TWI430371B - 具有空腔界定閘之裝置及其製造方法 - Google Patents

具有空腔界定閘之裝置及其製造方法 Download PDF

Info

Publication number
TWI430371B
TWI430371B TW098107482A TW98107482A TWI430371B TW I430371 B TWI430371 B TW I430371B TW 098107482 A TW098107482 A TW 098107482A TW 98107482 A TW98107482 A TW 98107482A TW I430371 B TWI430371 B TW I430371B
Authority
TW
Taiwan
Prior art keywords
forming
gate
sacrificial material
fin
cavity
Prior art date
Application number
TW098107482A
Other languages
English (en)
Other versions
TW200947565A (en
Inventor
Werner Juengling
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW200947565A publication Critical patent/TW200947565A/zh
Application granted granted Critical
Publication of TWI430371B publication Critical patent/TWI430371B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7856Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with an non-uniform gate, e.g. varying doping structure, shape or composition on different sides of the fin, or different gate insulator thickness or composition on opposing fin sides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Thin Film Transistor (AREA)

Description

具有空腔界定閘之裝置及其製造方法
本發明之實施例大體係關於電子裝置,且更具體言之,在特定實施例中,係關於鰭式場效電晶體。
鰭式場效電晶體(finFET)經常建置於自基板整體垂直地上升之鰭片(例如,高薄半導電構件)周圍。通常,閘極藉由保形地沿著鰭片之一側向上、越過頂部且沿著鰭片之另一側向下而橫越鰭片。在一些情況下,閘極經安置成與鰭片之側相抵且不越過頂部而延伸。通常,源極與汲極位於閘極之在鰭片之末端附近之相對側上。在操作中,穿過源極與汲極之間的鰭片的電流係藉由選擇性地激發閘極而加以控制。
一些finFET包括藉由側壁隔片製程而形成之閘極。在此製程之一些型式中,藉由以保形導電薄膜來覆蓋鰭片且接著各向異性地蝕刻導電薄膜而形成閘極。在蝕刻期間,導電材料自水平表面比自垂直表面更快速地被移除。因此,導電材料之一部分保持與鰭片之垂直側壁相抵,藉此形成閘極。此製程之優點在於:相對於藉由經常經受對準及解析度約束之光微影而圖案化之閘極,可形成相對較窄閘極。
儘管藉由側壁隔片製程而形成閘極會避免一些製程問題,但其可引入其他故障機制。經常,由於鰭片係藉由為較不完全地各向異性之蝕刻步驟而形成,故鰭片之側壁成角度而非垂直。此等成角度側壁可使用於側壁隔片製程之製程窗口變窄,且在一些狀況下可將其關閉。該等角度將相鄰鰭片之基底置放成更接近於彼此,且當保形薄膜沈積於此較窄間隙中時,薄膜之覆蓋相鄰側壁之部分可接合,從而在間隙中形成具有較大垂直厚度之薄膜。薄膜可在間隙中變得如此厚,以致於側壁隔片蝕刻未移除相鄰閘極之間的所有導電薄膜。所得導電殘餘物形成使相鄰finFET短路且降低產率之縱樑(stringer)。
