution of the assist pressure moderation mode, that is, (VI) the assist pressure moderation mode is set to the request mode. The processing is executed. When the process of this step 320 is completed, next, the process of step 342 shown in FIG. 19 is executed.
  • step 318 if the condition of step 318 is not satisfied, the driver intends to maintain the braking force, that is, the driver continuously requests the execution of the (IV) assist pressure holding mode. You can judge that. In this case, the processing of the above-mentioned step 312 is executed after the above-mentioned step 318.
  • step 288 if it is determined in step 288 that the flag XPASLINC is ON, the control currently being executed is executed. ⁇ It is determined that the mode is (V) the assist pressure gradual increase mode. In this case: Subsequent to step 288, the process of step 322 shown in FIG. 17 is executed.
  • the flag X PAS LINC is a flag that is turned on when the (V) assist pressure gradual increase mode is selected as the control mode, as described later.
  • Figure 25 shows the control mode to be executed next when the currently executed control mode is the (V) assist pressure gradual increase mode, 1 the rate of change of the output signal PMC ⁇ pMC, and 2 the output
  • the table below shows the relationship between the signal pMC change amount pMC and pMC STA (hereinafter referred to as the slow increase table).
  • the control mode to be executed next to the (V) assist pressure gradual increase mode is determined by the processing after step 3 222 so as to correspond to the gradual increase table shown in FIG.
  • step 3 22 it is determined whether or not the output signal pMC has a change rate A pMC exceeding a positive predetermined value ⁇ ⁇ 7 and a change amount pMC—pMC STA exceeding a positive predetermined value P 5 . Is determined. As a result, if ⁇ ⁇ ⁇ ⁇ ⁇ (> 0) holds, and if pMC—pMC S TA> P 5 (> 0) holds, the intention was to gradually increase the braking force. It can be determined that the driver has started to intend to increase the braking force quickly. In this case, the process of step 324 is performed after step 322.
  • step 3 2 4 in order to enable the brake force to rise quickly, (II) the process of requesting the execution of the assist pressure increasing mode, that is, ( ⁇ ) the assist pressure increasing mode is set to the request mode. The processing is executed. When the process of step 324 is completed, the process of step 324 shown in FIG. 19 is next performed.
  • step 3222 determines whether the driver does not intend to increase the braking force quickly. In this case, the process of step 326 is executed next.
  • step 32 the timer T M is set .
  • the count value of DE is a predetermined time T M. DE2 Is determined.
  • (V) the assist pressure gradual increase mode is to return the brake force control device to the assist pressure holding state after maintaining the braking force control device in the assist pressure increasing state shown in FIG. 3 for a predetermined short time. Is realized.
  • the predetermined time T MODE2 is a time in which the braking force control device should be maintained in the assist pressure increasing state when execution of the (V) assist pressure gradual increase mode is requested.
  • step 326 if it is determined in step 326 that T M0DE ⁇ T M0DE2 holds, the period in which the braking force control device should be maintained in the assist pressure increasing state has ended, that is, the braking force control has been completed. It can be determined that the time has come for the device to be in the assist pressure holding state. In this case, the process of step 328 is performed subsequent to step 326 described above.
  • step 328 (IV) a process of requesting execution of the assist pressure holding mode, that is, (IV) a process of setting the assist pressure holding mode to the request mode is executed.
  • step 328 the process of step 328 is completed, next, the process of step 342 shown in FIG. 19 is executed.
  • step 330 a process of requesting execution of the assist pressure gradual increase mode, that is, (V) a process of setting the assist pressure gradual increase mode to the request mode, is executed.
  • step 342 the process of step 342 shown in FIG. 19 is next performed.
  • step 288 determines that the flag XPASL-RED is in the ON state, it is determined that the control mode currently being executed is the (VI) assist pressure gradual decrease mode. Is done. In this case, the process of step 332 shown in FIG. 18 is executed after step 2888.
  • the flag XPASLRED is a flag that is turned on when the (VI) assist pressure gradual decrease mode is selected as the control mode, as described later.
  • Figure 26 shows the control mode to be executed next when the currently executed control mode is the (VI) assist pressure gradual decrease / decrease mode.
  • the control mode to be executed next to the (VI) assist pressure gradual decrease mode is determined by the processing after step 332 to correspond to the gradual decrease table shown in FIG. 26.
  • step 3 3 2 the output signal pMC has a rate of change ⁇ (3, which is less than the negative predetermined value ⁇ 8 , and a change P M / c — PS TA which is less than the negative predetermined value ⁇ 6. or not is judged. as a result, Derutaromyu_ ⁇ ⁇ ⁇ 8 ( ⁇ 0) is satisfied, and, if the PMC-pMCSTA rather ⁇ 6 ( ⁇ 0) is satisfied, reducing the braking force slowly It can be determined that the intended driver has started to intend to reduce the braking force promptly, and in this case, the process of step 332 is performed after step 332.
  • step 3 3 4 in order to quickly reduce the braking force, (III) a process of requesting execution of the assist pressure reduction mode, that is, ( ⁇ ) a process of setting the assist pressure reduction mode to the request mode is executed. Is done.
  • step 3334 ends, the process of step 342 shown in FIG. 19 is next performed.
  • step 3332 determines whether the driver does not intend to reduce the braking force quickly. In this case, the process of step 336 is executed next.
  • step 33 the timer T M is set .
  • the count value of DE is a predetermined time T M. It is determined whether or not DE3 has been reached.
  • the braking force control device of the present embodiment (III) in the assist pressure gradual decrease mode, the braking force control device is returned to the assist pressure holding state after maintaining the assist pressure decreasing state for a predetermined short time. Is realized.
  • the predetermined time T M0DE3 is a time for which the braking force control device should be maintained in the reduced assist pressure state when the execution of the (III) assist pressure reduction mode is requested.
  • step 336 determines whether the braking force control device should be maintained in the assist pressure reduced state has ended, that is, the braking force control device It can be determined that it is time to bring the state to the assist pressure holding state. In this case, the process of step 338 is performed subsequent to step 336 described above.
  • step 338 (IV) a process of requesting execution of the assist pressure holding mode, that is, (IV) a process of setting the assist pressure holding mode to the request mode is executed.
  • step 338 the process of step 338 is completed, the process of step 342 shown in FIG. 19 is next executed.
  • step 336 if it is determined in step 336 that T M0DE ⁇ T M0DE3 does not hold, it may be determined that the period for maintaining the braking force control device in the assist pressure reduced state has not ended. it can. In this case, the process of step 340 is executed following step 336 above.
  • step 340 a process for requesting the execution of the (VI) assist pressure gradual decrease mode, that is, a process for setting the (VI) assist pressure gradual decrease mode to the request mode, is executed.
  • step 342 shown in FIG. 19 is next performed.
  • the condition for requesting the (III) assist pressure reduction mode (the condition of the above step 332) is satisfied. If it does not, the main continuously for a predetermined period of time T M0DE3 ⁇ After maintaining the request, the request mode can be changed to (IV) assist pressure holding mode.
  • the next execution is performed based on the currently executed control mode and the driver's brake operation.
  • the control mode to be determined can be determined, and the control mode can be determined as the request mode.
  • step 342 it is determined whether execution of the ( ⁇ ) assist pressure increasing mode is requested. As a result, if it is determined that (II) the assist pressure increasing mode is required, the process of step 344 is executed next.
  • step 344 a process of turning on the flag XPAINC and turning off the flags corresponding to other control modes is executed.
  • the control mode being executed is ( ⁇ ) the assist pressure increasing mode in the next process cycle.
  • the process of step 346 is executed.
  • step 346 a process is performed for bringing the braking force control device into the assist pressure increasing state shown in FIG. After the processing of this step 346 is performed, the wheel cylinder pressure P w / c of each wheel is immediately increased using the accumulator 28 as a hydraulic pressure source. When the process of step 346 ends, the current routine ends.
  • step 342 If it is determined in step 342 that the execution of the (II) assist pressure increasing mode is not requested, the process of step 348 is executed next.
  • step 348 it is determined whether or not execution of (I I I) assist pressure reduction mode is requested. As a result, when it is determined that the (I I I) assist pressure reduction mode is required, the process of step 350 is executed next.
  • step 350 the flag XPARED is turned on, and Processing for turning off the flag corresponding to the control mode of ⁇ is executed.
  • the process of step 350 it is determined that the control mode being executed is ( ⁇ ⁇ ) the assist pressure reduction mode in the next processing cycle.
  • the process of step 350 is executed.
  • step 352 a process is performed for bringing the braking force control device into the assist pressure reducing state shown in FIG.
  • the wheel cylinder pressure P w / C of each wheel is rapidly reduced using the master cylinder pressure P M / C as a lower limit.
  • the current routine is completed.
  • step 348 If it is determined in step 348 that the execution of the (III) assist pressure reduction mode has not been requested, the process of step 354 is executed next.
  • step 354 it is determined whether or not execution of (V) assist pressure gradual increase mode is requested. As a result, if it is determined that (V) the assist pressure gradual increase mode is required, then the processing of step 356 is executed.
  • step 356 it is determined whether or not the request mode has changed from the previous processing cycle to the current processing cycle. As a result, when it is determined that the request mode has changed, it can be determined that (V) the assist pressure reduction mode is executed after the current processing cycle. In this case, the process of step 358 is executed next. On the other hand, if it is determined that the request mode has not changed between the previous processing cycle and the current processing cycle, (V) the assist pressure gradual increase mode has been executed before the previous processing cycle. I can judge. In this case, the processing of step 358 is jumped, and then the processing of step 360 is executed.
  • Step 3 5 8 together with the current output signal p MC is stored as a start time of the output value p MCSTA, the timer T M 0 DE is "0" cleared Is done.
  • the process of step 360 is executed. According to the above-described processing, the start-time output value pMCSTA and the timer TMODE can be cleared to the initial values each time the execution of the (V) assist pressure gradual increase mode is newly started.
  • step 360 a process of turning on the flag XPS LINC and turning off the flag corresponding to another control mode is executed.
  • the control mode being executed is (V) the assist pressure gradual increase mode in the next processing cycle.
  • the process of step 365 is executed.
  • step 362 a process is performed for bringing the braking force control device into the assist pressure increasing state shown in FIG.
  • the current routine ends.
  • the request mode is set to (IV) the assist pressure holding mode when a predetermined period T M0DE2 elapses after the (V) assist pressure mode is set to the request mode. Is changed to For this reason, according to the above processing, (V) every time execution of the assist pressure gradual increase mode is requested, the foil cylinder pressure P w / C is increased stepwise with the predetermined period T M0DE2 as a unit. The pressure can be increased slowly.
  • step 354 If it is determined in step 354 that execution of the (V) assist pressure gradual increase mode has not been requested, then the process of step 364 is executed.
  • step 365 it is determined whether execution of the (VI) assist pressure gradual decrease mode is requested. As a result, when it is determined that the execution of (VI) the assist pressure gradual decrease mode is requested, the process of step 366 is executed next.
  • step 366 it is determined whether or not the request mode has changed from the previous processing cycle to the current processing cycle. As a result, if it is determined that the request mode has changed, (VI) the assist pressure ⁇ It can be determined that the reduction mode is executed after this processing cycle. In this case, the process of step 368 is executed next. On the other hand, if it is determined that the request mode has not changed from the previous processing cycle to the current processing cycle, (VI) the assist pressure gradual decrease mode is executed from before the previous processing cycle. You can judge that it is done. In this case, the processing of step 368 is jumped, and then the processing of step 370 is executed.
  • step 368 the current output signal PMC is stored as the starting output value pMCSTA, and the timer T M0DE is cleared to “0”, as in step 358 .
  • step 370 the process of step 370 is executed next. According to the above processing, (VI) every time the assist pressure mode is newly started, the start output value pMC STA and the timer T M. DE can be cleared to the initial value.
  • step 370 a process of turning on the flag X PAS LRED and turning off the flags corresponding to the other control modes is executed.
  • the control mode being executed is (VI) the assist pressure gradual decrease mode in the next processing cycle.
  • the process of step 372 is executed.
  • step 372 a process is performed to bring the braking force control device into the assist pressure reduced state shown in FIG.
  • the current routine ends.
  • the predetermined period T M is set after the assist pressure moderate mode is set to the request mode.
  • the request mode is changed to (IV) Assist pressure holding mode. Therefore, according to the above processing, (VI) every time execution of the assist pressure gradual decrease mode is requested, the foil cylinder pressure P w / C is gradually reduced in units of the predetermined period T M0DE2. The pressure can be reduced.
  • step 364 If it is determined in step 364 that execution of (VI) assist pressure gradual decrease mode has not been requested, it can be determined that execution of (IV) assist pressure holding mode has been requested. In this case, the process of step 374 is executed following step 364 above.
  • step 374 it is determined whether or not the request mode has changed from the previous processing cycle to the current processing cycle. As a result, when it is determined that the request mode has changed, it can be determined that (IV) the assist pressure maintenance instruction is executed after the current processing cycle. In this case, the process of step 376 is executed next. On the other hand, if it is determined that the request mode has not changed between the previous processing cycle and the current processing cycle, it can be determined that (IV) the assist pressure holding mode has been executed before the previous processing cycle. . In this case, the process of step 378 is jumped, and then the process of step 378 is executed.
  • step 376 the current output signal PMC is stored as the start output value pMCSTA, and the timer T M0DE is cleared to “0”, as in the above steps 356 and 368 .
  • step 378 the process of step 378 is executed. According to the above processing, (IV) every time the assist pressure holding mode is newly started, the output value pMC STA at the start and the timer T M0DE can be cleared to the initial values.
  • step 378 a process of turning on the flag X PAHOLD and turning off the flags corresponding to other control modes is executed.
  • the processing of this step 3778 is completed, the current processing cycle is completed.
  • FIG. 20 shows a flowchart of an example of a control routine executed by the ECU 10 to control the state of the braking force control device when the assist pressure holding mode is the request mode.
  • the routine shown in FIG. 20 is repeatedly started during execution of the BA control.
  • the processing of step 380 is executed.
  • step 380 it is determined whether or not the request mode is the assist pressure holding mode. When it is determined that the request mode is not the assist pressure holding mode as a result of the above determination, the current routine is terminated without any further processing. On the other hand, if it is determined that the request mode is the assist pressure holding mode, the processing of step 381 and thereafter is executed.
  • the wheel cylinder pressure P w / C of each wheel is excessively reduced due to the pulsation generated in the mass cylinder pressure PM / C during the execution of the BA control.
  • the reduced pressure of the master cylinder pressure PM / C is used in a situation where the holding of the wheel cylinder pressure Pw / c is required based on the master cylinder pressure PM / C, that is, the assist pressure holding mode In the situation where is required, it can be offset by realizing the above-mentioned (VII) assist pressure correction pressure increase mode.
  • the wheel cylinder pressure Pw / c of the ABS target wheel may be excessively increased by executing the ABS termination control at the end of the BA + ABS control. is there.
  • Such an excessive increase in the wheel cylinder pressure Pw / c may occur in a situation where the brake fluid pressure is required to be maintained by the BA control, that is, when the assist pressure holding mode is required as the required mode. In such a situation, it can be prevented by realizing the (VI II) assist pressure correction holding mode described above.
  • Step 3 After 81, set the assist pressure hold as the request mode. In the situation where the pressure holding mode is required, the processing for realizing the above (VII) Pistor pressure correction increasing pressure mode and (VIII) the assist pressure correction holding mode is executed as necessary. You.
  • step 381 first, the brake fluid pressure supplied to the wheel cylinders 120 to 126 of each wheel, that is, the vehicle generates pressure corresponding to the wheel cylinder pressure P w / C of each wheel.
  • the desired target deceleration G * is calculated.o
  • the braking force control device (I) executes the start pressure increase mode to change the wheel cylinder pressure Pw / c of each wheel to the master cylinder pressure PM / C.
  • the pressure is increased to a value larger by the assist pressure Pa.
  • the braking force control device controls the wheel cylinder pressure Pw / c of each wheel so that the assist pressure Pa always becomes a substantially constant value during the execution of the BA control.
  • step 381 the target reduction is performed by substituting the output signal pMC of the fluid pressure sensor 144 and the pressure increase time TSTA set in step 248 or 250 into the above equation (2).
  • the speed G * is calculated. the above Upon completion of the process of Step 381, the process of Step 382 is executed.
  • Fig. 27 shows the control modes to be executed in the braking / power control device when the assist pressure holding mode is the demand mode: 1
  • the deceleration G actually occurring in the vehicle and the target deceleration G * The table shows the relationship between the deviation G—G * and (2) the change rate of the output signal PMC, ⁇ pMC (hereinafter referred to as the correction table).
  • the control mode to be executed in the situation where the assist pressure holding mode is required is determined by the processing after step 382 so as to correspond to the correction table shown in FIG.
  • step 382 the difference G—G * between the deceleration G detected by the deceleration sensor 1 46 and the target deceleration G * is larger than a positive predetermined value, and the rate of change A pMC is It is determined whether the value is smaller than the positive predetermined value ⁇ ⁇ 9 .
  • the rate of change A pMC is It is determined whether the value is smaller than the positive predetermined value ⁇ ⁇ 9 .
  • step 38 (VI II) a process for realizing the assist pressure correction holding mode, specifically, a process of setting the braking force control device to the assist pressure correction holding state shown in FIG. 6 is executed. Is done. When the braking force control device is set to the assist pressure correction holding state, thereafter, the increase in the wheel cylinder pressure Pw / c of each wheel is prohibited regardless of the state of the holding solenoid S ** H. When the process of step 383 is completed, the process of step 384 is executed.
  • step 3 84 the request mode remains in the assist pressure holding mode. It is determined whether or not it is maintained. If the request mode has changed to a control mode other than the assist pressure holding mode, it can be determined that the driver has performed a brake operation intended to increase or decrease the hydraulic fluid pressure. In this case, the brake operation is reflected on the brake fluid pressure, and thereafter, this routine is immediately terminated. On the other hand, if the request mode is maintained in the assist pressure holding mode, the process of step 385 is executed next.
  • Step 3 8 5 the actual deceleration G and the deviation between the target deceleration G * G - G * is is a predetermined negative value G 3 or more and not positive or a predetermined value G 2 hereinafter Is determined.
  • G 3 ⁇ G-G * ⁇ G 2 still does not hold
  • the wheel cylinder pressure P w / c of each wheel must still satisfy the condition of G ⁇ G * ⁇ G 2. It can be determined that the pressure has not been reduced.
  • the process of step 383 is executed again to continue the correction of the wheel cylinder pressure P w / c.
  • the processing of step 386 is executed next.
  • step 386 a process is executed for bringing the braking force control device into the assist pressure holding state shown in FIG.
  • the braking force control device is set to the assist pressure holding state, it is possible to increase the wheel cylinder pressure P w / C for the wheels in which the holding solenoid S ** H is opened thereafter.
  • the current routine ends.
  • the ECU 10 realizes the (VI II) assist pressure correction holding mode in the braking force control device by executing the processing of the above steps 383-385.
  • an interference between the BA control and the ABS control prevents an excessive wheel cylinder pressure Pw / c from being generated on any one of the wheels, and prevents a wheel cylinder pressure Pw from being generated on each wheel.
  • w / c can appropriately reflect the driver's intention.
  • Step 3 9 the deviation G of the actual deceleration G and the target deceleration G * - smaller than the G * is a negative predetermined value G 4, and the master serial Sunda of pressure P M / c change rate ⁇ PMC is a negative predetermined value ⁇ ! . It is determined whether or not it is larger than. As a result, if it is determined that G ⁇ G * and G 4 ( ⁇ 0) hold, and ⁇ ⁇ ⁇ ( ⁇ (> 0) holds, the actual deceleration G * It can be determined that the deceleration G is insufficient, and that the driver has not performed the braking operation intended to reduce the braking force.
  • step 391 is executed following step 3900.
  • step 3 9 G- G * ⁇ G 4 ( Ku 0), and, ⁇ ⁇ ⁇ ⁇ ⁇ case (> 0) least one even of is not satisfied, the wheels Hoirushiri Nda ⁇ P It can be determined that it is not necessary to increase W / C. In this case, thereafter, the processing of step 386 described above, that is, the processing of bringing the braking force control device into the assist pressure holding state is executed, and then the current routine is terminated.
  • step 391 it is determined whether or not ABS control is being performed on either the left or right front wheel FL or FR as an ABS target wheel.
  • the ABS control is performed with the left and right front wheels FL and FR as ABS target wheels, it can be determined that the wheel cylinder pressure P W / C of each wheel has already been sufficiently increased. In this case, the wheel cylinder pressure P W / C should not be increased even if the actual deceleration G is smaller than the target deceleration G *. For this reason, in this step 391, the ABS control is performed with the left and right front wheels FL and FR as ABS target wheels. If it is determined that this is the case, the processing of step 386 is performed thereafter, and then the current routine is terminated.
  • step 391 if it is determined in step 391 that neither the left or right front wheel FL or FR is an ABS target wheel, the braking force is increased by increasing the wheel cylinder pressure Pw / c of each wheel. It can be determined that it is possible to make it. In this case, following step 391, the process of step 392 is executed.
  • step 392 (VII) a process for realizing the assist pressure correction pressure increasing mode, specifically, the assist pressure increasing state shown in FIG. 3 and the assist pressure holding state shown in FIG. Is repeatedly executed in a predetermined cycle.
  • the wheel cylinder pressure P w / C of each wheel is gradually increased using the accumulator 28 as a hydraulic pressure source.
  • the process of step 393 is next executed.
  • step 393 it is determined whether or not the request mode is maintained in the assist pressure holding mode. If the request mode has changed to a control mode other than the assist pressure holding mode, it can be determined that the driver has performed a brake operation intended to increase or decrease the hydraulic fluid pressure. In this case, the brake operation is reflected on the brake fluid pressure, and thereafter, this routine is immediately terminated. On the other hand, if the request mode is maintained as the assist pressure holding mode, the process of step 3944 is executed next.
  • Step 3 9 4 the actual deceleration G and the deviation between the target deceleration G * G - G * is is a predetermined negative value G 3 or more and not positive or a predetermined value G 2 hereinafter Is determined.
  • G 3 ⁇ G-G * ⁇ G 2 still does not hold
  • the wheel cylinder pressure P w / c of each wheel still satisfies the condition of G 3 ⁇ G-G *. It can be determined that the pressure increase correction has not been performed. In this case, in order to further continue the correction pressure increase of the wheel cylinder pressure Pw / c, the processing of the above step 391 is performed. Will be executed again.
  • step 386 the process of step 386 is executed next, and then the current routine is terminated.
  • the wheel cylinder pressure Pw / C is corrected so that c can be increased, reduced, or maintained as appropriate, and the actual deceleration G becomes a value near the target deceleration G *. Can be.
  • the braking force control device of the present embodiment it is possible to extremely accurately generate the braking force according to the driver's intention after the driver performs the emergency braking operation.
  • the deceleration sensor 146 corresponds to the “deceleration detecting means”, and the ECU 10 calculates “G * —G” in the above step 382.
  • the hydraulic pressure sensor 144 corresponds to the “brake operation amount detecting means”, and the ECU 10 executes the processing of the above step 3 Target deceleration setting means "and" assist deceleration addition means "
  • Basis deceleration detection means is realized by calculating "KGI ⁇ MC”.
  • the “AB S mechanism” is realized by executing the ABS control in the braking force control device,
  • ABS interlocking pressure increase prohibition means has been realized.
  • ECU 10 is used in step 3 By executing the processing of 8 2, 3 8 3, the “correction holding means” becomes the “correction holding suspension means” by executing the processing of step 3 8 4, and the above steps 3 90 and 3 9 2 By executing the processing in (3), the “correction pressure increasing means” is realized by executing the processing in step 393.
  • FIG. 28 shows a system configuration diagram of a pump-up type braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to the second embodiment of the present invention. 28, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the braking force control device is a device suitable as a braking force control device for a front engine / rear drive type vehicle (FR vehicle).
  • the braking force control device of the present embodiment is controlled by ECU10.
  • the ECU 10 controls the operation of the braking force control device by executing the control routines shown in FIGS. 9 to 11 and FIGS. 13 to 20 in the same manner as in the first embodiment described above. .
  • the braking force control device includes a brake pedal 12.
  • a brake switch 14 is provided near the brake pedal 12.
  • the ECU 10 determines whether or not the brake pedal 12 is depressed based on the output signal of the brake switch 14.
  • the brake pedal 12 is connected to a vacuum booster 400.
  • the vacuum booster 400 When the brake pedal 12 is depressed, the vacuum booster 400 generates an assist force Fa having a predetermined boosting ratio with respect to the brake pedal F.
  • the master cylinder 402 is fixed to the vacuum booster 400.
  • the master cylinder 402 is an evening center valve type master cylinder, and has a first hydraulic chamber 404 and a second hydraulic chamber 406 therein.
  • the first hydraulic chamber 404 and the second hydraulic chamber 406 have a brake depression force F and an assist force F
  • the master cylinder pressure P M / C is generated according to the resultant force with a.
  • a reservoir tank 408 is provided above the master cylinder 402.
  • the reservoir tank 408 communicates with a front reservoir passage 410 and a reservoir passage 412.
  • the front reservoir passage 410 communicates with a front reservoir back solenoid 414 (hereinafter, referred to as SRCF 414).
  • SRCF 414 a front reservoir back solenoid 414
  • SRCR 4 16 a reservoir reservoir solenoid 4 16 (hereinafter referred to as SRCR 4 16) communicates with the reservoir passage 4 12.
  • a front pump passage 418 communicates with the SRCF 414.
  • a rear pump passageway 420 communicates with the SRCR 416.
  • the SRCF 414 is a two-position electromagnetic switch that shuts off the front reservoir passage 410 and the front pump passage 418 when turned off, and conducts them when turned on.
  • the valve c SRCR 416 shuts off the rear reservoir passage 412 and the rear pump passage 422 when turned off, and turns on when turned on. Position solenoid valve.
  • a first hydraulic passage 422 and a second hydraulic passage 424 communicate with the first hydraulic chamber 404 and the second hydraulic chamber 406 of the master cylinder 402, respectively.
  • the first hydraulic passage 4 2 2 has a right front master cut solenoid 4 (hereinafter referred to as SMF R 4 26) and a left front mass cut solenoid 4 2 8 (hereinafter SMF L 4 2 8) ) Are in communication.
  • SMF R 4 26 a right front master cut solenoid 4
  • SMF L 4 2 8 hereinafter SMF L 4 2 8
  • a rear mass cut solenoid 4330 hereinafter, referred to as SMR430
  • the hydraulic passages 4 3 4 provided corresponding to the left front wheel FL are connected to the SMF L 4 28 in the same manner.
  • the SMR 430 communicates with hydraulic passages 436 provided corresponding to the left and right rear wheels RL, RR.
  • SMF R 4 26 connects the first hydraulic passage 4 2 2 and the hydraulic passage 4 3 2 to a conductive state when turned off, and a constant pressure release valve 4 when turned on.
  • This is a two-position solenoid valve that connects the first hydraulic pressure passage 42 and the hydraulic pressure passage 4 32 via 38.
  • the SMF L 4 26 connects the first hydraulic passage 42 2 and the hydraulic passage 4 3 4 to a conductive state when turned off, and a constant pressure release valve 4 when turned on.
  • the solenoid valve is a two-position solenoid valve that connects the first hydraulic passage 422 and the hydraulic passage 434 via 40.
  • the SMR 430 makes the second hydraulic passageway 424 and the hydraulic passageway 436 conductive when turned off, and the constant pressure release valve when turned on.
  • This is a two-position solenoid valve that allows the second hydraulic passageway 4 24 and the hydraulic passageway 4 36 to communicate with each other via 44 2.
  • a check valve 4 4 4 is provided between the first hydraulic passages 42 and 22 and the hydraulic passages 43 and between the second hydraulic passages 42 and 43.
  • Check valve 4 4 6 that allows only fluid flow from passage 4 2 2 to hydraulic passage 4 3 4 side, and second hydraulic passage 4 2 4 side to hydraulic passage 4 3 6 side
  • a check valve 448 is provided to allow only the flow of the flowing fluid.
  • the hydraulic passages 432, 434 provided for the left and right front wheels and the hydraulic passages 436 provided for the left and right rear wheels are provided in the same manner as in the first embodiment.
  • the holding solenoid S ** H, the pressure reducing solenoid S ** R, the foil cylinders 120 to 126 and the check valves 128 to 134 are in communication.
  • Front pressure reducing passages 450 communicate with the left and right front wheel holding solenoids SF RR1 12 and SFLR 1 14 c.
  • a rear pressure reduction passage 4 52 communicates with 1 18.
  • the front reservoir 4 5 4 and the rear reservoir 4 5 5 are in communication.
  • the front reservoir 545 and the rear reservoir 455 are connected to the suction side of the front pump 460 and the rear pump 462 via check valves 456, 458, respectively. It communicates with the suction side.
  • the discharge side of the front pump 460 and the discharge side of the rear pump 462 are in communication with dampers 466, 466 for absorbing the pulsation of the discharge pressure.
  • the damper 4 6 4 is a right front pump passage 4 provided for the right front wheel FR.
  • the damper 466 communicates with the hydraulic passage 436.
  • the right front pump passage 468 communicates with the hydraulic passage 432 via a right front pump solenoid 472 (hereinafter, referred to as SPF L 472).
  • the front left pump passage 470 communicates with the hydraulic passage 434 through a front left pump solenoid 474 (hereinafter, referred to as SPF 474).
  • the SPFL 472 switches the right front pump passage 468 and the hydraulic passage 432 into a conductive state when turned off, and shuts them off when turned on. Solenoid valve.
  • the SPFR 474 is turned off, the left front pump passage 470 and the hydraulic pressure passage 434 are brought into conduction, and when turned on, they are shut off. It is a two-position solenoid valve.
  • Wheel speed sensors 1336, 1388, 140, and 142 are provided near each wheel.
  • ECU 1 0 detects the rotational speed V w of each wheel based on the output signal of the wheel speed sensor 1 3 6-1 4 2.
  • trout A hydraulic pressure sensor 144 is provided in the second hydraulic pressure passage 424 communicating with the cylinder 420.
  • the ECU 10 detects the master cylinder pressure P M / C based on the output signal p MC of the hydraulic pressure sensor 144. Further, the ECU 10 is supplied with the output signal of the deceleration sensor 146.
  • the ECU 10 detects the deceleration G of the vehicle based on the output signal of the deceleration sensor 144.
  • the braking force control device of this embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
  • the normal braking function is realized by turning off all solenoid valves provided in the braking force control device as shown in Fig. 28.
  • the state shown in FIG. 28 is referred to as a normal brake state.
  • the control for realizing the normal brake function in the braking force control device is called normal brake control.
  • the wheel cylinders 120 and 122 of the left and right front wheels FL and FR are both connected to the first hydraulic pressure of the mass cylinder 402 by way of the first hydraulic passageway 42. It communicates with room 404.
  • the wheel cylinders 124, 126 of the left and right rear wheels RL, RR communicate with the second hydraulic chamber 406 of the master cylinder 402 via the second hydraulic passage 424.
  • the wheel cylinder pressure P w / c of the wheel cylinders 120 to 126 is always controlled to be equal to the master cylinder pressure ⁇ / C. Therefore, according to the state shown in FIG. 28, the normal braking function is realized.
  • ABS control In the ABS function, in the state shown in Fig. 28, the front pump 460 and the rear pump 462 are turned on, and the holding solenoid S ** H and the depressurizing solenoid S ** R are set to ABS. It is realized by appropriate driving according to demand.
  • ABS control the control for realizing the ABS function in the braking force control device is referred to as ABS control.
  • the ECU 10 starts the ABS control when the vehicle is in a braking state and an excessive slip rate is detected for any of the wheels.
  • the ABS control is started in a situation where the brake pedal 12 is depressed, that is, in a situation where the mass cylinder 402 has generated a high mass cylinder pressure PM / c.
  • both the holding solenoid S ** H and the decompression solenoid S ** R are closed during the execution of the ABS control, the wheel cylinder pressure P W / C of each wheel can be held. it can.
  • this state is referred to as (ii) holding mode.
  • the holding solenoid S ** H is closed and the pressure reducing solenoid S ** R is opened during execution of the ABS control, the wheel cylinder pressure Pw / c of each wheel is reduced. The pressure can be reduced.
  • this state is referred to as (iii) decompression mode.
  • the ECU 10 controls the wheel of each wheel so that (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode are appropriately realized for each wheel.
  • the holding solenoid S ** H and the decompression solenoid S ** R are controlled in accordance with the stop state.
  • the wheel cylinder pressure Pw / c of all wheels may cause an excessive slip rate on the corresponding wheels. Not controlled to an appropriate pressure.
  • the braking force control device can realize the ABS function.
  • the ECU 10 normally terminates the ABS control when it is no longer necessary to execute the ABS control for all the wheels, for example, when entering from a low / road to a high // road.
  • the wheel cylinder pressure is controlled to be lower than the wheel cylinder pressure Pw / c of the ABS target wheel and the master cylinder pressure PM / C. For this reason, if the normal brake state is immediately realized after the end condition of the ABS control is satisfied, a sharp change occurs in the wheel cylinder pressure P w / c of the ABS target wheel.
  • the ECU 10 sets the (A) pressure increase mode for the ABS target wheel only for a predetermined period after the ABS control termination condition is satisfied.
  • (Ii) The ABS end control for driving the holding solenoid S * H and the pressure reducing solenoid S * R so as to repeat the holding mode is executed.
  • the wheel cylinder pressure P w / C of the ABS target wheel can be gradually increased to the master cylinder pressure P M / C. Therefore, according to the braking force control device of the present embodiment, it is possible to terminate the ABS control without causing a sudden change in the wheel cylinder pressure P W / c of the ABS target wheel.
  • the brake fluid that has flowed into the reservoir 54 and the rear reservoir 455 is pumped up by the front pump 460 and the rear pump 462 and supplied to the hydraulic passages 432, 434, 436.
  • a part of the brake fluid supplied to the hydraulic passages 432, 434, and 436 flows into the wheel cylinders 120 to 126 when the pressure increase mode is performed on each wheel. .
  • the rest of the brake fluid flows into the master cylinder 402 to compensate for the outflow of the brake fluid. You. Therefore, according to the system of the present embodiment, an excessive stroke does not occur on the brake pedal 12 during the execution of the ABS control.
  • FIGS. 29 to 31 show the state of the braking force control device for realizing the 3BA function.
  • the ECU 10 implements the BA function by appropriately realizing the states shown in FIGS. 29 to 31 after the driver performs a braking operation that requests a quick rise of the braking force, that is, after the emergency braking operation is performed. Realize.
  • BA control the control for realizing the BA function in the braking force control device.
  • FIG. 29 shows an assist pressure increasing state realized during execution of the BA control.
  • the assist pressure increasing state is used when it is necessary to increase the wheel cylinder pressure P w / C of each wheel during the execution of the BA control, that is, during the BA control, (I) the start increasing pressure mode, This is realized when execution of (II) assist pressure increasing mode and (V) assist pressure gradual increasing mode is requested.
  • the assist pressure increasing state during the BA control is, as shown in FIG. 29, the reservoir cut solenoid SRCF414, SRCR416, and the master cut solenoid SMF R426, This is realized by turning on the SMF L 428 and SMR 430 and turning on the front pump 460 and the rear pump 462.
  • the brake fluid stored in the reservoir tank 408 is pumped up by the front pump 460 and the rear pump 462, and the hydraulic pressure passage 4 3 2, 4 3 4 and 4 3 6 are supplied.
  • the internal pressure of the hydraulic pressure passages 4 3 2, 4 3 4, 4 3 6 exceeds the valve opening pressure of the constant pressure release valves 4 3 8, 4 4 0, 4 4 2 and the master cylinder pressure P Until the pressure becomes higher than that of the M / C , the flow of the brake fluid from the hydraulic passages 43, 42, 43, 43 to the master cylinder 402 is SMF R32, SMF L 3 28, blocked by SMR 330.
  • FIG. 30 shows an assist pressure holding state realized during execution of the BA control.
  • the assist pressure holding state when it is necessary to hold the wheel cylinder pressure Pw / c of each wheel during the execution of the BA control, that is, (IV) the assist pressure holding mode is required during the BA control. Is realized in the case. As shown in FIG. 30, the hold state is maintained by turning on the master cut solenoids SMF R 426, SMF L 428, and SMR 430.
  • the front pump 460 and the reservoir tank 408, and the rear pump 462 and the reservoir tank 408 are each SRCF 414 and 416. Is put into the cutoff state. For this reason, in the assist pressure holding state, the front pump 460 and the reservoir tank 408, and the rear pump 462 and the reservoir tank 408 are each SRCF 414 and 416. Is put into the cutoff state. For this reason, in the assist pressure holding state, the front pump 460 and the reservoir tank 408, and the rear pump 462 and the reservoir tank 408 are each SRCF 414 and 416. Is put into the cutoff state. For this reason, in the assist pressure holding state, the front pump
  • Fluid is not discharged from the pump 60 and the rear pump 462 to the hydraulic passages 432, 434, 436.
  • the master cylinder 4 is controlled by the hydraulic pressure passages 4332, 4334, 4336, and SMF R426, SMFL428, and SMR430. It is substantially decoupled from 02. Therefore, according to the assist pressure holding state shown in FIG. 30, the wheel cylinder pressures P w / c of all the wheels can be held at a constant value.
  • FIG. 31 shows a reduced assist pressure state realized during execution of the BA control.
  • the assist pressure reducing state is required when the wheel cylinder pressure P w / C of each wheel needs to be reduced during the execution of the BA control, that is, during the BA control, (III) the assist pressure reducing mode, and ( VI) This is realized when execution of the assist pressure mode is requested.
  • the assist pressure reduction state is realized by turning off all the solenoids as shown in FIG.
  • the front pump 460 and the rear pump 462 are separated from the reservoir tank 408. For this reason, no fluid is discharged from the front pump 462 and the rear pump 462 to the hydraulic passages 432, 434, 436.
  • the wheel cylinders 120 to 126 of each wheel and the master cylinder 402 are in a conductive state. Therefore, when the assist pressure is reduced, the wheel cylinder pressure P w / c of all the wheels can be reduced with the master cylinder pressure P M / C as the lower limit.
  • the ECU 10 increases the assist pressure shown in FIGS. 29 to 31 similarly to the case of the above-described first embodiment when the driver performs an emergency braking operation.
  • the BA function is realized by combining the pressure state, the assist pressure holding state, and the assist pressure reduction state. For this reason, according to the braking force control device of the present embodiment, as in the case of the above-described first embodiment, the wheel cylinder is maintained while the assist pressure Pa is maintained at a substantially constant value during the execution of the BA control. The driver's intention can be appropriately reflected in the pressure P w / c.
  • the braking force control device of the present embodiment when the above-described BA control is started, thereafter, the wheel cylinder pressure P w / c of each wheel is quickly increased. This may result in an excessive slip rate for any of the wheels. In such a case, the ECU 10 starts the BA + ABS control.
  • the operation of the braking force control device associated with the BA + ABS control will be described with reference to FIGS. 32 and 33 together with FIG. 31 described above.
  • the braking force control device of the present embodiment After the ABS control is started, if the driver performs a braking operation with the intention of increasing the braking force, the wheel cylinder pressure P w / C of the ABS target wheel is controlled to a pressure according to the ABS control request While increasing the wheel cylinder pressure Pw / c of the other wheels.
  • Fig. 32 shows the state achieved to perform the above functions during the execution of BA + ABS control with the left front wheel FL as the ABS target wheel (hereinafter referred to as "assist pressure increase ABS state").
  • the assist pressure increase ABS state is set with the rear reservoir cut solenoid SRCR 416 and mass cut cut solenoid SMFR 426, SMF L 428 and SMR 430 turned on, and the front pump 460 and the rear pump 462 are turned on, and the holding solenoid SF LH106 of the left front wheel FL and the pressure reducing solenoid SF LR114 are appropriately controlled according to the request of the ABS control. This is achieved by:
  • the wheel cylinders 124, 126 of the left and right rear wheels RL, RR have the rear pump 46, as in the case of the assist pressure boost state shown in Fig. 29 above.
  • the brake fluid discharged from 2 is supplied.
  • the wheel cylinder pressures P w / C of the left and right rear wheels RL and RR become the same as when the assist pressure increase state was realized during BA control.
  • the pressure is increased (BA + ABS control using the left front wheel FL as the ABS target wheel is started by executing (ii) the depressurization mode for the left front wheel FL.
  • the brake fluid flows into 4.
  • the front pump 460 the brake fluid that has flowed into the front reservoir 4 5 4 is sucked and pumped.