以上所論述之一些問題可藉由新製造製程之特定實施例而得以減輕。在以下所描述之一實施例中,閘極係沿著鰭片之側而形成於絕緣孔洞中。此實施例之孔洞係藉由形成呈閘極之形狀的碳質模具、藉由絕緣體而覆蓋碳質模具且接著藉由燃燒模具而自絕緣體下方移除碳質模具進行建構。所得空腔接著至少部分地填充有閘極絕緣體及導電閘極材料以形成電晶體。由於空腔係在閘極形成之前彼此絕緣,故閘極被認為係不太可能對其他閘極造成短路。以下參考圖1至圖24來描述此製程及其他製程。
如由圖1所說明,製造製程藉由提供基板110而開始。基板110可包括半導電材料,諸如,單晶矽或多晶矽、砷化鎵、磷化銦,或具有半導體性質之其他材料。或者,或另外,基板110可包括可建構有電子裝置之非半導體表面,諸如,塑料或陶瓷工作表面。術語「基板」涵蓋在各種製造階段中之主體,包括未經處理之全晶圓、經部分處理之全晶圓、經完全處理之全晶圓、經分割晶圓之一部分,或已封裝電子裝置中之經分割晶圓之一部分。
在此實施例中,基板110包括上部摻雜區域112及下部摻雜區域114。上部摻雜區域112與下部摻雜區域114可經不同地摻雜。舉例而言,上部摻雜區域112可包括n+材料且下部摻雜區域114可包括p-材料。上部摻雜區域112之深度可在基板110之一實質部分上(諸如,貫穿(例如)記憶體裝置之陣列區域之一實質部分)為整體均一的。上部摻雜區域112及下部摻雜區域114可藉由植入摻雜物材料或使摻雜物材料擴散而形成。或者,或另外,此等區域112及/或114中之一者或兩者可在基板110之全部或一部分之生長或沈積期間(諸如,在半導電材料之磊晶沈積期間或在晶圓可被切割自之半導電鑄錠之生長期間)被摻雜。如以下所解釋,上部摻雜區域112可提供用以形成電晶體之源極及汲極的材料,且下部摻雜區域114可提供用以形成電晶體之通道的材料。
緊接著,如由圖2所說明,形成深溝槽光罩116,且如由圖3所說明,蝕刻深隔離溝槽118。深溝槽光罩116可為光阻或硬式光罩,且深溝槽光罩116可藉由光微影設備或其他類型之微影設備(諸如,奈米壓印系統或電子束系統)而進行圖案化。深溝槽光罩116包括具有通常等於或小於1/4 F、1/2 F或F之寬度120的整體線性且整體平行之經曝光區域,及具有通常等於或小於3/4 F、3/2 F或3 F之寬度122的經遮蔽區域,其中F為用以使深溝槽光罩116圖案化之系統的解析度。
在一些實施例中,深溝槽光罩116係藉由對光罩(未圖示)進行雙間距而形成。在該製程之一實例中,深溝槽光罩116係首先藉由遮蔽每隔一對經曝光區域之間的區域且接著在對應於經曝光區域中之每一者之區域上在光罩之側上形成多晶矽側壁隔片而形成。接著,初始光罩可經移除且諸如氧化物之硬式光罩材料可沈積於剩餘多晶矽側壁隔片上,且硬式光罩材料可經回蝕或藉由化學機械拋光(CMP)而進行平坦化以曝光多晶矽。緊接著,多晶矽可經選擇性地蝕刻以形成經曝光區域(由圖2所說明之氧化物硬式光罩)。由於經曝光區域之寬度122通常係由側壁隔片之寬度界定,故在一些實施例中,寬度122可小於F。
如由圖3所說明,可蝕刻基板110之由光罩116所曝光之區域以形成深隔離溝槽118。在此實施例中,蝕刻為整體各向異性乾式蝕刻。深隔離溝槽118可在Y方向上整體橫向地延伸且在Z方向上向下延伸。深隔離溝槽118可具有整體矩形或梯形橫截面,且在一些實施例中,其橫截面經由在Y方向上之某一距離而可為整體均一的。
緊接著,在本實施例中,移除深溝槽光罩116,且使深隔離溝槽118填充有介電質,如由圖4所說明。深溝槽光罩116可藉由各種技術(諸如,使光阻與氧在熔爐中或在電漿蝕刻室中進行反應或選擇性地濕式蝕刻光罩材料)而被移除。在一些實施例中,在填充深隔離溝槽118之後移除深溝槽光罩116。在其他實施例中,可在填充深隔離溝槽118之前移除深溝槽光罩116。舉例而言,介電覆蓋層(overburden)可皆沈積於深溝槽光罩116上及深隔離溝槽118中,且深溝槽光罩116可在化學機械拋光(CMP)期間充當終止區域以移除覆蓋層。深隔離溝槽118可部分地或全部地填充有各種介電材料(諸如,高密度電漿(HDP)氧化物、旋塗式玻璃(SOG)或正矽酸四乙酯(TEOS))以電隔離特徵。為了進一步隔離特徵,在一些實施例中,可在填充溝槽118之前藉由經選擇以增強隔離之摻雜物而植入深隔離溝槽118之底部。另外,深隔離溝槽118可包括諸如氮化矽之各種襯墊材料,以消除薄膜應力、改良黏著力或充當障壁材料。
在填充深隔離溝槽118之後,將淺溝槽光罩124形成於基板110上,如由圖5所說明。如同深溝槽光罩116一樣,淺溝槽光罩124可為光阻或硬式光罩,且其可藉由諸如以上所論述之微影系統的各種微影系統而進行圖案化。在一些實施例中,淺溝槽光罩124為藉由類似於以上針對隔離溝槽光罩116所描述之製程的雙間距光罩製程而形成之硬式光罩,除了此光罩在X方向上移位1/2間距之外。所說明之淺溝槽光罩124包括具有可具有通常等於或小於1/4 F、1/2 F或F之寬度之空間126的經曝光區域,及具有可通常等於或小於3/4 F、3/2 F或3 F之寬度128的經覆蓋區域。經曝光區域可為整體線性的、整體平行的,且整體等距地插入於深隔離溝槽118之間。
緊接著,如由圖6所說明,可蝕刻基板110之經曝光區域以形成淺溝槽130。淺溝槽130可為整體線性的、整體平行的、整體在Y方向上整體橫向地延伸,且在Z方向上整體向下延伸,且因此,可整體平行於深隔離溝槽118。在此實施例中,淺溝槽130係藉由整體各向異性乾式蝕刻而形成且深於上部摻雜區域112,但不與深隔離溝槽118一樣深。淺溝槽130可具有整體矩形或整體梯形輪廓,其在Y方向上在一實質距離內為整體均一的。
如由圖7所說明,使淺溝槽130填充有諸如氮化物之犧牲材料。在此實施例中,淺溝槽130填充有與填充深隔離溝槽118之材料不同的材料,使得可在後續步驟中在未自深隔離溝槽118移除材料之實質量的情況下選擇性地蝕刻淺溝槽130。然而,在其他實施例中,此等溝槽118及130可包括相同材料。
緊接著,如由圖8所說明,形成鰭片光罩132。鰭片光罩132可由光阻製成,或其可為硬式光罩。鰭片光罩132可藉由以上所描述之微影系統中之任一者或其他微影系統而進行圖案化。在此實施例中,鰭片光罩132界定具有寬度134之經遮蔽區域及具有寬度136之經曝光區域。寬度134可通常等於或小於F,且寬度136可通常等於或小於3/2 F。經遮蔽區域可為整體直線的、彼此整體平行,且整體垂直於深隔離溝槽118及淺溝槽130兩者,且在X方向上整體延伸。
在一些實施例中,對鰭片光罩132進行雙間距。如由圖9所說明,可與鰭片光罩132之側壁相抵而形成側壁隔片138。側壁隔片138可藉由將保形薄膜沈積於基板110上且各向異性地蝕刻保形薄膜以將其自水平表面移除而形成。側壁隔片138可由與鰭片光罩132之材料不同的材料製成以促進在後續步驟中選擇性地移除鰭片光罩132。側壁隔片138可具有通常等於或小於1/4F、1/2F或F之寬度140。
緊接著,如由圖10所說明,移除鰭片光罩132,且如由圖11所說明,形成鰭片列142。鰭片光罩132可藉由蝕刻或其他製程而被移除,該其他製程以大體上高於移除基板110之其他材料之速率的速率而選擇性地移除鰭片光罩材料。經曝光側壁隔片138中之每一者可遮蔽通常與鰭片列142之頂部對應的區域。在此實施例中,鰭片列142係藉由整體各向異性蝕刻而蝕刻至深度144,深度144通常大於淺溝槽130之深度,但不與深隔離溝槽118一樣深。鰭片列142可具有整體梯形橫截面,其在X方向上在一實質距離內整體均一地延伸。在其他實施例中,鰭片列142可具有其他輪廓,諸如,整體矩形或彎曲輪廓。
緊接著,如由圖12所說明,可移除隔片138,或在一些實施例中,隔片138可留於鰭片列142上且在後續步驟期間被移除。