  • the brake fluid pumped by the front pump 460 is mainly supplied to the wheel cylinder 120 of the right front wheel FR, and (i) the wheel cylinder is operated when the pressure increasing mode is executed for the left front wheel FL. It is supplied to 122.
  • the wheel cylinder pressure P w / C of the right front wheel FR is increased as in the case where the assist pressure increase state is realized during the BA control, and the wheel cylinder pressure of the left front wheel FL is increased.
  • Pw / c can be controlled to an appropriate value that does not cause an excessive slip ratio in the left front wheel FL.
  • the assist pressure increase ABS state shown in FIG. 32 while controlling the wheel cylinder pressure P W / c of the left front wheel FL, which is the ABS target wheel, to a pressure according to the request of the ABS control,
  • the wheel cylinder pressure P w / c of the right front wheel FR and the left and right rear wheels RL and RR, which are not the target wheels of the ABS control, is quickly increased as in the case where the assist pressure increase state was realized during the BA control. Can be done.
  • the braking force control device of the present embodiment increases the wheel cylinder pressure P w / C of the ABS target wheel. Aim to maintain the wheel cylinder pressure P w / C of the other wheels while controlling the pressure to meet the requirements of the ABS control.
  • Fig. 33 shows a state (hereinafter referred to as the "assist pressure holding ABS state") that is implemented to perform the above functions during BA + ABS control using the left front wheel FL as the ABS target wheel.
  • Assist pressure holding The ABS status is determined by turning on the master cut solenoid SMFR 426, SMF L 428 and SMR 430, turning on the front pump 460 and rear pump 462, and turning the front right wheel on.
  • the FR holding solenoid SF RH 104 is turned on, and the left front wheel FL holding solenoid SF LH 106 and the pressure reducing solenoid SF LR 114 are used for ABS control requests. It is realized by appropriately controlling according to it.
  • the rear pump 462 is shut off from the reservoir tank 408 in the same manner as in the case where the assist pressure holding state shown in FIG. 30 is realized.
  • the hydraulic pressure passage 430 is substantially shut off from the master cylinder 402 as in the case where the assist pressure holding state shown in FIG.
  • the wheel cylinder pressures P W / C of the left and right rear wheels RL and RR become constant values as in the case where the assist pressure holding state is realized during BA control. Is held.
  • the front reservoir 4 5 4 has the brake fluid flowing out of the wheel cylinder 122 at the same time that the assist pressure holding ABS state is realized or the assist pressure holding ABS state is realized. Is stored.
  • the front pump 460 sucks and pumps the brake fluid stored in the front reservoir 454 while the assist pressure holding ABS state is realized.
  • the wheel cylinder 120 of the right front wheel FR is separated from the front pump 460 by SFRH104. Therefore, the brake fluid pumped by the front pump 460 is supplied only to the wheel cylinder 122 of the left front wheel FL. Also, the inflow of brake fluid from the front pump 460 to the wheel cylinder 122 is permitted only when the (i) pressure increase mode is performed for the left front wheel FL.
  • the wheel cylinder pressure P w / C of the right front wheel FR is maintained at a constant value, and the wheel cylinder pressure P w / C of the left front wheel FL is excessively slipped on the left front wheel FL. It is controlled to an appropriate pressure without generating a rate.
  • the wheel cylinder pressure Pw / c of the left front wheel FL which is the ABS target wheel
  • the pressure P W / c can be maintained at a constant value as in the case where the assist pressure holding state is realized during the BA control.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled.
  • the wheel cylinder pressure Pw / c of the other wheels is reduced while controlling the pressure to meet the ABS control requirements.
  • the above-described function realizes the assist pressure reduction state shown in FIG. 31 above, and performs (i) boost mode, (ii) hold mode, and (iii) This is realized by appropriately controlling the holding solenoid S ** H and the decompression solenoid S ** R so that the decompression mode is realized.
  • a state in which such control is performed is referred to as an assist pressure reduction ABS state.
  • the wheel cylinder pressure Pw / c of the wheel not controlled by the S control can be reduced using the master cylinder pressure P M / c as the lower limit.
  • the wheel cylinder pressure PW / C can be maintained or reduced for the wheels subject to ABS control by realizing (ii) holding mode and (iii) depressurizing mode.
  • the assist pressure reduction ABS state is realized when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure Pw / c of any wheel. Therefore, if (ii) the holding mode and (iii) the depressurization mode can be realized as described above, the wheel cylinder pressure Pw / c of the ABS target wheel is properly requested by the BA + ABS control. Pressure can be controlled.
  • AB The wheel cylinder pressure of the right front wheel FR and the left and right rear wheels RL and RR, which are not the target wheels of the ABS control, while controlling the wheel cylinder pressure P w / C of the S target wheel to an appropriate pressure according to the ABS control request
  • the pressure P w / C can be reduced using the master cylinder pressure P M / c as the lower limit, as in the case where the assist pressure reduction state is realized during the BA control.
  • the ECU 10 stops the ABS control for all the wheels, for example, when the vehicle enters the high / road from a low road. Terminate control and execute BA control again independently.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled to be lower than the wheel cylinder pressure P w / C of the ABS non-target wheel. For this reason, if the holding solenoid S ** H of the ABS target wheel is immediately kept open after the ABS control end condition is satisfied, the wheel cylinder pressure P w / A sharp change occurs in C.
  • the abrupt change in hydraulic pressure that occurs in the wheel cylinder pressure Pw / c of the ABS target wheel is caused by the above-mentioned ABS end control even when the BA + ABS control ends, that is, for the ABS target wheel for a predetermined period (i)
  • the wheel cylinder pressure P w / situation in which only C is boosted intermittently furo Ntoponpu 4 6 0 as a fluid pressure source is generated in this case, the Hoirushiri Nda ⁇ Pw / c mosquito ⁇ other wheel of the ABS subject wheel Hoirushiri Nda ⁇ P w / C Pressure may be excessively exceeded.
  • the assist pressure correction holding mode is set to (IV) all the holding solenoids S ** under the condition that the assist pressure holding mode is set to the request mode. This is realized by closing H and all the pressure reducing solenoids S ** R.
  • VI II According to the assist pressure correction holding mode, it is possible to reliably prohibit the wheel cylinder pressure P w / C of all wheels from increasing. Therefore, according to the braking force control device of the present embodiment, it is possible to reliably prevent the wheel cylinder pressure P w / C of the ABS target wheel from being excessively increased at the end of the BA + ABS control. .
  • the braking force control device performs the braking operation intended to reduce the brake fluid pressure during the execution of the BA control or the BA + ABS control, that is, when the depressurizing operation is performed, as shown in FIG. 31 described above.
  • the assist pressure is reduced and the wheel cylinder pressure P w / C of each wheel is released to the master cylinder 402.
  • a pulsation occurs in the internal pressure of the second hydraulic passage 424, that is, the master cylinder pressure PM / C. Therefore, also in the braking force control device of the present embodiment, similarly to the first embodiment, the wheel cylinder pressure Pw / c of each wheel is excessively reduced after the assist pressure is reduced. There is.
  • the assist pressure compensation pressure increase mode includes (IV) the assist pressure pressure increase state and the assist pressure retention state in a state in which the assist pressure retention mode is set to the request mode.
  • the wheel cylinder pressure P w / C of each wheel except the ABS target wheel can be increased to compensate for an appropriate fluid pressure. Therefore, according to the braking / power control apparatus of the present embodiment, the wheel cylinder pressure P w / c that reflects the driver's intention accurately is generated by correcting the excessively reduced pressure of the wheel cylinder pressure P w / c. Can be done.
  • FIG. 34 is a system configuration diagram of a pump-up type braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to the third embodiment of the present invention.
  • a pump-up type braking force control device hereinafter, simply referred to as a braking force control device
  • FIG. 34 the same components as those shown in FIG. 28 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the braking force control device of the present embodiment is a device suitable as a braking force control device for a front engine / front drive type vehicle (FF vehicle).
  • the braking force control device of the present embodiment is controlled by the ECU 10.
  • the ECU 10 executes the control routines shown in FIGS. 9 to 11 and FIGS. 13 to 20 similarly to the first and second embodiments described above.
  • the braking force control device c that controls the operation of the braking force control device includes a brake pedal 12.
  • a brake switch 14 is provided near the brake pedal 12.
  • the ECU 10 determines whether or not the brake pedal 12 is depressed based on the output signal of the brake switch 14.
  • the brake pedal 12 is connected to a vacuum booster 400.
  • the vacuum booster 400 is fixed to the master cylinder 402.
  • the first hydraulic chamber 4 is located inside the master cylinder 402. 04 and a second hydraulic chamber 406 are formed. Inside the first hydraulic chamber 404 and the second hydraulic chamber 406, there is a mass cylinder pressure P according to the resultant force of the brake depression force F and the assisting force Fa generated by the vacuum booster 400. M / C occurs.
  • a reservoir tank 408 is provided above the master cylinder 400.
  • a first reservoir passage 500 and a second reservoir passage 502 communicate with the reservoir tank 408.
  • the first reservoir channel 500 communicates with the first reservoir solenoid 504 (hereinafter referred to as SRC-504).
  • SRC-504 the first reservoir solenoid 504
  • the second reservoir passage 5 0 2 the second reservoir one Baka' Tosorenoi de 5 0 6 (hereinafter, SRC-2 referred to as 5 0 6) is communicated.
  • a first pump passage 508 communicates with the SR C-i 504. Similarly, the SR C-2 5 0 6, the second pump passage 5 1 0 are communicated. SRC—! Reference numeral 504 designates two positions, in which the first reservoir passage 509 and the first pump passage 508 are cut off by being turned off, and are electrically connected by being turned on. It is a solenoid valve. Also, the SR C-25 06 shuts off the second reservoir passage 502 and the second pump passage 51 0 when turned off, and conducts them when turned on. It is a 2-position solenoid valve.
  • a first hydraulic passage 422 and a second hydraulic passage 424 communicate with the first hydraulic chamber 404 and the second hydraulic chamber 406 of the master cylinder 402, respectively.
  • a first master cut solenoid 5 12 (hereinafter referred to as SMC- 5 12) communicates with the first hydraulic pressure passage 4 2 2.
  • a second master cut solenoid 514 (hereinafter, referred to as SMC-254) communicates with the second hydraulic passage 424.
  • the SMC-i 512 communicates with the first pump pressure passage 5 16 and a hydraulic pressure passage 5 18 provided corresponding to the left rear wheel RL.
  • the first pump pressure passage 516 communicates with a first pump solenoid 520 (hereinafter, referred to as SMV—, 520).
  • SMV—! 5 2 0 also has the right front wheel Hydraulic passages 522 provided corresponding to FR communicate with each other.
  • the constant pressure release valve 524 is provided inside the SMV-!
  • the SMV-, 52 0 connects the first pump pressure passage 516 and the hydraulic pressure passage 522 when they are turned off, and the constant pressure release valve 522 when it is turned on. They are two-position solenoid valves that communicate them through 4. Between the first pump pressure passage 5 16 and the fluid pressure passage 5 22, only fluid flowing from the first pump pressure passage 5 16 to the fluid pressure passage 5 22 is allowed.
  • Check valve 5 2 6 is provided.
  • the second pump pressure passage 5 2 8, second Ponpusorenoi de 5 3 2 (hereinafter, SMV- 2 referred to as 5 3 2) is communicated.
  • the SMV- 2 532 further communicates with a hydraulic passage 534 provided corresponding to the left front wheel FL.
  • a constant pressure release valve 536 is provided inside the SMV-25325.
  • the SMV- 2532 connects the second pump pressure passage 528 to the hydraulic passage 534 when it is turned off, and the constant pressure release valve 53 when it is turned on. They are two-position solenoid valves that communicate them through 6. Between the first pump passage 528 and the hydraulic passage 534, only fluid flow from the second pump passage 528 to the hydraulic passage 536 is permitted.
  • a check valve 538 is provided between the first pump passage 528 and the hydraulic passage 534.
  • SMC-i 5 1 2 and SMC-2 5 1 Inside the 4, respective constant pressure relief valves 5 4 0, 5 4 2 are provided.
  • the SMC—! 5 1 2 turns on the first hydraulic passage 4 2 2 and the hydraulic passage 5 18 (and the first pump pressure passage 5 16) when turned off, and turns on. It is a two-position solenoid valve that allows them to communicate through a constant pressure release valve 540 when in a state.
  • SMC-2 5 1 4 is a second fluid pressure passage 4 2 4 and the fluid pressure passage 5 3 0 (and the second pump pressure passage 5 2 8) and a conducting state when it is turned off, and A two-position solenoid valve that connects them via a constant-pressure release valve 442 when turned on. Between the first hydraulic passage 4 22 and the hydraulic passage 5 18, there is a first hydraulic passage
  • a check valve 544 that allows only fluid flow from the 422 side to the hydraulic passage 518 side is provided. Similarly, between the second hydraulic passage 4 24 and the hydraulic passage 5 330, only the flow of the fluid from the second hydraulic passage 4 24 to the hydraulic passage 5 30 is allowed. A check valve 5 4 6 is provided.
  • the four hydraulic passages 5 16, 52 2, 52 28, 53 34 provided for the left and right front wheels and the left and right rear wheels are the same as in the first and second embodiments.
  • the holding solenoid S ** H, the pressure reducing solenoid S ** R, the foil cylinders 120 to 126, and the check valves 122 to 134 are connected to each other.
  • a first decompression passage 5448 communicates with decompression solenoids SFR R112 and SRL R118 of the right front wheel FR and the left rear wheel RL.
  • the second pressure reducing passage 550 is in communication with the pressure reducing solenoids SFL R114 and SRRR116 of the left front wheel FL and the right rear wheel RR.
  • a first reservoir 552 and a second reservoir 554 communicate with the first pressure reducing passage 548 and the second pressure reducing passage 550, respectively.
  • the first reservoir 552 and the second reservoir 554 are each provided with a check valve.
  • the discharge side of the first pump 560 and the discharge side of the second pump 562 are connected to dampers 564, 566 for absorbing the pulsation of the discharge pressure.
  • the dampers 564 and 566 communicate with the hydraulic passages 522 and 534, respectively.
  • wheel speed sensors 13 6, 13 8, 14 0, 14 2 are arranged.
  • ECU 1 0 detects the rotational speed V w of each wheel based on the output signal of the wheel speed sensor 1 3 6-1 4 2.
  • a hydraulic sensor 144 is provided in the second hydraulic passage 324 that communicates with the mask cylinder 302.
  • the ECU 10 detects the master cylinder pressure P M / c based on the output signal PMC of the hydraulic pressure sensor 144. Further.
  • the ECU 10 is supplied with the output signal of the deceleration sensor 146.
  • the ECU 10 detects the deceleration G of the vehicle based on the output signal of the deceleration sensor 146.
  • the braking force control device of the present embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
  • the normal braking function is realized by turning off all solenoid valves of the braking force control device as shown in Fig. 34.
  • the state shown in FIG. 34 is referred to as a normal brake state.
  • the control for realizing the normal brake function in the braking force control device is called normal brake control.
  • both the wheel cylinder 120 of the right front wheel FR and the wheel cylinder 126 of the left rear wheel RL are connected to the master cylinder 402 via the first hydraulic pressure passage 422. In communication with the first hydraulic chamber 404. Further, the wheel cylinder 122 of the left front wheel FL and the wheel cylinder 124 of the right rear wheel RR are both connected to the second hydraulic chamber 40 of the master cylinder 402 via the second hydraulic passageway 42.
  • the c in communication case 6 Hoirushiri Nda ⁇ P w / c of Hoirushiri Sunda 1 2 0-1 2 6 is always controlled to the master serial Nda ⁇ P M / C and isobaric. Therefore, according to the state shown in FIG. 34, the normal braking function is realized.
  • ABS control In the ABS function, in the state shown in Fig. 34, the first pump 560 and the second pump 562 are turned on, and the holding solenoid S ** H and the depressurizing solenoid S ** R are connected to the ABS. It is realized by appropriately driving according to the requirements of (1).
  • ABS control the control for realizing the ABS function in the braking force control device is referred to as ABS control.
  • the ECU 10 controls each wheel so that (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode are realized as appropriate for each wheel.
  • the holding solenoid S ** H and the depressurizing solenoid S ** R are controlled according to the slip state of the motor. If the holding solenoid S ** H and the depressurizing solenoid S ** R are controlled as described above-the wheel cylinder pressure P w / C of all wheels will cause excessive slip rates on the corresponding wheels It is controlled to an appropriate pressure without any problem. In this way, according to the above control, the braking force control device can realize the ABS function.
  • the ECU 10 terminates the ABS control and sets the braking force control device to the normal braking state when it is no longer necessary to execute the ABS control for all the wheels, for example, when entering a highway from a low road. .
  • the ECU 10 performs the ABS termination control for a predetermined period after the ABS control termination condition is satisfied, that is, (i) the pressure increasing mode and (ii) the holding mode are repeated for the ABS target wheel. Control to drive the holding solenoid S ** H and the pressure reducing solenoid S ** R so that Therefore, according to the braking force control device of the present embodiment, it is possible to terminate the ABS control without causing a rapid change in the wheel cylinder pressure P w / C of the ABS target wheel.
  • the brake fluid in the wheel cylinders 120 to 126 will cause the first decompression passage 548 and the second decompression passage 550 Flow into the first reservoir 552 and the second reservoir 554 through the reservoir.
  • the brake fluid that has flowed into the first reservoir 552 and the second reservoir 554 is pumped up by the first pump 560 and the second pump 562, and the hydraulic pressure passages 522, 53 Supplied to 4.
  • a part of the brake fluid supplied to the hydraulic passages 522 and 534 flows into the wheel cylinders 120 to 126 when (i) the pressure increasing mode is performed in each wheel.
  • the remainder of the brake fluid flows into the master cylinder 402 to compensate for the outflow of the brake fluid. Therefore, according to the system of this embodiment, an excessive stroke does not occur on the brake pedal 12 during execution of the ABS control.
  • FIGS. 35 to 37 show the state of the braking force control device for realizing the 3BA function.
  • the ECU 10 implements the BA function by appropriately realizing the states shown in FIGS. 35 to 37 after the brake operation that requires the driver to quickly raise the braking force, that is, after the emergency braking operation is performed by the driver. Realize.
  • BA control the control for realizing the BA function in the braking force control device.
  • FIG. 35 shows the assist pressure increasing state realized during the execution of the BA control.
  • the assist pressure increasing state is used when it is necessary to increase the wheel cylinder pressure Pw / c of each wheel during the execution of the BA control, that is, during the BA control, (I) the start increasing pressure mode, ( This is realized when execution of II) assist pressure increase mode and-(V) assist pressure gradual increase mode is requested.
  • the assist pressure increasing state during the BA control as shown in FIG. 35, Rizabaka' Tosorenoi de SRC 5 0 4, SR C- 2 5 0 6 and, Masutaka' Tosorenoi de SMC - 15 1 2, realized by turning on the SMC-25 14 and turning on the first pump 560 and the second pump 562.
  • the brake fluid stored in the reservoir tank 408 is pumped by the first pump 560 and the second pump 562. And supplied to the hydraulic passages 5 2 2 and 5 3 4.
  • the fluid pressure passage 522, the foil cylinder 120 of the right front wheel FR and the foil cylinder 126 of the left rear wheel RL are maintained in a conductive state.
  • the pressure in the hydraulic pressure passage 52 2 exceeds the valve opening pressure of the constant pressure release valve 5 40 until the pressure becomes higher than the master cylinder pressure PM / C. In this case, the flow of fluid from the hydraulic passage 52 2 to the master cylinder 402 is blocked by the SMC-! 5 12.
  • FIG. 36 shows the assist pressure holding state realized during the execution of the BA control.
  • the assist pressure holding state is controlled by the wheel of each wheel during BA control. This is realized when it is necessary to hold the cylinder pressure Pw / c, that is, when the (IV) assist pressure holding mode is required during the BA control.
  • the hold pressure state is realized by turning on the master cut solenoids SMC-i 512 and SMC-25 14 as shown in Fig. 36.
  • the first pump 560 and the reservoir tank 408, and the second pump 562 and the reservoir tank 408 force, SRC -1504 respectively and the cut-off state by SRC- 2 5 0 6. Therefore, in the assist pressure holding state, no fluid is discharged from the first pump 560 and the second pump 562 to the hydraulic passages 522, 534.
  • the hydraulic pressure passages 5 18, 5 2 2 and 5 3 0 5 3 4 are respectively SMC-! 5 12 and SMC- 2 5 1 4 Is virtually separated from the master cylinder 402 by the For this reason, according to the assist pressure holding state shown in FIG. 36, the wheel cylinder pressure P w / C of all the wheels can be held at a constant value.
  • FIG. 37 shows a reduced assist pressure state realized during the execution of the BA control.
  • the assist pressure reduction state is required when the wheel cylinder pressure Pw / c of each wheel needs to be reduced during execution of the BA control, that is, during the BA control, (III) the assist pressure reduction mode, and ( VI) This is realized when the execution of the assist pressure mode is requested.
  • the assist pressure reduction state is realized by turning off all the solenoids as shown in FIG.
  • the assist pressure reduced state shown in FIG. 37 the first pump 560 and the second pump 562 are disconnected from the reservoir tank 408. Therefore, fluid is not discharged from the first pump 562 and the second pump 562 to the hydraulic passages 522, 534.
  • the assist pressure reduction state the wheel cylinders 120 to 126 of each wheel and the mass cylinder 402 are in a conductive state. As a result, the assist pressure can be reduced. Then, the wheel cylinder pressure Pw / c of all wheels is changed to the master cylinder pressure.
  • Pressure can be reduced using PM / C as the lower limit.
  • the ECU 10 when an emergency braking operation is performed by the driver, the ECU 10 performs the operations shown in FIGS. 35 to 37 in the same manner as in the above-described first and second embodiments.
  • the BA function is realized by combining the assist pressure increasing state, assist pressure holding state, and assist pressure decreasing state shown below. Therefore, according to the braking force control device of the present embodiment, the assist pressure Pa is maintained at a substantially constant value during the execution of the BA control, as in the first and second embodiments described above.
  • the wheel cylinder pressure P w / C can appropriately reflect the driver's intention, c in the braking force control device according to the present embodiment, when the above-described BA control is started, If the wheel cylinder pressure P w / C is rapidly increased, an excessive slip rate may occur for any of the wheels. In such a case, the ECU 10 starts the BA + ABS control.
  • FIG 3 7 3 8 and 3 9 refer together, the braking force control device of the c the examples illustrating the operation of the brake force control apparatus associated with the BA + ABS control, BA + AB S
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled to a pressure corresponding to the ABS control request, Increase the wheel cylinder pressure P w / C of the other wheels.
  • Fig. 38 shows the state realized to fulfill the above functions during the execution of BA + ABS control with the right rear wheel RL as the ABS target wheel (hereinafter, the assist pressure increase ABS state and ).
  • Assist pressure increasing AB S state the second reservoir one Baka' Tosorenoi de SRC-2 5 0 6 and, trout evening cut Tosorenoi de SMC-! 5 1 2, the SMC-2 5 1 4 and O down state,
  • the first pump 560 and the second pump 562 are turned on, and the holding solenoid SR LH 110 and the pressure reducing solenoid SR LR 118 of the right rear wheel RL are requested to perform ABS control. Control appropriately according to Is realized.
  • the wheel cylinders 122 of the left front wheel FL and the wheel cylinders 124 of the right rear wheel RR have the same conditions as in the assist pressure increase state shown in FIG.
  • the brake fluid discharged from the second pump 462 is supplied. Therefore, when the assist pressure increase ABS state is realized, the wheel cylinder pressure P w / C of these wheels FL and RR is different from the case where the assist pressure increase state is realized during BA control. Similarly, the voltage is increased.
  • the BA + ABS control using the left rear wheel RL as the ABS target wheel is started by executing (ii) the decompression mode for the left rear wheel RL. Therefore, the brake fluid flows into the first reservoir 5 52 at the same time when the BA + ABS control is started.
  • the first pump 560 sucks and pumps the brake fluid flowing into the first reservoir 552 as described above.
  • the brake fluid pumped by the first pump 560 is mainly supplied to the wheel cylinder 120 of the right front wheel FR, and (i) when the pressure increase mode is executed for the left rear wheel RL. Supplied to foil cylinder 126.
  • the wheel cylinder pressure P W / C of the front right wheel FR is increased in the same manner as when the assist pressure increase state is realized during the BA control, and the wheel cylinder pressure of the rear left wheel RL is increased.
  • P W / C can be controlled to an appropriate value that does not cause an excessive slip rate in the rear left wheel RL.
  • the wheel cylinder pressure Pw / c of the left rear wheel RL which is the ABS target wheel
  • the wheel cylinder pressures P w / c of the left and right front wheels FL and FR and the right rear wheel RR which are not subject to S control, are rapidly increased in the same manner as when the assist pressure increase state is realized during BA control. Can be.
  • the braking force control device is provided after BA + ABS control is started.
  • BA + ABS control is started.
  • Fig. 39 shows the state achieved to perform the above functions during the BA + ABS control with the right rear wheel RL as the ABS target wheel (hereinafter referred to as the "assist pressure holding ABS state"). Is shown.
  • the assist pressure holding ABS state is as follows.
  • the master cut solenoid SMC512, SMC-25141 is turned on, the first pump 560 and the second pump 562 are turned on, and the holding solenoid of the right front wheel FR is set.
  • S FRH 104 is turned on, and the holding solenoid SR LH 110 and the pressure reducing solenoid SRLR 118 of the left rear wheel RL are appropriately controlled according to the request of the ABS control. Is achieved.
  • the second pump 562 is shut off from the reservoir tank 408 in the same manner as in the case where the assist pressure holding state shown in FIG. 36 is realized.
  • the hydraulic passages 530 and 534 are substantially shut off from the master cylinder 402 in the same manner as in the case where the assist pressure holding state shown in FIG. 36 is realized. Therefore, when the assist pressure holding ABS state is realized, the wheel cylinder pressure P w / C of the left front wheel FL and the right rear wheel RR becomes the same as when the assist pressure holding state is realized during BA control. Is held at a constant value.
  • the first reservoir 55 52 flows out of the foil cylinder 126 at the same time as the assist pressure holding ABS state is realized or before the assist pressure holding ABS state is realized. Brake fluid is stored.
  • the first pump 560 sucks and pumps the brake fluid stored in the first reservoir 552 while the assist pressure holding ABS state is realized.
  • the wheel cylinder 120 of the right front wheel FR is separated from the first pump 560 by S FRH 104. Have been. Therefore, the brake fluid pumped by the first pump 560 is supplied only to the wheel cylinder 126 of the left rear wheel RL. Also, the inflow of brake fluid from the first pump 560 to the wheel cylinder 126 is allowed only when the (i) pressure increase mode is performed for the left rear wheel RL. According to the above processing, the wheel cylinder pressure P w / C of the right front wheel FR is maintained at a constant value, and the wheel cylinder pressure P W / C of the left rear wheel RL is excessively slipped on the left front wheel FL. It is controlled to an appropriate pressure without generating a rate.
  • the wheel cylinder pressure P W / C of the left rear wheel RL which is the ABS target wheel, is controlled to an appropriate pressure according to the request of the ABS control.
  • the wheel cylinder pressures P w / C of the left and right front wheels FL and FR and the right rear wheel RR, which are not subject to ABS control, are kept constant, as in the case where the assist pressure holding state was realized during BA control. Can be held to a value.
  • the braking force control device of the present embodiment reduces the wheel cylinder pressure P W / c of the ABS target wheel. Reduce the wheel cylinder pressure Pw / c of the other wheels while controlling the pressure to meet the ABS control requirements.
  • the wheel cylinder pressure Pw / c of the wheels not controlled by the ABS control is changed to the master cylinder pressure. Pressure can be reduced using PM / C as the lower limit. Also, for the wheels subject to the ABS control, the wheel cylinder pressure Pw / c can be maintained or reduced by implementing (ii) the holding mode and (iii) the depressurizing mode.
  • the assist pressure reduction ABS state is realized when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure Pw / c of any of the wheels. Therefore, if (ii) the holding mode and (iii) the decompression mode can be realized as described above for the ABS target wheel, the wheel cylinder pressure P w / C of the ABS target wheel can be appropriately controlled by BA + ABS control. The required pressure can be controlled.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled to an appropriate pressure according to the request of the ABS control, while the non-target wheel of the ABS control is controlled.
  • the wheel cylinder pressure Pw / c of the right front wheel FR and the left and right rear wheels RL, RR is reduced using the master cylinder pressure PM / C as the lower limit as in the case where the assist pressure reduction state was realized during BA control. be able to.
  • the ECU 10 After the BA + ABS control is started, the ECU 10 starts executing the ABS control when it is no longer necessary to execute the ABS control for all the wheels, for example, when the vehicle enters a high road from a low z road. Terminate control and execute BA control again independently.
  • the ECU 10 performs the above-described ABS termination control for the ABS target wheel only for a predetermined period of time so that the wheel cylinder pressure Pw / c of the ABS target wheel does not suddenly change when the control content is switched as described above. Execute.
  • the ABS end control is executed to execute the wheel cylinder pressure P w / Only C may be intermittently increased in pressure using the first pump 560 as a hydraulic pressure source.
  • the wheel cylinder pressure Pw / c of the ABS target wheel and the other wheel The pressure may be excessively increased beyond the foil cylinder pressure p w / c .
  • the ECU 10 executes the control routine shown in FIG. 20 to detect the wheel cylinder pressure P of any one of the wheels when the excessive deceleration G during the BA control is detected. Judge that w / C is excessively increased (VI II) and execute assist pressure correction hold mode.
  • the assist pressure correction holding mode includes: (IV) all the holding solenoids S ** H and This is achieved by closing all decompression solenoids S ** R. (VI II) Assist pressure According to the correction holding mode, it is possible to reliably prohibit the wheel cylinder pressure P w / C of all wheels from increasing. Therefore, according to the braking force control device of the present embodiment, it is possible to reliably prevent the wheel cylinder pressure P w / C of the ABS target wheel from being excessively increased at the end of the BA + ABS control. .
  • the braking force control device performs the braking operation intended to reduce the brake fluid pressure during the execution of the BA control or the BA + ABS control, that is, when the depressurizing operation is performed, as shown in FIG. 37 described above.
  • the assist pressure reduction state is realized, and the wheel cylinder pressure Pw / c of each wheel is released to the master cylinder 402.
  • pulsation occurs in the master cylinder pressure P M / C detected by the hydraulic pressure sensor 144.
  • the wheel cylinder pressure Pw / c of each wheel is excessively increased after the assist pressure reduction state is realized.
  • the pressure may be reduced.
  • the assist pressure correction pressure increase mode repeats the assist pressure pressure increase state and the assist pressure hold state in a state where the (IV) assist pressure hold mode is set to the request mode. This is realized by repeating the assist pressure increasing ABS state and the assist pressure holding ABS state.
  • the assist pressure compensation pressure increase mode the wheel cylinder pressure Pw / c of each wheel other than the ABS target wheel can be increased to compensate for an appropriate hydraulic pressure. Therefore, according to the braking force control device of the present embodiment, by correcting the excessive pressure reduction amount of Hoirushiri Nda ⁇ Pw / c, to generate Hoirushiri Nda ⁇ P w / c intended is accurately reflected in the driver's be able to.
  • FIG. 40 is a system configuration diagram of an inline braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to the fourth embodiment of the present invention.
  • the braking force control device of the present embodiment is a device suitable as a braking force control device for a front engine / front drive type vehicle (FF vehicle).
  • FF vehicle front engine / front drive type vehicle
  • the suction side of the first pump 560 and the second pump 562 is connected to the master pump via the first hydraulic passage 422 or the second hydraulic passage 424. And 402. Therefore, the first pump 560 and the second pump 562 draw the brake fluid from the master cylinder 402.
  • the braking force control device of the present embodiment has the above system configuration, and the ECU 10 force together with the control routine shown in FIGS. 9 to 11 and the control routine shown in FIG.
  • the processing shown in FIG. 5 and the processing shown in FIGS. It is characterized in that a control routine composed of logic and logic is executed.
  • the braking force control device of the present embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves arranged in the hydraulic circuit.
  • the normal braking function is realized by turning off all solenoid valves of the braking force control device as shown in Fig. 40.
  • the state shown in FIG. 40 is referred to as a normal brake state.
  • the control for realizing the normal brake function in the braking force control device is called normal brake control.
  • the wheel cylinder 120 of the right front wheel FR and the wheel cylinder 126 of the left rear wheel RL are both connected to the master cylinder 402 via the first hydraulic pressure passage 422.
  • the wheel cylinders 122 of the left front wheel FL and the wheel cylinders 124 of the right rear wheel RR both pass through the second hydraulic passage 424, and the second hydraulic chamber 402 of the master cylinder 402 is also provided.
  • the wheel cylinder pressure P w / c of the wheel cylinders 120 to 126 is always controlled to be equal to the master cylinder pressure PM / C. Therefore, according to the state shown in FIG. 40, the normal braking function is realized.
  • ABS control The ABS function turns on the first pump 560 and the second pump 562 in the state shown in Fig. 40, and sets the holding solenoid S ** H and the depressurizing solenoid S ** R. It is realized by driving appropriately according to the request of ABS.
  • ABS control the control for realizing the ABS function in the braking force control device.
  • the ECU 10 performs the above-described operations (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode appropriately for each wheel. Holding solenoid S according to slip condition of each wheel
  • the B A function is realized by appropriately setting the braking force control device to one of the states shown in FIGS. 41 to 43.
  • control for realizing the BA function is referred to as BA control.
  • the ECU 10 starts the BA control after the brake operation requiring the driver to promptly raise the braking force, that is, the emergency brake operation is performed.
  • FIG. 41 shows an assist pressure increasing state realized during execution of the BA control.
  • the assist pressure increasing state is used when it is necessary to increase the wheel cylinder pressure P W / c of each wheel during the execution of the BA control, that is, during the BA control, (I) the start increasing pressure mode, This is realized when execution of the (II) assist pressure increasing mode and-(V) assist pressure gradual increasing mode is requested.
  • the assist pressure increasing state is shown in FIG. As shown, Rizabaka' Tosorenoi de SRC-, 5 0 4, SRC-25 0 6 and, Masutaka' Tosorenoi de SMC-! 5 1 2, SMC- 2 5 1 4 a is turned on, and the first pump 5 6 0 And second pump
  • the first pump 560 and the second pump 562 are connected to the first hydraulic passage 422 and the second hydraulic passage 424, respectively. Start inhaling the drug.
  • the brake fluid discharged from the first pump 560 and the second pump 562 is supplied to the wheel cylinders 120 to 126 of each wheel. Is done. Therefore, according to the assist pressure increasing state shown in FIG. 41, the wheel cylinder pressure P w / C of each wheel can be quickly increased to a pressure exceeding the mass cylinder pressure P M / C.
  • FIG. 42 shows the assist pressure holding state realized during the execution of the BA control.
  • the assist pressure holding state is used when it is necessary to hold the wheel cylinder pressure P w / C of each wheel during the execution of the BA control, that is, when the (IV) assist pressure holding mode is required during the BA control. Is realized when As shown in FIG. 36, the state of maintaining the assist pressure is realized by turning on the master cut solenoids SMC-i512 and SMC-2514.
  • the first pump 560 and the second pump 562 cannot pump the brake fluid to the wheel cylinders 120 to 126.
  • the hydraulic cylinders 5 18, 5 2 2 and 5 3 0, 5 3 4 force are used by the master cylinder by the SMC-J 5 12 and SMC 25 14 respectively. It is substantially decoupled from 402. Therefore, according to the assist pressure holding state, the foil silicon The flow of brake fluid from cylinders 120 to 126 to cylinder 420 is blocked. Therefore, according to the assist pressure holding state, the wheel cylinder pressures Pw / C of all the wheels can be maintained at a constant value.
  • FIG. 43 shows a reduced assist pressure state realized during execution of the BA control.
  • the assist pressure reducing state is required when the wheel cylinder pressure P w / C of each wheel needs to be reduced during the execution of the BA control, that is, (III) the assist pressure reducing mode during the BA control, and ( VI) This is realized when execution of the assist pressure mode is requested.
  • the assist pressure reduction state is achieved by turning off all solenoids as shown in FIG.
  • the ECU 10 when the driver performs an emergency braking operation, the ECU 10 performs the assist shown in FIGS. 41 to 43 in the same manner as in the first to third embodiments.
  • the BA function is realized by combining the pressure increasing state, the assist pressure holding state, and the assist pressure decreasing state.
  • the wheel cylinder pressure P w / c always according to the driver's intention during the execution of the BA control, as in the above-described first to third embodiments. Can be generated ( Hereinafter, with reference to FIG. 44 and FIG. 45, the characteristic portion of the braking force control device of the present embodiment will be described.
  • FIG. 44 shows the relationship between the discharge capacity of the first pump 560 and the second pump 562 and the mass cylinder pressure P M / C.
  • the first pump 560 and the second pump 562 suck the brake fluid from the first hydraulic passage 422 or the second hydraulic passage 424.
  • the first pump 560 and the second pump 562 exhibit a higher discharge capacity as the master cylinder pressure PM / C becomes higher.
  • the assist pressure is increased by executing the (I) start pressure increasing mode only for a predetermined pressure increasing time T STA after the driver performs the emergency braking operation. It generates Pa.
  • a constant assist pressure Pa can be generated by the above method.
  • the braking force control device of the present embodiment executes the (I) start pressure increasing mode by a method different from the devices of the above-described first to third embodiments.
  • FIG. 45 shows a flowchart of a series of processes executed by the ECU 10 to secure a stable assist pressure Pa in the system of the present embodiment.
  • the ECU 10 executes the process shown in FIG. 45 in combination with the series of processes shown in FIGS. 14 to 19, similarly to the process shown in FIG.
  • steps that execute the same processes as the steps shown in FIG. 13 are given the same reference numerals, and descriptions thereof will be omitted.
  • step 260 A series of processes shown in FIG. 45 is started from step 260 under the condition that the execution condition of the BA control is satisfied. In this routine, If it is determined in step 260 that the start pressure increase mode has not yet been completed, the process of step 570 is executed.
  • step 570 the target deceleration to be generated during execution of BA control is
  • the target deceleration G * is calculated.
  • the target deceleration G * is determined by the output signal p MC of the fluid pressure sensor 144 and the step 2
  • step 264 that is, the processing of setting the braking force control device to the assist pressure increasing state shown in FIG. 41 is executed. You. In this embodiment, when these processes are completed, the process of step 574 is executed.
  • step 574 it is determined whether or not the difference G * -G between the target deceleration G * and the actual deceleration G is a positive value. As a result, if it is determined that G * —G> 0 holds, it can be determined that the desired deceleration has not yet been obtained. In this case, the process of step 264 is executed again. On the other hand, if it is determined that G * _G> 0 does not hold, it can be determined that the deceleration G of the vehicle has reached the target deceleration G *. In this case, thereafter, (I) the processing after step 268 is executed in order to end the start pressure increasing mode and execute another control mode.
  • the start pressure increase mode ends when the deceleration G of the vehicle coincides with the target deceleration G *. Therefore, according to the above-described processing, the desired deceleration G is reliably generated by executing the start pressure increase mode regardless of the discharge capacity of the first pump 560 or the second pump 562. be able to.
  • the deceleration G generated in the vehicle during the execution of the BA control is affected not only by the fluctuation of the discharge capacity of the pump as described above, but also by the load weight of the vehicle.
  • the braking force control device of the present embodiment The starting pressure increase mode is executed so that the deceleration G of the target coincides with the target deceleration G *. Therefore, according to the braking force control device of the present embodiment, even when the weight of the load mounted on the vehicle changes, the start decompression mode is executed, and the desired deceleration G is always obtained. Can be generated. After the start pressure increase mode ends, the braking force control device of the present embodiment continues the BA control by executing the processes shown in FIGS. 14 to 19 described above.
  • assist deceleration Ga the pressure Pa
  • the braking force control device of the present embodiment executes the control routine shown in FIG. 20 as described above, similarly to the devices of the first to third embodiments.
  • the wheel cylinder pressure P w / C is appropriately corrected so that the actual deceleration G matches the target deceleration under the situation where the assist pressure holding mode is required. It can be performed. Therefore, according to the braking force control device of the present embodiment, during execution of the BA control, it is always stable despite the fluctuation of the discharge capacity of the first pump 560 and the discharge capacity of the second pump 562. Assist deceleration G a can be generated.
  • the deceleration sensor 146 corresponds to “deceleration detecting means”, and the ECU 10 calculates the force “G * —G” in step 574.
  • the “deviation detecting means” is realized by executing the processing of the above steps 26 4 and 57 4 respectively.
  • the hydraulic pressure sensor 144 corresponds to the “brake operation amount detecting means”, and the ECU 10 executes the processing of the above step 570 to achieve the “target”.
  • a “basic deceleration detecting means” is realized by calculating " ⁇ -MC" in step 570 above.
  • the first pump 560 and the second pump 562 correspond to the "pump".

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Description

明細 制動力制御装置 技術分野
本発明は、 制動力制御装置に係り、 特に、 車両において緊急ブ レーキ操作が行われた際に、 通常時に比して大きな制動力を発生さ せる制動力制御装置に関する。 背景技術
従来より、 例えば特開平 4 一 1 2 1 2 6 0号に開示される如く、 ブレーキペダルが所定速度を超える速度で踏み込まれた場合に、 通 常時に比して大きな制動液圧を発生させる制動力制御装置が知られ ている。 車両の運転者は、 制動力を速やかに立ち上げたい場合にブ レーキペダルを高速で操作する。 上記従来の制動力制御装置によれ ば、 かかるブレーキ操作 (以下、 緊急ブレーキ操作と称す) が行わ れた場合に通常時に比して大きな制動液圧を発生することで、 適正 に運転者の要求に応える制動力を発生させることができる。
ところで、 緊急ブレーキ操作の開始後に運転者が要求する制動力 は常に一定ではない。 すなわち、 緊急ブレーキ操作が開始された後、 ブレーキペダルが更に踏み込まれた場合は、 運転者が制動力の増加 を意図していると判断することができる。 また、 ブレーキペダルの 操作量が保持されている場合、 および、 減少された場合は、 それぞ れ運転者が制動力の保持または減少を意図していると判断すること ができる。
従って、 緊急ブレーキ操作が開始された後に、 運転者の意図を正 確に反映した制動力を発生させるためには、 制動液圧を通常時に比 して大きな液圧に増圧した後、 ブレーキペダルの操作状態に応じて- その制動液圧を増減させることが適切である。 かかる機能は、 例え ^ ば、 従来の制動力制御装置に、 ブレーキペダルが操作量が増加する- 場合に制動液圧の増圧を図り、 その操作量が保持される場合に制動 液圧の保持を図り、 かつ、 その操作量が減少される場合に制動液圧 の減圧を図る機能を追加することにより実現することができる。
しかし、 ホイルシリ ンダに供給される制動液圧を、 通常時に比し て大きな領域で精度良く増減させることは必ずしも容易ではない。 このため、 緊急ブレーキ操作が開始された後に、 上述した手法を用 いて制動液圧を制御しても、 運転者の意図する制動力が得られない 場合がある。 発明の開示
本発明は、 緊急ブレーキ操作の実行中、 常に正確に運転者の意図 する制動力を得ることのできる制動力制御装置を提供することを目 的とする。
上記の目的は、 運転者によって緊急ブレーキ操作が行われた際に- 車両のホイルシリ ンダに通常時に比して大きなブレーキ液圧を供給 するブレーキアシスト制御を実行する制動力制御装置において、 車両の減速度を検出する減速度検出手段と、
ブレーキアシスト制御の実行中に発生させるべき目標減速度と、 前記減速度との偏差を検出する偏差検出手段と、
ブレーキアシスト制御の実行中にホイルシリ ンダに供給するブ レーキ液圧を、 前記偏差に基づいて制御する液圧制御手段と、 を備える制動力制御装置により達成される。
本発明において、 ブレーキアシスト制御の実行中は、 ホイルシリ ンダに対して通常時に比して高圧のブレーキ液圧が供給される。 こ のブレーキ液圧は、 目標減速度と現実の減速度との偏差に基づいて 制御される。 上記の制御によれば、 ブレーキアシス ト制御の実行中 に、 他の制御との干渉や機器の特性の変動等に影響されることなく . 常に目標減速度と一致する減速度を得ることができる。 _ また、 制動力制御装置は、 ^ ブレーキ操作量を検出するブレーキ操作量検出手段と、
前記目標減速度を、 前記ブレーキ操作量に基づいて設定する目標 減速度設定手段と、
を備えることとしてもよい。
本発明において、 目標減速度は、 運転者によるブレーキ操作量に 基づいて設定される。 ブレーキアシスト制御の実行中に大きなブ レーキ操作が生じている場合は、 運転者が大きな減速度を要求して いると判断できる。 この場合、 目標減速度は大きな値とすることが 適切である。 一方、 ブレーキアシス ト制御の実行中に生じているブ レーキ操作量がさほど大きくない場合は、 運転者がさほど大きな減 速度を要求していないと判断できる。 この場合、 目標減速度は小さ な値とすることが適切である。 本発明によれば、 ブレーキアシス ト 制御の実行中に、 常に上記の要求を満たす目標減速度を設定するこ とができる。
また、 前記目標減速度設定手段は、 前記ブレーキ操作量に基づい て通常時に得られる減速度を検出する基本減速度検出手段と、 前記減速度と所定のァシスト減速度とを加算して前記目標減速度 を演算するアシスト減速度加算手段と、
を備えることとしてもよい。
本発明において、 ブレーキアシス ト制御の実行中は、 目標減速度 とほぼ一致する減速度が得られる。 また、 目標減速度は、 ブレーキ 操作量に対応する減速度 (通常時に得られる減速度) にアシス減速 度を加えた値に設定される。 従って、 ブレーキアシス ト制御の実行 中は、 通常時に得られる減速度に比して所定のアシス ト減速度だけ 大きな減速度を発生させることができる。
また、 制動力制御装置は、 何れかの車輪に過大なスリ ップ率が発 生した場合にその車輪のホイルシリ ンダ圧 P w/c の減圧を図る A B S制御を実行する A B S機構を更に備えると共に、 前記液圧制御手段は、 前記減速度が前記目標減速度に比して小さ い場合でも、 前記 A B S制御が実行されている場合はホイルシリ ン ダ圧 P w/ C の増圧を禁止する A B S連動増圧禁止手段を備えること としてもよい。
本発明において、 何れかの車輪に過大なスリ ップ率が発生すると、 A B S制御が実行されることによりその車輪のホイルシリ ンダ圧 P w/c が減圧される。 A B S制御が開始される時点では、 各車輪のホ ィルシリ ンダ圧 P w/ C が、 ある程度昇圧されていると判断できる。 本発明によれば、 このような状況下では、 車両の減速度が目標減速 度に比して小さい場合でも、 ホイルシリ ンダ圧 P w/ C の増圧が禁止 される。 上記の処理によれば、 車両が低摩擦係数路を走行している 場合に、 ホイルシリ ンダ圧 P w/c が不当に高い液圧に増圧されるこ とがない。 従って、 車両が低摩擦係数路を走行している際にブレー キアシスト制御が実行された場合において、 ホイルシリ ンダ圧 P w/ c が不要に高い液圧に増圧されるのを防止することができる。
また、 前記 A B S連動増圧禁止手段は、 前記 A B S制御が左右前 輪の少なく とも一方について実行されている場合にホイルシリ ンダ 圧 P w/c の増圧を禁止することとしてもよい。
本発明において、 ホイルシリ ンダ圧 P w/c の増圧は、 左右前輪の 何れかについて A B S制御が実行されている場合のみ禁止される。 左右前輪の何れかについて A B S制御が実行されている場合は、 他 の車輪のホイルシリ ンダ圧 P w/ C を増圧させても、 制動力を高める うえでさほど効果が得られない。 このため、 こような状況下では、 車両の安定性を確保するうえで、 ホイルシリ ンダ圧 P W/C の増圧を 禁止することが有効である。 一方、 左右前輪の何れについても A B S制御が実行されていない場合は、 それらの車両のホイルシリ ンダ 圧 P w/c を増圧させることで、 更に大きな制動力が得られることが ある。 従って、 このような状況下では、 ホイルシリ ンダ圧 P w/ C の 増圧を禁止すべきではない。 本発明によれば、 上述した 2つの要求 _ を共に満たすことができる。 従って、 A B S制御が開始された後に: ホイルシリ ンダ圧 P w/ C を増圧することで制動力の増大が望める場 合にはホイルシリ ンダ圧 P w/ C の増圧を許容し、 制動力の増大が望 めない場合にのみその増圧を禁止することができる。
また、 前記液圧制御手段は、 ホイルシリ ンダに供給するブレーキ 液圧を、 前記偏差と運転者によるブレーキ操作とに基づいて制御す ることとしてもよい。
本発明において、 ブレーキアシスト制御の実行中は、 運転者の意 図に応じてブレーキ液圧を増減させることが必要である。 従って、 減速度が目標減速度に比して小さい場合でも、 運転者によって制動 力の減少を意図するブレーキ操作が実行されている場合は、 ブレー キ液圧を増圧すべきでない。 同様に、 減速度が目標減速度に比して 大きい場合でも、 運転者によって制動力の増大を意図するブレーキ 操作が実行されている場合は、 ブレーキ液圧を減圧すべきでない。 本発明においては、 ブレーキ操作を考慮した液圧制御が行われるた め、 ブレーキ液圧に運転者の意図を正確に反映させることができる c また、 前記液圧制御手段は、 前記減速度が前記目標減速度に比し て第 1所定値を超えて大きく、 かつ、 ブレーキ操作速度が第 2所定 値以下である場合に、 全ての車輪のホイルシリ ンダと全ての液圧源 とを遮断することとしてもよい。
本発明において、 減速度が目標減速度に比して第 1の所定値を超 えて大きい場合は、 現在のブレーキ液圧が、 目標減速度を得るため のブレーキ液圧に対して過大であると判断できる。 一方、 ブレーキ 操作速度が第 2の所定値以下である場合は、 運転者が制動力の増大 を意図していないと判断できる。 本発明によれば、 上記の状況が検 出されると、 ホイルシリ ンダが全ての液圧源から遮断される。 ホイ ルシリ ンダが全ての液圧源から遮断されると、 ホイルシリ ンダ圧 P の増圧が禁止される。 従って、 目標減速度に比して過大な減速 度が発生し、 かつ、 運転者が制動力の増大を意図していない場合に. 減速度と目標減速度との偏差が更に拡大するのを確実に防止するこ とができる。
また、 前記液圧制御手段は、 制動力の増減を意図するブレーキ操 作が実行された場合に、 前記補正保持手段によるブレーキ液圧の補 正を中止する補正保持中止手段を備えることとしてもよい。
本発明において、 運転者によって制動力の増減を意図するブレー キ操作が実行された場合は、 その意図に応じてブレーキ液圧を増減 させることが適切である。 ホイルシリ ンダが全ての液圧源から遮断 された状態 (以下、 補正保持状態と称す) では、 運転者の意図に応 じてブレーキ液圧を増減させることができない。 本発明によれば、 上記のブレーキ操作が実行された後、 速やかに補正保持状態が解除 される。 従って、 ブレーキ液圧に運転者の意図を反映させることが できる。
また、 前記液圧制御手段は、 前記減速度が前記目標減速度に比し て第 3所定値を超えて小さく、 かつ、 ブレーキ操作速度が第 4所定 値以上である場合に、 ホイルシリ ンダに供給するブレーキ液圧を増 圧補正する補正増圧手段を備えることとしてもよい。
本発明において、 減速度が目標減速度に比して第 3の所定値を超 えて小さい場合は、 現在のブレーキ液圧が、 目標減速度を得るため のブレーキ液圧に対して不足していると判断できる。 一方、 ブレー キ操作速度が第 4の所定値以上である場合は、 運転者が制動力の減 少を意図していないと判断できる。 本発明によれば、 上記の状況が 検出されると、 ブレーキ液圧の増圧補正が行われる。 上記の如くブ レーキ液圧の増圧補正が実行されると、 減速度と目標減速度との偏 差が縮小される。 従って、 目標減速度に比して減速度が不足してお り、 かつ、 運転者が制動力の減少を意図していない場合に、 減速度 と目標減速度との偏差を縮小させることができる。
また、 前記液圧制御手段は、 制動力の増減を意図するブレーキ操 作が実行された場合に、 前記補正増圧手段によるブレ一キ液圧の補 ^ 正を中止する補正増圧中止手段を備えることとしてもよい。
本発明において、 運転者によって制動力の増減を意図するブレー キ操作が実行された場合は、 その意図に応じてブレーキ液圧を増減 させることが適切である。 ブレーキ液圧が増圧補正されている状況 下では、 運転者の意図に応じてブレーキ液圧を増減させることがで きない。 本発明によれば、 上記のブレーキ操作が実行された後、 速 やかにブレーキ液圧の増圧補正が中止される。 従って、 ブレーキ液 圧に運転者の意図を反映させることができる。
また、 制動力制御装置は、
ホイルシリ ンダに連通するマスタシリ ンダと、
ホイルシリ ンダに連通するポンプとを備えると共に、
前記ブレーキアシスト制御の実行中は、 前記ポンプが前記マスタ シリ ンダから吸入したブレーキフル一ドを前記ホイルシリ ンダに供 給することとしてもよい。
本発明において、 ブレーキアシスト制御の実行中は、 ポンプから 吐出されるブレーキフルードがホイルシリ ンダに供給される。 ボン プの吐出能力は、 その吐出側に供給される液圧、 すなわち、 マスタ シリ ンダ圧 P M / C に応じて変動する。 従って、 増圧時間や増圧パ ターンを制御することでは、 ブレーキ液圧を適正に増圧させること はできない。 本発明によれば、 ブレーキ液圧が、 減速度と目標減速 度との偏差に基づいて制御されるため、 ポンプの吐出能力の変動に 関わらず、 ブレーキアシスト制御の実行中に、 ブレーキ液圧を適正 に増圧することができる。 図面の簡単な説明
図 1 は、 本発明の第 1実施例の制動力制御装置の通常ブレーキ状 態を示すシステム構成図である。
図 2は、 本発明の第 1実施例の制動力制御装置の A B S作動状態 を示す図である。 _ 図 3は、 本発明の第 1実施例の制動力制御装置において B A制御- 中または B A+ A B S制御中に実現されるアシスト圧増圧状態を示 す図である。
図 4は、 本発明の第 1実施例の制動力制御装置において B A制御 中または B A + A B S制御中に実現されるアシス ト圧保持状態を示 す図である。
図 5は、 本発明の第 1実施例の制動力制御装置において B A制御 中または BA + A B S制御中に実現されるアシスト圧減圧状態を示 す図である。
図 6は、 本発明の第 1実施例の制動力制御装置において B A制御 中または BA + AB S制御中に実現されるアシスト圧補正保持状態 を示す図である。
図 7 (A) は、 本発明の制動力制御装置において緊急ブレーキ操 作が行われた場合に出力信号 pMCの変化率 Δ p MCに生ずる変化 を表す図である。
図 7 (B) は、 本発明の制動力制御装置において緊急ブレーキ操 作が行われた場合に液圧センサの出力信号 pMCおよびホイルシリ ンダ圧 Pw/c に生ずる変化を表す図である。
図 8 (A) はブレーキ操作の変化を示すタイムチャートである。 図 8 (B) は液圧センサの出力信号 pMCの変化を示すタイム チャートである。
図 8 (C) は本発明の制動力制御装置において実現される状態変 化を表すタイムチヤ一トである。
図 9は、 本発明の制動力制御装置において第 1スタンバイ状態の 成立性を判断すベく実行される制御ルーチンの一例のフローチヤ一 トである。
図 1 0は、 本発明の制動力制御装置において第 2スタンバイ状態 の成立性を判断すベく実行される制御ルーチンの一例のフロー チャートである。 図 1 1 は、 本発明の制動力制御装置において B A制御の開始条件 の成立性を判断すると共に開始増圧モー ドの増圧時間を演算すベく 実行される制御ルーチンの一例のフローチャー トである。
図 1 2は、 図 1 1 に示す制御ルーチン中で参照される基準増圧時 間 T S T A。のマップの一例である。
図 1 3は、 本発明の第 1実施例乃至第 3実施例の制動力制御装置 において B A制御を実現すベく実行される制御ルーチンの一例のフ ローチャー ト (その 1 ) である。
図 1 4は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャー ト (その 2 ) であ る o
図 1 5は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャート (その 3 ) であ る
図 1 6は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャート (その 4 ) であ る o
図 1 7は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャー ト (その 5 ) であ る。
図 1 8は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャー ト (その 6 ) であ
Φ
図 1 9は、 本発明の制動力制御装置において B A制御を実現すベ く実行される制御ルーチンの一例のフローチャート (その 7 ) であ o
図 2 0は、 本発明の制動力制御装置において制動液圧を適正な液 圧に補正すベく実行される制御ルーチンの一例のフローチヤートで める。 一 図 2 1 は、 本発明の制動力制御装置において B A制御が実行され- る場合に開始増圧モードに次いで実行される制御モードを示すテー ブルである。
図 2 2は、 本発明の制動力制御装置において B A制御が実行され る場合にアシスト圧増圧モードに次いで実行される制御モ一 ドを示 すテーブルである。
図 2 3は、 本発明の制動力制御装置において B A制御が実行され る場合にアシスト圧減圧モードに次いで実行される制御モードを示 すテーブルである。
図 2 4は、 本発明の制動力制御装置において B A制御が実行され る場合にアシスト圧保持モードに次いで実行される制御モ一ドを示 すテーブルである。
図 2 5は、 本発明の制動力制御装置において B A制御が実行され る場合にアシスト圧緩増モードに次いで実行される制御モー ドを示 すテーブルである。
図 2 6は、 本発明の制動力制御装置において B A制御が実行され る場合にアシスト圧緩減モ一ドに次いで実行される制御モ一ドを示 すテーブルである。
図 2 7は、 本発明の第 2実施例の制動力制御装置においてアシス ト圧補正モ一ドが要求モードである場合に実行すべき制御モードを 示すテーブルである。
図 2 8は、 本発明の第 2実施例の制動力制御装置の通常ブレーキ 状態および A B S作動状態を示すシステム構成図である。
図 2 9は、 本発明の第 2実施例の制動力制御装置において B A制 御中に実現されるアシスト圧増圧状態を示す図である。
図 3 0は、 本発明の第 2実施例の制動力制御装置において B A制 御中に実現されるアシスト圧保持状態を示す図である。
図 3 1 は、 本発明の第 2実施例の制動力制御装置において B A制 御中または B A + A B S制御中に実現されるアシスト圧減圧状態を _ 示す図である。 ― 図 3 2は、 本発明の第 2実施例の制動力制御装置において B A + A B S制御中に実現されるアシスト圧増圧状態を示す図である。 図 3 3は、 本発明の第 2実施例の制動力制御装置において B A + A B S制御中に実現されるアシスト圧保持状態を示す図である。 図 3 4は、 本発明の第 3実施例の制動力制御装置の通常ブレーキ 状態および A B S作動状態を示すシステム構成図である。
図 3 5は、 本発明の第 3実施例の制動力制御装置において B A制 御中に実現されるアシスト圧増圧状態を示す図である。
図 3 6は、 本発明の第 3実施例の制動力制御装置において B A制 御中に実現されるアシスト圧保持状態を示す図である。
図 3 7は、 本発明の第 3実施例の制動力制御装置において B A制 御中または B A + A B S制御中に実現されるアシスト圧減圧状態を 示す図である。
図 3 8は、 本発明の第 3実施例の制動力制御装置において B A + A B S制御中に実現されるアシスト圧増圧状態を示す図である。 図 3 9は、 本発明の第 3実施例の制動力制御装置において B A + A B S制御中に実現されるアシスト圧保持状態を示す図である。 図 4 0は、 本発明の第 4実施例の制動力制御装置の通常ブレーキ 状態および A B S作動状態を示すシステム構成図である。
図 4 1は、 本発明の第 4実施例の制動力制御装置において B A制 御中に実現されるアシスト圧増圧状態を示す図である。
図 4 2は、 本発明の第 4実施例の制動力制御装置において B A制 御中に実現されるアシスト圧保持状態を示す図である。
図 4 3は、 本発明の第 4実施例の制動力制御装置において B A制 御中に実現されるアシスト圧減圧状態を示す図である。
図 4 4は、 本発明の第 4実施例の制動力制御装置が備えるポンプ の吐出能力とマスタシリ ンダ圧 P M/C との関係を示す図である。 図 4 5は、 本発明の第 4実施例の制動力制御装置において B A制 御を実現すベく実行される制御ルーチンの一例のフローチヤ一 ト でめる。 発明を実施するための最良の形態
図 1 は、 本発明の一実施例に対応するハイ ドロブースタ式制動力 制御装置 (以下、 単に制動力制御装置と称す) のシステム構成図を 示す。 本実施例の制動力制御装置は、 電子制御ュニッ ト 1 0 (以下、 E C U 1 0 と称す) により制御されている。
制動力制御装置は、 ブレーキペダル 1 2を備えている。 ブレーキ ペダル 1 2の近傍には、 ブレーキスィツチ 1 4が配設されている。 ブレーキスィッチ 1 4は、 ブレーキペダル 1 2が踏み込まれること によりオン信号を出力する。 ブレーキスィッチ 1 4の出力信号は E C U 1 0に供給されている。 E C U 1 0は、 ブレーキスィッチ 1 4 の出力信号に基づいてブレーキペダル 1 2が踏み込まれているか否 かを判別する。
ブレーキペダル 1 2は、 マスタシリ ンダ 1 6に連結されている。 マスタシリ ンダ 1 6の上部にはリザ一バタンク 1 8が配設されてい る。 リザ一バタンク 1 8には、 ブレーキフルー ドをリザ一バタンク 1 8に還流させるためのリタ一ン通路 2 0が連通している。 リザ一 バタンク 1 8には、 また、 供給通路 2 2が連通している。 供給通路 2 2はポンプ 2 4の吸入側に連通している。 ポンプ 2 4の吐出側に は、 アキュムレータ通路 2 6が連通している。 アキユレ一夕通路 2 6 と供給通路 2 2 との間には、 アキュムレータ通路 2 6に過剰な圧 力が生じた場合に開弁する定圧開放弁 2 7が配設されている。
アキュムレータ通路 2 6には、 ポンプ 2 4から吐出される油圧を 蓄えるためのアキュムレータ 2 8が連通している。 アキュムレータ 通路 2 6には、 また、 上限側圧カスイッチ 3 0および下限側圧カス イッチ 3 2が接続されている。 上限側圧カスィ ツチ 3 0は、 アキュ ムレ一夕通路 2 6の圧力 (以下、 アキュムレータ圧 P A C C と称す) 一 が所定の上限値を超える場合にオン出力を発生する。 一方、 下限仰 f 圧力スィ ッチ 3 2は、 アキュムレータ圧 P A C C が所定の下限値を超 える場合にオン出力を発生する。
ポンプ 2 4は、 下限側圧カスィ ツチ 3 2からオン出力が発せられ た後、 上限側圧カスィツチ 3 0によってオン出力が発せられるまで、 すなわち、 アキュムレータ圧 P A C C が下限値を下回った後、 上限値 に到達するまでオン状態とされる。 このため、 アキュムレータ圧 P は常に上限値と下限値との間に維持される。
マスタシリ ンダ 1 6には、 レギユレ一夕 3 4が一体に組み込まれ ている。 レギユレ一夕 3 4には、 アキュムレータ通路 2 6が連通し ている。 以下、 マスタシリ ンダ 1 6 とレギユレ一夕 3 4 とを総称し てハイ ドブースタ 3 6 と称す。
ハイ ド口ブースタ 3 6の内部には、 ピストン 4 0が配設されてい る。 ピストン 4 0のブレーキペダル 1 2側には、 アシス ト油圧室 4 6が形成されている。 ハイ ド口ブースタ 3 6の内部には、 また、 第 1油圧室 5 6 と第 2油圧室 5 8 とが隔成されている。 ハイ ドロブー ス夕 3 6は、 アキュムレータ通路 2 6を介して供給されるアキュ厶 レー夕圧 P A C C を液圧源として、 第 1油圧室 5 6および第 2油圧室 通路 5 8の双方に、 ブレーキ踏力に対して所定の倍力比を有する液 圧を発生させるように構成されている。 以下、 ハイ ドロブ一ス夕 3 6の第 1油圧室 5 6および第 2油圧室 5 8で生成される液圧をマス 夕シリ ンダ圧 P M / C と称す。
ハイ ドロブースタ 3 6の第 1油圧室 5 6、 および、 第 2油圧室 5 8には、 それぞれ第 1液圧通路 8 2、 および、 第 2液圧通路 8 4が 連通している。 第 1液圧通路 8 2には、 第 1 アシス トソレノイ ド 8 6 (以下、 S A—! 8 6 と称す) および第 2アシス トソレノィ ド 8 8 (以下、 S A— 2 8 8 と称す) が連通している。 一方、 第 2液圧通路 8 4には、 第 3アシス トソレノイ ド 9 0 (以下、 S A— 3 9 0 と称 す) が連通している。 一
S A— ! 8 6および S A- 28 8には、 また、 制御圧通路 9 2が連通 している。 制御圧通路 9 2は、 レギユレ一夕切り換えソレノイ ド 9 4 (以下、 S TR 9 4 と称す) を介してアキュムレータ通路 2 6に 連通している。 S TR 9 4は、 オフ状態とされることでアキュム レ一タ通路 2 6 と制御圧通路 9 2 とを遮断状態とし、 かつ、 オン状 態とされることでそれらを導通状態とする 2位置の電磁弁である。
S 8 6には、 右前輪 F Rに対応して設けられた液圧通路 9 6 が連通している。 同様に、 S A— 28 8には、 左前輪 F Lに対応して 設けられた液圧通路 9 8が連通している。 S A— , 8 6は、 オフ状態 とされることで液圧通路 9 6を第 1液圧通路 8 2に導通させる第 1 の状態を実現し、 かつ、 オン状態とされることで液圧通路 9 6を制 御圧通路 9 2に導通させる第 2の状態を実現する 2位置の電磁弁で ある。 また、 S A— 28 8は、 オフ状態とされることで液圧通路 9 8 を第 1液圧通路 8 2に導通させる第 1の状態を実現し、 かつ、 オン 状態とされることで液圧通路 9 8を制御圧通路 9 2に導通させる第 2の状態を実現する 2位置の電磁弁である。
S A— 39 0には、 左右後輪 R L, RRに対応して設けられた液圧 通路 1 0 0が連通している。 S A- 39 0は、 オフ状態とされること で第 2液圧通路 8 4 と液圧通路 1 0 0 とを導通状態とし、 かつ、 ォ ン状態とされることでそれらを遮断状態とする 2位置の電磁弁であ る。 第 2液圧通路 8 4 と液圧通路 1 0 0 との間には、 第 2液圧通路 8 4側から液圧通路 1 0 0側へ向かうフルードの流れのみを許容す る逆止弁 1 0 2が配設されている。
右前輪 F Rに対応する液圧通路 9 6には、 右前輪保持ソレノイ ド 1 0 4 (以下、 S F RH 1 0 4 と称す) が連通している。 同様に、 左前輪 F Lに対応する液圧通路 9 6には左前輪保持ソレノイ ド 1 0 6 (以下、 S F LH 1 0 6 と称す) が、 左右後輪 R L, RRに対応 する液圧通路 1 0 0には右後輪保持ソレノイ ド 1 0 8 (以下、 S R RH 1 0 8 と称す) および左後輪保持ソレノイ ド 1 1 0 (以下、 S R LH 1 1 0 と称す) が、 それぞれ連通している。 以下、 これらの^ ソレノィ ドを総称する場合は 「保持ソレノィ ド S * * H」 と称す。
S F RH 1 0 4には、 右前輪減圧ソレノイ ド 1 1 2 (以下、 S F RR 1 1 2 と称す) が連通している。 同様に、 S F L H 1 0 6、 S R R H 1 0 8および S R L H 1 1 0には、 それぞれ左前輪減圧ソレ ノイ ド 1 1 4 (以下、 S F L R 1 1 4 と称す) 、 右後輪減圧ソレノ イ ド 1 1 6 (以下、 S RRR 1 1 6 と称す) および左後輪減圧ソレ ノイ ド 1 1 8 (以下、 S R L R 1 1 8 と称す) が、 それぞれ連通し ている。 以下、 これらのソレノィ ドを総称する場合には 「減圧ソレ ノイ ド S * * R」 と称す。
S F R H 1 0 4には、 また、 右前輪 F Rのホイルシリ ンダ 1 2 0 が連通している。 同様に、 S F LH 1 0 6には左前輪 F Lのホイル シリ ンダ 1 2 2力、 S R R H 1 0 8には右後輪 R Rのホイルシリ ン ダ 1 2 4力 ^ また、 S R L H 1 1 0には左後輪 R Lのホイルシリ ン ダ 1 2 6がそれぞれ連通している。
更に、 液圧通路 9 6 とホイルシリ ンダ 1 2 0 との間には、 S F R H 1 0 4をバイパスしてホイルシリ ンダ 1 2 0側から液圧通路 9 6 へ向かうフルー ドの流れを許容する逆止弁 1 2 8が配設されている c 同様に、 液圧通路 9 8 とホイルシリ ンダ 1 2 2 との間、 液圧通路 1 0 0 とホイルシリ ンダ 1 2 4 との間、 および、 液圧通路 1 0 0 とホ ィルシリ ンダ 1 2 6 との間には、 それぞれ S F L H 1 0 6、 S R R H 1 0 8および S R LH 1 1 0をバイパスするフル一 ドの流れを許 容する逆止弁 1 3 0, 1 3 2, 1 3 4が配設されている。
S F RH 1 0 4は、 オフ状態とされることにより液圧通路 9 6 と ホイルシリ ンダ 1 2 0 とを導通状態とし、 かつ、 オン状態とされる ことによりそれらを遮断状態とする 2位置の電磁弁である。 同様に- S F L H 1 0 6、 S RRH 1 0 8および S R L H 1 1 0は、 それぞ れオン状態とされることにより液圧通路 9 8 とホイルシンダ 1 2 2 とを結ぶ経路、 液圧通路 1 0 0 とホイルシンダ 1 2 4 とを結ぶ経路- 一 および、 液圧通路 1 0 0 とホイルシンダ 1 2 6 とを結ぶ経路を遮断- 状態とする 2位置の電磁弁である。
S F RR 1 1 2、 S F L R 1 1 4、 S R RR 1 1 6および S R L R 1 1 8にはリ タ一ン通路 2 0が連通している。 S F R R 1 1 2は、 オフ状態とされることによりホイルシリ ンダ 1 2 0 とリターン通路 2 0 とを遮断状態とし、 かつ、 オン状態とされることによりホイル シリ ンダ 1 2 0 とリ ターン通路 2 0 とを導通状態とする 2位置の電 磁弁である。 同様に、 S F L R 1 1 4、 S RRR 1 1 6および S R L R 1 1 8は、 それぞれォン状態とされることによりホイルシリ ン ダ 1 2 2 とリターン通路 2 0 とを結ぶ経路、 ホイルシリ ンダ 1 2 4 とリ タ一ン通路 2 0 とを結ぶ経路、 および、 ホイルシリ ンダ 1 2 6 とリ ターン通路 2 0 とを結ぶ経路を導通させる 2位置の電磁弁であ o
右前輪 F Rの近傍には、 車輪速センサ 1 3 6が配設されている。 車輪速センサ 1 3 6は、 右前輪 F Rの回転速度に応じた周期でパル ス信号を出力する。 同様に、 左前輪 F Lの近傍、 右後輪 RRの近傍、 および、 左後輪 R Lの近傍には、 それぞれ対応する車輪の回転速度 に応じた周期でパルス信号を出力する車輪速センサ 1 3 8 , 1 4 0, 1 4 2が配設されている。 車輪速センサ 1 3 6〜 1 4 2の出力信号 は E C U 1 0に供給されている。 E C U 1 0は、 車輪速センサ 1 3 6〜 1 4 2の出力信号に基づいて各車輪の回転速度 Vw を検出する c ハイ ド口ブースタ 3 6の第 2油圧室 5 8に連通する第 2液圧通路 8 4には、 液圧センサ 1 4 4が配設されている。 液圧センサ 1 4 4 は、 第 2油圧室 5 8の内部に発生する液圧、 すなわち、 ハイ ドロ ブースタ 3 6によって生成されるマスタシリ ンダ圧 PM/c に応じた 電気信号 PMCを出力する。 液圧センサ 1 4 4の出力信号 pMCは E C U 1 0に供給されている。 E C U 1 0は、 出力信号 pMCに基 づいてマスタシリ ンダ圧 PM/C を検出する。
制動力制御装置は、 また、 減速度センサ 1 4 6を備えている。 減 速度センサ 1 4 6は、 制動力制御装置を搭載する車両に発生する前 後方向の減速度に応じた電気信号を出力する。 減速度センサ 1 4 6 の出力信号は E C U 1 0に供給されている。 E C U 1 0は、 減速度 センサ 1 4 6の出力信号に基づいて車両に発生する減速度 Gを検出 する。
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常のブレーキ装置としての機能、 ②ァ ンチロックブレーキシステムとしての機能、 および、 ③制動力の速 やかな立ち上がりが要求される場合に通常時に比して大きな制動力 を発生させる機能 (ブレーキアシスト機能) を実現する。
図 1 は、 ①通常のブレーキ装置としての機能 (以下、 通常ブレー キ機能と称す) を実現するための制動力制御装置の状態を示す。 す なわち、 ①通常ブレーキ機能は、 図 1 に示す如く、 制動力制御装置 が備える全ての電磁弁をオフ状態とすることにより実現される。 以 下、 図 1 に示す状態を通常ブレーキ状態と称す。 また、 制動力制御 装置において通常ブレーキ機能を実現させるための制御を通常ブ レーキ制御と称す。
図 1 において、 左右前輪 F L, F Rのホイルシリ ンダ 1 2 0 , 1 2 2は、 第 1液圧通路 8 2を介してハイ ドロブースタ 3 4の第 1油 圧室 5 6に連通している。 また、 左右後輪 R L, R Rのホイルシリ ンダ 1 2 4, 1 2 6は、 第 2液圧通路 8 4を介してハイ ドロブース 夕 3 6の第 2油圧室 5 8に連通している。 この場合、 ホイルシリ ン ダ 1 2 0〜 1 2 6のホイルシリ ンダ圧 P w/ c は、 常にマスタシリ ン ダ圧 P M / C と等圧に制御される。 従って、 図 1示す状態によれば、 通常ブレーキ機能が実現される。
図 2は、 ②アンチロックブレーキシステムとしての機能 (以下、 A B S機能と称す) を実現するための制動力制御装置の状態を示す ( すなわち、 ② A B S機能は、 図 2に示す如く、 S 8 6および S ^
A- 28 8をォン状態とし、 かつ、 A B Sの要求に応じて保持ソ レノ - イ ド S * * Hおよび減圧ソレノィ ド S * * Rを適当に駆動すること により実現される。 以下、 図 2に示す状態を AB S作動状態と称す c また、 制動力制御装置において AB S機能を実現させるための制御 を ABS制御と称す。
E CU 1 0は、 車両が制動状態にあり、 かつ、 何れかの車輪につ いて過剰なスリ ップ率が検出された場合に A B S制御を開始する。 AB S制御中は、 前輪に対応して設けられた液圧通路 9 6, 9 8が、 後輪に対応して設けられた液圧通路 1 0 0と同様にハイ ドロブース 夕 3 6の第 2油圧室 5 8に連通する。 従って、 A B S制御中は、 全 ての車輪のホイルシリ ンダ圧 Pw/C が第 2油圧室 5 8を液圧源とし て昇圧される。
A B S制御の実行中に、 保持ソレノイ ド S * *Hを開弁状態とし、 かつ、 減圧ソ レノィ ド S * *Rを閉弁状態とすると、 各車輪のホイ ルシリ ンダ圧 Pw/C を増圧することができる。 以下、 この状態を (i) 増圧乇一ドと称す。 また、 A B S制御中に保持ソレノイ ド S * * Hおよび減圧ソ レノイ ド S * * Rの双方を閉弁状態とすると、 各 車輪のホイルシリ ンダ圧 Pw/c を保持することができる。 以下、 こ の状態を(ii)保持モードと称す。 更に、 ABS制御中に保持ソ レノ イ ド S * * Hを閉弁状態とし、 かつ、 減圧ソレノィ ド S * * Rを開 弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/c を減圧すること ができる。 以下、 この状態を (iii)減圧モードと称す。
E CU 1 0は、 ABS制御中に、 各車輪のスリ ップ状態に応じて、 各車輪毎に適宜上記の (i)増圧モー ド、 (ii)保持モー ド、 および、 (iii)減圧モ一ドが実現されるように、 保持ソレノィ ド S * *Hお よび減圧ソレノィ ド S * * Rを制御する。 保持ソレノィ ド S * *H および減圧ソレノィ ド S * * Rが上記の如く制御されると、 全ての 車輪のホイルシリ ンダ圧 Pw/C は、 対応する車輪に過大なスリ ップ 率を発生させることのない圧力に制御される。 従って、 上記の制御 一 によれば、 制動力制御装置において A B S機能を実現することがで ^ きる。
E CU 1 0は、 例えば低//路から高 路に進入した場合等、 全て の車輪について A B S制御を実行する必要がなくなった場合に A B S制御を終了させ、 制動力制御装置を通常ブレーキ状態とする。 と ころで、 AB S制御の実行中は、 A B S制御の対象とされている車 輪 (以下、 A B S対象車輪と称す) のホイルシリ ンダ圧 Pw/C カ^ マスタシリ ンダ圧 PM/C に比して低圧に制御される。 このため、 A B S制御の終了条件が成立した後に、 即座に通常ブレーキ状態が実 現されると、 A B S対象車輪のホイルシリ ンダ圧 PW/C に急激な変 化が生ずる。
E C U 1 0は、 このようなホイルシリ ンダ圧 Pw/c の急激な変化 を防止すべく、 A B S制御の終了条件が成立した後、 所定期間だけ AB S対象車輪について (i)増圧モ一ドと(ii)保持モ一 ドとが繰り 返されるように保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * *Rを駆動した後制動力制御装置を通常ブレーキ状態とする。
以下、 AB S制御の終了条件が成立した後実行される上記の制御 を、 AB S終了制御と称す。 AB S終了制御によれば、 AB S対象 車輪のホイルシリ ンダ圧 Pw/c を緩やかにマスタシリ ンダ圧 PM/C まで昇圧させることができる。 従って、 本実施例の制動力制御装置 によれば、 AB S対象車輪のホイルシリ ンダ圧 Pw/c に急激な変化 を発生させることなく A B S制御を終了させることができる。
AB S制御の実行中は、 各車輪で減圧モードが行われる毎にホイ ルシリ ンダ 1 2 0〜 1 2 6内のブレーキフルードがリターン通路 2 0に排出される。 そして、 各車輪で増圧モードが行われる毎にハイ ドロブース夕 3 6からホイルシリンダ 1 2 0〜 1 2 6にブレーキフ ルードが供給される。 このため、 AB S制御中は通常ブレーキ時に 比して多量のブレーキフルードがハイ ドロブースタ 3 6から流出す る。 一 ハイ口 ドブースタ 3 6の第 1油圧室 5 6には、 アキュムレータ 2— 8のような液圧源が連通していない。 このため、 A B S制御の実行 中に第 1油圧室 5 6が液圧源として用いられると、 第 1油圧室 5 6 内部のブレーキフルードが多量に流出して、 その結果、 ブレーキぺ ダル 1 2に過大なス トロークが生ずる事態が生ずる。 これに対して、 本実施例のシステムにおいては、 A B S制御中に、 スプール部 5 4 を介してアキュムレータ 2 8に連通する第 2油圧室 5 8が液圧源と して用いられる。 このため、 本実施例のシステムによれば、 A B S 制御の実行中にブレーキペダル 1 2に過大なストロークが生ずるこ とはない。
図 3乃至図 5は、 ③ブレーキアシスト機能 (以下、 B A機能と称 す) を実現するための制動力制御装置の状態を示す。 E C U 1 0は、 運転者によって制動力の速やかな立ち上がりを要求するブレーキ操 作、 すなわち、 緊急ブレーキ操作が実行された後に図 3乃至図 5に 示す状態を適宜実現することで B A機能を実現する。 以下、 制動力 制御装置において、 B A機能を実現させるための制御を B A制御と 称す。
図 3は、 B A制御の実行中に実現されるアシスト圧増圧状態を示 す。 アシスト圧増圧状態は、 B A制御の実行中に各車輪のホイルシ リ ンダ圧 P w/ C を増圧させる必要がある場合に実現される。 本実施 例のシステムにおいて、 アシス ト圧増圧状態は、 図 3に示す如く、 S A - i 8 6 . S A— 2 8 8、 S A— 3 9 0および S T R 9 4をオン状態 とすることで実現される。
アシスト圧増圧状態では、 全てのホイルシリ ンダ 1 2 0〜 1 2 6 が S T R 9 4を介してアキュムレータ通路 2 6に連通する。 従って、 アシスト圧増圧状態を実現すると、 全ての車輪のホイルシリ ンダ圧 P w/c を、 アキュムレータ 2 8を液圧源として昇圧することができ る。 アキュムレータ 2 8には、 高圧のアキュムレータ圧 P A C c が蓄 えられている。 このため、 アシスト圧増圧状態によれば、 全ての車 ^ 輪のホイルシリ ンダ圧 PW/C を、 マスタシリ ンダ圧 PM/C に比して- 高圧に昇圧することができる。
ところで、 図 3に示すアシス ト圧増圧状態において、 液圧通路 9 6 , 9 8 , 1 0 0は、 上記の如くアキュムレータ通路 2 6に連通し ていると共に、 逆止弁 1 0 2を介して第 2液圧通路 8 4に連通して いる。 このため、 第 2液圧通路 8 4に導かれるマスタシリ ンダ圧 P
M/C が各車輪のホイルシリ ンダ圧 Pw/C に比して大きい場合は、 ァ シスト圧増圧状態においてもハイ ドロブース夕 3 6を液圧源として ホイルシリ ンダ圧 Pw/C を昇圧することができる。
図 4は、 B A制御の実行中に実現されるアシス ト圧保持状態を示 す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイルシ リ ンダ圧 Pw/c を保持する必要がある場合に実現される。 アシス ト 圧保持状態は、 図 4に示す如く、 S A—! 8 6、 S A— 28 8、 S A— 3 9 0および S TR 9 4をオン状態とした状態で、 更に、 全ての保持 ソレノィ ド S * * Hをオン状態 (閉弁状態) とすることで実現され 。
アシス ト圧保持状態では、 ハイ ドロブースタ 3 6 とホイルシリ ン ダ 1 2 0〜 1 2 6 とが遮断状態とされ、 リターン通路 2 0 とホイル シリ ンダ 1 2 0〜 1 2 6 とが遮断状態とされ、 かつ、 アキュ厶レー 夕 2 8からホイルシリ ンダ 1 2 0〜 1 2 6へ向かうフルー ドの流れ が阻止される。 このため、 アシス ト圧保持状態によれば、 全ての車 輪のホイルシリ ンダ圧 Pw/C を一定値に保持することができる。 図 5は、 B A制御の実行中に実現されるアシス ト圧減圧状態を示 す。 アシスト圧減圧状態は、 B A制御の実行中に各車輪のホイルシ リ ンダ圧 Pw/C を減圧する必要がある場合に実現される。 アシス ト 圧減圧状態は、 図 5に示す如く、 S A— ! 8 6および S A— 28 8をォ ン状態とすることで実現される。
アシスト圧減圧状態では、 アキュムレータ 2 8 とホイルシリ ンダ 1 2 0〜 1 2 6 とが遮断状態とされ、 リ タ一ン通路 2 0 とホイルシ リ ンダ 1 2 0〜 1 2 6 とが遮断状態とされ、 かつ、 ハイ ドロブース 夕 3 6 とホイルシリ ンダ 1 2 0〜 1 2 6 とが導通状態とされる。 こ のため、 アシスト圧減圧状態によれば、 全ての車輪のホイルシリ ン ダ圧 Pw/c を、 マスタシリ ンダ圧 ΡΜ/C を下限値として減圧するこ とができる。
図 6は、 B A制御の実行中に実現されるアシスト圧補正保持状態 を示す。 アシス ト圧補正保持状態は、 B A制御の実行中に全ての車 輪のホイルシリ ンダ圧 Pw/C の増圧を禁止する必要がある場合に実 現される。 アシス ト圧補正保持状態は、 図 6に示す如く、 SA— , 8 6 , S A-28 8および S A-39 0をオン状態とすることで実現され る。
アシスト圧補正保持状態では、 全ての保持ソレノイ ド S * *Hが、 ハイ ドロブース夕 3 6およびアキュムレータ 2 8の双方から切り離 される。 このため、 アシス ト圧補正保持状態によれば、 保持ソレノ イ ド S * * Hの状態に関わらず、 全ての車輪について、 ホイルシリ ンダ圧 Pw/c の増圧を確実に禁止することができる。
図 7は、 本実施例の制動力制御装置において、 運転者によって緊 急ブレーキ操作が実行された場合に実現されるタイムチヤ一トのー 例を示す。 図 7 (A) に示す曲線は、 出力信号 pMCの単位時間当 たりの変化量 A pMC (以下、 変化率 A pMCと称す) の変化を示 す。 また、 図 7 (B) 中に破線で示す曲線および実線で示す曲線は、 それぞれ、 出力信号 pMCの変化、 および、 ホイルシリ ンダ圧 Pw/ c の変化を示す。 本実施例のシステムにおいて、 出力信号 pMCお よびその変化速度 Δ p MCは、 それぞれブレーキペダル 1 2の操作 量、 および、 ブレーキペダル 1 2の操作速度の特性値である。
運転者によって緊急ブレーキ操作が行われると、 図 7 (B) 中に 破線で示す如く、 出力信号 pMCは、 ブレーキ操作が開始された後 適当な値まで速やかに上昇する。 この際、 変化率 Δ ρΜ〇は、 図 7 (Α) に示す如く、 ブレーキ操作が開始された後出力信号 pMCが ― 急増する時期と同期して最大値 Δ ΡΜΑΧ に向かって増加し、 また、: 出力信号 pMCが適当な圧力に収束する時期と同期して " 0 " 近傍 の値に減少する。
上述の如く、 E CU 1 0は、 運転者による緊急ブレーキ操作が検 出された場合に B A制御を実行する。 ECU 1 0は、 運転者によつ て緊急ブレーキ操作が実行されたか否かを判別するに当たり、 先ず、 ブレーキペダル 1 2に所定速度を超える操作速度が生じたか否か、 具体的には、 第 1の所定速度 ΤΗΔΡ 1を超える変化率 ΔρΜ〇が 生じたか否かを判別する。 ECU 1 0は、 ΔρΜΟΤΗ厶 P 1を 満たす変化率 Δ pMCを検出すると、 緊急ブレーキ操作が実行され た可能性があると判断して、 第 1スタンバイ状態へ移行する (図 7 (B) 中期間①) 。
E CU 1 0は、 第 1スタンバイ状態に移行した後、 出力信号 pM Cの変化率△ pMCが第 2の所定速度 ΤΗΔ P 2以下となるまでの 時間 t 2 — t = C S TAN B Y 1を計数する。 そして、 E CU 1 0は、 経過時間 C STANB Y 1が所定範囲内にある場合は、 運転 者によって緊急ブレーキ操作が実行されたと判断して第 2スタンバ ィ状態に移行する (図 7 (B) 中期間②) 。
緊急ブレーキ操作に伴ってマスタシリ ンダ圧 ΡΜ/C に急激な昇圧 が生じている間は、 マスタシリ ンダ圧 PM/C とホイルシリ ンダ圧 P w/c との間に大きな偏差 Pdiffが発生する。 かかる状況下では、 ハ イ ド口ブースタ 3 6を液圧源とする方が、 アキュムレータ 2 8を液 圧源とするよりもホイルシリ ンダ圧 Pw/C を速やかに立ち上げるこ とができる。
E C U 1 0は、 上述した第 2スタンバイ状態に移行した後、 偏差 Pdiffが十分に小さな値となった時点で、 すなわち、 ホイルシリ ン ダ圧 PW/C を速やかに昇圧するうえで、 ハイ ド口ブースタ 3 6を液 圧源とする方が有利な状態から、 アキュムレータ 2 8を液圧源とす る方が有利な状態に切り換わる時点で B A制御を開始する。 このた め、 制動力制御装置によれば、 緊急ブレーキ操作が開始された後、 ^ ホイルシリ ンダ圧 Pw/C を効率良く速やかに昇圧させることができ る o
本実施例の制動力制御装置において、 B A制御が開始されると、 先ず (I)開始増圧モードが実行される (図 7 (B) 中期間③) 。 (I) 開始増圧モー ドは、 所定の増圧時間 TSTA の間、 上記図 3に示 すアシスト圧増圧状態を維持することにより実現される。 上述の如 く、 アシス ト圧増圧状態によれば、 各車輪のホイルシリ ンダ圧 Pw/ c をアキュムレータ 2 8を液圧源としてマスタシリ ンダ圧 PM/c を 超える圧力に増圧することができる。 従って、 (I)開始増圧モード によれば、 B A制御が開始された後速やかに、 各車輪のホイルシリ ンダ圧 Pw/c をマス夕シリ ンダ圧 PM/C に比して高い圧力に増圧す ることができる。 以下、 B A制御の実行中に、 ホイルシリ ンダ圧 P w/c とマスタシリ ンダ圧 PM/C との間に生ずる差圧をアシスト圧 P aと称す。
本実施例において、 増圧時間 TSTA は、 緊急ブレーキ操作の過程 で生じた変化率 Δ pMCの最大値 Δ PMAX に基づいて演算される。 具体的には、 増圧時間 TSTA は、 変化率△ pMCの最大値 Δ PMAX が大きいほど長時間に設定され、 また、 その最大値 Δ ΡΜΑΧ が小さ いほど短時間に設定される。
変化率 A pMCの最大値 Δ ΡΜΑΧ は、 運転者が制動力を速やかに 立ち上げることを意図するほど大きな値となる。 従って、 最大値△ ΡΜΑΧ が大きな値である場合は、 Β Α制御が開始された後、 ホイル シリ ンダ圧 Pw/c をマスタシリ ンダ圧 PM/C に比して大きく増圧さ せることが適切である。
増圧時間 TSTA 力 最大値 Δ ΡΜΑΧ に基づいて上記の如く設定さ れると、 運転者が制動力を速やかに立ち上げること意図するほど、 緊急ブレーキ操作が検出された後、 ホイルシリ ンダ圧 Pw/c をマス 夕シリ ンダ圧 PM/C に比して大きく増圧させること、 すなわち、 大 きなアシスト圧 P aを発生させることができる。 従って、 本実施例 の制動力制御装置によれば、 (I)開始増圧モ一ドの実行が開始され た後、 運転者の意図が正確に反映されたホイルシリ ンダ圧 Pw/c を 速やかに発生させることができる。
本実施例の制動力制御装置において、 (I)開始増圧モー ドが終了 すると、 以後、 運転者のブレーキ操作に対応して、 (II)アシスト圧 増圧モー ド、 (III)アシス ト圧減圧モード、 (IV)アシス ト圧保持 モード、 (V)アシス ト圧緩増モー ド、 および、 (VI)アシス ト圧緩減 モー ドの何れかが実行される。
B A制御の実行中に、 マスタシリ ンダ圧 PM/C が急激に増圧され ている場合は、 運転者が更に大きな制動力を要求していると判断で きる。 本実施例の制動力制御装置では、 この場合、 (II)アシス ト圧 増圧モードが実行される (図 7 (B) 中期間⑦) 。 (II)アシス ト圧 増圧モー ドは、 上述した (I)開始増圧モードと同様に、 制動力制御 装置をアシス ト圧増圧状態とすることで実現される。 アシス ト圧増 圧状態によれば、 各車輪のホイルシリ ンダ圧 Pw/c をアキュムレ一 夕圧 PACC に向けて速やかに昇圧させることができる。 従って、 上 記の処理によれば、 運転者の意図を正確にホイルシリ ンダ圧 Pw/c に反映させることができる。
BA制御の実行中に、 マスタシリ ンダ圧 PM/C が急激に減圧され ている場合は、 運転者が制動力を速やかに低下させることを意図し ていると判断できる。 本実施例では、 この場合、 (III)アシス ト圧 減圧モードが実行される (図 7 (B) 中期間⑨) 。 (III)アシス ト 圧減圧モードは、 上記図 5に示すアシスト圧減圧状態を維持するこ とにより実現される。 アシス ト圧減圧状態によれば、 上述の如く、 各車輪のホイルシリ ンダ圧 Pw/C をマスタシリ ンダ圧 PM/C に向け て速やかに降下させることができる。 従って、 上記の処理によれば- 運転者の意図を正確にホイルシリ ンダ圧 Pw/c に反映させることが できる。 B A制御の実行中にマスタシリ ンダ圧 PM/C がほぼ一定値に維持 されている場合は、 運転者が制動力を保持することを意図している と判断できる。 本実施例では、 この場合、 (IV)アシスト圧保持モー ドが実行される (図 7 (B) 中期間④および⑧) 。 (IV)アシス ト圧 保持モードは、 上記図 4に示すアシス ト圧保持状態を維持すること により実現される。 アシス ト圧保持状態によれば、 上述の如く、 各 車輪のホイルシリ ンダ圧 PW/C を一定値に維持することができる。 従って、 上記の処理によれば、 運転者の意図を正確にホイルシリ ン ダ圧 Pw/c に反映させることができる。
B A制御の実行中にマスタシリ ンダ圧 PM/C が緩やかに増圧され ている場合は、 運転者が制動力を緩やかに立ち上げることを意図し ていると判断できる。 本実施例では、 この場合、 (V)アシス ト圧緩 増モード (図示せず) が実行される。 (V)アシスト圧緩増モ一ドは、 上記図 3に示すァシスト圧増圧状態と上記図 4に示すアシスト圧保 持状態とを繰り返すことにより実現される。 (V)アシスト圧緩増 モードによれば、 各車輪のホイルシリ ンダ圧 Pw/c をアキュムレ一 夕圧 PACC に向けて段階的に昇圧させることができる。 従って、 上 記の処理によれば、 運転者の意図を正確にホイルシリ ンダ圧 Pw/C に反映させることができる。
B A制御の実行中にマスタシリ ンダ圧 PM/C が緩やかに減圧され ている場合は、 運転者が制動力を緩やかに低下させることを意図し ていると判断できる。 本実施例では、 この場合(VI)アシス ト圧緩減 モードが実行される (図 7 (B) 中期間⑤) 。 (VI)アシスト圧緩減 モードは、 上記図 5に示すアシスト圧減圧状態と上記図 4に示すァ シスト圧保持状態とを繰り返すことにより実現される。 (VI)アシス ト圧緩減モー ドによれば、 各車輪のホイルシリ ンダ圧 Pw/c をマス 夕シリ ンダ圧 PM/C に向けて段階的に減圧させることができる。 従って、 上記の処理によれば、 運転者の意図を正確にホイルシリ ン ダ圧 Pw/C に反映させることができる。 一' 上記の処理によれば、 運転者によって緊急ブレーキ操作が実行さ- れた後速やかに、 運転者の意図が正確に反映されたアシスト圧 P a を発生させることができる。 また、 上記の処理によれば、 (I )開始 増圧モ一ドによってアシスト圧 P aが発生された後、 運転者によつ てブレーキ操作がなされた場合に、 そのブレーキ操作に対応してホ ィルシリ ンダ圧 P w/ C を増減させることができる。 このため、 上記 の処理によれば、 B A制御の実行中常に、 アシス ト圧 P aをほぼ一 定の値に維持しつつ、 ホイルシリ ンダ圧 P w/ C に適正に運転者の意 図を反映させることができる。
上述の如く、 制動力制御装置は、 B A制御の実行中に制動液圧の 減圧を意図するブレーキ操作、 すなわち、 減圧操作が実行された場 合、 上記図 5に示すアシス ト圧減圧状態を実現することにより、 各 車輪のホイルシリ ンダ圧 P w/c をハイ ドロブースタ 3 6に開放する c ハイ ドロブ一ス夕 3 6は、 多量のブレーキフルードを瞬間的に吸収 することはできない。 このため、 制動力制御装置がアシス ト圧減圧 状態とされると、 その後、 一時的に液圧センサ 1 4 4の検出値が上 昇する現象が生ずる。
図 8は、 運転者によって減圧操作が実行された後、 制動液圧を保 持することを意図した操作が実行された場合に実現されるタイム チャー トの一例を示す。 具体的には、 図 8 ( A ) 〜図 8 ( C ) は、 それぞれ、 運転者によるブレーキ操作の変化、 出力信号 p M Cに生 ずる変化、 および、 制動力制御装置の状態に現れる変化を示す。 図 8に示すタイムチヤ一 トは、 制動力制御装置が上記図 4に示す アシス ト圧保持状態に維持されている状況下で運転者によって極短 い時間だけ減圧操作が実行された後、 保持操作が実行されることに より実現される。 制動力制御装置がアシスト圧保持状態である場合 に、 運転者によって減圧操作が実行されると、 第 2液圧通路 8 4内 の液圧、 すなわち、 マスタシリ ンダ圧 P M/C が低下し、 出力信号 p M Cに低下傾向が現れる。 一 上述の如く、 制動力制御装置は、 出力信号 pMCに急激な低下が- 生ずると、 その状態をアシス ト圧減圧状態 (図 5 ) に変化させる (図 8に於ける時刻 t。 ) 。 制動力制御装置がアシス ト圧減圧状態 となると、 各車輪のホィルシリ ンダ 1 2 0〜 1 2 6が第 2液圧通路 8 4に連通し、 ホイルシリ ンダ 1 2 0〜 1 2 6に流入していたブ レーキフルードが第 2液圧通路 8 4へ流出する。 その結果、 液圧セ ンサ 1 4 4の出力信号 pMCは、 アシス ト圧減圧状態が実現された 後 (時刻 t。 の後) 上昇傾向を示す。
出力信号 pMCが上記の如く上昇傾向を示すと、 制動力制御装置 は、 運転者による減圧操作が終了されたと判断して、 その状態を、 アシスト圧減圧状態からアシスト圧保持状態へ変化させる (図 8に 於ける時刻 ) 。 制動力制御装置の状態が上記の如くアシスト圧 保持状態に変化すると、 各車輪のホイルシリ ンダから第 2液圧通路 8 4へ向かうブレーキフルードの流れが遮断されることにより、 出 力信号 p M Cが急激な減少傾向を示す。
出力信号 P MCが上記の如く急激に減少すると、 ブレーキ操作量 が保持されていても (図 8 (A) 参照) 、 制動力制御装置はその状 態を再びアシスト圧減圧状態に変化させる (図 8 (C) 中時刻 t 2 ) 。 このため、 制動力制御装置によれば、 ブレーキ操作量が保持さ れている状況下で各車輪のホイルシリ ンダ圧 Pw/C が過度に減圧さ れることがある。
BA制御の実行中に、 各車輪のホイルシリ ンダ圧 Pw/c が上記の 如く過度に減圧されると、 車両において適正な減速度が得られない 事態が生ずる。 本実施例の制動力制御装置は、 B A制御中に車両に 発生している減速度が本来発生すべき目標減速度に比して著しく小 さい場合は、 各車輪のホイルシリ ンダ圧 Pw/c が過度に減圧されて いると判断して(VII) アシスト圧補正増圧モードを実行する。
(VII) アシス ト圧補正増圧モー ドは、 (IV)アシス ト圧保持モー ド が要求されている状況下で、 上記図 3に示すアシスト圧増圧状態と 一 上記図 4に示すアシスト圧保持状態とを繰り返すことにより実現さ れる。 (VII) アシス ト圧補正増圧モー ドによれば、 各車輪のホイル シリ ンダ圧 Pw/C の増圧を図ることができる。 従って、 本実施例の 制動力制御装置によれば、 マスタシリ ンダ圧 PM/C の脈動に起因す るホイルシリ ンダ圧 Pw/C の過度の減圧分を補正して、 運転者の意 図を正確にホイルシリ ンダ圧 PW/C に反映させることができる。 本実施例の制動力制御装置において B A制御が開始されると、 そ の後、 各車輪のホイルシリ ンダ圧 Pw/c が速やかに昇圧されること により、 何れかの車輪について過剰なスリ ップ率が生ずる場合があ る。 ECU 1 0は、 このような場合には、 過剰なスリ ップ率の生じ ていない車輪を対象とする B A制御と、 過剰なスリ ップ率の生じて いる車輪を対象とする AB S制御とを同時に実行する。 以下、 この 制御を B A + A B S制御と称す。
B A + AB S制御は、 上記図 3乃至図 6に示す何れかの状態を実 現しつつ、 ABS対象車輪について、 適宜上述した(i) 増圧モード、 (ii)保持モー ド、 および、 (iii) 減圧モードが実現されるように、 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを制御する ことで実現される。
すなわち、 上記図 3に示すアシス ト圧増圧状態、 または、 上記図 4に示すアシス ト圧保持状態が実現されている場合は、 保持ソレノ ィ ド S * * Hの全てにアキュムレータ圧 PACC が供給される。 この ような状況下では、 保持ソレノイ ド S * * Hおよび減圧ソレノイ ド S * * Rを適当に制御することで、 全ての車輪について、 (i)増圧 モード、 (ii)保持モードおよび (iii)減圧モードを実現することが できる。 従って、 上記図 3および図 4に示す何れかの状態が実現さ れている場合は、 A BS対象車輪の保持ソレノィ ド S * *Hおよび 減圧ソレノィ ド S * *Rを AB S制御の要求に応じた状態とするこ とで、 適正に B A + AB S制御の要求を満たすことができる。
また、 上記図 5に示すアシスト圧減圧状態が実現されている場合 一 は、 保持ソレノィ ド S * * Hの全てにマスタシリ ンダ圧 PM/c が供- 給されている。 更に、 上記図 6に示すアシス ト圧補正保持状態が実 現されている場合は、 保持ソレノィ ド S * * Hの全てが、 ハイ ドロ ブースタ 3 6およびアキュムレータ 2 8から切り離されている。
これらの状態によれば、 全ての車輪について(ii)保持モードおよ び (iii)減圧モードを実現することができる。 ところで、 上記図 5 に示すアシスト圧減圧状態は、 運転者が制動力の減少を意図してい る場合に、 すなわち、 何れの車輪のホイルシリ ンダ圧 Pw/c も増圧 する必要がない場合に実現される状態である。 また、 上記図 6に示 すアシスト圧補正保持状態は、 全ての車輪についてホイルシリ ンダ 圧 Pw/C の増圧を禁止すべき状況下で実現される状態である。 従つ て、 これらの状態が実現されている場合は、 AB S対象車輪につい て(ii)保持モードおよび (iii)減圧モードが実現できれば、 適正に B A + AB S制御の要求を満たすことができる。
このように、 本実施例の制動力制御装置によれば、 BA制御に よって上記図 3乃至図 6に示す何れの状態が要求されている場合で も、 適正に B A十 A B S制御の要求を満たすことができる。 従って、 本実施例の制動力制御装置によれば、 B A + AB S制御の実行中に、 全ての車輪のホイルシリ ンダ圧 Pw/C を、 過大なスリ ップ率を発生 させることのない充分に大きな液圧に制御することができる。
B A + AB S制御が開始された後、 例えば車両が低 路から高 路に進入すると、 全ての車輪について AB S制御を実行する必要が なくなる場合がある。 ECU 1 0は、 このような場合には、 ABS 制御を終了させて再び単独で B A制御を実行する。
ところで、 B A + AB S制御の実行中は、 AB S対象車輪のホイ ルシリ ンダ圧 Pw/C が、 A B S非対象車輪のホイルシリ ンダ圧 PW/ c に比して低圧に制御されている。 このため、 A BS制御の終了条 件が成立した後に、 A BS対象車輪の保持ソレノィ ド S * *Hが即 座に開弁状態に維持されると、 AB S対象車輪のホイルシリ ンダ圧 一
Pw/c に急激な液圧上昇が生ずる。
A B S対象車輪のホイルシリ ンダ圧 Pw/C に生ずる上記の液圧上 昇は、 例えば、 B A + AB S制御の終了時にも上述した AB S終了 制御 (ABS対象車輪について (i)増圧モードと(ii)保持モードと を繰り返す制御) を実行することで回避できる。 しかし、 制動力制 御装置は、 BA + ABS制御の終了時に上記図 4に示すアシスト圧 保持状態とされていることがある。 制動力制御装置がアシスト圧保 持状態である場合に上記の A B S終了制御が実行されると、 AB S 対象車輪のホイルシリ ンダが断続的にアキュムレータ 2 8に連通さ れる現象が生ずる。 この場合、 A BS対象車輪のホイルシリ ンダ圧 Pw/c が、 他の車輪のホイルシリ ンダ圧 Pw/C を超えて、 最大限ァ キュムレー夕圧 PACC まで昇圧される事態が生じ得る。
B A + AB S制御の終了時に、 A B S対象車輪のホイルシリ ンダ 圧 Pw/c が上記の如く過度に昇圧されると、 車両において、 本来発 生すべき目標減速度に比して過大な減速度が発生する。 ECU 1 0 は、 このような過大な減速度が発生している場合は、 何れかの車輪 のホイルシリ ンダ圧 Pw/C が過度に増圧されていると判断して、 (V III)アシスト圧補正保持モードを実行する。
(VIII)アシスト圧補正保持モー ドは、 (IV)アシスト圧保持モ一 ド が要求されている状況下で、 制動力制御装置を、 上記図 6に示すァ シスト圧補正保持状態とすることで実現される。 アシスト圧補正保 持状態によれば、 上述の如く、 全ての車輪のホイルシリ ンダ圧 Pw/ c の増圧を禁止することができる。 このため、 本実施例の制動力制 御装置によれば、 B A + A B S制御の終了時に A B S終了制御が実 行されても、 ABS対象車輪のホイルシリ ンダ圧 Pw/C が過度に増 圧されることがない。
次に、 図 9乃至図 2 7を参照して、 上述した B A制御を実現すベ く E C U 1 0が実行する処理の内容について説明する。
図 9は、 第 1スタンバイ状態に移行するための条件判定、 および 一 第 1ス夕ンバイ状態を維持するための条件判定を行うべく E CU 0が実行する制御ルーチンの一例のフローチヤ一トを示す。 図 9に 示すルーチンは、 所定時間毎に起動される定時割り込みルーチンで ある。 図 9に示すル一チンが起動されると、 先ずステップ 2 0 0の 処理が実行される。
ステップ 2 0 0では、 フラグ X S T AN B Y 1がォン状態である か否かが判別される。 XSTANBY 1は、 第 1スタンバイ状態に 移行するための条件が成立することによりオン状態とされるフラグ である。 従って、 第 1スタンバイ状態に移行するための条件が成立 していない場合は、 XSTANBY 1 =ONが不成立であると判別 される。 この場合、 次にステップ 2 0 2の処理が実行される。
ステップ 2 0 2では、 第 1ス夕ンバイ状態への移行条件を判別す るためにしきい値として用いられる第 1の所定量 TH P 1、 第 1の 所定速度 ΤΗΔΡ 1、 および、 ノイズ力ッ ト値 THNCが設定され る。 本実施例において、 第 1スタンバイ状態への移行条件は、 後述 の如く、 出力信号 pMCおよびその変化率 Δ pMCが、 pMC≥T HP 1、 および、 ΤΗΔΡ 1 く ΔρΜΟく THNCを満たす場合に 成立したと判断される。 本ステップ 2 0 2で、 第 1の所定量 T HP 1、 第 1の所定速度 ΤΗΔ P 1、 および、 ノイズカッ ト値 THN C が設定されると、 次にステップ 2 0 4の処理が実行される。
ステップ 2 0 4では、 出力信号 p MCが第 1の所定量 TH P 1以 上であるか否かが判別される。 その結果、 pMC≥THP lが成立 しないと判別される場合は、 第 1スタンバイ状態への移行条件が成 立していないと判断されて今回のルーチンが終了される。 一方、 p MC≥ TH P 1が成立すると判別される場合は、 次にステツプ 2 0 6の処理が実行される。
ステップ 2 0 6では、 変化率 ApMCが、 第 1の所定速度 ΤΗΔ P 1に比して大きく、 かつ、 ノイズカツ ト値 THN Cに比して小さ いか否かが判別される。 その結果、 ΤΗΔΡ 1 <ApMC <THN Cが成立しないと判別される場合は、 第 1スタンバイ状態への移行— 条件が成立していないと判断されて今回のル一チンが終了される。 一方、 上記の条件が成立すると判別される場合は、 次にステップ 2 0 8の処理が実行される。
ステップ 2 0 8では、 第 1スタンバイ状態への移行条件が成立し たことを表すべく、 フラグ X S TAN B Y 1がオン状態とされる。 本ステップ 2 0 8の処理が終了すると、 今回のル一チンが終了され る。
上記ステップ 2 0 8において、 フラグ X STANB Y 1がオン状 態とされた後、 本ルーチンが起動されると、 上記ステップ 2 0 0で X S TANBY 1 =〇Nが成立すると判別される。 この場合、 ス テツプ 2 0 0に次いでステツプ 2 1 0の処理が実行される。
ステップ 2 1 0では、 カウンタ C S TANBY 1をインク リ メ ン 卜する処理が実行される。 カウンタ C S TANBY 1 は、 第 1ス夕 ンバイ状態への移行条件が成立した後の経過時間を計数するための カウンタである。 カウンタ C STANBY 1の計数時間は、 車両の 始動時にイニシャル処理により " 0 " にリセッ トされている。 本ス テツプ 2 1 0の処理が終了すると、 次にステップ 2 1 2の処理が実 行される。
ステップ 2 1 2では、 カウンタ C S TANBY 1 に計数される時 間が所定時間ひ以下であるか否かが判別される。 所定時間ひは、 緊 急ブレーキ操作が実行された場合に、 変化率 Δ pMCが大きな値に 維持される時間に比して小さな値である。 従って、 運転者によって 緊急ブレーキ操作が実行された場合は、 C STANBY 1 ≤ひが成 立する間は、 常に変化率 A pMCが大きな値に維持されているはず である。 上記の判別の結果、 C STANBY 1 ≤ひが成立すると判 別される場合は、 次にステップ 2 1 4の処理が実行される。
ステップ 2 1 4では、 変化率 Δ pMCが所定値 Sを下回っている か否かが判別される。 その結果、 Δ pMCく ^が成立する場合は、 第 1スタンバイ状態への移行条件が成立した後、 極めて短時間の後 に、 変化率△ p MCが小さな値となつたと判断することができる。 この場合、 運転者のブレーキ操作が緊急ブレーキ操作ではなかつた と判断され、 次にステップ 2 1 6の処理が実行される。
ステップ 2 1 6では、 第 1スタンバイ状態を解除すべく フラグ X S TANB Y 1をオフ状態とする処理が実行される。 本ステップ 2 1 6の処理が実行されると、 次にステップ 2 1 8の処理が実行され る。
ステップ 2 1 8では、 カウン夕 C STANBY 1の計数時間を " 0 " にリセッ トする処理が実行される。 本ステツプ 2 1 8の処理 が終了すると、 今回のルーチンが終了される。
本ルーチンにおいて、 上記ステツプ 2 1 2で C S TANBY 1 ひが成立しないと判別された場合、 および、 上記ステップ 2 1 4で Δ pMC < Sが成立しないと判別された場合は、 第 1スタ ンバイ状 態への移行条件が成立した後、 変化率 A pMCがある程度の期間は 大きな値を維持したと判断できる。 この場合、 次にステップ 2 2 0 の処理が実行される。
ステップ 2 2 0では、 カウンタ C S TANBY 1の計数値が第 2 の所定時間 T H T 2以上であるか否かが判別される。 第 2の所定時 間 THT 2は、 第 1 スタ ンバイ状態の継続時間の上限値である。 従って、 本ステップ 2 2 0で、 C S TANBY 1 ≥THT 2が成立 すると判別される場合は、 第 1ス夕ンバイ状態の継続時間が上限に 達したと判断できる。 この場合、 以後、 上記ステップ 2 1 6および 2 1 8の処理が実行された後、 今回のルーチンが終了される。 一方- 本ステップ 2 2 0で、 C S T AN B Y 1 ≥ THT 2が成立しないと 判別される場合は、 第 1スタンバイ状態の継続時間が未だ上限に達 していないと判断できる。 この場合、 次にステップ 2 2 2の処理が 実行される。
ステップ 2 2 2では、 フラグ X S TANBY 2がオン状態である か否かが判別される。 フラグ X S T AN B Y 2は、 後述する他の ルーチンにおいて、 第 2ス夕ンバイ状態への移行条件が成立すると 判別される場合にオン状態とされるフラグである。 本ステップ 2 2 2で X S TANBY 2 = ONが成立すると判別される場合は、 第 1 スタンバイ状態を維持する必要がないと判断される。 この場合、 以 後、 上記ステップ 2 1 6および 2 1 8の処理が実行された後、 今回 のルーチンが終了される。 一方、 X STANB Y 2 =0Nが成立し ないと判別される場合は、 第 1スタンバイ状態を維持する必要があ ると判断される。 この場合、 以後、 何ら処理が進められることなく 今回のルーチンが終了される。
図 1 0は、 第 2スタンバイ状態に移行するための条件判定を行う ベく E C U 1 0が実行する制御ルーチンの一例のフローチヤ一 トを 示す。 図 1 0に示すルーチンは、 所定時間毎に起動される定時割り 込みルーチンである。 図 1 0に示すルーチンが起動されると、 先ず ステップ 2 3 0の処理が実行される。
ステップ 2 3 0では、 カウンタ C S TANBY 1の計数時間が、 すなわち、 第 1スタンバイ状態への移行条件が成立した後の経過時 間が、 第 1の所定時間 THT 1以上であり、 かつ、 第 2の所定時間 THT 2以下であるか否かが判別される。 第 2の所定時間 THT 2 は、 上述の如く、 第 1スタンバイ状態を維持すべき時間の上限値で ある。 一方、 第 1の所定時間 THT 1 は、 緊急ブレーキ操作が行わ れた場合に、 ブレーキペダル 1 2の高速操作が継続する下限の時間 を定める値である。
従って、 本実施例の制動力制御装置においては、 ブレーキ操作が 開始された後、 THT 1 ≤ C STANB Y 1が成立する以前にブ レーキペダル 1 2の操作速度が十分に小さな値となった場合は、 そ のブレーキ操作が緊急ブレーキ操作ではなかつたと判断することが できる。 上記ステップ 2 3 0で、 THT 1 ≤ C S TANBY 1 ≤T HT 2が成立しないと判別された場合は、 以後、 何ら処理が進めら れることなく今回のルーチンが終了される。 一方、 上記の条件が成 立すると判別された場合は、 次にステップ 2 3 2の処理が実行され o
ステップ 2 3 2では、 前回の処理サイクル時から今回の処理サイ クル時にかけて、 変化率 A pMCが第 2の所定速度 ΤΗΔ Ρ 2を超 える速度から、 第 2の所定速度 ΤΗΔ Ρ 2以下の速度に変化したか 否かが判別される。 第 2の所定速度 ΤΗΔ Ρ 2は、 マスタシリ ンダ 圧 PM/C が急激に増加しているか否か、 すなわち、 ブレーキペダル 1 2が高速で操作されているか否かを判別するためのしきい値であ る。
上記ステップ 2 3 2で、 前回の処理サイクル時から今回の処理サ ィクル時にかけて、 変化率△ pMCが TH厶 P 2を超える速度から ΤΗΔ P 2以下の速度に変化していないと判別される場合は、 前回 の処理サイクル時から今回の処理サイクル時にかけてブレーキぺダ ル 1 2の高速操作期間が終了していないと判断することができる。 この場合、 以後、 何ら処理が進められることなく今回のルーチンが 終了される。
一方、 上記ステップ 2 3 2で、 前回の処理サイクル時から今回の 処理サイクル時にかけて、 変化率△ pMCが ΤΗΔ Ρ 2を超える速 度から ΤΗΔ Ρ 2以下の速度に変化したと判別される場合は、 前回 の処理サイクル時から今回の処理サイクル時にかけてブレーキぺダ ル 1 2の高速操作期間が終了したと判断することができる。 この場 合、 次にステップ 2 3 4の処理が実行される。
ステップ 2 3 4では、 第 1ス夕ンバイ状態への移行条件が成立し た後に出力信号 pMCに生じた最大値 pMCMAXと、 上記ステツ プ 2 3 2の条件が成立した直後の出力値 pMCとの差 "pMCMA X - P M C " が所定値 7に比して小さいか否かが判別される。 その 結果、 pMCMAX— pMC < 7が成立すると判別される場合は、 未だブレーキペダル 1 2に対して大きな踏力 Fが加えられていると ― 判断することができる。 この場合、 次にステップ 2 3 6の処理が 行される。 一方、 上記ステップ 2 3 4の条件が成立しないと判別さ れる場合は、 ブレーキペダル 1 2の踏み込みが既に緩められている と判断することができる。 この場合、 以後、 第 2スタンバイ状態へ 移行するための処理が進められることなく今回のルーチンが終了さ
3しな ο
ステップ 2 3 6では、 第 2スタンバイ状態への移行条件が成立し たことを表すべく、 フラグ X S T AN Β Υ 2がォン状態とされる。 本ステップ 2 3 6の処理が終了すると、 今回のルーチンが終了され る。
図 1 1 は、 B A制御を開始するための条件判定と、 (I)開始増圧 モードの増圧時間 TSAT の演算とを行うべく E CU 1 0が実行する 制御ルーチンの一例のフローチャートを示す。 図 1 1 に示すル一チ ンは、 所定時間毎に起動される定時割り込みルーチンである。 図 1 1 に示すルーチンが起動されると、 先ずステツプ 2 4 0の処理が実 行される。
ステップ 2 4 0では、 フラグ X STAN BY 2がオン状態である か否かが判別される。 その結果、 X STANB Y 2 = ONが成立し ないと判別される場合は、 B A制御を開始する必要がないと判断す ることができる。 この場合、 以後、 何ら処理が進められることなく 今回のルーチンが終了される。 一方、 XSTANB Y 2 =〇Nが成 立すると判別される場合は、 次にステツプ 2 4 2の処理が実行され る。
ステップ 2 4 2では、 増圧時間 TSTA の基準値である基準増圧時 間 TSTA。が演算される。 基準増圧時間 TSTA。は、 E CU 1 0に記憶 されているマツプを参照して、 緊急ブレーキ操作の過程で生じたブ レーキペダル 1 2の操作速度に基づいて、 具体的には、 第 1 スタン バイ状態への移行条件が成立した後に変化率 Δ pMCに現れた最大 値△ PMCMAXに基づいて決定される。 ― 図 1 2は、 上記ステップ 2 4 2で参照されるマップの一例を示す—c 本実施例において、 基準増圧時間 TSTAOのマップは、 最大変化速度 Δ P MCMAXが大きいほど基準増圧時間 TSTA。が長時間となるよ うに設定されている。 このため、 基準増圧時間 TSTA。は、 緊急ブ レーキ操作の過程でブレーキペダル 1 2に高速の操作速度が生ずる ほど長時間に設定される。 上記の処理が終了すると、 次にステップ
2 4 4の処理が実行される。
ステップ 2 4 4では、 B A制御の開始タイ ミ ングが到来している か否かが判別される。 上述の如く、 本実施例においては、 緊急ブ レーキ操作が実行された後、 ホイルシリ ンダ圧 Pw/C の昇圧を図る うえで、 アキュムレータ 2 8を液圧源とする方がハイ ドロブース夕
3 6を液圧源とするより有利な状態が形成された時点で、 すなわち、 マスタシリ ンダ圧 PM/C とホイルシリ ンダ圧 Pw/C との偏差 Pdiff が十分に小さくなった時点で B A制御を開始する。 本ステップ 2 4 4では、 かかる開始タイ ミ ングが到来しているか否かが判別される c その結果、 BA制御の開始タイ ミ ングが到来していないと判別され る場合は、 以後、 何ら処理が進められることなく今回のルーチンが 終了される。 一方、 B A制御の開始タイミ ングが到来していると判 別される場合は、 次にステップ 2 4 6の処理が実行される。
ステップ 2 4 6では、 出力信号 pMCが所定圧力 P。 に比して大 きいか否かが判別される。 BA制御が開始された後、 ホイルシリ ン ダ圧 Pw/C は、 アキュムレータ 2 8を液圧源として昇圧される。 ホ ィルシリ ンダ圧 Pw/C がアキュムレータ 2 8を液圧源として増圧さ れる場合、 ホイルシリ ンダ圧 Pw/C の増圧勾配は、 ホイルシリ ンダ 圧 Pw/C とアキュムレータ圧 PACC との差圧が小さくなるに連れて 小さくなる。 従って、 開始増圧モー ドによって所定のアシス ト圧 P aを発生させるためには、 B A制御の開始時におけるホイルシリ ン ダ圧 Pw/C が高圧であるほど、 増圧時間 TSTA を長時間とする必要 がある。 上記ステツプ 2 4 6で、 pMC > PQ が成立すると判別される場 合は、 B A制御の開始時に高圧のホイルシリ ンダ圧 PW/C が発生し ていると判断できる。 この場合、 増圧時間 TSTA を長時間とするた め、 次にステップ 2 4 8の処理が実行される。 一方、 PM/C > P 0 が成立しないと判別される場合は、 B A制御の開始時におけるホイ ルシリ ンダ圧 PW/C が低圧であると判断できる。 この場合、 増圧時 間 TSTA を短時間とするため、 次にステップ 2 5 0の処理が実行さ れる。
ステップ 2 4 8では、 上記ステツプ 2 4 2で演算された基準増圧 時間 TSTA。に補正計数 を乗算することにより増圧時間 Tsta が 演算される。 補正計数 は、 長時間の増圧時間 TSTA を設定すベ く予め設定された補正計数である。
ステップ 2 5 0では、 上記ステツプ 2 4 2で演算された基準増圧 時間 TSTA0に補正計数 KS を乗算することにより増圧時間 TSTA が 演算される。 補正計数 KS は、 短時間の増圧時間 TSTA を設定すベ く予め設定された補正計数である。 上記ステップ 2 4 8の処理、 ま たは、 上記ステップ 2 5 0の処理が終了すると、 次にステップ 2 5 2の処理が実行される。
ステップ 2 5 2では、 フラグ X S TAN B Y 2をオフ状態とする 処理が実行されると共に、 B A制御の開始を許可するための処理が 実行される。 本ステップ 2 5 2の処理が実行されると、 以後、 制動 力制御装置において B A制御の実行が可能となる。 本ステップ 2 5 2の処理が終了すると、 今回のルーチンが終了される。
図 1 3乃至図 1 9に示すフローチヤート、 および、 図 2 0に示す フローチャートは、 制動力制御装置において B A機能を実現させる ベく E C U 1 0が実行する制御ルーチンのフローチヤ一トを示す。 E C U 1 0は、 上記ステツプ 2 5 2で B A制御の実行が許可された 後に図 1 3乃至図 1 9に示す制御ルーチンを繰り返し実行する。 図 1 3乃至図 1 9に示す制御ルーチンが起動されると、 先ずステップ 2 6 0の処理が実行される。 - ステップ 2 6 0では、 BA制御が開始された後、 既に (I)開始増 圧モー ドが終了しているか否かが判別される。 その結果、 未だ (I) 開始増圧モードが終了していないと判別される場合は、 次にステツ プ 2 6 2の処理が実行される。
ステップ 2 6 2では、 タイマ TM0DEがリセッ トされる。 タイマ T MO D Eは、 所定の上限値に向けて常時カウントァップを続けるタイマ である。 本ルーチンにおいて、 タイマ TM0DEは、 BA機能を実現す るための各制御モ一ドの継続時間を計数する夕イマとして用いられ る。 本ステツプ 2 6 2の処理が終了すると、 次にステツプ 2 6 4の 処理が実行される。
ステップ 2 6 4では、 制動力制御装置を、 上記図 3に示すアシス ト圧増圧状態とするための処理が実行される。 本ステップ 2 6 4の 処理が実行されると、 以後、 各車輪のホイルシリ ンダ圧 Pw/c は、 アキュムレータ 2 8を液圧源として所定の変化率で昇圧し始める。 本ステップ 2 6 4の処理が終了すると、 次にステップ 2 6 6の処理 が実行される。
ステップ 2 6 6では、 夕イマ TMDEの計数値が、 上記ステップ 2 4 8または 2 5 0で演算された増圧時間 TSTA を超えているか否か が判別される。 その結果、 TM0DE>TSTA が成立しないと判別され る場合は、 再び上記ステップ 2 6 4の処理が実行される。 上記の処 理によれば、 BA制御が開始された後、 増圧時間 TSTA が経過する までの間、 制動力制御装置を継続的にアシスト圧増圧状態に維持す ることができる。 本実施例において、 上記ステップ 2 6 0〜2 6 6 の処理は、 (I)開始増圧モードを実現している。
上述の如く、 増圧時間 TSTA は、 緊急ブレーキ操作の過程でブ レーキペダル 1 2が高速で操作されるほど、 すなわち、 緊急ブレ一 キ操作が速やかな制動力の立ち上がりを要求するものであるほど、 長時間に設定される。 また、 増圧時間 TSTA は、 (I)開始増圧モー _ ドの実行中におけるホイルシリ ンダ圧 Pw/C の増圧勾配を考慮して: B A制御開始時におけるマスタシリ ンダ圧 PM/C に基づいて補正さ れている。 このため、 本実施例の制動力制御装置によれば、 (I)開 始増圧モードを実行することで、 運転者の意図が正確に反映された アシスト圧 P aを発生させることができる。
本実施例の制動力制御装置において、 (I)開始増圧モードが開始 された後増圧時間 TSTA が経過すると、 上記ステップ 2 6 6で TMDE> TSTA が成立すると判別される。 この場合、 (I)開始増圧モー ドを終了して他の制御モ一ドを開始すベく、 以後、 ステップ 2 6 8 以降の処理が実行される。
図 2 1は、 (I)開始増圧モ一ドに次いで実行される制御モードを、 (I)開始増圧モ一ドの終了時における変化率△ pMCとの関係で表 したテーブル (以下、 開始増圧終了時テーブルと称す) を示す。 本 実施例においては、 ステップ 2 6 8以降の処理により、 図 2 1に示 す開始増圧終了時テーブルと対応するように (I)開始増圧モードに 次いで実行される制御モードが決定される。
ステップ 2 6 8では、 変化率△ p MCが取り込まれる。 本ステツ プ 2 6 8で取り込まれる変化率 ApMCは、 (I)開始増圧モードの 終了時における出力信号 P MCに生じていた変化率 Δ p MCである c ステップ 2 7 0では、 上記の如く取り込んだ変化率 ApMCが、 正の所定値 Δ を超えているか否かが判別される。 その結果、 △ pMC > Δ P , (> 0 ) が成立すると判別される場合は、 運転者に よって制動力を増加させることが要求されていると判断できる。 こ の場合、 開始増圧モー ドに続く制御モー ドが(II)アシスト圧増圧 モー ドに決定され、 次にステップ 2 7 2の処理が実行される。
ステップ 2 7 2では、 (II)アシスト圧増圧モ一ドを開始すべく、 制動力制御装置を上記図 4に示すアシスト圧増圧状態とする処理が 実行される。 本ステップ 2 7 2の処理が実行されると、 以後、 各車 輪のホイルシリ ンダ圧 Pw/C は、 アキュムレータ 2 8を液圧源とし ^ て速やかに昇圧される。 本ステップ 2 7 2の処理が終了すると、 次- にステップ 2 74の処理が実行される。
ステップ 2 74では、 現在実行されている制御モードが(II)ァシ スト圧増圧モ一ドであることを表すべく、 フラグ XPA I NCをォ ン状態とする処理が実行される。 本ステップ 2 7 4の処理が終了す ると、 今回のルーチンが終了される。
上記ステップ 2 7 0で、 ΔρΜΟΔΡ, が成立しないと判別さ れた場合は、 次にステップ 2 7 6の処理が実行される。
ステップ 2 7 6では、 上記ステップ 2 6 8で取り込んだ変化率△ pMCが、 負の所定値 ΔΡ 2 を下回っているか否かが判別される。 その結果、 ApMCく ΔΡ2 (< 0 ) が成立すると判別される場合 は、 運転者によって制動力を減少させることが要求されていると判 断できる。 この場合、 (I)開始増圧モー ドに続く制御モードが (II I)アシスト圧減圧モ一ドに決定され、 次にステップ 2 7 8の処理が 実行される。
ステップ 2 7 8では、 (III)アシスト圧減圧モードを開始すべく、 制動力制御装置を上記図 5に示すアシスト圧減圧状態とする処理が 実行される。 本ステップ 2 7 8の処理が実行されると、 以後、 各車 輪のホイルシリ ンダ圧 PW/C は、 マスタシリ ンダ圧 PM/C を下限と して減圧される。 本ステップ 2 7 8の処理が終了すると、 次にス テツプ 2 8 0の処理が実行される。
ステップ 2 8 0では、 現在実行されている制御モ一ドが (ΙΠ)ァ シスト圧減圧モ一ドであることを表すべくフラグ XPAREDをォ ン状態とする処理が実行される。 本ステップ 2 8 0の処理が終了す ると、 今回のル一チンが終了される。
上記ステップ 2 7 6で、 ΔρΜ。 <ΔΡ2 が成立しないと判別さ れた場合、 すなわち、 開始増圧モードが終了した時点で変化率△ ρ MCが " 0" 近傍に維持されていると判断される場合は、 運転者に よって制動力を保持することが要求されていると判断できる。 この 一 場合、 次にステップ 2 8 2の処理が実行される。 ― ステップ 2 8 2では、 (IV)アシスト圧保持モードを開始すベく、 制動力制御装置を上記図 4に示すアシスト圧保持状態とする処理が 実行される。 本ステップ 2 8 2の処理が実行されると、 以後、 各車 輪のホイルシリ ンダ圧 Pw/C は、 増減されることなく一定値に保持 される。 本ステップ 2 8 2の処理が終了すると、 次にステップ 2 8 4の処理が実行される。
ステップ 2 8 4では、 現在実行されている制御モ一ドが(IV)ァシ スト圧保持モードであることを表すべく フラグ X PAHO LDをォ ン状態とする処理が実行される。 本ステップ 2 8 4の処理が終了す ると、 今回のルーチンが終了される。
上記ステツプ 2 6 0〜 2 8 4の処理が実行された後、 再び本ル一 チンが起動された際には、 上記ステップ 2 6 0で、 既に (I)開始増 圧モードが終了していると判別される。 この場合、 ステップ 2 6 0 に次いで、 ステップ 2 8 6の処理が実行される。
ステップ 2 8 6では、 出力信号 pMCおよびその変化率 A pMC が読み込まれる。
ステップ 2 8 8では、 制動力制御装置において現在実行されてい る制御モードが判別される。 本ステツプ 2 8 8では、 フラグ X P A I NCがオン状態である場合は、 現在実行中の制御モードが(Π)ァ シスト圧増圧モードであると判別される。 この場合、 本ステップ 2 8 8に次いで、 図 1 4に示すステツプ 2 9 0の処理が実行される。 図 2 2は、 現在実行中の制御モードが(II)アシスト圧増圧モー ド である場合に、 次に実行される制御モードを変化率 A pMCとの関 係で表したテーブル (以下、 増圧時テーブルと称す) を示す。 本実 施例では、 ステップ 2 9 0以降の処理により、 図 2 2に示す増圧時 テーブルと対応するように(II)アシスト圧増圧モードに次いで実行 される制御モードが決定される。
ステップ 2 9 0では、 出力信号 pMCに正の所定値 Δ Ρ3 を超え る変化率 ApMCが生じているか否かが判別される。 その結果、 Δ— ρΜΟΔΡ3 (> 0) が成立すると判別される場合は、 運転者に よって制動力を増加させることが要求されていると判断できる。 こ の場合、 本ステップ 2 9 0に次いでステップ 2 9 2の処理が実行さ れる。 一方、 上記の条件を満たす変化率 Δ pMCが生じていないと 判別される場合は、 運転者によって制動力を保持することが要求さ れていると判断できる。 この場合、 本ステップ 2 9 0に次いでス テツプ 2 9 4の処理が実行される。
ステップ 2 9 2では、 制動力の更なる増加を可能とすべく、 引続 き(II)アシス ト圧増圧モー ドの実行を要求する処理、 すなわち、 (I I)アシスト圧増圧モードを要求モードとする処理が実行される。 ステップ 2 9 4では、 制動力の保持を可能とすべく、 (IV)アシス ト圧保持モードの実行を要求する処理、 すなわち、 (IV)アシス ト圧 保持モードを要求モードとする処理が実行される。 上記ステップ 2 9 2の処理、 または、 本ステップ 2 9 4の処理が終了すると、 以後 図 1 9に示すステップ 3 4 2の処理が実行される。
本ル一チンにおいて、 上記ステップ 2 8 8で、 フラグ X PARE Dがオン状態であると判別される場合は、 現在実行中の制御モ一ド (ΠΙ)アシス ト圧減圧モードであると判断される。 この場合、 上 記ステップ 2 8 8に次いで、 図 1 5に示すステツプ 2 9 6の処理が 実行される。
図 2 3は、 現在実行中の制御モードが (III)アシス ト圧減圧モー ドである場合に、 次に実行される制御モードを変化率 ApMCとの 関係で表したテーブル (以下、 減圧時テーブルと称す) を示す。 本 実施例では、 ステップ 2 9 6以降の処理により、 図 2 3に示す減圧 時テーブルと対応するように (III)アシスト圧減圧モードに次いで 実行される制御モ一ドが決定される。
ステップ 2 9 6では、 出力信号 pMCに負の所定値 ΔΡ4 を下回 る変化率 Δ pMCが生じているか否かが判別される。 その結果、 △ ρΜϋ <ΔΡ4 (< 0 ) が成立すると判別される場合は、 運転者に よって制動力を減少させることが要求されていると判断できる。 こ の場合、 本ステップ 2 9 6に次いでステツプ 2 9 8の処理が実行さ れる。 一方、 上記の条件を満たす変化率 ΔρΜ が生じていないと 判別される場合は、 運転者によって制動力を保持することが要求さ れていると判断できる。 この場合、 本ステップ 2 9 6に次いでス テツプ 3 0 0の処理が実行される。
ステップ 2 9 8では、 制動力の更なる減少を可能とすべく、 引続 き (III)アシスト圧減圧モードの実行を要求する処理、 すなわち、 (ΙΠ)アシスト圧減圧モードを要求モードとする処理が実行される c ステップ 3 0 0では、 制動力の保持を可能とすべく、 (IV)アシス ト圧保持モー ドの実行を要求する処理、 すなわち、 (IV)アシス ト圧 保持モードを要求モードとする処理が実行される。 上記ステツプ 2 9 8の処理、 または、 本ステップ 3 0 0の処理が終了すると、 以後 図 1 9に示すステツプ 3 4 2の処理が実行される。
本ルーチンにおいて、 上記ステップ 2 8 8でフラグ XPAHOL Dがオン状態であると判別される場合は、 現在実行中の制御モ一ド が(IV)アシスト圧保持モードであると判断される。 この場合、 上記 ステップ 2 8 8に次いで、 図 1 6に示すステツプ 3 0 2の処理が実 行される。
図 24は、 現在実行中の制御モードがアシス ト圧保持モー ドであ る場合に、 次に実行される制御モードを、 ①出力信号 pMCの変化 率 ApMCと、 ②出力信号 pMCと開始時出力値 pMCSTAとの 差 "pMC_pMCSTA" との関係で表したテーブル (以下、 保 持時テーブルと称す) を示す。 開始時出力値 "pMCSTA" は、 現在の制御モードが開始された時点における出力信号 pMCの値で ある。 従って、 図 2 4に示す " p MC— p MC S T A" は、 現在の 制御モードが開始された後に出力信号 pMCに生じた変化量に相当 する。 本実施例では、 ステップ 3 0 2以降の処理により、 図 2 4に 示す保持時テーブルと対応するように(IV)アシスト圧保持モードに 次いで実行される制御モードが決定される。
ステップ 3 0 2では、 出力信号 pMCに、 正の所定値 ΔΡ5 を超 える変化率 ApMCと、 正の所定値 を超える変化量 pMC— p MC S T Aとが生じているか否かが判別される。 その結果、 ΔρΜ C > Δ Ρ (> 0 ) が成立し、 かつ、 pMC— pMC STA> P】 (> 0 ) が成立する場合は、 制動力の保持を意図していた運転者が、 制動力を速やかに増加させることを意図し始めたと判断することが できる。 この場合、 本ステツプ 3 0 2に次いでステツプ 3 0 4の処 理が実行される。
ステップ 3 0 4では、 制動力の速やかな立ち上がりを可能とすべ く、 (II)アシス ト圧増圧モー ドの実行を要求する処理、 すなわち、 (II)アシスト圧増圧モードを要求モードとする処理が実行される。 本ステツプ 3 0 4の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処理が実行される。
一方、 上記ステップ 3 0 2の条件が成立しない場合は、 運転者が 制動力を速やかに立ち上げることを意図していないと判断できる。 この場合、 次にステップ 3 0 6の処理が実行される。
ステップ 3 0 6では、 出力信号 pMCに、 負の所定値 ΔΡ6 を下 回る変化率 ApMCと、 負の所定値 P4 を下回る変化量 pMC— p MCSTAとが生じているか否かが判別される。 その結果、 ΔρΜ C < Δ Ρ (< 0 ) が成立し、 かつ、 pMC— pMCSTA< P4 (< 0 ) が成立する場合は、 制動力の保持を意図していた運転者が. 制動力を速やかに減少させることを意図し始めたと判断することが できる。 この場合、 本ステツプ 3 0 6に次いで、 ステップ 3 0 8の 処理が実行される。
ステップ 3 0 8では、 制動力を速やかに減少させるベく、 (III) アシス ト圧減圧モー ドの実行を要求する処理、 すなわち、 (III)ァ シスト圧減圧モードを要求モードとする処理が実行される。 本ス ^ テツプ 3 0 8の処理が終了すると、 次に図 1 9に示すステツプ 3 4 _ 2の処理が実行される。
一方、 上記ステップ 3 0 6の条件が成立しない場合は、 運転者が 制動力を速やかに減少させることを意図していないと判断できる。 この場合、 次にステップ 3 1 0の処理が実行される。
ステップ 3 1 0では、 タイマ TMDEの計数値が所定時間 TMDE1 に達しているか否かが判別される。 所定時間 TM0DE1 は、 運転者が 制動力を速やかに変化させることを意図してブレーキペダル 1 2を 操作した場合に、 変化量 pMC - pMC S TAが所定値 以上、 或いは、 所定値 P4 以下となるのに要する時間の上限値とほぼ等し い値である。 従って、 TM0DE≥TM0DE1 が成立していない場合は、 上記ステツプ 3 0 2の条件および上記ステツプ 3 0 6の条件が何れ も成立しない場合であっても、 制動力を速やかに変化させることを 意図するブレーキ操作の可能性を否定することができない。 この場 合、 次にステップ 3 1 2の処理が実行される。
ステップ 3 1 2では、 引続き(IV)アシス ト圧保持モードの実行を 要求する処理、 すなわち、 (IV)アシスト圧保持モードを要求モード とする処理が実行される。 本ステップ 3 1 2の処理が終了すると、 次に図 1 9に示すステップ 3 4 2の処理が実行される。
上記ステップ 3 0 2の条件および上記 3 0 6の条件が何れも成立 しない状況下で、 上記ステップ 3 1 0において TMODE≥ TM0DE1 が 成立すると判別された場合は、 運転者によって制動力を速やかに変 化させることを意図するブレーキ操作が行われていないと判断する ことができる。 この場合、 上記ステップ 3 1 0に次いでステップ 3 1 4の処理が実行される。
ステップ 3 1 4では、 出力信号 pMCに、 正の所定値 P 2 を超え る変化量 P MC— p C S T Aが生じているか否かが判別される。 その結果、 pMC— pMC S TA > P2 (> 0 ) が成立する場合は- 制動力の保持を意図していた運転者が、 制動力を緩やかに増加させ ることを意図し始めたと判断することができる。 この場合、 本ス テツプ 3 1 4に次いで、 ステップ 3 1 6の処理が実行される。
ステップ 3 1 6では、 制動力を緩やかに増加させるベく、 (V)ァ シスト圧緩増モー ドの実行を要求する処理、 すなわち、 (V)アシス ト圧緩増モードを要求モードとする処理が実行される。 本ステップ 3 1 6の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処 理が実行される。
一方、 上記ステップ 3 1 4の条件が成立しない場合は、 運転者が (V)アシスト圧緩増モー ドの実行を要求していないと判断すること ができる。 この場合、 上記ステップ 3 1 4に次いで、 ステップ 3 1 8の処理が実行される。
ステップ 3 1 8では、 出力信号 pMCに、 負の所定値 P3 を下回 る変化量 PMC— pMC ST Aが生じているか否かが判別される。 その結果、 pMC— pMC STA < P2 (< 0 ) が成立する場合は、 制動力の保持を意図していた運転者が、 制動力を緩やかに減少させ ることを意図し始めたと判断することができる。 この場合、 本ス テツプ 3 1 8に次いで、 ステップ 3 2 0の処理が実行される。
ステップ 3 2 0では、 制動力を緩やかに減少させるベく、 (VI)ァ シスト圧緩減モー ドの実行を要求する処理、 すなわち、 (VI)アシス ト圧緩減モー ドを要求モードとする処理が実行される。 本ステップ 3 2 0の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処 理が実行される。
一方、 上記ステップ 3 1 8の条件が成立しない場合は、 運転者が 制動力を保持することを意図している、 すなわち、 運転者が引続き (IV)アシス ト圧保持モー ドの実行を要求していると判断できる。 こ の場合、 上記ステップ 3 1 8に次いで、 上述したステップ 3 1 2の 処理が実行される。
本ルーチンにおいて、 上記ステツプ 2 8 8で、 フラグ X P A S L I NCがオン状態であると判別される場合は、 現在実行中の制御 ^ モードが (V)アシスト圧緩増モードであると判断される。 この場合: 上記ステツプ 2 8 8に次いで、 図 1 7に示すステツプ 3 2 2の処理 が実行される。 尚、 フラグ X PAS L I NCは、 後述の如く、 制御 モ一ドとして (V)アシスト圧緩増モ一ドが選択された際にオンとさ れるフラグである。
図 2 5は、 現在実行中の制御モードが (V)アシス ト圧緩増モー ド である場合に、 次に実行される制御モー ドを、 ①出力信号 PMCの 変化率 Δ pMCと、 ②出力信号 pMCの変化量 pMC— pMC S T Aとの関係で表したテーブル (以下、 緩増時テーブルと称す) を示 す。 本実施例では、 ステップ 3 2 2以降の処理により、 図 2 5に示 す緩増時テーブルと対応するように (V)アシスト圧緩増モードに次 いで実行される制御モードが決定される。
ステップ 3 2 2では、 出力信号 pMCに、 正の所定値 Δ Ρ 7 を超 える変化率 A pMCと、 正の所定値 P 5 を超える変化量 pMC— p MC S TAとが生じているか否かが判別される。 その結果、 Δ ρΜ Ο Δ Ρτ (> 0 ) が成立し、 かつ、 pMC— pMC S TA> P 5 (> 0 ) が成立する場合は、 制動力を緩やかに増加させることを意 図していた運転者が、 制動力を速やかに増加させることを意図し始 めたと判断することができる。 この場合、 本ステップ 3 2 2に次い で、 ステップ 3 2 4の処理が実行される。
ステップ 3 2 4では、 制動力の速やかな立ち上がりを可能とすべ く、 (II)アシス ト圧増圧モー ドの実行を要求する処理、 すなわち、 (Π)アシスト圧増圧モードを要求モードとする処理が実行される。 本ステツプ 3 2 4の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処理が実行される。
一方、 上記ステップ 3 2 2の条件が成立しない場合は、 運転者が 制動力を速やかに増加させることを意図していないと判断できる。 この場合、 次にステップ 3 2 6の処理が実行される。
ステップ 3 2 6では、 タイマ TMDEの計数値が所定時間 TMDE2 に達しているか否かが判別される。 本実施例において、 (V)アシス ト圧緩増モードは、 制動力制御装置を、 所定の短時間だけ上記図 3 に示すアシスト圧増圧状態に維持した後にアシスト圧保持状態に復 帰させることで実現される。 所定時間 TMODE2 は、 (V)アシス ト圧 緩増モー ドの実行が要求された場合に、 制動力制御装置をアシス ト 圧増圧状態に維持すべき時間である。
従って、 上記ステップ 3 2 6で TM0DE≥ TM0DE2 が成立すると判 別される場合は、 制動力制御装置をアシスト圧増圧状態に維持すベ き期間が終了している、 すなわち、 制動力制御装置をアシス ト圧保 持状態とすべき時期が到来していると判断することができる。 この 場合、 上記ステップ 3 2 6に次いで、 ステップ 3 2 8の処理が実行 される。
ステップ 3 2 8では、 (IV)アシスト圧保持モー ドの実行を要求す る処理、 すなわち、 (IV)アシスト圧保持モードを要求モードとする 処理が実行される。 本ステップ 3 2 8の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処理が実行される。
—方、 上記ステップ 3 2 6で TM0DE≥ TM0DE2 が成立しないと判 別される場合は、 制動力制御装置をアシスト圧増圧状態に維持すベ き期間が終了していないと判断することができる。 この場合、 上記 ステップ 3 2 6に次いで、 ステップ 3 3 0の処理が実行される。 ステップ 3 3 0では、 (V)アシスト圧緩増モー ドの実行を要求す る処理、 すなわち、 (V)アシスト圧緩増モードを要求モー ドとする 処理が実行される。 本ステップ 3 3 0の処理が終了すると、 次に図 1 9に示すステップ 3 4 2の処理が実行される。 上記の処理によれ ば、 (V)アシスト圧緩増モー ドの実行が要求され始めた後、 (II)ァ シスト圧増圧モードを要求する条件 (上記ステップ 3 2 2の条件) が成立しない場合には、 所定期間 TMDE2 に渡ってその要求を維持 した後に、 要求モードを(IV)アシスト圧保持モードに変更すること ができる。 ^ 本ルーチンにおいて、 上記ステツプ 2 8 8で、 フラグ X P A S L— R E Dがォン状態であると判別される場合は、 現在実行中の制御 モードが(VI)アシスト圧緩減モ一ドであると判断される。 この場合、 上記ステツプ 2 8 8に次いで、 図 1 8に示すステツプ 3 3 2の処理 が実行される。 尚、 フラグ X P A S L R E Dは、 後述の如く、 制御 モードとして(VI)アシスト圧緩減モ一ドが選択された際にオンとさ れるフラグである。
図 2 6は、 現在実行中の制御モ一ドが(VI)アシスト圧緩減モード である場合に、 次に実行される制御モー ドを、 ①出力信号 PMCの 変化率 ApMCと、 ②出力信号 pMCの変化量 pMC— pMCST Aとの関係で表したテーブル (以下、 緩減時テーブルと称す) を示 す。 本実施例では、 ステップ 3 3 2以降の処理により、 図 2 6に示 す緩減時テーブルと対応するように(VI)アシスト圧緩減モードに次 いで実行される制御モードが決定される。
ステップ 3 3 2では、 出力信号 pMCに、 負の所定値 ΔΡ8 を下 回る変化率 ΔρΜ(3と、 負の所定値 Ρ6 を下回る変化量 PM/c — P S TA とが生じているか否かが判別される。 その結果、 ΔρΜ〇 <Δ Ρ 8 (< 0 ) が成立し、 かつ、 pMC— pMCSTAく Ρ6 ( < 0) が成立する場合は、 制動力を緩やかに減少させることを意図し ていた運転者が、 制動力を速やかに減少させることを意図し始めた と判断することができる。 この場合、 本ステップ 3 3 2に次いで、 ステップ 3 3 4の処理が実行される。
ステップ 3 3 4では、 制動力を速やかに減少させるベく、 (III) アシス ト圧減圧モー ドの実行を要求する処理、 すなわち、 (ΙΠ)ァ シスト圧減圧モードを要求モードとする処理が実行される。 本ス テツプ 3 3 4の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処理が実行される。
一方、 上記ステップ 3 3 2の条件が成立しない場合は、 運転者が 制動力を速やかに減少させることを意図していないと判断できる。 この場合、 次にステップ 3 3 6の処理が実行される。
ステップ 3 3 6では、 タイマ TMDEの計数値が所定時間 TMDE3 に達しているか否かが判別される。 本実施例の制動力制御装置にお いて、 (III)アシス ト圧緩減モードは、 制動力制御装置を、 所定の 短時間だけアシスト圧減圧状態に維持した後にアシスト圧保持状態 に復帰させることで実現される。 所定時間 TM0DE3 は、 (III)ァシ スト圧緩減モードの実行が要求された場合に、 制動力制御装置をァ シスト圧減圧状態に維持すべき時間である。
従って、 上記ステップ 3 3 6で TM0DE≥ TM0DE3 が成立すると判 別される場合は、 制動力制御装置をアシスト圧減圧状態に維持すベ き期間が終了している、 すなわち、 制動力制御装置をアシス ト圧保 持状態とすべき時期が到来していると判断することができる。 この 場合、 上記ステップ 3 3 6に次いで、 ステップ 3 3 8の処理が実行 される。
ステップ 3 3 8では、 (IV)アシス ト圧保持モー ドの実行を要求す る処理、 すなわち、 (IV)アシス ト圧保持モードを要求モードとする 処理が実行される。 本ステップ 3 3 8の処理が終了すると、 次に図 1 9に示すステツプ 3 4 2の処理が実行される。
一方、 上記ステップ 3 3 6で TM0DE≥ TM0DE3 が成立しないと判 別される場合は、 制動力制御装置をアシス ト圧減圧状態に維持すベ き期間が終了していないと判断することができる。 この場合、 上記 ステップ 3 3 6に次いで、 ステップ 3 4 0の処理が実行される。 ステップ 3 4 0では、 引続き(VI)アシスト圧緩減モードの実行を 要求する処理、 すなわち、 (VI)アシスト圧緩減モー ドを要求モード とする処理が実行される。 本ステップ 3 4 0の処理が終了すると、 次に図 1 9に示すステップ 3 4 2の処理が実行される。 上記の処理 によれば、 (VI)アシスト圧緩減モ一ドの実行が要求され始めた後、 (III)アシスト圧減圧モ一ドを要求する条件 (上記ステップ 3 3 2 の条件) が成立しない場合には、 所定期間 TM0DE3 継続してその要 ^ 求を維持した後、 要求モードを(IV)アシスト圧保持モードに変更す— ることができる。
上述の如く、 本ルーチンによれば、 上記ステップ 2 8 6〜 3 4 0 の処理を実行することで、 現在実行されている制御乇一ドと運転者 のブレーキ操作とに基づいて、 次に実行すべき制御モードを決定し、 かつ、 その制御モ一ドを要求モードとして定めることができる。
ステップ 3 4 2では、 (Π)アシスト圧増圧モードの実行が要求さ れているか否かが判別される。 その結果、 (I I)アシス ト圧増圧モー ドが要求されていると判別される場合は、 次にステップ 3 4 4の処 理が実行される。
ステップ 3 4 4では、 フラグ X P A I N Cをオンとし、 かつ、 他 の制御モードに対応するフラグをオフとする処理が実行される。 本 ステップ 3 4 4の処理が実行されると、 次回の処理サイクル時に、 実行中の制御モードが(Π)アシスト圧増圧モー ドであると判断され る。 本ステップ 3 4 4の処理が終了すると、 次にステップ 3 4 6の 処理が実行される。
ステップ 3 4 6では、 制動力制御装置を上記図 3に示すアシスト 圧増圧状態とする処理が実行される。 本ステップ 3 4 6の処理が実 行されると、 以後、 各車輪のホイルシリ ンダ圧 P w/c がアキュム レー夕 2 8を液圧源として速やかに昇圧される。 本ステップ 3 4 6 の処理が終了すると、 今回のルーチンが終了される。
上記ステップ 3 4 2で、 (I I)アシスト圧増圧モードの実行が要求 されていないと判別された場合は、 次にステップ 3 4 8の処理が実 行される。
ステップ 3 4 8では、 (I I I)アシスト圧減圧モードの実行が要求 されているか否かが判別される。 その結果、 (I I I)アシス ト圧減圧 モードが要求されていると判別される場合は、 次にステップ 3 5 0 の処理が実行される。
ステップ 3 5 0では、 フラグ X P A R E Dをオンとし、 かつ、 他 ^ の制御モードに対応するフラグをオフとする処理が実行される。 本— ステップ 3 5 0の処理が実行されると、 次回の処理サイクル時に、 実行中の制御モ一ドが (Ι Π)アシスト圧減圧モードであると判断さ れる。 本ステップ 3 5 0の処理が終了すると、 次にステップ 3 5 2 の処理が実行される。
ステップ 3 5 2では、 制動力制御装置を上記図 5に示すアシスト 圧減圧状態とする処理が実行される。 本ステップ 3 5 2の処理が実 行されると、 以後、 各車輪のホイルシリ ンダ圧 P w/ C が、 マスタシ リ ンダ圧 P M/ C を下限値として速やかに減圧される。 本ステップ 3 5 2の処理が終了すると、 今回のルーチンが終了される。
上記ステツプ 3 4 8で、 (I I I)アシスト圧減圧モ一ドの実行が要 求されていないと判別された場合は、 次にステップ 3 5 4の処理が 実行される。
ステップ 3 5 4では、 (V)アシスト圧緩増モードの実行が要求さ れているか否かが判別される。 その結果、 (V)アシス ト圧緩増モー ドが要求されていると判別される場合は、 次にステップ 3 5 6の処 理が実行される。
ステップ 3 5 6では、 前回の処理サイクル時から今回の処理サイ クル時にかけて要求モードが変化したか否かが判別される。 その結 果、 要求モードが変化したと判別される場合は、 (V)アシス ト圧緩 増モードが今回の処理サイクル時以降実行されると判断できる。 こ の場合、 次にステップ 3 5 8の処理が実行される。 一方、 前回の処 理サイクル時から今回の処理サイクル時にかけて要求モードが変化 していないと判別される場合は、 (V)アシスト圧緩増モ一ドが前回 の処理サイクル以前から実行されている判断できる。 この場合、 ス テツプ 3 5 8の処理がジャンプされ、 次にステップ 3 6 0の処理が 実行される。
ステップ 3 5 8では、 現在の出力信号 p M Cが開始時出力値 p M C S T Aとして記憶されると共に、 タイマ T M 0 D Eが " 0 " にクリア される。 本ステップ 3 5 8の処理が終了すると、 次にステップ 3 6 0の処理が実行される。 上記の処理によれば、 (V)アシス ト圧緩増 モードの実行が新たに開始される毎に、 開始時出力値 pMC S TA およびタイマ TM0DEを初期値にクリアすることができる。
ステップ 3 6 0では、 フラグ X P A S L I N Cをオンとし、 かつ、 他の制御モードに対応するフラグをオフとする処理が実行される。 本ステップ 3 6 0の処理が実行されると、 次回の処理サイクル時に、 実行中の制御モードが (V)アシスト圧緩増モー ドであると判断され る。 本ステツプ 3 6 0の処理が終了すると、 次にステツプ 3 6 2の 処理が実行される。
ステップ 3 6 2では、 制動力制御装置を上記図 3に示すアシスト 圧増圧状態とする処理が実行される。 本ステップ 3 6 2の処理が終 了すると、 今回のルーチンが終了される。 上述の如く、 本実施例に おいては、 (V)アシス ト圧緩増モードが要求モードとされた後、 所 定期間 TM0DE2 が経過した時点で要求モードが(IV)アシス ト圧保持 モードに変更される。 このため、 上記の処理によれば、 (V)アシス ト圧緩増モー ドの実行が要求される毎に、 所定期間 TM0DE2 を一単 位として、 ホイルシリ ンダ圧 Pw/C を段階的に緩やかに昇圧させる ことができる。
上記ステップ 3 5 4で、 (V)アシスト圧緩増モードの実行が要求 されていないと判別された場合は、 次にステップ 3 6 4の処理が実 行される。
ステップ 3 6 4では、 (VI)アシスト圧緩減モードの実行が要求さ れているか否かが判別される。 その結果、 (VI)アシス ト圧緩減モ一 ドの実行が要求されていると判別される場合は、 次にステップ 3 6 6の処理が実行される。
ステップ 3 6 6では、 前回の処理サイクル時から今回の処理サイ クル時にかけて要求モードが変化したか否かが判別される。 その結 果、 要求モードが変化したと判別される場合は、 (VI)アシス ト圧緩 ^ 減モ一ドが今回の処理サイクル時以降実行されると判断できる。 こ— の場合、 次にステップ 3 6 8の処理が実行される。 一方、 前回の処 理サイクル時から今回の処理サイクル時にかけて要求モ一ドが変化 していないと判別される場合は、 (VI)アシスト圧緩減モ一ドが前回 の処理サイクル時以前から実行されていると判断できる。 この場合、 ステップ 3 6 8の処理がジャンプされ、 次にステップ 3 7 0の処理 が実行される。
ステップ 3 6 8では、 上記ステツプ 3 5 8 と同様に、 現在の出力 信号 PMCが開始時出力値 pMC STAとして記憶されると共に、 タイマ TM0DEが " 0 " にクリアされる。 本ステップ 3 6 8の処理が 終了すると、 次にステップ 3 7 0の処理が実行される。 上記の処理 によれば、 (VI)アシス ト圧緩増モードが新たに開始される毎に、 開 始時出力値 pMC STAおよびタイマ TMDEを初期値にク リアする ことができる。
ステップ 3 7 0では、 フラグ X PAS LR EDをオンとし、 かつ、 他の制御モードに対応するフラグをオフとする処理が実行される。 本ステップ 3 7 0の処理が実行されると、 次回の処理サイクル時に、 実行中の制御モードが(VI)アシスト圧緩減モードであると判断され る。 本ステップ 3 7 0の処理が終了すると、 次にステップ 3 7 2の 処理が実行される。
ステップ 3 7 2では、 制動力制御装置を上記図 5に示すアシスト 圧減圧状態とする処理が実行される。 本ステップ 3 7 2の処理が終 了すると、 今回のルーチンが終了される。 上述の如く、 本実施例に おいては、 (VI)アシス ト圧緩減モードが要求モードとされた後、 所 定期間 TMDE3 が経過した時点で要求モードが(IV)アシス ト圧保持 モー ドに変更される。 このため、 上記の処理によれば、 (VI)アシス ト圧緩減モードの実行が要求される毎に、 所定期間 TM0DE2 を一単 位として、 ホイルシリ ンダ圧 Pw/C を段階的に緩やかに減圧させる ことができる。 ^ 上記ステツプ 3 6 4で、 (VI)アシスト圧緩減モードの実行が要求— されていないと判別された場合は、 (IV)アシスト圧保持モードの実 行が要求されていると判断できる。 この場合、 上記ステップ 3 6 4 に次いで、 ステップ 3 7 4の処理が実行される。
ステップ 3 7 4では、 前回の処理サイクル時から今回の処理サイ クル時にかけて要求モードが変化したか否かが判別される。 その結 果、 要求モードが変化したと判別される場合は、 (IV)アシス ト圧保 持乇一 ドが今回の処理サイクル時以降実行されると判断できる。 こ の場合、 次にステップ 3 7 6の処理が実行される。 一方、 前回の処 理サイクル時から今回の処理サイクル時にかけて要求モードが変化 していないと判別される場合は、 (IV)アシスト圧保持モードが前回 の処理サイクル以前から実行されていると判断できる。 この場合、 ステップ 3 7 6の処理がジャンプされ、 次にステツプ 3 7 8の処理 が実行される。
ステップ 3 7 6では、 上記ステップ 3 5 6 , 3 6 8 と同様に、 現 在の出力信号 PMCが開始時出力値 pMC S T Aとして記憶される と共に、 タイマ TM0DEが " 0 " にクリアされる。 本ステップ 3 7 6 の処理が終了すると、 次にステップ 3 7 8の処理が実行される。 上 記の処理によれば、 (IV)アシスト圧保持モードが新たに開始される 毎に、 開始時出力値 pMC STAおよびタイマ TM0DEを初期値にク リアすることができる。
ステップ 3 7 8では、 フラグ X PAHO L Dをオンとし、 かつ、 他の制御モードに対応するフラグをオフとする処理が実行される。 本ステツプ 3 7 8の処理が終了すると、 今回の処理サイクルが終了 される。
上記ステツプ 3 7 8により、 フラグ X PAHO LDがオンとされ ると、 次回の処理サイクルでは、 実行中の制御モードが(IV)アシス ト圧保持モードであると判断される。 E CU 1 0は、 実行中の制御 モードが(IV)アシスト圧保持モードであると判断すると、 以後、 上 述した一連の処理と共に図 2 0に示す一連の処理を実行する。
図 2 0は、 アシスト圧保持モードが要求モー ドである場合に制動 力制御装置の状態を制御すべく E C U 1 0が実行する制御ルーチン の一例のフローチヤ一トを示す。 図 2 0に示すルーチンは、 BA制 御の実行中において繰り返し起動される。 図 2 0に示すル一チンが 起動されると、 先ずステップ 3 8 0の処理が実行される。
ステップ 3 8 0では、 要求モ一ドがァシスト圧保持モードである か否かが判別される。 上記の判別の結果、 要求モードがアシス ト圧 保持モードでないと判別された場合は、 以後、 何ら処理が進められ ることなく今回のルーチンが終了される。 一方、 要求モードがァシ スト圧保持モードであると判別される場合は、 次にステップ 3 8 1 以降の処理が実行される。
上述の如く、 制動力制御装置においては、 B A制御の実行中にマ ス夕シリ ンダ圧 PM/C に発生する脈動の影響で各車輪のホイルシリ ンダ圧 Pw/C が過度に減圧されることがある。 かかるマスタシリ ン ダ圧 PM/C の減圧分は、 マスタシリ ンダ圧 PM/C に基づいてホイル シリ ンダ圧 Pw/c の保持が要求されている状況下で、 すなわち、 要 求モードとしてアシスト圧保持モードが要求されている状況下で、 上述した(VII) アシスト圧補正増圧モードを実現することにより相 殺することができる。
また、 制動力制御装置においては、 上述の如く、 BA + A B S制 御の終了時に A B S終了制御が実行されることにより、 A B S対象 車輪のホイルシリ ンダ圧 Pw/c が過度に増圧されることがある。 こ のようなホイルシリ ンダ圧 Pw/c の過度の増圧は、 B A制御によつ て制動液圧の保持が要求されている状況下で、 すなわち、 要求モー ドとしてアシスト圧保持モードが要求されている状況下で、 上述し た(VI II)アシスト圧補正保持モードを実現することにより阻止する ことができる。
ステップ 3 8 1以降においては、 要求モードとしてアシスト圧保 持モードが要求される状況下で、 必要に応じて上述した(VII) Ύシ - ス ト圧補正増圧モード、 および、 (VIII)アシス ト圧補正保持モード を実現するための処理が実行される。
ステップ 3 8 1では、 先ず、 各車輪のホィルシリ ンダ 1 2 0〜 1 2 6に供給されている制動液圧、 すなわち、 各車輪のホイルシリ ン ダ圧 Pw/C に対応して車両に発生すべき目標減速度 G* が演算され o
上述の如く、 制動力制御装置は、 B A制御が開始された後、 (I) 開始増圧モ一ドを実行することで各車輪のホイルシリ ンダ圧 Pw/c をマスタシリ ンダ圧 PM/C に比してアシスト圧 P aだけ大きな圧力 に増圧する。 また、 制動力制御装置は、 BA制御の実行中、 常にァ シスト圧 P aがほぼ一定値となるように各車輪のホィルシリ ンダ圧 Pw/c を制御する。
本実施例において、 (I)開始増圧モードが実行される増圧時間 T STA とアシスト圧 P aとの間には、 ほぼ比例関係が成立する。 従つ て、 BA制御の実行中に、 各車輪に発生するホイルシリ ンダ圧 PW/ c = PM/C + P aは、 ホイルシリンダ圧 PW/C を表す出力信号 pM Cと、 増圧時間 TSTA および比例定数 KPAとを用いて次式の如く表 すことができる。
Pw/c = P MC + KPA · TSTA ■ · · ( 1 )
車両には、 各車輪のホイルシリ ンダ圧 Pw/c に応じた減速度が発 生する。 このため、 B A制御の実行中に車両に発生すべき目標減速 度 G* は、 比例定数 Kc を用いて G* =KG · Pw/c と表すことが できる。 従って、 目標減速度 G* は、 上記 ( 1 ) 式の関係と、 比例 定数 KG 1, KG2を用いて次式の如く表すことができる。
G* = KGI - pMC +KG2 - TSTA ■ · · ( 2 )
上記ステツプ 3 8 1では、 液圧センサ 1 4 4の出力信号 pMCと、 上記ステップ 2 4 8または 2 5 0で設定された増圧時間 TSTA とを 上記 ( 2 ) 式に代入することで目標減速度 G* が演算される。 上記 ステップ 3 8 1の処理が終了すると、 次にステップ 3 8 2の処理が 実行される。
図 2 7は、 アシス ト圧保持モードが要求モードである場合に、 制 動力制御装置において実行すべき制御モードを、 ①現実に車両に生 じている減速度 Gと目標減速度 G* との偏差 G— G* と、 ②出力信 号 P MCの変化率 Δ pMCとの関係で表したテーブル (以下、 補正 テーブルと称す) を示す。 本実施例では、 ステップ 3 8 2以降の処 理により、 図 2 7に示す補正テーブルと対応するようにアシスト圧 保持モードが要求される状況下で実行すべき制御モ一ドが決定され る。
ステップ 3 8 2では、 減速度センサ 1 4 6によって検出される減 速度 Gと目標減速度 G* との偏差 G— G* が正の所定値 に比し て大きく、 かつ、 変化率 A pMCが正の所定値 Δ Ρ9 に比して小さ いか否かが判別される。 その結果、 (> 0 ) が成立 し、 かつ、 A PM/C く Δ Ρ 9 (> 0 ) が成立する場合は、 目標減速 度 G* に対して過大な減速度が発生しており、 かつ、 運転者によつ て制動力の増加を意図するブレーキ操作が実行されていないと判断 することができる。 上記の条件は、 例えば A B S終了制御の実行等 に起因して、 何れかの車輪に過大なホイルシリ ンダ圧 Pw/c が発生 することにより成立する。 この場合、 本ステップ 3 8 2に次いでス テツプ 3 8 3の処理が実行される。
ステップ 3 8 3では、 (VI II)アシスト圧補正保持モードを実現す るための処理、 具体的には、 制動力制御装置を上記図 6に示すァシ スト圧補正保持状態とする処理が実行される。 制動力制御装置がァ シスト圧補正保持状態とされると、 以後、 保持ソ レノィ ド S * *H の状態に関わらず、 各車輪のホイルシリ ンダ圧 Pw/c の増圧が禁止 される。 本ステップ 3 8 3の処理が終了すると、 次にステップ 3 8 4の処理が実行される。
ステップ 3 8 4では、 要求モードがァシスト圧保持モードのまま 維持されているか否かが判別される。 要求モードがアシスト圧保持 モード以外の制御モ一ドに変化している場合は、 運転者によって制 動液圧の増減を意図するブレーキ操作が実行されたと判断できる。 この場合、 そのブレーキ操作を制動液圧に反映させるベく、 以後、 速やかに本ルーチンが終了される。 一方、 要求モードがアシス ト圧 保持モードのまま維持されている場合は、 次にステップ 3 8 5の処 理が実行される。
ステップ 3 8 5では、 現実の減速度 Gと目標減速度 G* との偏差 G - G* が、 負の所定値 G3 以上であり、 かつ、 正の所定値 G2 以 下であるか否かが判別される。 その結果、 未だ G3 ≤ G - G* ≤ G 2 が成立しないと判別される場合は、 各車輪のホイルシリ ンダ圧 P w/c が未だ G— G* ≤ G2 なる条件を成立させる程度に減圧されて いないと判断することができる。 この場合、 ホイルシリ ンダ圧 Pw/ c の補正を更に継続すべく、 上記ステップ 3 8 3の処理が再び実行 される。 一方、 上記の条件が成立すると判別される場合は、 各車輪 のホイルシリ ンダ圧 Pw/C が既に適正な液圧に補正されたと判断す ることができる。 この場合、 次にステップ 3 8 6の処理が実行され o
ステップ 3 8 6では、 制動力制御装置を上記図 4に示すアシスト 圧保持状態とする処理が実行される。 制動力制御装置がアシス ト圧 保持状態とされると、 以後、 保持ソレノィ ド S * * Hが開弁状態と された車輪について、 ホイルシリ ンダ圧 Pw/C を増圧することが可 能となる。 本ステップ 3 8 6の処理が終了すると、 今回のルーチン が終了される。
E C U 1 0は、 上記ステツプ 3 8 3〜 3 8 5の処理を実行するこ とにより、 制動力制御装置において(VI II)アシスト圧補正保持モ一 ドを実現する。 上記の処理によれば、 例えば B A制御と A B S制御 とが干渉し合うことにより、 何れかの車輪の過大なホイルシリ ンダ 圧 Pw/c が発生するのを防止して、 各車輪のホイルシリ ンダ圧 Pw/ c に、 適正に運転者の意図を反映させることができる。
本ルーチンが起動された後、 上記ステップ 3 8 2の条件が成立し ないと判別された場合は、 ステップ 3 2 8に次いでステップ 3 9 0 の処理が実行される。
ステップ 3 9 0では、 現実の減速度 Gと目標減速度 G * との偏差 G - G * が負の所定値 G4 に比して小さく、 かつ、 マスタシリ ンダ 圧 PM/c の変化率△ P MCが負の所定値 Δ Ρ!。に比して大きいか否 かが判別される。 その結果、 G— G* く G 4 ( < 0 ) が成立し、 か つ、 Δ ρΜΟ Δ Ρ ^ (> 0 ) が成立すると判別される場合は、 目 標減速度 G* に対して現実の減速度 Gが不足しており、 かつ、 運転 者によつて制動力の減少を意図するブレーキ操作が実行されていな いと判断することができる。 上記の条件は、 例えば、 Β Α制御の実 行中にマスタシリ ンダ圧 PM/C の脈動の影響で各車輪のホイルシリ ンダ圧 PW/C が過剰に減圧された場合に成立する。 この場合、 本ス テツプ 3 9 0に次いで、 ステップ 3 9 1の処理が実行される。
一方、 上記ステツプ 3 9 0で、 G— G* < G 4 (く 0 ) 、 および、 Δ ρΜΟ Δ Ρ ιο ( > 0 ) の少なく とも一方が不成立である場合は、 各車輪のホイルシリ ンダ圧 PW/C を増圧する必要がないと判断でき る。 この場合、 以後、 上記ステップ 3 8 6の処理、 すなわち、 制動 力制御装置をアシスト圧保持状態とする処理が実行された後今回の ルーチンが終了される。
ステップ 3 9 1では、 左右前輪 F L, F Rの何れかを A B S対象 車輪とする A B S制御が実行中であるか否かが判別される。 左右前 輪 F L, F Rを A B S対象車輪とする A B S制御が実行されている 場合は、 各車輪のホイルシリ ンダ圧 PW/C が既に十分に増圧されて いると判断することができる。 この場合は、 現実の滅速度 Gが目標 減速度 G* に比して小さな値であっても、 ホイルシリ ンダ圧 PW/C を増圧を図るべきではない。 このため、 本ステップ 3 9 1で、 左右 前輪 F L, F Rを A B S対象車輪とする A B S制御が実行されてい ると判別される場合は、 以後、 上記ステップ 3 8 6の処理が実行さ れた後、 今回のルーチンが終了される。 一方、 上記ステップ 3 9 1で、 左右前輪 F L, F Rの何れもが A B S対象車輪でないと判別 された場合は、 未だ各車輪のホイルシリ ンダ圧 Pw/c を増圧させる ことにより、 制動力を増加させることが可能であると判断できる。 この場合、 上記ステツプ 3 9 1 に次いで、 ステップ 3 9 2の処理が 実行される。
ステップ 3 9 2では、 (VII) アシスト圧補正増圧モードを実現す るための処理、 具体的には、 上記図 3に示すアシス ト圧増圧状態と 上記図 4に示すアシスト圧保持状態とを所定の周期で繰り返し実現 する処理が実行される。 上記の処理が実行されると、 各車輪のホイ ルシリ ンダ圧 Pw/C は、 アキュムレータ 2 8を液圧源として緩やか に増圧される。 本ステップ 3 9 2の処理が終了すると、 次にステツ プ 3 9 3の処理が実行される。
ステップ 3 9 3では、 要求モードがァシスト圧保持モードのまま 維持されているか否かが判別される。 要求モードがアシスト圧保持 モード以外の制御モードに変化している場合は、 運転者によって制 動液圧の増減を意図するブレーキ操作が実行されたと判断できる。 この場合、 そのブレーキ操作を制動液圧に反映させるベく、 以後、 速やかに本ルーチンが終了される。 一方、 要求モードがアシス ト圧 保持モードのまま維持されている場合は、 次にステップ 3 9 4の処 理が実行される。
ステップ 3 9 4では、 現実の減速度 Gと目標減速度 G* との偏差 G - G* が、 負の所定値 G3 以上であり、 かつ、 正の所定値 G2 以 下であるか否かが判別される。 その結果、 未だ G3 ≤ G - G* ≤ G 2 が成立しないと判別される場合は、 各車輪のホイルシリ ンダ圧 P w/c が未だ G3 ≤ G - G* なる条件を成立させる程度に増圧補正さ れていないと判断することができる。 この場合、 ホイルシリ ンダ圧 Pw/c の補正増圧を更に継続すべく、 上記ステップ 3 9 1の処理が 再び実行される。 一方、 上記の条件が成立すると判別される場合は、 各車輪のホイルシリ ンダ圧 pw/c が既に適正な液圧に補正されたと 判断することができる。 この場合、 次に上記ステップ 3 8 6の処理 が実行された後、 今回のルーチンが終了される。
上述の如く、 本実施例の制動力制御装置によれば、 BA制御 (お よび BA + AB S制御) が開始された後、 運転者によるブレーキ操 作に応じて各車輪のホイルシリ ンダ圧 Pw/c を適宜増圧、 減圧、 ま たは、 保持することができると共に、 現実の減速度 Gが目標減速度 G* の近傍の値となるように、 ホイルシリ ンダ圧 Pw/C を補正する ことができる。 このため、 本実施例の制動力制御装置によれば、 運 転者によって緊急ブレーキ操作が実行された後に、 極めて精度良く 運転者の意図に応じた制動力を発生させることができる。
尚、 上記の実施例においては、 減速度センサ 1 4 6が 「減速度検 出手段」 に相当していると共に、 E C U 1 0力 上記ステツプ 3 8 2において "G* — G" を演算することにより 「偏差検出手段」 が、 上記ステップ 3 8 2, 3 8 3, 3 8 5 , 3 8 6 , 3 9 0, 3 9 2お よび 3 9 4の処理を実行することにより 「液圧制御手段」 がそれぞ れ実現されている。
また、 上記の実施例においては、 液圧センサ 1 4 4が 「ブレーキ 操作量検出手段」 に相当していると共に、 E CU 1 0が、 上記ス テツプ 3 8 1の処理を実行することにより 「目標減速度設定手段」 および 「アシスト減速度加算手段」 が、 上記ステップ 3 8 1中で
"KGI · MC" を演算することにより 「基本減速度検出手段」 が- それぞれ実現されている。
また、 上記の実施例においては、 制動力制御装置において AB S 制御が実行されることにより 「AB S機構」 が実現されると共に、
E C U 1 0力 上記ステツプ 3 9 1の処理を実行することにより
「AB S連動増圧禁止手段」 が実現されている。
また、 上記の実施例においては、 E CU 1 0が、 上記ステップ 3 8 2 , 3 8 3の処理を実行することにより 「補正保持手段」 が、 上 記ステップ 3 8 4の処理を実行することにより 「補正保持中止手 段」 、 上記ステツプ 3 9 0および 3 9 2の処理を実行することに より 「補正増圧手段」 が、 上記ステップ 3 9 3の処理を実行するこ とにより 「補正増圧中止手段」 カ^ それぞれ実現されている。
次に、 図 2 8乃至図 3 3を参照して、 本発明の第 2実施例につい て説明する。 図 2 8は、 本発明の第 2実施例に対応するポンプアツ プ式制動力制御装置 (以下、 単に制動力制御装置と称す) のシステ ム構成図を示す。 尚、 図 2 8において、 上記図 1 に示す構成部分と 同一の部分については、 同一の符号を付してその説明を省略または 簡略する。
本実施例の制動力制御装置は、 フロ ン トエンジン ' リ ア ドライブ 式車両 (F R車両) 用の制動力制御装置として好適な装置である。 本実施例の制動力制御装置は、 E C U 1 0により制御されている。 E C U 1 0は、 上述した第 1実施例の場合と同様に、 上記図 9乃至 図 1 1および図 1 3乃至図 2 0に示す制御ルーチンを実行すること で制動力制御装置の動作を制御する。
制動力制御装置は、 ブレーキペダル 1 2を備えている。 ブレーキ ペダル 1 2の近傍には、 ブレーキスィッチ 1 4が配設されている。 E C U 1 0は、 ブレーキスィッチ 1 4の出力信号に基づいてブレー キペダル 1 2が踏み込まれているか否かを判別する。
ブレーキペダル 1 2は、 バキュームブースタ 4 0 0に連結されて いる。 バキュームブースタ 4 0 0は、 ブレーキペダル 1 2が踏み込 まれた場合に、 ブレ一キ踏カ Fに対して所定の倍力比を有するァシ スト力 F aを発生する。 バキュームブースタ 4 0 0には、 マスタシ リ ンダ 4 0 2が固定されている。 マスタシリ ンダ 4 0 2は、 夕ンデ ムセンターバルブタイプのマスタシリ ンダであり、 その内部に第 1 油圧室 4 0 4および第 2油圧室 4 0 6を備えている。 第 1油圧室 4 0 4および第 2油圧室 4 0 6には、 ブレーキ踏力 Fとアシスト力 F a との合力に応じたマスタシリ ンダ圧 PM/C が発生する。
マスタシリ ンダ 4 0 2の上部にはリザーバタンク 4 0 8が配設さ れている。 リザ一バタンク 4 0 8には、 フロ ン ト リザ一バ通路 4 1 0、 および、 リァリザーバ通路 4 1 2が連通している。 フロ ン ト リ ザ一バ通路 4 1 0には、 フロ ン ト リザ一バカッ トソレノイ ド 4 1 4 (以下、 S R C F 4 1 4 と称す) が連通している。 同様に、 リァリ ザ一バ通路 4 1 2には、 リァリザ一バカッ トソレノイ ド 4 1 6 (以 下、 S R C R 4 1 6 と称す) が連通している。
S R C F 4 1 4には、 更に、 フロ ン トポンプ通路 4 1 8が連通し ている。 同様に、 S R C R 4 1 6には、 リァポンプ通路 4 2 0が連 通している。 S R C F 4 1 4は、 オフ状態とされることでフロン ト リザーバ通路 4 1 0 とフロ ン トポンプ通路 4 1 8 とを遮断し、 かつ、 オン状態とされることでそれらを導通させる 2位置の電磁弁である c また、 S R C R 4 1 6は、 オフ状態とされることでリアリザーバ通 路 4 1 2 とリアポンプ通路 4 2 0 とを遮断し、 かつ、 オン状態とさ れることでそれらを導通させる 2位置の電磁弁である。
マスタシリ ンダ 4 0 2の第 1油圧室 4 0 4、 および、 第 2油圧室 4 0 6には、 それぞれ第 1液圧通路 4 2 2、 および、 第 2液圧通路 4 2 4が連通している。 第 1液圧通路 4 2 2には、 右前マスタカツ トフレノイ ド 4 2 6 (以下、 SMF R 4 2 6 と称す) 、 および、 左 前マス夕カッ トソレノイ ド 4 2 8 (以下、 SMF L 4 2 8 と称す) が連通している。 一方、 第 2液圧通路 4 2 4には、 リアマス夕カツ トソレノイ ド 4 3 0 (以下、 S MR 4 3 0 と称す) が連通している ( SMF R 4 2 6には、 右前輪 F Rに対応して設けられた液圧通路 4 3 2が連通している。 同様に、 SMF L 4 2 8には、 左前輪 F L に対応して設けられた液圧通路 4 3 4が連通している。 更に、 SM R 4 3 0には、 左右後輪 R L, RRに対応して設けられた液圧通路 4 3 6が連通している。
SMF R 4 2 6 , SMF L 4 2 8および SMR 4 3 0の内部には. それぞれ定圧開放弁 4 3 8, 4 4 0 , 4 4 2が設けられている。 S MF R 4 2 6は、 オフ状態とされた場合に第 1液圧通路 4 2 2と液 圧通路 4 3 2とを導通状態とし、 かつ、 オン状態とされた場合に定 圧開放弁 4 3 8を介して第 1液圧通路 4 2 2と液圧通路 4 3 2 とを 連通させる 2位置の電磁弁である。 また、 SMF L 4 2 6は、 オフ 状態とされた場合に第 1液圧通路 4 2 2と液圧通路 4 3 4 とを導通 状態とし、 かつ、 オン状態とされた場合に定圧開放弁 4 4 0を介し て第 1液圧通路 4 2 2 と液圧通路 4 3 4 とを連通させる 2位置の電 磁弁である。 同様に、 S MR 4 3 0は、 オフ状態とされた場合に第 2液圧通路 4 2 4 と液圧通路 4 3 6 とを導通状態とし、 かつ、 オン 状態とされた場合に定圧開放弁 4 4 2を介して第 2液圧通路 4 2 4 と液圧通路 4 3 6 とを連通させる 2位置の電磁弁である。
第 1液圧通路 4 2 2と液圧通路 4 3 2との間には、 また、 第 1液 圧通路 4 2 2側から液圧通路 4 3 2側へ向かうフルー ドの流れのみ を許容する逆止弁 4 4 4が配設されている。 同様に、 第 1液圧通路 4 2 2と液圧通路 4 3 4 との間、 および、 第 2液圧通路 4 2 4 と液 圧通路 4 3 6 との間には、 それぞれ第 1液圧通路 4 2 2側から液圧 通路 4 3 4側へ向かう流体の流れのみを許容する逆止弁 4 4 6、 お よび、 第 2液圧通路 4 2 4側から液圧通路 4 3 6側へ向かう流体の 流れのみを許容する逆止弁 4 4 8が配設されている。
左右前輪に対応して設けられた液圧通路 4 3 2 , 4 3 4および左 右後輪に対応して設けられた液圧通路 4 3 6には、 上記第 1実施例 の場合と同様に、 保持ソレノイ ド S * * H、 減圧ソレノイ ド S * * R、 ホイルシリ ンダ 1 2 0〜 1 2 6およぴ逆止弁 1 2 8〜 1 3 4が 連通している。 また、 左右前輪の保持ソレノイ ド S F RR 1 1 2お よび S F L R 1 1 4には、 フロント減圧通路 4 5 0が連通している c 更に、 左右後輪の保持ソレノィ ド S RRR 1 1 6および S R L R 1 1 8にはリァ減圧通路 4 5 2が連通している。
フロント減圧通路 4 5 0およびリア減圧通路 4 5 2には、 それぞ れフロントリザ一ノく 4 5 4およびリアリザーバ 4 5 5が連通してい る。 フロン ト リザ一バ 4 5 4およびリア リザ一バ 4 5 5は、 それぞ れ逆止弁 4 5 6 , 4 5 8を介してフロントポンプ 4 6 0の吸入側、 および、 リアポンプ 4 6 2の吸入側に連通している。 フロ ン トボン プ 4 6 0の吐出側、 および、 リアポンプ 4 6 2の吐出側は、 吐出圧 の脈動を吸収するためのダンバ 4 6 4 , 4 6 6に連通している。 ダ ンパ 4 6 4は、 右前輪 F Rに対応して設けられた右前ポンプ通路 4
6 8および左前輪 F Lに対応して設けられた左前ポンプ通路 4 7 0 に連通している。 一方、 ダンバ 4 6 6は、 液圧通路 4 3 6に連通し ている。
右前ポンプ通路 4 6 8は、 右前ポンプソレノィ ド 4 7 2 (以下、 S P F L 4 7 2と称す) を介して液圧通路 4 3 2に連通している。 また、 左前ポンプ通路 4 7 0は、 左前ポンプソレノィ ド 4 7 4 (以 下、 S P F R 4 7 4 と称す) を介して液圧通路 4 3 4に連通してい る。 S P F L 4 7 2は、 オフ状態とされることにより右前ポンプ通 路 4 6 8 と液圧通路 4 3 2とを導通状態とし、 かつ、 オン状態とさ れることによりそれらを遮断状態とする 2位置の電磁弁である。 同 様に、 S P F R 4 7 4は、 オフ状態とされることにより左前ポンプ 通路 4 7 0 と液圧通路 4 3 4 とを導通状態とし、 かつ、 ォン状態と されることによりそれらを遮断状態とする 2位置の電磁弁である。 液圧通路 4 3 2と右前ポンプ通路 4 6 8 との間には、 液圧通路 4 3 2側から右前ポンプ通路 4 6 8側へ向かう流体の流れのみを許容 する定圧開放弁 4 7 6が配設されている。 同様に、 液圧通路 4 3 4 と左前ポンプ通路 4 7 0 との間には、 液圧通路 4 3 4側から左前ポ ンプ通路 4 7 0側へ向かう流体の流れのみを許容する定圧開放弁 4
7 8が配設されている。
各車輪の近傍には、 車輪速センサ 1 3 6, 1 3 8 , 1 4 0, 1 4 2が配設されている。 E C U 1 0は車輪速センサ 1 3 6〜 1 4 2の 出力信号に基づいて各車輪の回転速度 V w を検出する。 また、 マス タシリ ンダ 4 0 2に連通する第 2液圧通路 4 2 4には、 液圧センサ 1 4 4が配設されている。 E C U 1 0は液圧センサ 1 4 4の出力信 号 p M Cに基づいてマスタシリ ンダ圧 P M/ C を検出する。 更に、 E C U 1 0には、 減速度センサ 1 4 6の出力信号が供給されている。 E C U 1 0は減速度センサ 1 4 6の出力信号に基づいて車両の減速 度 Gを検出する。
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常ブレーキ機能、 ② A B S機能、 およ び、 ③ B A機能を実現する。
①通常ブレーキ機能は、 図 2 8に示す如く、 制動力制御装置が備 える全ての電磁弁をオフ状態とすることにより実現される。 以下、 図 2 8に示す状態を通常ブレーキ状態と称す。 また、 制動力制御装 置において通常ブレーキ機能を実現するための制御を通常ブレーキ 制御と称す。
図 2 8に示す通常ブレーキ状態において、 左右前輪 F L , F Rの ホイルシリ ンダ 1 2 0 , 1 2 2は、 共に第 1液圧通路 4 2 2を介し てマス夕シリ ンダ 4 0 2の第 1油圧室 4 0 4に連通している。 また、 左右後輪 R L , R Rのホイルシリ ンダ 1 2 4, 1 2 6は、 第 2液圧 通路 4 2 4を介してマスタシリ ンダ 4 0 2の第 2油圧室 4 0 6に連 通している。 この場合、 ホイルシリ ンダ 1 2 0〜 1 2 6のホイルシ リ ンダ圧 P w/ c は、 常にマスタシリ ンダ圧 Ρ Μ/C と等圧に制御され る。 従って、 図 2 8示す状態によれば、 通常ブレーキ機能が実現さ れる。
② A B S機能は、 図 2 8に示す状態において、 フロ ン トポンプ 4 6 0およびリアポンプ 4 6 2をォン状態とし、 かつ、 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを A B Sの要求に応じて 適当に駆動することにより実現される。 以下、 制動力制御装置にお いて A B S機能を実現するための制御を A B S制御と称す。 ECU 1 0は、 車両が制動状態にあり、 かつ、 何れかの車輪につ いて過剰なスリ ップ率が検出された場合に A B S制御を開始する。 ABS制御は、 ブレーキペダル 1 2が踏み込まれている状況下、 す なわち、 マス夕シリ ンダ 4 0 2が高圧のマス夕シリ ンダ圧 P M/c を 発生している状況下で開始される。
A B S制御の実行中は、 マスタシリ ンダ圧 PM/C 力 \ 第 1液圧通 路 4 2 2および第 2液圧通路 4 24を介して、 それぞれ左右前輪に 対応して設けられた液圧通路 4 3 2, 4 3 4、 および、 左右後輪に 対応して設けられた液圧通路 4 3 6に導かれる。 従って、 かかる状 況下で保持ソレノィ ド S * * Hを開弁状態とし、 かつ、 減圧ソレノ ィ ド S * *Rを閉弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/ c を増圧することができる。 以下、 この状態を(i) 増圧モードと称 す。
また、 A B S制御の実行中に、 保持ソレノィ ド S * *Hおよび減 圧ソレノィ ド S * *Rの双方を閉弁状態とすると、 各車輪のホイル シリ ンダ圧 PW/C を保持することができる。 以下、 この状態を(ii) 保持モードと称す。 更に、 AB S制御の実行中に、 保持ソレノイ ド S * * Hを閉弁状態とし、 かつ、 減圧ソレノィ ド S * * Rを開弁状 態とすると、 各車輪のホイルシリ ンダ圧 Pw/c を減圧することがで きる。 以下、 この状態を(iii) 減圧モードと称す。
ECU 1 0は、 ABS制御中に、 各車輪毎に適宜上記の(i) 増圧 モー ド、 (ii)保持モー ド、 および、 (iii) 減圧モードが実現される ように、 各車輪のスリ ップ状態に応じて保持ソレノィ ド S * *Hお よび減圧ソレノイ ド S * *Rを制御する。 保持ソレノィ ド S **H および減圧ソレノイ ド S * * Rが上記の如く制御されると、 全ての 車輪のホイルシリ ンダ圧 Pw/c が対応する車輪に過大なスリ ップ率 を発生させることのない適当な圧力に制御される。 このように、 上 記の制御によれば、 制動力制御装置において A B S機能を実現する ことができる。 E CU l 0は、 例えば低 /路から高//路に進入した場合等、 全て の車輪について AB S制御を実行する必要がなくなった場合に AB S制御を終了させて制動力制御装置を通常ブレーキ状態とする。 と ころで、 A B S制御の実行中は、 A B S対象車輪のホイルシリ ンダ 圧 Pw/c カ^ マスタシリ ンダ圧 PM/C に比して低圧に制御される。 このため、 A B S制御の終了条件が成立した後に、 即座に通常ブ レーキ状態が実現されると、 A B S対象車輪のホイルシリ ンダ圧 P w/c に急激な変化が生ずる。
E C U 1 0は、 このようなホイルシリ ンダ圧 P w/c の急激な変化 を防止すべく、 AB S制御の終了条件が成立した後、 所定期間だけ AB S対象車輪について (i)増圧モードと(ii)保持モードとが繰り 返されるように保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを駆動する A B S終了制御を実行する。 A B S終了制御によれ ば、 AB S対象車輪のホイルシリ ンダ圧 Pw/C を緩やかにマスタシ リ ンダ圧 PM/C まで昇圧させることができる。 従って、 本実施例の 制動力制御装置によれば、 A B S対象車輪のホイルシリ ンダ圧 PW/ c に急激な変化を発生させることなく A B S制御を終了させること ができる。
A B S制御の実行中に、 各車輪で減圧モードが行われる際にはホ ィルシリ ンダ 1 2 0〜 1 2 6内のブレーキフルードが、 フロント減 圧通路 4 5 0およびリァ減圧通路 4 5 2を通ってフロン ト リザーバ
4 5 4およびリアリザーバ 4 5 5に流入する。 フロン ト リザ一バ 4
5 4およびリアリザーバ 4 5 5に流入したブレーキフル一ドは、 フ ロントポンプ 4 6 0およびリアポンプ 4 6 2に汲み上げられて液圧 通路 4 3 2, 4 3 4 , 4 3 6へ供給される。
液圧通路 4 3 2, 4 3 4, 4 3 6に供給されたブレーキフル一 ド の一部は、 各車輪で増圧モードが行われる際にホイルシリ ンダ 1 2 0〜 1 2 6に流入する。 また、 そのブレーキフルードの残部は、 ブ レーキフルードの流出分を補うべくマスタシリ ンダ 4 0 2に流入す る。 このため、 本実施例のシステムによれば、 A B S制御の実行中 にブレーキペダル 1 2に過大なストロークが生ずることはない。
図 2 9乃至図 3 1 は、 ③ B A機能を実現するための制動力制御装 置の状態を示す。 E CU 1 0は、 運転者によって制動力の速やかな 立ち上がりを要求するブレーキ操作、 すなわち、 緊急ブレーキ操作 が実行された後に図 2 9乃至図 3 1 に示す状態を適宜実現すること で B A機能を実現する。 以下、 制動力制御装置において、 BA機能 を実現させるための制御を B A制御と称す。
図 2 9は、 B A制御の実行中に実現されるアシスト圧増圧状態を 示す。 アシス ト圧増圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/C を増圧させる必要がある場合に、 すなわち、 BA 制御中に (I)開始増圧モー ド、 (II)アシス ト圧増圧モード、 および、 (V)アシスト圧緩増モー ドの実行が要求された場合に実現される。 本実施例のシステムにおいて、 BA制御中におけるアシスト圧増 圧状態は、 図 2 9に示す如く、 リザーバカッ トソレノイ ド S R C F 4 1 4, S R CR 4 1 6、 および、 マスタカッ トソレノイ ド SMF R 4 2 6 , SMF L 4 2 8 , SMR 4 3 0をォン状態とし、 かつ、 フロントポンプ 4 6 0およびリアポンプ 4 6 2をオン状態とするこ とで実現される。
図 2 9に示すアシスト圧増圧状態が実現されると、 リザーバタン ク 4 0 8に貯留されているブレーキフル一ドがフロントポンプ 4 6 0およびリアポンプ 4 6 2に汲み上げられて液圧通路 4 3 2, 4 3 4 , 4 3 6に供給される。 アシスト圧増圧状態では、 液圧通路 4 3 2, 4 3 4 , 4 3 6の内圧が、 定圧開放弁 4 3 8, 4 4 0 , 4 4 2 の開弁圧を超えてマスタシリ ンダ圧 PM/C に比して高圧となるまで は、 液圧通路 4 3 2, 4 3 4 , 4 3 6からマスタシリ ンダ 4 0 2へ 向かうブレーキフル一ドの流れが SMF R 3 2 6 , SMF L 3 2 8 , SMR 3 3 0によって阻止される。
このため、 図 2 9に示すアシスト圧増圧状態が実現されると、 そ の後、 液圧通路 4 3 2, 4 3 4 , 4 3 6には、 マスタシリ ンダ圧 P
M/C に比して高圧の液圧が発生する。 アシス ト圧増圧状態では、 ホ ィルシリ ンダ 1 2 0〜 1 2 6 と、 それらに対応する液圧通路 3 3 2,
3 3 4 , 3 3 6 とが導通状態に維持されている。 従って、 アシス ト 圧増圧状態が実現されると、 その後、 全ての車輪のホイルシリ ンダ 圧 P w/c は、 フロン トポンプ 4 6 0 またはリアポンプ 4 6 2を液圧 源として、 速やかにマスタシリ ンダ圧 PM/C を超える圧力に昇圧さ れる。
ところで、 図 2 9に示すアシス ト圧増圧状態において、 液圧通路 4 3 4 , 4 3 2, 4 3 6は、 それぞれ逆止弁 4 4 4, 4 4 6, 4 4 8を介してマスタシリ ンダ 4 0 2に連通している。 このため、 マス 夕シリ ンダ圧 PM/C が各車輪のホイルシリ ンダ圧 Pw/c に比して大 きい場合は、 アシスト圧増圧状態においても、 マスタシリ ンダ 4 0 2を液圧源としてホイルシリ ンダ圧 Pw/c を昇圧することができる c 図 3 0は、 B A制御の実行中に実現されるアシス ト圧保持状態を 示す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を保持する必要がある場合、 すなわち、 BA制御 中に(IV)アシス ト圧保持モー ドが要求される場合に実現される。 了 シス ト圧保持状態は、 図 3 0に示す如く、 マスタカッ トソレノイ ド SMF R 4 2 6 , SMF L 4 2 8 , S MR 4 3 0をオン状態とする ことで実現される。
図 3 0に示すアシス ト圧保持状態では、 フロ ン トポンプ 4 6 0 と リザーバタンク 4 0 8、 および、 リアポンプ 4 6 2 とリザ一バタン ク 4 0 8カ^ それぞれ S R C F 4 1 4および 4 1 6によって遮断状 態とされる。 このため、 アシス ト圧保持状態では、 フロン トポンプ
4 6 0およびリアポンプ 4 6 2から液圧通路 4 3 2, 4 3 4 , 4 3 6にフルー ドが吐出されることはない。 また、 図 3 0に示すアシス ト圧保持状態では、 液圧通路 4 3 2, 4 3 4, 4 3 6カ^ SMF R 4 2 6 , SMF L 4 2 8 , SMR 4 3 0によってマスタシリ ンダ 4 0 2から実質的に切り離されている。 このため、 図 3 0に示すァシ スト圧保持状態によれば、 全ての車輪のホイルシリ ンダ圧 P w/c を 一定値に保持することができる。
図 3 1 は、 B A制御の実行中に実現されるアシスト圧減圧状態を 示す。 アシス ト圧減圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/C を減圧する必要がある場合、 すなわち、 BA制御 中に (III)アシス ト圧減圧モード、 および、 (VI)アシス ト圧緩減 モードの実行が要求された場合に実現される。 アシスト圧減圧状態 は、 図 3 1 に示す如く、 全てのソレノィ ドをオフ状態とすることで 実現される。
図 3 1 に示すアシスト圧減圧状態では、 フロン トポンプ 4 6 0お よびリアポンプ 4 6 2がリザ一バタンク 4 0 8から切り離される。 このため、 フロントポンプ 4 6 2およびリアポンプ 4 6 2から液圧 通路 4 3 2, 4 3 4 , 4 3 6にフルードが吐出されることはない。 また、 アシスト圧減圧状態では、 各車輪のホイルシリ ンダ 1 2 0〜 1 2 6 とマスタシリ ンダ 4 0 2とが導通状態となる。 このため、 ァ シスト圧減圧状態を実現すると、 全ての車輪のホイルシリ ンダ圧 P w/c を、 マスタシリ ンダ圧 PM/C を下限値として減圧することがで きる。
本実施例において、 E CU 1 0は、 運転者によって緊急ブレーキ 操作が実行された場合に、 上述した第 1実施例の場合と同様に、 上 記図 2 9乃至図 3 1に示すアシスト圧増圧状態、 アシスト圧保持状 態およびァシスト圧減圧状態を組み合わせて B A機能を実現する。 このため、 本実施例の制動力制御装置によれば、 上述した第 1実施 例の場合と同様に、 BA制御の実行中常に、 アシスト圧 P aをほぼ 一定の値に維持しつつ、 ホイルシリ ンダ圧 P w/c に適正に運転者の 意図を反映させることができる。
本実施例の制動力制御装置において、 上述した B A制御が開始さ れると、 その後、 各車輪のホイルシリ ンダ圧 P w/c が速やかに昇圧 されることにより、 何れかの車輪について過剰なスリ ップ率が生ず る場合がある。 E CU 1 0は、 このような場合には、 BA + A B S 制御を開始する。 以下、 上記図 3 1 と共に図 3 2および図 3 3を参 照して、 B A + AB S制御に伴う制動力制御装置の動作を説明する c 本実施例の制動力制御装置は、 B A+AB S制御が開始された後、 運転者によって制動力の増加を意図するブレーキ操作が行われると、 A B S対象車輪のホイルシリ ンダ圧 Pw/C を AB S制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/c の増大 を図る。
図 3 2は、 左前輪 F Lを A B S対象車輪とする BA + AB S制御 の実行中に、 上記の機能を果たすべく実現される状態 (以下、 ァシ ス ト圧増圧 AB S状態と称す) を示す。 アシス ト圧増圧 AB S状態 は、 リアリザーバカッ トソレノイ ド S R C R 4 1 6、 および、 マス 夕カッ トソレノイ ド SMFR 4 2 6, SMF L 4 2 8 , S MR 4 3 0をオン状態とし、 フロントポンプ 4 6 0およびリアポンプ 4 6 2 をオン状態とし、 かつ、 左前輪 F Lの保持ソレノィ ド S F LH 1 0 6および減圧ソレノイ ド S F LR 1 1 4を、 AB S制御の要求に応 じて適宜制御することで実現される。
アシスト圧増圧 AB S状態において、 左右後輪 R L, RRのホイ ルシリ ンダ 1 2 4, 1 2 6には、 上記図 2 9に示すアシス ト圧増圧 状態の場合と同様に、 リアポンプ 4 6 2から吐出されるブレーキフ ルードが供給される。 このため、 アシス ト圧増圧 AB S状態が実現 されると、 左右後輪 R L, RRのホイルシリ ンダ圧 Pw/C は、 BA 制御中にアシスト圧増圧状態が実現された場合と同様に昇圧される ( 左前輪 F Lを AB S対象車輪とする BA + AB S制御は、 左前輪 F Lについて(ii)減圧モ一ドが実行されることにより開始される。 従って、 フロン トリザ一バ 4 5 4には、 BA + AB S制御が開始さ れると同時にブレーキフル一ドが流入する。 図 3 2に示すアシスト 圧増圧 A B S状態において、 フロントポンプ 4 6 0は、 このように してフロントリザ一バ 4 5 4に流入したブレーキフルードを吸入し て圧送する。
フロントポンプ 4 6 0によつて圧送されるブレーキフルードは、 主に右前輪 F Rのホイルシリ ンダ 1 2 0へ供給されると共に、 左前 輪 F Lについて(i) 増圧モードが実行される際にホイルシリ ンダ 1 2 2へ供給される。 上記の制御によれば、 右前輪 F Rのホイルシリ ンダ圧 Pw/C を、 B A制御中にアシスト圧増圧状態が実現された場 合と同様に昇圧し、 また、 左前輪 F Lのホイルシリ ンダ圧 Pw/c を、 左前輪 F Lに過大なスリ ップ率を発生させない適当な値に制御する ことができる。
このように、 図 3 2に示すアシスト圧増圧 A B S状態によれば、 A B S対象車輪である左前輪 F Lのホイルシリ ンダ圧 PW/c を AB S制御の要求に応じた圧力に制御しつつ、 AB S制御の非対象車輪 である右前輪 FRおよび左右後輪 R L, RRのホイルシリ ンダ圧 P w/c を、 B A制御中にアシス ト圧増圧状態が実現された場合と同様 に速やかに昇圧させることができる。
本実施例の制動力制御装置は、 B A + AB S制御が開始された後、 運転者によって制動力の保持を意図するブレーキ操作が行われると、 A B S対象車輪のホイルシリ ンダ圧 Pw/C を AB S制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/C の保持 を図る。
図 3 3は、 左前輪 F Lを AB S対象車輪とする BA + AB S制御 の実行中に、 上記の機能を果たすべく実現される状態 (以下、 ァシ スト圧保持 A B S状態と称す) を示す。 アシス ト圧保持 A B S状態 は、 マスタカッ トソレノイ ド SMFR 4 2 6 , SMF L 4 2 8 , S MR 4 3 0をオン状態とし、 フロントポンプ 4 6 0およびリアボン プ 4 6 2をオン状態とし、 右前輪 FRの保持ソレノィ ド S F RH 1 0 4をオン状態とし、 かつ、 左前輪 F Lの保持ソレノイ ド S F LH 1 0 6および減圧ソレノイ ド S F LR 1 1 4を AB S制御の要求に 応じて適宜制御することで実現される。
アシス ト圧保持 A B S状態において、 リアポンプ 4 6 2は、 上記 図 3 0に示すアシス ト圧保持状態が実現された場合と同様にリザ一 バタンク 4 0 8から遮断される。 また、 液圧通路 4 3 0は、 上記図 3 0に示すアシス ト圧保持状態が実現された場合と同様に実質的に マスタシリ ンダ 4 0 2から遮断される。 このため、 アシス ト圧保持 AB S状態が実現されると、 左右後輪 R L, RRのホイルシリ ンダ 圧 PW/C は、 B A制御中にアシスト圧保持状態が実現される場合と 同様に一定値に保持される。
フロン ト リザ一バ 4 5 4には、 アシス ト圧保持 A B S状態が実現 されると同時に、 または、 アシスト圧保持 AB S状態が実現される に先立って、 ホイルシリ ンダ 1 2 2から流出したブレーキフルー ド が蓄えられる。 フロン トポンプ 4 6 0は、 アシス ト圧保持 A B S状 態が実現されている間、 フロン ト リザ一バ 4 5 4に蓄えられている ブレーキフルー ドを吸入して圧送する。
アシス ト圧保持 AB S状態において、 右前輪 FRのホイルシリ ン ダ 1 2 0は、 S F RH 1 0 4によってフロン トポンプ 4 6 0から切 り離されている。 このため、 フロン トポンプ 4 6 0によって圧送さ れるブレーキフルー ドは、 左前輪 F Lのホイルシリ ンダ 1 2 2にの み供給される。 また、 フロン トポンプ 4 6 0からホイルシリ ンダ 1 2 2へのブレーキフルー ドの流入は、 左前輪 F Lについて (i)増圧 モー ドが行われる場合にのみ許容される。 上記の処理によれば、 右 前輪 FRのホイルシリ ンダ圧 Pw/C が一定値に保持されると共に、 左前輪 F Lのホイルシリ ンダ圧 Pw/C が、 左前輪 F Lに過大なス リ ップ率を発生させることのない適当な圧力に制御される。
このように、 図 3 3に示すアシス ト圧増圧 A B S状態によれば、 A B S対象車輪である左前輪 F Lのホイルシリ ンダ圧 Pw/c を A B S制御の要求に応じた適当な圧力に制御しつつ、 AB S制御の非対 象車輪である右前輪 FRおよび左右後輪 R L, RRのホイルシリ ン ダ圧 PW/c を、 B A制御中にアシス ト圧保持状態が実現された場合 と同様に一定値に保持することができる。
本実施例の制動力制御装置は、 B A + AB S制御が開始された後、 運転者によって制動力の減圧を意図するブレーキ操作が行われると、 A BS対象車輪のホイルシリ ンダ圧 Pw/C を A BS制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/c の減圧 を図る。
上述した機能は、 上記図 3 1に示すアシス ト圧減圧状態を実現し つつ、 ABS対象車輪について、 ABS制御の要求に応じて (i)増 圧モー ド、 (ii)保持モードおよび (iii)減圧モードが実現されるよ うに、 適宜保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * *R を制御することで実現される。 以下、 かかる制御が実行されている 状態をアシスト圧減圧 AB S状態と称す。
すなわち、 アシス ト圧減圧 AB S状態が実現されている場合、 全 ての保持ソレノイ ド S * * Hはマスタシリ ンダ 4 0 2に連通してい る。 このため、 アシス ト圧減圧 (ABS) 制御を実現すると、 AB
S制御の非制御対象車輪のホイルシリ ンダ圧 Pw/c をマスタシリ ン ダ圧 PM/c を下限値として減圧することができる。 また、 ABS制 御の対象車輪については、 (ii)保持モードおよび (iii)減圧モー ド を実現することで、 そのホイルシリ ンダ圧 PW/C を保持または減圧 することができる。
ところで、 アシス ト圧減圧 A B S状態は、 運転者が制動力の減少 を意図している場合に、 すなわち、 何れの車輪のホイルシリ ンダ圧 Pw/c も増圧する必要がない場合に実現される。 従って、 ABS対 象車輪について、 上記の如く(ii)保持モードと (iii)減圧モードと が実現できれば、 ABS対象車輪のホイルシリ ンダ圧 Pw/c を、 適 正に B A + A B S制御によって要求される圧力に制御することがで きる。
このように、 上述したアシス ト圧減圧 AB S状態によれば、 AB S対象車輪のホイルシリ ンダ圧 Pw/C を AB S制御の要求に応じた 適当な圧力に制御しつつ、 AB S制御の非対象車輪である右前輪 F Rおよび左右後輪 R L, RRのホイルシリ ンダ圧 Pw/C を、 BA制 御中にアシスト圧減圧状態が実現された場合と同様にマスタシリ ン ダ圧 PM/c を下限値として減圧することができる。
E CU 1 0は、 B A + AB S制御が開始した後、 例えば車両が低 路から高/ 路に進入した場合等、 全ての車輪について AB S制御 を実行する必要がなくなると、 その後、 AB S制御を終了させて再 び単独で B A制御を実行する。 ところで、 BA+AB S制御の実行 中は、 AB S対象車輪のホイルシリ ンダ圧 Pw/C が、 AB S非対象 車輪のホイルシリ ンダ圧 Pw/C に比して低圧に制御されている。 こ のため、 AB S制御の終了条件が成立した後に、 AB S対象車輪の 保持ソレノイ ド S * *Hが即座に開弁状態に維持されると、 AB S 対象車輪のホイルシリ ンダ圧 Pw/C に急激な変化が生ずる。
A B S対象車輪のホイルシリ ンダ圧 Pw/c に生ずる急激な液圧変 化は、 B A + AB S制御の終了時にも、 上述した AB S終了制御、 すなわち、 所定期間だけ AB S対象車輪について (i)増圧モードと (ii)保持モードとが繰り返されるように保持ソレノイ ド S * *Hお よび減圧ソレノィ ド S * * Rを駆動する制御を実行することで回避 することができる。
しかし、 B A + AB S制御の終了時に上記図 3 3に示すアシスト 圧保持状態が実現されている場合は、 AB S終了制御が実行される ことにより、 AB S対象車輪のホイルシリ ンダ圧 Pw/C だけがフロ ントポンプ 4 6 0を液圧源として断続的に増圧される事態が生ずる ( この場合、 A B S対象車輪のホイルシリ ンダ圧 Pw/c カ^ 他の車輪 のホイルシリ ンダ圧 Pw/C を超えて過度に昇圧されることがある。
B A + AB S制御の終了時に、 AB S対象車輪のホイルシリ ンダ 圧 Pw/c が上記の如く過度に昇圧されると、 車両において、 本来発 生すべき目標減速度に比して過大な減速度が発生する。 E CU 1 0 は、 上記図 2 0に示す制御ルーチンを実行することにより、 B A制 御の実行中にかかる過大な減速度 Gが検出された場合には、 何れか の車輪のホイルシリ ンダ圧 Pw/C が過度に増圧されていると判断し て(VIII)アシスト圧補正保持モードを実行する。
本実施例の制動力制御装置において、 (VIII)アシス ト圧補正保持 モードは、 (IV)アシスト圧保持モ一ドが要求モードとされている状 況下で、 全ての保持ソレノィ ド S * * Hおよび全ての減圧ソレノィ ド S * *Rを閉弁状態とすることで実現される。 (VI II)アシス ト圧 補正保持モー ドによれば、 全ての車輪のホイルシリ ンダ圧 Pw/C の 増圧を確実に禁止することができる。 このため、 本実施例の制動力 制御装置によれば、 B A + A B S制御の終了時に A B S対象車輪の ホイルシリ ンダ圧 Pw/C が過度に増圧されるのを確実に防止するこ とができる。
上述の如く、 制動力制御装置は、 B A制御または B A + AB S制 御の実行中に制動液圧の減圧を意図するブレーキ操作、 すなわち、 減圧操作が実行された場合、 上記図 3 1に示すアシス ト圧減圧状態 を実現して各車輪のホイルシリ ンダ圧 Pw/C をマスタシリ ンダ 4 0 2に開放する。 各車輪のホイルシリ ンダ圧 Pw/c がマスタシリ ンダ 4 0 2に開口される過程では、 第 2液圧通路 4 24の内圧、 すなわ ち、 マスタシリ ンダ圧 PM/C に脈動が生ずる。 このため、 本実施例 の制動力制御装置においても、 第 1実施例の場合と同様に、 アシス ト圧減圧状態が実現された後に各車輪のホイルシリ ンダ圧 Pw/c が 過度に減圧されることがある。
BA制御の実行中に、 各車輪のホイルシリ ンダ圧 Pw/c が過度に 減圧されると、 車両において適正な減速度が得られない事態が生ず る。 ECU 1 0は、 上記図 2 0に示す制御ルーチンを実行すること により、 B A制御中における減速度 Gが目標減速度 G* に比して小 さい場合は、 各車輪のホイルシリ ンダ圧 Pw/c が過度に減圧されて いると判断して(VII) アシスト圧補正増圧モードを実行する。 本実施例において、 (V I I ) アシス ト圧補正増圧モードは、 (I V)ァ シスト圧保持モ一ドが要求モー ドとされている状況下で、 アシス ト 圧増圧状態とアシスト圧保持状態とを繰り返すことにより、 または、 アシスト圧増圧 A B S状態とアシスト圧保持 A B S状態とを繰り返 すことにより実現される。 (V I I ) アシス ト圧補正増圧モードによれ ば、 A B S対象車輪を除く各車輪のホイルシリ ンダ圧 P w/ C を増圧 して、 適正な液圧に補正することができる。 従って、 本実施例の制 動力制御装置によれば、 ホイルシリ ンダ圧 P w/c の過度の減圧分を 補正して、 運転者の意図が正確に反映されたホイルシリ ンダ圧 P w/ c を発生させることができる。
次に、 図 3 4乃至図 3 9を参照して、 本実施例の第 3実施例につ いて説明する。 図 3 4は、 本発明の第 3実施例に対応するポンプ アップ式制動力制御装置 (以下、 単に制動力制御装置と称す) のシ ステム構成図を示す。 尚、 図 3 4において、 上記図 2 8に示す構成 部分と同一の部分については、 同一の符号を付してその説明を省略 または簡略する。
本実施例の制動力制御装置は、 フロン トエンジン · フロン ト ドラ イブ式車両 (F F車両) 用の制動力制御装置として好適な装置であ る。 本実施例の制動力制御装置は、 E C U 1 0により制御されてい る。 E C U 1 0は、 上述した第 1実施例および第 2実施例の場合と 同様に、 上記図 9乃至図 1 1、 および、 上記図 1 3乃至図 2 0に示 す制御ルーチンを実行することで制動力制御装置の動作を制御する c 制動力制御装置は、 ブレーキペダル 1 2を備えている。 ブレーキ ペダル 1 2の近傍には、 ブレーキスィッチ 1 4が配設されている。 E C U 1 0は、 ブレーキスィツチ 1 4の出力信号に基づいてブレー キペダル 1 2が踏み込まれているか否かを判別する。
ブレーキペダル 1 2は、 バキュームブースタ 4 0 0に連結されて いる。 また、 バキュームブースタ 4 0 0は、 マスタシリ ンダ 4 0 2 に固定されている。 マスタシリ ンダ 4 0 2の内部には第 1油圧室 4 0 4および第 2油圧室 4 0 6が形成されている。 第 1油圧室 4 0 4 および第 2油圧室 4 0 6の内部には、 ブレーキ踏力 Fと、 バキュー 厶ブースタ 4 0 0が発生するアシス トカ F a との合力に応じたマス 夕シリ ンダ圧 PM/C が発生する。
マスタシリ ンダ 4 0 0の上部にはリザ一バタンク 4 0 8が配設さ れている。 リザ一バタンク 4 0 8には、 第 1 リザ一バ通路 5 0 0、 および、 第 2 リザーバ通路 5 0 2が連通している。 第 1 リザ一バ通 路 5 0 0には、 第 1 リザ一バカッ トソレノイ ド 5 0 4 (以下、 S R C— 5 0 4 と称す) が連通している。 同様に、 第 2 リザーバ通路 5 0 2には、 第 2 リザ一バカッ トソレノイ ド 5 0 6 (以下、 S R C— 2 5 0 6 と称す) が連通している。
S R C- i 5 0 4には、 更に、 第 1 ポンプ通路 5 0 8が連通してい る。 同様に、 S R C-25 0 6には、 第 2ポンプ通路 5 1 0が連通し ている。 S R C—! 5 0 4は、 オフ状態とされることで第 1 リザ一バ 通路 5 0 0 と第 1 ポンプ通路 5 0 8 とを遮断し、 かつ、 オン状態と されることでそれらを導通させる 2位置の電磁弁である。 また、 S R C-25 0 6は、 オフ状態とされることで第 2 リザーバ通路 5 0 2 と第 2ポンプ通路 5 1 0 とを遮断し、 かつ、 オン状態とされること でそれらを導通させる 2位置の電磁弁である。
マスタシリ ンダ 4 0 2の第 1油圧室 4 0 4、 および、 第 2油圧室 4 0 6には、 それぞれ第 1液圧通路 4 2 2、 および、 第 2液圧通路 4 2 4が連通している。 第 1液圧通路 4 2 2には、 第 1 マスタカツ トソレノイ ド 5 1 2 (以下、 SMC- 5 1 2 と称す) が連通してい る。 一方、 第 2液圧通路 4 2 4には、 第 2マスタカッ トソレノイ ド 5 1 4 (以下、 SMC— 25 1 4 と称す) が連通している。
SMC- i 5 1 2には、 第 1 ポンプ圧通路 5 1 6 と左後輪 R Lに対 応して設けられた液圧通路 5 1 8 とが連通している。 第 1 ポンプ圧 通路 5 1 6には、 第 1 ポンプソレノイ ド 5 2 0 (以下、 SMV— , 5 2 0 と称す) が連通している。 SMV—! 5 2 0には、 更に、 右前輪 F Rに対応して設けられた液圧通路 5 2 2が連通している。 SMV -! 5 2 0の内部には定圧開放弁 5 2 4が設けられている。 SMV-, 5 2 0は、 オフ状態とされた場合に第 1 ポンプ圧通路 5 1 6 と液圧 通路 5 2 2 とを導通状態とし、 かつ、 オン状態とされた場合に定圧 開放弁 5 2 4を介してそれらを連通させる 2位置の電磁弁である。 第 1 ポンプ圧通路 5 1 6 と液圧通路 5 2 2との間には、 また、 第 1 ポンプ圧通路 5 1 6側から液圧通路 5 2 2側へ向かうフルー ドの流 れのみを許容する逆止弁 5 2 6が配設されている。
SMC- 25 1 4には、 第 2ポンプ圧通路 5 2 8 と右後輪 R Rに対 応して設けられた液圧通路 5 3 0 とが連通している。 第 2ポンプ圧 通路 5 2 8には、 第 2ポンプソレノイ ド 5 3 2 (以下、 SMV— 25 3 2 と称す) が連通している。 SMV— 25 3 2には、 更に、 左前輪 F Lに対応して設けられた液圧通路 5 3 4が連通している。 SMV - 25 3 2の内部には定圧開放弁 5 3 6が設けられている。 SMV- 2 5 3 2は、 オフ状態とされた場合に第 2ポンプ圧通路 5 2 8 と液圧 通路 5 3 4 とを導通状態とし、 かつ、 オン状態とされた場合に定圧 開放弁 5 3 6を介してそれらを連通させる 2位置の電磁弁である。 第 1 ポンプ通路 5 2 8 と液圧通路 5 3 4 との間には、 また、 第 2ポ ンプ圧通路 5 2 8側から液圧通路 5 3 6側へ向かうフル一ドの流れ のみを許容する逆止弁 5 3 8が配設されている。
SMC- i 5 1 2および SMC— 25 1 4の内部には、 それぞれ定圧 開放弁 5 4 0 , 5 4 2が設けられている。 SMC—! 5 1 2は、 オフ 状態とされた場合に第 1液圧通路 4 2 2と液圧通路 5 1 8 (および 第 1 ポンプ圧通路 5 1 6 ) とを導通状態とし、 かつ、 オン状態とさ れた場合に定圧開放弁 5 4 0を介してそれらを連通させる 2位置の 電磁弁である。 また、 SMC-25 1 4は、 オフ状態とされた場合に 第 2液圧通路 4 2 4 と液圧通路 5 3 0 (および第 2ポンプ圧通路 5 2 8 ) とを導通状態とし、 かつ、 オン状態とされた場合に定圧開放 弁 4 4 2を介してそれらを連通させる 2位置の電磁弁である。 第 1液圧通路 4 2 2と液圧通路 5 1 8 との間には、 第 1液圧通路
4 2 2側から液圧通路 5 1 8側へ向かうフルードの流れのみを許容 する逆止弁 5 4 4が配設されている。 同様に、 第 2液圧通路 4 2 4 と液圧通路 5 3 0 との間には、 第 2液圧通路 4 2 4側から液圧通路 5 3 0側へ向かう流体の流れのみを許容する逆止弁 5 4 6が配設さ れている。
左右前輪および左右後輪に対応して設けられた 4本の液圧通路 5 1 6 , 5 2 2 , 5 2 8 , 5 3 4には、 第 1実施例および第 2実施例 の場合と同様に保持ソ レノィ ド S * * H、 減圧ソ レノィ ド S * * R、 ホイルシリ ンダ 1 2 0〜 1 2 6およぴ逆止弁 1 2 8〜 1 3 4が連通 している。 また、 右前輪 F Rおよび左後輪 R Lの減圧ソレノィ ド S F R R 1 1 2および S R L R 1 1 8には、 第 1減圧通路 5 4 8が連 通している。 更に、 左前輪 F Lおよび右後輪 RRの減圧ソレノイ ド S F L R 1 1 4および S RRR 1 1 6には、 第 2減圧通路 5 5 0力 連通している。
第 1減圧通路 5 4 8および第 2滅圧通路 5 5 0には、 それぞれ第 1 リザ一バ 5 5 2および第 2 リザ一バ 5 5 4が連通している。 また、 第 1 リザーバ 5 5 2および第 2 リザーバ 5 5 4は、 それぞれ逆止弁
5 5 6 , 5 5 8を介して第 1 ポンプ 5 6 0の吸入側、 および、 第 2 ポンプ 5 6 2の吸入側に連通している。 第 1 ポンプ 5 6 0の吐出側、 および、 第 2ポンプ 5 6 2の吐出側は、 吐出圧の脈動を吸収するた めのダンバ 5 6 4, 5 6 6に連通している。 ダンバ 5 6 4, 5 6 6 は、 それぞれ液圧通路 5 2 2, 5 3 4に連通している。
各車輪の近傍には、 車輪速センサ 1 3 6 , 1 3 8 , 1 4 0 , 1 4 2が配設されている。 E C U 1 0は、 車輪速センサ 1 3 6〜 1 4 2 の出力信号に基づいて各車輪の回転速度 Vw を検出する。 また、 マ ス夕シリ ンダ 3 0 2に連通する第 2液圧通路 3 2 4には、 液圧セン サ 1 4 4が配設されている。 E C U 1 0は、 液圧センサ 1 4 4の出 力信号 PMCに基づいてマスタシリ ンダ圧 PM/c を検出する。 更に. E CU 1 0には、 減速度センサ 1 4 6の出力信号が供給されている c E C U 1 0は減速度センサ 1 4 6の出力信号に基づいて車両の減速 度 Gを検出する。
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常ブレーキ機能、 ② A B S機能、 およ び、 ③ BA機能を実現する。
①通常ブレーキ機能は、 図 3 4に示す如く、 制動力制御装置が備 える全ての電磁弁をオフ状態とすることにより実現される。 以下、 図 3 4に示す状態を通常ブレーキ状態と称す。 また、 制動力制御装 置において通常ブレーキ機能を実現するための制御を通常ブレーキ 制御と称す。
図 3 4に示す通常ブレーキ状態において、 右前輪 F Rのホイルシ リ ンダ 1 2 0および左後輪 R Lのホイルシリ ンダ 1 2 6は、 共に第 1液圧通路 4 2 2を介してマスタシリ ンダ 4 0 2の第 1油圧室 4 0 4に連通している。 また、 左前輪 F Lのホイルシリ ンダ 1 2 2およ ぴ右後輪 RRのホイルシリ ンダ 1 2 4は、 共に第 2液圧通路 4 2 4 を介してマスタシリ ンダ 4 0 2の第 2油圧室 4 0 6に連通している c この場合、 ホイルシリ ンダ 1 2 0〜 1 2 6のホイルシリ ンダ圧 P w/ c は、 常にマスタシリ ンダ圧 PM/C と等圧に制御される。 従って、 図 3 4示す状態によれば、 通常ブレーキ機能が実現される。
② A B S機能は、 図 3 4に示す状態において、 第 1 ポンプ 5 6 0 および第 2ポンプ 5 6 2をオン状態とし、 かつ、 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを A B Sの要求に応じて適当 に駆動することにより実現される。 以下、 制動力制御装置において A B S機能を実現するための制御を A B S制御と称す。
A B S制御の実行中は、 左右前輪および左右後輪に対応して設け られた 4本の液圧通路 5 1 8 , 5 2 2 , 5 2 8, 5 3 4の全てに高 圧のマスタシリ ンダ圧 PM/C が導かれている。 従って、 かかる状況 下で保持ソレノィ ド S * *Hを開弁状態とし、 かつ、 減圧ソレノィ ド S * * Rを閉弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/C を増圧することができる。 以下、 この状態を(i) 増圧モードと称す ( また、 AB S制御の実行中に、 保持ソレノィ ド S * *Hおよび減 圧ソレノ ィ ド S ** Rの双方を閉弁状態とすると、 各車輪のホイル シリ ンダ圧 Pw/C を保持することができる。 以下、 この状態を(ii) 保持モードと称す。 更に、 AB S制御の実行中に、 保持ソレノイ ド S * * Hを閉弁状態とし、 かつ、 減圧ソ レノィ ド S * * Rを開弁状 態とすると、 各車輪のホイルシリ ンダ圧 Pw/C を減圧することがで きる。 以下、 この状態を(iii) 減圧モードと称す。
ECU 1 0は、 A BS制御の実行中に、 各車輪毎に適宜上記の (i) 増圧モード、 (ii)保持モード、 および、 (iii) 減圧モードが実 現されるように、 各車輪のスリ ップ状態に応じて保持ソレノィ ド S * * Hおよび減圧ソレノイ ド S * * Rを制御する。 保持ソレノイ ド S * * Hおよび減圧ソレノィ ド S * * Rが上記の如く制御されると- 全ての車輪のホイルシリ ンダ圧 Pw/C が対応する車輪に過大なス リ ップ率を発生させることのない適当な圧力に制御される。 このよ うに、 上記の制御によれば、 制動力制御装置において A B S機能を 実現することができる。
ECU 1 0は、 例えば低 路から高 路に進入した場合等、 全て の車輪について AB S制御を実行する必要がなくなった場合に AB S制御を終了させて制動力制御装置を通常ブレーキ状態とする。 E CU 1 0は、 AB S制御の終了条件が成立した後、 所定期間だけ A BS終了制御、 すなわち、 A BS対象車輪について (i)増圧モー ド と(ii)保持モ一ドとが繰り返されるように保持ソ レノィ ド S * *H および減圧ソ レノィ ド S * * Rを駆動する制御を実行する。 従って 本実施例の制動力制御装置によれば、 A B S対象車輪のホイルシリ ンダ圧 Pw/C に急激な変化を発生させることなく A B S制御を終了 させることができる。 A B S制御の実行中に、 各車輪で減圧モードが行われる際にはホ ィルシリ ンダ 1 2 0〜 1 2 6内のブレーキフルードが、 第 1減圧通 路 5 4 8および第 2減圧通路 5 5 0を通って第 1 リザーバ 5 5 2お よび第 2 リザ一バ 5 5 4に流入する。 第 1 リザ一バ 5 5 2および第 2 リザーバ 5 5 4に流入したブレーキフル一ドは、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2に汲み上げられて液圧通路 5 2 2, 5 3 4へ供給される。
液圧通路 5 2 2, 5 3 4に供給されたブレーキフルードの一部は、 各車輪で (i)増圧モードが行われる際にホイルシリ ンダ 1 2 0〜 1 2 6に流入する。 また、 そのブレーキフルードの残部は、 ブレーキ フル一 ドの流出分を補うべくマスタシリ ンダ 4 0 2に流入する。 こ のため、 本実施例のシステムによれば、 A B S制御の実行中にブ レーキペダル 1 2に過大なストロークが生ずることはない。
図 3 5乃至図 3 7は、 ③ B A機能を実現するための制動力制御装 置の状態を示す。 E CU 1 0は、 運転者によって制動力の速やかな 立ち上がりを要求するブレーキ操作、 すなわち、 緊急ブレーキ操作 が実行された後に図 3 5乃至図 3 7に示す状態を適宜実現すること で BA機能を実現する。 以下、 制動力制御装置において、 BA機能 を実現させるための制御を B A制御と称す。
図 3 5は、 B A制御の実行中に実現されるアシス ト圧増圧状態を 示す。 アシス ト圧増圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を増圧させる必要がある場合に、 すなわち、 B A 制御中に (I)開始増圧モー ド、 (II)アシスト圧増圧モー ド、 および- (V)アシスト圧緩増モードの実行が要求された場合に実現される。 本実施例のシステムにおいて、 B A制御中におけるアシスト圧増 圧状態は、 図 3 5に示す如く、 リザーバカッ トソレノイ ド S R C 5 0 4 , S R C- 25 0 6、 および、 マスタカッ トソレノイ ド SMC - 15 1 2 , SMC- 25 1 4をオン状態とし、 かつ、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2をオン状態とすることで実現される。 B A制御の実行中にアシス ト圧増圧状態が実現されると、 リザ一 バタンク 4 0 8に貯留されているブレーキフル一 ドが第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2に汲み上げられて液圧通路 5 2 2 , 5 3 4に供給される。 アシス ト圧増圧状態では、 液圧通路 5 2 2 と右 前輪 F Rのホイルシリ ンダ 1 2 0および左後輪 R Lのホイルシリ ン ダ 1 2 6が導通状態に維持される。 また、 アシス ト圧増圧状態では、 液圧通路 5 2 2側の圧力が定圧開放弁 5 4 0の開弁圧を超えてマス 夕シリ ンダ圧 PM/C に比して高圧となるまでは、 液圧通路 5 2 2側 からマスタシリ ンダ 4 0 2側へ向かうフル一 ドの流れが SMC-! 5 1 2によって阻止される。
同様に、 アシスト圧増圧状態では、 液圧通路 5 3 4 と左前輪 F L のホイルシリ ンダ 1 2 2および右後輪 R Rのホイルシリ ンダ 1 2 4 とが導通状態に維持されると共に、 液圧通路 5 3 4側の内圧が定圧 開放弁 5 4 2の開弁圧を超えてマスタシリ ンダ圧 PM/c に比して高 圧となるまでは、 液圧通路 5 3 4側からマスタシリ ンダ 4 0 2側へ 向かうフルー ドの流れが SMC— 25 1 4によって阻止される。
このため、 図 3 5に示すアシス ト圧増圧状態が実現されると、 そ の後、 各車輪のホイルシリ ンダ圧 Pw/C は、 第 1 ポンプ 5 6 0 また は第 2ポンプ 5 6 2を液圧源として、 速やかにマス夕シリ ンダ圧 P M/c を超える圧力に昇圧される。 このように、 図 3 5に示すアシス ト圧増圧状態によれば、 制動力を速やかに立ち上げることができる c ところで、 図 3 5に示すアシス ト圧増圧状態において、 液圧通路 5 1 8 , 5 2 2, 5 2 8, 5 3 0は、 逆止弁 5 4 4 , 5 4 6を介し てマスタシリ ンダ 4 0 2に連通している。 このため、 マスタシリ ン ダ圧 PM/C が各車輪のホイルシリ ンダ圧 Pw/C に比して大きい場合 は、 B A作動状態においてもマスタシリ ンダ 4 0 2を液圧源として ホイルシリ ンダ圧 Pw/C を昇圧することができる。
図 3 6は、 B A制御の実行中に実現されるアシスト圧保持状態を 示す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を保持する必要がある場合、 すなわち、 B A制御 中に(IV)アシス ト圧保持モー ドが要求される場合に実現される。 了 シス ト圧保持状態は、 図 3 6に示す如く、 マスタカッ トソレノイ ド SMC- i 5 1 2 , SMC-25 1 4をオン状態とすることで実現され 0
図 3 6に示すアシス ト圧保持状態では、 第 1 ポンプ 5 6 0 とリ ザ一バタンク 4 0 8、 および、 第 2ポンプ 5 6 2 とリザ一バタンク 4 0 8力、 それぞれ S R C - 15 0 4および S R C—25 0 6によって 遮断状態とされる。 このため、 アシス ト圧保持状態では、 第 1 ボン プ 5 6 0および第 2ポンプ 5 6 2から液圧通路 5 2 2, 5 3 4にフ ルー ドが吐出されない。 また、 図 3 6に示すアシス ト圧保持状態で は、 液圧通路 5 1 8 , 5 2 2および 5 3 0, 5 3 4カ^ それぞれ S MC -! 5 1 2および SMC- 25 1 4によってマスタシリ ンダ 4 0 2 から実質的に切り離されている。 このため、 図 3 6に示すアシス ト 圧保持状態によれば、 全ての車輪のホイルシリ ンダ圧 Pw/C を一定 値に保持することができる。
図 3 7は、 B A制御の実行中に実現されるアシス ト圧減圧状態を 示す。 アシス ト圧減圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を減圧する必要がある場合、 すなわち、 BA制御 中に (III)アシス ト圧減圧モー ド、 および、 (VI)アシス ト圧緩減 モー ドの実行が要求された場合に実現される。 アシス ト圧減圧状態 は、 図 3 7に示す如く、 全てのソレノィ ドをオフ状態とすることで 実現される。
図 3 7に示すアシス ト圧減圧状態では、 第 1 ポンプ 5 6 0および 第 2ポンプ 5 6 2がリザーバタンク 4 0 8から切り離される。 この ため、 第 1 ポンプ 5 6 2および第 2ポンプ 5 6 2から液圧通路 5 2 2, 5 3 4にフルー ドが吐出されない。 また、 アシスト圧減圧状態 では、 各車輪のホィルシリ ンダ 1 2 0〜 1 2 6 とマス夕シリ ンダ 4 0 2 とが導通状態となる。 このため、 アシス ト圧減圧状態を実現す ると、 全ての車輪のホイルシリ ンダ圧 Pw/c を、 マスタシリ ンダ圧
PM/C を下限値として減圧することができる。
本実施例において、 E CU 1 0は、 運転者によって緊急ブレーキ 操作が実行された場合に、 上述した第 1実施例および第 2実施例の 場合と同様に、 上記図 3 5乃至図 3 7に示すアシスト圧増圧状態、 アシスト圧保持状態およびアシスト圧減圧状態を組み合わせて B A 機能を実現する。 このため、 本実施例の制動力制御装置によれば、 上述した第 1実施例および第 2実施例の場合と同様に、 BA制御の 実行中常に、 アシスト圧 P aをほぼ一定の値に維持しつつ、 ホイル シリ ンダ圧 Pw/C に適正に運転者の意図を反映させることができる c 本実施例の制動力制御装置において、 上述した B A制御が開始さ れると、 その後、 各車輪のホイルシリ ンダ圧 Pw/C が速やかに昇圧 されることにより、 何れかの車輪について過剰なスリ ップ率が生ず る場合がある。 E C U 1 0は、 このような場合には、 B A + A B S 制御を開始する。 以下、 上記図 3 7と共に図 3 8および図 3 9を参 照して、 BA + A B S制御に伴う制動力制御装置の動作を説明する c 本実施例の制動力制御装置は、 B A + AB S制御が開始された後、 運転者によって制動力の増加を意図するブレーキ操作が行われると、 A B S対象車輪のホイルシリ ンダ圧 Pw/C を A B S制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/C の増大 を図る。
図 3 8は、 右後輪 R Lを AB S対象車輪とする BA + AB S制御 の実行中に、 上記の機能を果たすべく実現される状態 (以下、 ァシ ス ト圧増圧 AB S状態と称す) を示す。 アシスト圧増圧 AB S状態 は、 第 2 リザ一バカッ トソレノイ ド S R C—25 0 6、 および、 マス 夕カッ トソレノイ ド SMC— ! 5 1 2, SMC-25 1 4をォン状態と し、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2をオン状態とし、 か つ、 右後輪 R Lの保持ソレノイ ド S R LH 1 1 0および減圧ソレノ イ ド S R LR 1 1 8を AB S制御の要求に応じて適宜制御すること で実現される。
アシスト圧増圧 AB S状態において、 左前輪 F Lのホイルシリ ン ダ 1 2 2および右後輪 R Rのホイルシリ ンダ 1 2 4には、 上記図 3 5に示すアシスト圧増圧状態の場合と同様に、 第 2ポンプ 4 6 2か ら吐出されるブレーキフルードが供給される。 このため、 アシスト 圧増圧 AB S状態が実現されると、 これらの車輪 F L, RRのホイ ルシリ ンダ圧 Pw/C は、 B A制御中にアシス ト圧増圧状態が実現さ れた場合と同様に昇圧される。
左後輪 R Lを AB S対象車輪とする B A + A B S制御は、 左後輪 R Lについて(ii)減圧モ一ドが実行されることにより開始される。 従って、 第 1 リザーバ 5 5 2には、 B A + A B S制御が開始される と同時にブレーキフルードが流入する。 図 3 8に示すアシスト圧増 圧 A B S状態において、 第 1 ポンプ 5 6 0は、 上記の如く第 1 リ ザ一バ 5 5 2に流入したブレーキフルードを吸入して圧送する。 第 1 ポンプ 5 6 0によって圧送されるブレーキフルードは、 主に 右前輪 FRのホイルシリ ンダ 1 2 0へ供給されると共に、 左後輪 R Lについて(i) 増圧モ一ドが実行される際にホイルシリ ンダ 1 2 6 へ供給される。 上記の制御によれば、 右前輪 F Rのホイルシリ ンダ 圧 PW/C を B A制御中にアシスト圧増圧状態が実現された場合と同 様に昇圧し、 また、 左後輪 R Lのホイルシリ ンダ圧 PW/C を、 左後 輪 R Lに過大なスリ ップ率を発生させない適当な値に制御すること ができる。
このように、 図 3 8に示すァシスト圧増圧 A B S状態によれば、 A B S対象車輪である左後輪 R Lのホイルシリ ンダ圧 Pw/c を A B S制御の要求に応じた圧力に制御しつつ、 AB S制御の非対象車輪 である左右前輪 F L, F Rおよび右後輪 RRのホイルシリ ンダ圧 P w/c を、 B A制御中にアシスト圧増圧状態が実現された場合と同様 に速やかに昇圧させることができる。
本実施例の制動力制御装置は、 B A + AB S制御が開始された後- 運転者によって制動力の保持を意図するブレーキ操作が行われると:
A B S対象車輪のホイルシリ ンダ圧 Pw/C を A B S制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/c の保持 を図る。
図 3 9は、 右後輪 R Lを AB S対象車輪とする BA + A B S制御 の実行中に、 上記の機能を果たすべく実現される状態 (以下、 ァシ ス ト圧保持 AB S状態と称す) を示す。 アシスト圧保持 A B S状態 は、 マスタカツ トソレノィ ド SMC 5 1 2, SMC- 25 1 4をォ ン状態とし、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2をオン状態 とし、 右前輪 FRの保持ソレノィ ド S FRH 1 0 4をオン状態とし、 かつ、 左後輪 R Lの保持ソレノイ ド S R LH 1 1 0および減圧ソレ ノイ ド S R L R 1 1 8を AB S制御の要求に応じて適宜制御するこ とで実現される。
アシスト圧保持 A B S状態において、 第 2ポンプ 5 6 2は、 上記 図 3 6に示すアシスト圧保持状態が実現された場合と同様にリザ一 ノくタンク 4 0 8から遮断される。 また、 液圧通路 5 3 0, 5 3 4は、 上記図 3 6に示すアシスト圧保持状態が実現された場合と同様に実 質的にマスタシリ ンダ 4 0 2から遮断される。 このため、 アシスト 圧保持 AB S状態が実現されると、 左前輪 F Lおよび右後輪 RRの ホイルシリ ンダ圧 Pw/C は、 B A制御中にアシス ト圧保持状態が実 現される場合と同様に一定値に保持される。
第 1 リザ一バ 5 5 2には、 アシスト圧保持 AB S状態が実現され ると同時に、 または、 アシス ト圧保持 AB S状態が実現されるに先 立って、 ホイルシリ ンダ 1 2 6から流出したブレーキフル一ドが蓄 えられる。 第 1 ポンプ 5 6 0は、 アシスト圧保持 A B S状態が実現 されている間、 第 1 リザ一バ 5 5 2に蓄えられているブレーキフ ルードを吸入して圧送する。
アシスト圧保持 AB S状態において、 右前輪 F Rのホイルシリ ン ダ 1 2 0は、 S FRH 1 0 4によって第 1 ポンプ 5 6 0から切り離 されている。 このため、 第 1ポンプ 5 6 0によって圧送されるブ レーキフルードは、 左後輪 R Lのホイルシリ ンダ 1 2 6にのみ供給 される。 また、 第 1ポンプ 5 6 0からホイルシリ ンダ 1 2 6へのブ レーキフルードの流入は、 左後輪 RLについて (i)増圧モードが行 われる場合にのみ許容される。 上記の処理によれば、 右前輪 FRの ホイルシリ ンダ圧 Pw/C が一定値に保持されると共に、 左後輪 RL のホイルシリ ンダ圧 PW/C が、 左前輪 F Lに過大なスリ ップ率を発 生させることのない適当な圧力に制御される。
このように、 図 3 9に示すアシスト圧増圧 A B S状態によれば、 ABS対象車輪である左後輪 RLのホイルシリ ンダ圧 PW/C を AB S制御の要求に応じた適当な圧力に制御しつつ、 A B S制御の非対 象車輪である左右前輪 F L, FRおよび右後輪 RRのホイルシリ ン ダ圧 Pw/C を、 B A制御中にアシスト圧保持状態が実現された場合 と同様に一定値に保持することができる。
本実施例の制動力制御装置は、 B A + AB S制御が開始された後、 運転者によって制動力の減圧を意図するブレーキ操作が行われると、 A B S対象車輪のホイルシリ ンダ圧 PW/c を ABS制御の要求に応 じた圧力に制御しつつ、 他の車輪のホイルシリ ンダ圧 Pw/c の減圧 を図る。
上述した機能は、 上記図 3 7に示すアシスト圧減圧状態を実現し つつ、 ABS対象車輪について、 AB S制御の要求に応じて (i)増 圧モー ド、 (ii)保持モードおよび (iii)減圧モードが実現されるよ うに、 適宜保持ソレノイ ド S * * Hおよび減圧ソレノイ ド S * *R を制御することで実現される。 以下、 かかる制御が実行されている 状態をアシスト圧減圧 AB S状態と称す。
すなわち、 アシスト圧減圧 AB S状態が実現されている場合、 全 ての保持ソレノィ ド S * * Hはマス夕シリ ンダ 4 0 2に連通してい る。 このため、 アシス ト圧減圧 AB S状態を実現すると、 ABS制 御の非制御対象車輪のホイルシリ ンダ圧 Pw/c をマスタシリ ンダ圧 PM/C を下限値として減圧することができる。 また、 A B S制御の 対象車輪については、 (ii)保持モードおよび (iii)減圧モー ドを実 現することで、 そのホイルシリ ンダ圧 Pw/c を保持または減圧する ことができる。
ところで、 アシス ト圧減圧 A B S状態は、 運転者が制動力の減少 を意図している場合に、 すなわち、 何れの車輪のホイルシリ ンダ圧 Pw/c も増圧する必要がない場合に実現される。 従って、 AB S対 象車輪について、 上記の如く(ii)保持モードと (iii)減圧モードと が実現できれば、 AB S対象車輪のホイルシリ ンダ圧 Pw/C を、 適 正に B A + A B S制御によって要求される圧力に制御することがで きる。
このように、 上述したアシスト圧減圧 AB S状態によれば、 A B S対象車輪のホイルシリ ンダ圧 Pw/C を A B S制御の要求に応じた 適当な圧力に制御しつつ、 AB S制御の非対象車輪である右前輪 F Rおよび左右後輪 R L, RRのホイルシリ ンダ圧 Pw/c を、 BA制 御中にアシスト圧減圧状態が実現された場合と同様にマスタシリ ン ダ圧 PM/C を下限値として減圧することができる。
E CU 1 0は、 B A + AB S制御が開始した後、 例えば車両が低 z路から高 路に進入した場合等、 全ての車輪について AB S制御 を実行する必要がなくなると、 その後、 AB S制御を終了させて再 び単独で B A制御を実行する。 E CU 1 0は、 制御内容を上記の如 く切り換える際に A B S対象車輪のホイルシリ ンダ圧 Pw/c に急激 な変化が生じないように、 所定期間だけ A B S対象車輪について上 述した A B S終了制御を実行する。
しかし、 BA + A B S制御の終了時に上記図 3 6に示すアシス ト 圧保持状態が実現されている場合は、 AB S終了制御が実行される ことにより、 AB S対象車輪のホイルシリ ンダ圧 Pw/C だけが第 1 ポンプ 5 6 0を液圧源として断続的に増圧される事態が生ずる。 こ の場合、 A B S対象車輪のホイルシリ ンダ圧 Pw/c 、 他の車輪の ホイルシリ ンダ圧 pw/c を超えて過度に昇圧されることがある。
B A + AB S制御の終了時に、 AB S対象車輪のホイルシリ ンダ 圧 Pw/c が上記の如く過度に昇圧されると、 車両において、 本来発 生すべき目標減速度に比して過大な減速度が発生する。 E CU 1 0 は、 上記図 2 0に示す制御ルーチンを実行することにより、 BA制 御の実行中にかかる過大な減速度 Gが検出された場合には、 何れか の車輪のホイルシリ ンダ圧 Pw/C が過度に増圧されていると判断し て(VI II)アシスト圧補正保持モードを実行する。
本実施例の制動力制御装置において、 (VIII)アシスト圧補正保持 モードは、 (IV)アシス ト圧保持モードが要求モードとされている状 況下で、 全ての保持ソレノィ ド S * * Hおよび全ての減圧ソレノィ ド S ** Rを閉弁状態とすることで実現される。 (VI II)アシス ト圧 補正保持モードによれば、 全ての車輪のホイルシリ ンダ圧 Pw/C の 増圧を確実に禁止することができる。 このため、 本実施例の制動力 制御装置によれば、 BA + ABS制御の終了時に ABS対象車輪の ホイルシリ ンダ圧 Pw/C が過度に増圧されるのを確実に防止するこ とができる。
上述の如く、 制動力制御装置は、 B A制御または B A + AB S制 御の実行中に制動液圧の減圧を意図するブレーキ操作、 すなわち、 減圧操作が実行された場合、 上記図 3 7に示すアシス ト圧減圧状態 を実現して各車輪のホイルシリ ンダ圧 Pw/c をマスタシリ ンダ 4 0 2に開放する。 各車輪のホイルシリ ンダ圧 Pw/C がマスタシリ ンダ 4 0 2に開口される過程では、 液圧センサ 1 4 4によって検出され るマスタシリ ンダ圧 PM/C に脈動が生ずる。 このため、 本実施例の 制動力制御装置においても、 第 1実施例および第 2実施例の場合と 同様に、 アシスト圧減圧状態が実現された後に各車輪のホイルシリ ンダ圧 Pw/c が過度に減圧されることがある。
BA制御の実行中に、 各車輪のホイルシリ ンダ圧 Pw/C が過度に 減圧されると、 車両において適正な減速度が得られない事態が生ず る。 E C U 1 0は、 上記図 2 0に示す制御ルーチンを実行すること により、 B A制御の実行中に目標減速度 G* に比して小さな減速度 Gが発生している場合は、 各車輪のホイルシリ ンダ圧 Pw/C が過度 に減圧されていると判断して、 (VII) アシス ト圧補正増圧モー ドを 実行する。
本実施例において、 (VII) アシス ト圧補正増圧モードは、 (IV)ァ シスト圧保持モードが要求モードとされている状況下で、 アシス ト 圧増圧状態とアシスト圧保持状態とを繰り返すことにより、 または、 アシスト圧増圧 A B S状態とアシスト圧保持 A B S状態とを繰り返 すことにより実現される。 (VII) アシス ト圧補正増圧モードによれ ば、 AB S対象車輪を除く各車輪のホイルシリ ンダ圧 Pw/c を増圧 して、 適正な液圧に補正することができる。 従って、 本実施例の制 動力制御装置によれば、 ホイルシリ ンダ圧 Pw/c の過度の減圧分を 補正して、 運転者の意図が正確に反映されたホイルシリ ンダ圧 Pw/ c を発生させることができる。
次に、 図 4 0乃至図 4 5を参照して、 本実施例の第 4実施例につ いて説明する。 図 4 0は、 本発明の第 4実施例に対応するインライ ン式制動力制御装置 (以下、 単に制動力制御装置と称す) のシステ ム構成図を示す。 本実施例の制動力制御装置は、 フロ ン トエンジン · フロン ト ドライブ式車両 (F F車両) 用の制動力制御装置として 好適な装置である。
本実施例の制動力制御装置において、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2の吸入側は、 第 1液圧通路 4 2 2または第 2液圧通 路 4 2 4を介してマスタシリ ンダ 4 0 2に連通している。 このため、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2はマスタシリ ンダ 4 0 2 からブレーキフルードを吸入する。 本実施例の制動力制御装置は、 上記のシステム構成を備えると共に、 E CU 1 0力 上記図 9乃至 図 1 1 に示す制御ルーチンおよび上記図 2 0に示す制御ルーチンと 共に、 後述する図 4 5に示す処理と上記図 1 4乃至図 1 9に示す処 理とで構成される制御ルーチンを実行する点に特徴を有している。 次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常ブレーキ機能、 ② A B S機能、 およ び、 ③ B A機能を実現する。
①通常ブレーキ機能は、 図 4 0に示す如く、 制動力制御装置が備 える全ての電磁弁をオフ状態とすることにより実現される。 以下、 図 4 0に示す状態を通常ブレーキ状態と称す。 また、 制動力制御装 置において通常ブレーキ機能を実現するための制御を通常ブレーキ 制御と称す。
図 4 0に示す通常ブレーキ状態において、 右前輪 F Rのホイルシ リ ンダ 1 2 0および左後輪 R Lのホイルシリ ンダ 1 2 6は、 共に第 1液圧通路 4 2 2を介してマスタシリ ンダ 4 0 2の第 1油圧室 4 0 4に連通している。 また、 左前輪 F Lのホイルシリ ンダ 1 2 2およ び右後輪 RRのホイルシリ ンダ 1 2 4は、 共に第 2液圧通路 4 2 4 を介してマスタシリ ンダ 4 0 2の第 2油圧室 4 0 6に連通している c この場合、 ホイルシリ ンダ 1 2 0〜 1 2 6のホイルシリ ンダ圧 P w/ c は、 常にマスタシリ ンダ圧 PM/C と等圧に制御される。 従って、 図 4 0示す状態によれば、 通常ブレーキ機能が実現される。
② AB S機能は、 図 4 0に示す状態において、 第 1 ポンプ 5 6 0 および第 2ポンプ 5 6 2をオン状態とし、 かつ、 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを AB Sの要求に応じて適当 に駆動することにより実現される。 以下、 制動力制御装置において A B S機能を実現するための制御を A B S制御と称す。
A B S制御の実行中は、 左右前輪および左右後輪に対応して設け られた 4本の液圧通路 5 1 8, 5 2 2, 5 3 0 , 5 3 4の全てに高 圧のマスタシリ ンダ圧 PM/C が導かれている。 従って、 かかる状況 下で保持ソレノィ ド S * *Hを開弁状態とし、 かつ、 減圧ソレノィ ド S * * Rを閉弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/C を増圧することができる。 以下、 この状態を(i) 増圧モードと称す また、 A BS制御の実行中に、 保持ソ レノイ ド S * * Hおよび減 圧ソレノィ ド S ** Rの双方を閉弁状態とすると、 各車輪のホイル シリ ンダ圧 Pw/C を保持することができる。 以下、 この状態を(ii) 保持モードと称す。 更に、 AB S制御の実行中に、 保持ソレノイ ド S * *Hを閉弁状態とし、 かつ、 減圧ソ レノィ ド S * *Rを開弁状 態とすると、 各車輪のホイルシリ ンダ圧 Pvv/c を減圧することがで きる。 以下、 この状態を(iii) 減圧モードと称す。
ECU 1 0は、 A BS制御の実行中に、 各車輪毎に適宜上記の (i) 増圧モー ド、 (ii)保持モー ド、 および、 (iii) 減圧モードが実 現されるように、 各車輪のスリ ップ状態に応じて保持ソレノィ ド S
* * Hおよび減圧ソ レノィ ド S * * Rを制御する。 保持ソレノィ ド
S * * Hおよび減圧ソレノィ ド S * *Rが上記の如く制御されると、 全ての車輪のホイルシリ ンダ圧 Pw/C が対応する車輪に過大なス リ ップ率を発生させることのない適当な圧力に制御される。 このよ うに、 上記の制御によれば、 制動力制御装置において A B S機能を 実現することができる。
③ B A機能は、 制動力制御装置を、 適宜図 4 1乃至図 4 3に示す 何れかの状態とすることで実現される。 以下、 制動力制御装置にお いて、 B A機能を実現させるための制御を B A制御と称す。 ECU 1 0は、 運転者によって制動力の速やかな立ち上がりを要求するブ レーキ操作、 すなわち、 緊急ブレーキ操作が実行された後に B A制 御を開始する。
図 4 1は、 B A制御の実行中に実現されるアシス ト圧増圧状態を 示す。 アシス ト圧増圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 PW/c を増圧させる必要がある場合に、 すなわち、 BA 制御中に (I)開始増圧モー ド、 (II)アシス ト圧増圧モー ド、 および- (V)アシスト圧緩増モードの実行が要求された場合に実現される。 本実施例のシステムにおいて、 アシス ト圧増圧状態は、 図 4 1に 示す如く、 リザーバカッ トソレノイ ド S R C— , 5 0 4, S R C— 25 0 6、 および、 マスタカッ トソレノイ ド SMC— ! 5 1 2 , SMC— 2 5 1 4をオン状態とし、 かつ、 第 1 ポンプ 5 6 0および第 2ポンプ
5 6 2をオン状態とすることで実現される。
アシス ト圧増圧状態が実現されると、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2は、 それぞれ第 1液圧通路 4 2 2および第 2液圧通 路 4 2 4からブレーキフル一 ドを吸入し始める。 アシス ト圧増圧状 態が実現されている場合、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2から吐出されるブレーキフルー ドは、 各車輪のホイルシリ ンダ 1 2 0〜 1 2 6に供給される。 このため、 図 4 1 に示すァシス ト圧増 圧状態によれば、 各車輪のホイルシリ ンダ圧 Pw/C を速やかにマス 夕シリ ンダ圧 PM/C を超える圧力に昇圧することができる。
図 4 2は、 B A制御の実行中に実現されるアシス ト圧保持状態を 示す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/C を保持する必要がある場合、 すなわち、 B A制御 中に(IV)アシス ト圧保持モー ドが要求される場合に実現される。 ァ シス ト圧保持状態は、 図 3 6に示す如く、 マスタカッ トソレノイ ド SMC- i 5 1 2, SMC-25 1 4をオン状態とすることで実現され 。
図 4 2に示すアシスト圧保持状態が実現されると、 第 1 ポンプ 5
6 0 と第 1液圧通路 4 2 2 とが S R C— ! 5 0 4により遮断されると 共に、 第 2ポンプ 5 6 2 と第 2液圧通路 4 2 4 とが S R C— 25 0 6 により遮断される。 この場合、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2は、 ホイルシリ ンダ 1 2 0〜 1 2 6に対してブレーキフル一 ドを圧送することができない。
また、 図 4 2に示すァシスト圧保持状態では、 液圧通路 5 1 8 , 5 2 2および 5 3 0, 5 3 4力、 それぞれ SMC-J 5 1 2および S MC-25 1 4によってマスタシリ ンダ 4 0 2から実質的に切り離さ れている。 このため、 アシス ト圧保持状態によれば、 ホイルシリ ン ダ 1 2 0〜 1 2 6からマス夕シリ ンダ 4 0 2へ向かうブレーキフ ルードの流れが阻止される。 従って、 アシス ト圧保持状態によれば、 全ての車輪のホイルシリ ンダ圧 P w/ C を一定値に保持することがで きる。
図 4 3は、 B A制御の実行中に実現されるアシス ト圧減圧状態を 示す。 アシス ト圧減圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 P w/ C を減圧する必要がある場合、 すなわち、 B A制御 中に (I I I )アシス ト圧減圧モード、 および、 (V I )アシス ト圧緩減 モー ドの実行が要求された場合に実現される。 アシスト圧減圧状態 は、 図 4 3に示す如く、 全てのソレノイ ドをオフ状態とすることで 実現される。
図 4 3に示すアシスト圧減圧状態では、 第 1 ポンプ 5 6 0 と第 1 液圧通路 4 2 2 とが3尺(:- 1 5 0 4により遮断されると共に、 第 2 ポンプ 5 6 2と第 2液圧通路 4 2 4 とが S R C—2 5 0 6により遮断 される。 この場合、 第 1 ポンプ 5 6 2および第 2ポンプ 5 6 2は、 ホイルシリ ンダ 1 2 0〜 1 2 6に対してブレーキフルードを圧送す ることができない。 また、 アシスト圧減圧状態では、 各車輪のホイ ルシリ ンダ 1 2 0〜 1 2 6が第 1液圧通路 4 2 2および第 2液圧通 路 4 2 4を介してマスタシリ ンダ 4 0 2と導通する。 このため、 図 4 3に示すアシスト圧減圧状態によれば、 全ての車輪のホイルシリ ンダ圧 P w/c を、 マスタシリ ンダ圧 P M/C を下限値として減圧する ことができる。
本実施例において、 E C U 1 0は、 運転者によって緊急ブレーキ 操作が実行された場合に、 上述した第 1乃至第 3実施例の場合と同 様に、 上記図 4 1乃至図 4 3に示すアシスト圧増圧状態、 アシス ト 圧保持状態およびァシスト圧減圧状態を組み合わせて B A機能を実 現する。 このため、 本実施例の制動力制御装置によれば、 上述した 第 1乃至第 3実施例の場合と同様に、 B A制御の実行中常に運転者 の意図に応じたホイルシリ ンダ圧 P w/c を発生させることができる ( 以下、 図 4 4および図 4 5を参照して、 本実施例の制動力制御装 置の特徴部について説明する。
図 4 4は、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2の吐出能力 とマス夕シリ ンダ圧 P M / C との関係を示す。 本実施例において、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2は、 第 1液圧通路 4 2 2ま たは第 2液圧通路 4 2 4からブレーキフル一ドを吸入する。 ボンプ は、 その吸入側に供給される液圧が高圧であるほど高い吐出能力を 発揮する。 このため、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2は、 図 4 4に示す如く、 マスタシリ ンダ圧 P M / C が高圧になるに連れて 高い吐出能力を発揮する。
ところで、 上述した第 1乃至第 3実施例においては、 運転者に よって緊急ブレーキ操作が実行された後、 所定の増圧時間 T S T A だ け (I )開始増圧モードを実行することでアシスト圧 P aを発生させ ている。 アシスト圧 P aを発生するポンプが、 常にほぼ一定の吐出 能力を発揮する場合には、 上記の手法により、 一定のアシス ト圧 P aを発生させることができる。 しかし、 本実施例のシステムの如く、 ポンプの吐出能力が変化するシステムにおいては、 上記の手法に よって常に一定のアシスト圧 P aを発生させることができない。 こ のため、 本実施例の制動力制御装置は、 上述した第 1乃至第 3実施 例の装置と異なる手法で (I )開始増圧モードを実行する。
図 4 5は、 本実施例のシステムにおいて安定したアシスト圧 P a を確保すべく E C U 1 0が実行する一連の処理のフローチヤ一トを 示す。 E C U 1 0は、 図 4 5に示す処理を、 上記図 1 3に示す処理 と同様に、 上記図 1 4乃至図 1 9に示す一連の処理と組み合わせて 実行する。 尚、 図 4 5において、 上記図 1 3に示すステップと同一 の処理を実行するステツプには、 同一の符号を付してその説明を省 略する。
図 4 5に示す一連の処理は、 B A制御の実行条件が成立している 状況下で、 ステップ 2 6 0から開始される。 本ルーチンでは、 ス テツプ 2 6 0で、 未だ開始増圧モードが終了していないと判別され た場合、 次にステツプ 5 7 0の処理が実行される。
ステップ 5 7 0では、 B A制御の実行中に発生すべき目標減速度
G* が演算される。 目標減速度 G* は、 上記ステップ 3 8 1の場合 と同様に、 液圧センサ 1 4 4の出力信号 p MCと、 上記ステツプ 2
4 8または 2 5 0で設定される増圧時間 TSTA とを上記 ( 2 ) 式 (G* = KGI · P MC + KG2 · TSTA ) に代入することで演算され る。 上記の処理により目標減速度 G* の演算が終了すると、 次に、 ステップ 2 6 4の処理、 すなわち、 制動力制御装置を上記図 4 1 に 示すアシス ト圧増圧状態とする処理が実行される。 本実施例におい ては、 これらの処理が終了すると、 次にステップ 5 7 4の処理が実 行される。
ステップ 5 7 4では、 目標減速度 G* と現実の減速度 Gとの偏差 G* 一 Gが正の値であるか否かが判別される。 その結果、 G* — G > 0が成立すると判別される場合は、 未だ所望の減速度が得られて いないと判断することができる。 この場合、 再び上記ステップ 2 6 4の処理が実行される。 一方、 G* _ G > 0が成立しないと判別さ れる場合は、 車両の減速度 Gが目標減速度 G* に到達したと判断す ることができる。 この場合、 以後、 (I)開始増圧モー ドを終了させ て他の制御モー ドを実行すべく、 ステップ 2 6 8以降の処理が実行 される。
上記の処理によれば、 (I)開始増圧モードは、 車両の減速度 Gが 目標減速度 G* と一致する時点で終了する。 従って、 上記の処理に よれば、 第 1 ポンプ 5 6 0や第 2ポンプ 5 6 2の吐出能力に関わら ず、 開始増圧モードを実行することで、 確実に所望の減速度 Gを発 生させることができる。
ところで、 B A制御の実行中に車両に発生する減速度 Gは、 上記 の如くポンプの吐出能力の変動に影響される他、 車両の積載重量等 にも影響される。 本実施例の制動力制御装置は、 上述の如く、 現実 の減速度 Gが目標減速度 G * と一致するように開始増圧モードが実 行される。 従って、 本実施例の制動力制御装置によれば、 車両に搭 載される積載物の重量等が変化した場合にも、 開始増圧モードを実 行することで、 常に所望の減速度 Gを発生させることができる。 本実施例の制動力制御装置は、 開始増圧モードが終了した後、 上 記図 1 4乃至図 1 9に示す処理を実行することで B A制御を継続す る。 これらの処理は、 開始増圧モードの実行に伴って得られたァシ スト圧 P aが、 B A制御の実行中に常に一定値に維持されることを 目的として、 より具体的には、 アシスト圧 P aを発生させることに より加算される減速度の大きさ (以下、 アシス ト減速度 G aと称 す) がほぼ一定値に維持されることを目的として行われる。
しかしながら、 本実施例のシステムの如く、 第 1 ポンプ 5 6 0お よび第 2ポンプ 5 6 2の吐出能力がマスタシリンダ圧 P M / C に応じ て変動すると、 上記図 1 4乃至図 1 9に示す処理が繰り返される過 程で、 アシスト減速度 G aに変化が生ずることがある。
これに対して、 本実施例の制動力制御装置は、 上述の如く、 第 1 乃至第 3実施例の装置と同様に、 上記図 2 0に示す制御ルーチンを 実行する。 上記図 2 0に示す制御ルーチンによれば、 アシスト圧保 持モードが要求される状況下で、 現実の減速度 Gが目標減速度 と一致するように、 適宜ホイルシリ ンダ圧 P w/ C の補正を行うこと ができる。 従って、 本実施例の制動力制御装置によれば、 B A制御 の実行中に、 第 1 ポンプ 5 6 0の吐出能力および第 2ポンプ 5 6 2 の吐出能力が変動するにも関わらず、 常に安定したアシスト減速度 G aを発生させることができる。
尚、 上記の実施例においては、 減速度センサ 1 4 6が 「減速度検 出手段」 に相当していると共に、 E C U 1 0力、 上記ステツプ 5 7 4において " G * — G " を演算することにより 「偏差検出手段」 が- 上記ステップ 2 6 4および 5 7 4の処理を実行することにより 「液 圧制御手段」 カ^ それぞれ実現されている。 また、 上記の実施例においては、 液圧センサ 1 4 4が 「ブレーキ 操作量検出手段」 に相当していると共に、 E C U 1 0カ^ 上記ス テツプ 5 7 0の処理を実行することにより 「目標減速度設定手段」 および 「アシスト減速度加算手段」 カ^ 上記ステップ 5 7 0中で "Κοι - MC" を演算することにより 「基本減速度検出手段」 が- それぞれ実現されている。
更に、 上記の実施例においては、 第 1 ポンプ 5 6 0および第 2ポ ンプ 5 6 2力 「ポンプ」 に相当している。
本発明は具体的に開示された実施例に限定されず、 本発明の範囲 を逸脱することなく様々な変形例及び改良例がなされるであろう。

Claims

請求の範囲
1 . 運転者によって緊急ブレーキ操作が行われた際に、 車両のホ ィルシリ ンダに通常時に比して大きなブレーキ液圧を供給するブ レーキアシスト制御を実行する制動力制御装置において、
車両の減速度を検出する減速度検出手段と、
ブレーキアシスト制御の実行中に発生させるべき目標減速度と、 前記減速度との偏差を検出する偏差検出手段と、
ブレーキアシスト制御の実行中にホイルシリ ンダに供給するブ レーキ液圧を、 前記偏差に基づいて制御する液圧制御手段と、 を備えることを特徴とする制動力制御装置。
2 . 請求項 1記載の制動力制御装置において、
ブレーキ操作量を検出するブレーキ操作量検出手段と、 前記目標減速度を、 前記ブレーキ操作量に基づいて設定する目標 減速度設定手段と、
を備えることを特徴とする制動力制御装置。
3 . 請求項 2記載の制動力制御装置において、
前記目標減速度設定手段が、 前記ブレーキ操作量に基づいて通常 時に得られる減速度を検出する基本減速度検出手段と、
前記減速度と所定のアシスト減速度とを加算して前記目標減速度 を演算するアシスト減速度加算手段と、
を備えることを特徴とする制動力制御装置。
4 . 請求項 1記載の制動力制御装置において、
何れかの車輪に過大なスリ ップ率が発生した場合にその車輪のホ ィルシリ ンダ圧 P w/C の減圧を図る A B S制御を実行する A B S機 構を備えると共に、 前記液圧制御手段が、 前記減速度が前記目標減速度に比して小さ い場合でも、 前記 A B S制御が実行されている場合はホイルシリ ン ダ圧 P w/c の増圧を禁止する A B S連動増圧禁止手段を備えること を特徴とする制動力制御装置。
5 . 請求項 4記載の制動力制御装置において、
前記 A B S連動増圧禁止手段が、 前記 A B S制御が左右前輪の少 なく とも一方について実行されている場合にホイルシリ ンダ圧 P w/ c の増圧を禁止することを特徴とする制動力制御装置。
6 . 請求項 1記載の制動力制御装置において、
前記液圧制御手段が、 ホイルシリ ンダに供給するブレーキ液圧を、 前記偏差と運転者によるブレーキ操作とに基づいて制御することを 特徴とする制動力制御装置。
7 . 請求項 6記載の制動力制御装置において、
前記液圧制御手段が、 前記減速度が前記目標減速度に比して第 1 所定値を超えて大きく、 かつ、 ブレーキ操作速度が第 2所定値以下 である場合に、 全ての車輪のホイルシリ ンダと全ての液圧源とを遮 断する補正保持手段を備えることを特徴とする制動力制御装置。
8 . 請求項 7記載の制動力制御装置において、
前記液圧制御手段が、 制動力の増減を意図するブレーキ操作が実 行された場合に、 前記補正保持手段によるブレーキ液圧の補正を中 止する補正保持中止手段を備えることを特徴とする制動力制御装置 c
9 . 請求項 6記載の制動力制御装置において、
前記液圧制御手段が、 前記減速度が前記目標減速度に比して第 3 所定値を超えて小さく、 かつ、 ブレーキ操作速度が第 4所定値以上 である場合に、 ホイルシリ ンダに供給するブレーキ液圧を増圧補正 する補正増圧手段を備えることを特徴とする制動力制御装置。
1 0 . 請求項 9記載の制動力制御装置において、
前記液圧制御手段が、 制動力の増減を意図するブレーキ操作が実 行された場合に、 前記補正増圧手段によるブレーキ液圧の補正を中 止する補正増圧中止手段を備えることを特徴とする制動力制御装置 (
1 1 . 請求項 1記載の制動力制御装置において、
ホイルシリ ンダに連通するマスタシリ ンダと、
ホィルシリ ンダに連通するポンプとを備えると共に、
前記ブレーキアシスト制御の実行中は、 前記ポンプが前記マスタ シリ ンダから吸入したブレーキフルードを前記ホィルシリ ンダに供 給することを特徴とする制動力制御装置。
PCT/JP1998/000797 1997-03-06 1998-02-26 Regulateur de freinage WO1998039186A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69830710T DE69830710T2 (de) 1997-03-06 1998-02-26 Bremskraftkontroller
EP98905672A EP0965508B1 (en) 1997-03-06 1998-02-26 Braking force controller
US09/331,910 US6312064B1 (en) 1997-03-06 1998-02-26 Braking force controller

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/52074 1997-03-06
JP5207497 1997-03-06
JP18396497A JP3454092B2 (ja) 1997-03-06 1997-07-09 制動力制御装置
JP9/183964 1997-07-09

Publications (1)

Publication Number Publication Date
WO1998039186A1 true WO1998039186A1 (fr) 1998-09-11

Family

ID=26392683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000797 WO1998039186A1 (fr) 1997-03-06 1998-02-26 Regulateur de freinage

Country Status (5)

Country Link
US (1) US6312064B1 (ja)
EP (1) EP0965508B1 (ja)
JP (1) JP3454092B2 (ja)
DE (1) DE69830710T2 (ja)
WO (1) WO1998039186A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715940B2 (en) 1999-04-06 2014-05-06 Wisconsin Alumni Research Foundation Method of making recombinant influenza virus
JP2001010467A (ja) * 1999-06-25 2001-01-16 Honda Motor Co Ltd 車両用ブレーキ制御装置
JP4543484B2 (ja) * 2000-03-07 2010-09-15 株式会社アドヴィックス ブレーキ液圧制御装置
JP2001260833A (ja) * 2000-03-16 2001-09-26 Unisia Jecs Corp ブレーキ制御装置
JP3513096B2 (ja) * 2000-09-25 2004-03-31 トヨタ自動車株式会社 アキュムレータおよびアキュムレータの異常検出装置
DE10118707A1 (de) 2001-04-12 2002-10-17 Bosch Gmbh Robert Verfahren zur Kollisionsverhinderung bei Kraftfahrzeugen
DE10118708A1 (de) * 2001-04-12 2002-10-17 Bosch Gmbh Robert Verfahren zur Regelung der Geschwindigkeit eines Kraftfahrzeugs
DE102004027508A1 (de) * 2004-06-04 2005-12-22 Robert Bosch Gmbh Hydraulische Bremsanlage und Verfahren zur Beeinflussung einer hydraulischen Bremsanlage
JP4705519B2 (ja) * 2005-07-28 2011-06-22 日信工業株式会社 車両用ブレーキ圧制御装置
JP4978503B2 (ja) 2008-02-18 2012-07-18 トヨタ自動車株式会社 車輌用制動装置
JP5332902B2 (ja) * 2009-05-25 2013-11-06 トヨタ自動車株式会社 ブレーキ制御装置
DE102010064058B4 (de) * 2010-12-23 2016-06-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs
FR2971460B1 (fr) * 2011-02-14 2015-05-22 Renault Sa Systeme et procede de freinage d'un vehicule a traction electrique ou hybride
US9802593B2 (en) * 2011-06-07 2017-10-31 Bendix Commercial Vehicle Systems Llc Multi-pressure valve controller and method for a vehicle braking system
KR102403612B1 (ko) * 2017-04-24 2022-05-31 주식회사 만도 전자식 브레이크 시스템 및 그 제어 방법
JP7362926B2 (ja) * 2020-06-23 2023-10-17 ナブテスコ株式会社 ブレーキ制御装置及びブレーキ制御システム
JP2022154618A (ja) 2021-03-30 2022-10-13 本田技研工業株式会社 運転支援装置、運転支援方法、及びプログラム

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268560A (ja) * 1985-05-22 1986-11-28 Nissan Motor Co Ltd ブレ−キ倍力装置
JPH0550908A (ja) * 1991-08-15 1993-03-02 Akebono Brake Res & Dev Center Ltd 自動ブレーキ装置
JPH05254411A (ja) * 1992-03-16 1993-10-05 Nabco Ltd エアブレーキシステムおよびこれに用いるリレーバルブ
JPH05262212A (ja) * 1992-03-18 1993-10-12 Toyota Motor Corp 車両制動方法
JPH05319235A (ja) * 1992-05-20 1993-12-03 Mazda Motor Corp 車両の自動制動装置
JPH05319233A (ja) * 1992-05-20 1993-12-03 Mazda Motor Corp 車両の総合制御装置
US5350225A (en) * 1992-03-17 1994-09-27 Mercedes-Benz Ag Road vehicle brake-pressure control device
JPH07315187A (ja) * 1994-05-27 1995-12-05 Fuji Heavy Ind Ltd 自動ブレーキ装置の制御方法
WO1995032878A1 (de) * 1994-05-26 1995-12-07 Itt Automotive Europe Gmbh Verfahren zum regeln des bremsdruckes
JPH082286A (ja) * 1994-06-23 1996-01-09 Isuzu Motors Ltd 車両の速度制御装置
JPH0885431A (ja) * 1994-09-20 1996-04-02 Sumitomo Electric Ind Ltd 車両の制動力制御装置
US5505526A (en) * 1992-05-26 1996-04-09 Lucas Industries Public Limited Company Adjusting actual brake pressure to match stored pressure values associated with a brake pedal position
JPH08164837A (ja) * 1994-12-15 1996-06-25 Mitsubishi Motors Corp 車両の制動警報装置
JPH08230634A (ja) * 1995-01-21 1996-09-10 Robert Bosch Gmbh アンチロック制御/トラクション制御系の制御方法及び装置
JPH08301098A (ja) * 1995-05-01 1996-11-19 Mitsubishi Motors Corp 車両用制御装置
JPH0930394A (ja) * 1995-07-21 1997-02-04 Robert Bosch Gmbh 車両ブレーキ装置の制御方法および装置
JPH0971236A (ja) * 1995-07-06 1997-03-18 Aisin Seiki Co Ltd アンチスキッド制御装置

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444828A1 (de) * 1984-12-08 1986-06-12 Robert Bosch Gmbh, 7000 Stuttgart Bremskraftverstaerker
US4774667A (en) 1985-04-04 1988-09-27 Nippondenso Co., Ltd. Brake control system for vehicle
US4755008A (en) * 1985-12-25 1988-07-05 Nippondenso Co., Ltd. Braking system with power brake, braking force proportioning, anti-skid, and traction control functions
JP2811105B2 (ja) 1990-01-31 1998-10-15 トキコ株式会社 気圧式倍力装置
DE4028290C1 (ja) 1990-09-06 1992-01-02 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4102497C1 (ja) 1991-01-29 1992-05-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH0597022A (ja) 1991-06-14 1993-04-20 Nisshinbo Ind Inc ブレーキ制御装置および制御方法
DE4234041C1 (de) 1992-10-09 1994-03-17 Daimler Benz Ag Bremsdruck-Steuereinrichtung für ein Straßenfahrzeug
DE4303206C2 (de) * 1993-02-04 2002-08-08 Continental Teves Ag & Co Ohg Verfahren und Schaltungsanordnung zum Bestimmen der Pedalkraft als Regelgröße für eine Bremsanlage mit Blockierschutzregelung
DE4309850C2 (de) * 1993-03-26 1996-12-12 Lucas Ind Plc Bremskraftverstärkersystem zum Regeln eines Bremsdruckes mit einem Bremskraftverstärker
KR100329527B1 (ko) 1993-07-27 2002-10-04 루카스 인더스트리즈 피엘씨 전자제어식부스터를구비한차량브레이크시스템
DE4325940C1 (de) 1993-08-03 1994-12-01 Daimler Benz Ag Verfahren zur Bestimmung des Beginns und des Endes eines automatischen Bremsvorgangs
DE4329140C1 (de) 1993-08-30 1994-12-01 Daimler Benz Ag Bremsdruck-Steuereinrichtung
DE4332838C1 (de) 1993-09-27 1994-12-15 Telefunken Microelectron Verfahren zur Bremsdrucksteuerung für eine Fremdkraftbremsanlage eines Kraftfahrzeugs
DE4338064C1 (de) 1993-11-08 1995-03-16 Daimler Benz Ag Verfahren zur Überwachung der Funktion einer Vorrichtung zur Durchführung eines automatischen Bremsvorganges
DE4338067C1 (de) 1993-11-08 1995-03-16 Daimler Benz Ag Verfahren zum Beenden eines automatischen Bremsvorganges für Kraftfahrzeuge
DE4338066C1 (de) 1993-11-08 1995-04-06 Daimler Benz Ag Verfahren zur Durchführung eines automatischen Bremsvorgangs für Kraftfahrzeuge mit einem Antiblockiersystem
DE4338068C1 (de) 1993-11-08 1995-03-16 Daimler Benz Ag Verfahren zur fahrerabhängigen Bestimmung der Auslöseempfindlichkeit eines automatischen Bremsvorganges für ein Kraftfahrzeug
DE4338070C1 (de) 1993-11-08 1995-02-16 Daimler Benz Ag Vorrichtung zum Beenden eines automatischen Bremsvorgangs bei Kraftfahrzeugen
DE4338069C1 (de) 1993-11-08 1995-03-16 Daimler Benz Ag Verfahren zur Bestimmung der Auslöseempfindlichkeit eines automatischen Bremsvorgangs bei Kfz
DE4338065C2 (de) 1993-11-08 1995-08-10 Daimler Benz Ag Verfahren zur Durchführung eines automatischen Bremsvorgangs für Kraftfahrzeuge mit einem Antiblockiersystems
DE4340467C2 (de) * 1993-11-27 2002-03-14 Bosch Gmbh Robert Mit Fremdkraft arbeitende hydraulische Fahrzeugbremsanlage
DE4343314A1 (de) 1993-12-18 1995-06-22 Bosch Gmbh Robert Fremdkraftbremsanlage
US5539641A (en) 1994-02-14 1996-07-23 General Motors Corporation Brake control system method and apparatus
DE4413172C1 (de) 1994-04-15 1995-03-30 Daimler Benz Ag Verfahren zur fahrsituationsabhängigen Bestimmung der Auslöseempfindlichkeit eines automatischen Bremsvorganges für ein Kraftfahrzeug
DE4415613C1 (de) 1994-05-04 1995-04-27 Daimler Benz Ag Hydraulische Zweikreis-Bremsanlage für ein Straßenfahrzeug
DE4418043C1 (de) 1994-05-24 1995-07-06 Daimler Benz Ag Verfahren zur Bestimmung der Auslöseempfindlichkeit eines automatischen Bremsvorgangs
KR0168492B1 (ko) 1994-06-06 1998-12-15 나까무라 히로까즈 차량용 제동 장치
JP3144218B2 (ja) 1994-06-06 2001-03-12 三菱自動車工業株式会社 車両用制動装置
JP3246204B2 (ja) 1994-07-25 2002-01-15 トヨタ自動車株式会社 車両の自動制動装置
ES2092365T3 (es) 1994-07-27 1996-11-16 Lucas Ind Plc Sistema de freno de vehiculo que tiene un servofreno controlado electronicamente.
JP3878229B2 (ja) * 1994-08-24 2007-02-07 住友電気工業株式会社 車両の減速度制御装置
DE4430461A1 (de) 1994-08-27 1996-02-29 Teves Gmbh Alfred Verfahren zur Steuerung des Bremsdrucks in Abhängigkeit von der Pedalbetätigungsgeschwindigkeit
DE4436819C2 (de) 1994-10-14 1998-09-24 Lucas Ind Plc Elektronisch gesteuerte Fahrzeugbremsanlage und Verfahren zu deren Betrieb
DE4438966C1 (de) 1994-10-31 1995-12-21 Daimler Benz Ag Verfahren zur Bestimmung des Beginns eines automatischen Bremsvorgangs
DE4440291C1 (de) 1994-11-11 1995-12-21 Telefunken Microelectron Verfahren zur Steuerung des Bremsprozesses bei einem Kraftfahrzeug
DE4440290C1 (de) 1994-11-11 1995-12-07 Daimler Benz Ag Verfahren zur Bestimmung eines Auslöseschwellenwertes für einen automatischen Bremsvorgang
DE19503202C1 (de) 1995-02-02 1996-04-04 Daimler Benz Ag Verfahren zum Beenden eines automatischen Bremsvorganges
JP3438401B2 (ja) 1995-04-28 2003-08-18 トヨタ自動車株式会社 車両用制動圧制御装置
DE19515842A1 (de) * 1995-04-29 1996-10-31 Teves Gmbh Alfred Sollwertgeber
JP3069268B2 (ja) 1995-06-08 2000-07-24 ボッシュ ブレーキ システム株式会社 ブレーキシステム
DE19524939C2 (de) * 1995-07-08 1997-08-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
JP3579968B2 (ja) * 1995-07-20 2004-10-20 アイシン精機株式会社 車両用ブレーキ制御装置
JP3811972B2 (ja) * 1995-10-30 2006-08-23 アイシン精機株式会社 自動車用制動液圧制御装置
DE69612074T2 (de) 1995-12-27 2001-09-27 Denso Corp., Kariya Bremssteuerungsvorrichtung für ein Kraftfahrzeug
JPH09263233A (ja) * 1996-03-27 1997-10-07 Denso Corp 車両用ブレーキ装置
JPH09286324A (ja) * 1996-04-23 1997-11-04 Toyota Motor Corp 制動力制御装置
JP3528418B2 (ja) * 1996-04-25 2004-05-17 トヨタ自動車株式会社 制動力制御装置
US5890776A (en) 1996-04-26 1999-04-06 Denso Corporation Braking apparatus for automotive vehicles
EP0803421B1 (en) 1996-04-26 2001-11-07 Denso Corporation Brake apparatus for a vehicle
AU3006997A (en) * 1996-05-15 1997-12-05 Kelsey-Hayes Company Hydraulic brake booster
DE19620540C2 (de) * 1996-05-22 2001-06-13 Lucas Automotive Gmbh Elektronisch steuerbare Bremsanlage
JP4132140B2 (ja) * 1996-09-10 2008-08-13 株式会社デンソー 車両用ブレーキ装置
US5762407A (en) 1997-03-14 1998-06-09 General Motors Corporation Brake system control method and apparatus
JP3433786B2 (ja) * 1997-07-08 2003-08-04 トヨタ自動車株式会社 制動力制御装置
DE19838570B4 (de) * 1997-08-26 2005-01-05 Aisin Seiki K.K., Kariya Bremsregelsystem für ein Fahrzeug
DE19742988C1 (de) * 1997-09-29 1999-01-28 Siemens Ag Bremsanlage für ein Kraftfahrzeug
DE19851996A1 (de) * 1997-11-11 1999-05-12 Akebono Brake Ind Steuersystem für eine Fahrzeugbremse
JP3644222B2 (ja) 1997-11-28 2005-04-27 トヨタ自動車株式会社 制動制御装置
JPH11301462A (ja) * 1998-04-16 1999-11-02 Toyota Motor Corp 車輌の制動力制御装置の異常判定装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268560A (ja) * 1985-05-22 1986-11-28 Nissan Motor Co Ltd ブレ−キ倍力装置
JPH0550908A (ja) * 1991-08-15 1993-03-02 Akebono Brake Res & Dev Center Ltd 自動ブレーキ装置
JPH05254411A (ja) * 1992-03-16 1993-10-05 Nabco Ltd エアブレーキシステムおよびこれに用いるリレーバルブ
US5350225A (en) * 1992-03-17 1994-09-27 Mercedes-Benz Ag Road vehicle brake-pressure control device
JPH05262212A (ja) * 1992-03-18 1993-10-12 Toyota Motor Corp 車両制動方法
JPH05319235A (ja) * 1992-05-20 1993-12-03 Mazda Motor Corp 車両の自動制動装置
JPH05319233A (ja) * 1992-05-20 1993-12-03 Mazda Motor Corp 車両の総合制御装置
US5505526A (en) * 1992-05-26 1996-04-09 Lucas Industries Public Limited Company Adjusting actual brake pressure to match stored pressure values associated with a brake pedal position
WO1995032878A1 (de) * 1994-05-26 1995-12-07 Itt Automotive Europe Gmbh Verfahren zum regeln des bremsdruckes
JPH07315187A (ja) * 1994-05-27 1995-12-05 Fuji Heavy Ind Ltd 自動ブレーキ装置の制御方法
JPH082286A (ja) * 1994-06-23 1996-01-09 Isuzu Motors Ltd 車両の速度制御装置
JPH0885431A (ja) * 1994-09-20 1996-04-02 Sumitomo Electric Ind Ltd 車両の制動力制御装置
JPH08164837A (ja) * 1994-12-15 1996-06-25 Mitsubishi Motors Corp 車両の制動警報装置
JPH08230634A (ja) * 1995-01-21 1996-09-10 Robert Bosch Gmbh アンチロック制御/トラクション制御系の制御方法及び装置
JPH08301098A (ja) * 1995-05-01 1996-11-19 Mitsubishi Motors Corp 車両用制御装置
JPH0971236A (ja) * 1995-07-06 1997-03-18 Aisin Seiki Co Ltd アンチスキッド制御装置
JPH0930394A (ja) * 1995-07-21 1997-02-04 Robert Bosch Gmbh 車両ブレーキ装置の制御方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0965508A4 *

Also Published As

Publication number Publication date
US6312064B1 (en) 2001-11-06
EP0965508A1 (en) 1999-12-22
JPH10305767A (ja) 1998-11-17
EP0965508B1 (en) 2005-06-29
JP3454092B2 (ja) 2003-10-06
DE69830710D1 (de) 2005-08-04
EP0965508A4 (en) 2000-05-24
DE69830710T2 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
WO1998039186A1 (fr) Regulateur de freinage
JP4332962B2 (ja) 車両用ブレーキシステム
JP4602428B2 (ja) バーハンドル車両用ブレーキ液圧制御装置
JP3287259B2 (ja) 制動力制御装置
GB2289098A (en) Anti-lock brake system for a road vehicle
JP2002255018A (ja) ブレーキシステム
WO1997039926A1 (fr) Regulateur de puissance de freinage
JPH1120640A (ja) 制動力制御装置
WO1997039932A1 (fr) Regulateur de puissance de freinage
JP3454078B2 (ja) 制動力制御装置
JP2003507258A (ja) スリップコントロール装置を備えている車両ブレーキ装置を作動する方法
JP2001071878A (ja) 制動力制御装置
WO1998039185A1 (fr) Regulateur de freinage
JP3296235B2 (ja) 制動力制御装置
JPH09290719A (ja) 制動力制御装置
JP3887852B2 (ja) ブレーキ制御装置
JP2004168078A (ja) 制動力制御装置
JP3296236B2 (ja) 制動力制御装置
JP3451874B2 (ja) 制動力制御装置
JP2000016259A (ja) ブレーキ制御装置
JP3451876B2 (ja) 制動力制御装置
JP3454091B2 (ja) 制動力制御装置
JP3451875B2 (ja) 制動力制御装置
JP2017178156A (ja) 車両の制動制御装置
JP2004217131A (ja) 制動システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998905672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09331910

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998905672

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998905672

Country of ref document: EP