圖13及圖14說明可與鰭片列142之側壁相抵而形成之犧牲材料146(其在此實施例中充當模具且可被稱作模具)。犧牲材料146可藉由側壁隔片製程而形成。犧牲材料146可由可在隨後參考圖18而描述之處理傳導(procession conduction)下變得可流動(例如,其可變成諸如氣體或液體之流體)之材料形成。拋棄式模具材料之實例包括碳及特定聚合物,其皆可藉由將其與氧在熔爐中進行反應而作為氣體自基板110被移除。保形薄膜可沈積於基板110上,從而覆蓋上部摻雜區域112及下部摻雜區域114,且隨後經各向異性地蝕刻。側壁隔片蝕刻可移除下部摻雜區域114之一部分以形成凹部148。凹部148可具有通常等於或小於1 F、1/2 F或1/4 F之寬度150。如以下所解釋,繼續側壁隔片蝕刻直至其形成凹部148被認為係用以減少藉由模具146而形成之閘極對彼此造成短路之可能性。在此實施例中,犧牲材料146在上部摻雜區域112之底部上方延伸且具有可小於或通常等於1 F、1/2 F或1/4 F之寬度152。
在形成犧牲材料146之後,可將介電區域154形成於犧牲材料146上,如由圖15所說明。在一些實施例中,介電區域154可為藉由諸如原子層沈積(ALD)之低溫製程而沈積之氧化物。所說明之介電質154大體上或全部地包封犧牲材料146且包括覆蓋層156。
在由圖16所說明之平坦化步驟中消耗覆蓋層156。基板110可藉由回蝕、CMP或其他製程而進行平坦化。在一些實施例中,可移除覆蓋層156,直至曝光上部摻雜區域112之頂部、深隔離溝槽118及淺溝槽130。介電區域154與此等結構112、118及130之間的轉變可產生向用以對基板110進行平坦化之製程觸發端點的現象。舉例而言,此轉變可得到基板110之光學性質(諸如,顏色)的改變、離開基板110之廢料之化學性質(諸如,蝕刻室中之廢氣或漿料pH值)的改變,或基板110之機械性質(諸如,滑動摩擦)的改變。
緊接著,如由圖17所說明,可移除淺溝槽130中之材料的至少一部分。在一些實施例中,此材料為氮化物,且其係藉由相對於矽及氧化物為選擇性以避免損失此等材料之實質量的乾式蝕刻而被移除。清除淺溝槽130之至少一部分會打開通向犧牲材料146之側壁158的通路,且此通路可促進移除犧牲材料146。
如由圖18所說明,可藉由經由淺隔離溝槽130之打開通路而移除犧牲材料146。為了移除犧牲材料146,可將基板110在(例如)電漿蝕刻室中曝光至氧電漿或在熔爐中曝光至氧。電漿或其他反應物經由淺隔離溝槽130而流入且(例如)藉由燃燒犧牲材料146而與犧牲材料146之側壁158進行反應。在一些實施例中,反應之副產物為氣體,例如,蒸汽、一氧化碳及二氧化碳,且氣體經由淺隔離溝槽130而回流出。在一些實施例中,繼續燃燒,直至燃盡實質部分或大體上整個犧牲材料146且形成空腔160。所得空腔160在一側上係由介電質154界限且在另一側上係由鰭片列142界限。
空腔160之形狀係由圖19說明,圖19說明在不具有基板110之其他部分之情況下的空腔160。空腔160中之每一者可包括兩個整體反射對稱、整體線性且整體平行之空隙162及164以及複數個溝槽區段166。所說明之溝槽區段166安置於空隙162及164之頂部部分中且將空隙162與164彼此接合。相鄰空腔160可藉由介電質154(圖18)而彼此大體上或全部地分離。
緊接著,如由圖20所說明,可將閘極介電質166形成於空腔160內。閘極介電質166可(例如)藉由CVD而沈積或藉由將基板110曝光至氧而生長。在所說明實施例中,閘極介電質166係藉由將基板110之矽部分與氧進行反應而生長,因此,閘極介電質166安置於鰭片列142之經曝光表面(包括淺溝槽130之表面)上。進行反應以形成閘極介電質166之氧或其他化學品經由溝槽區段166而流入至空腔160中且與線性空隙162及164(圖19)內之表面進行反應。在各種實施例中,閘極介電質166可由各種材料製成,包括氧化物、氮氧化物、鉿基高k介電質,或其他適當材料。
一旦形成閘極介電質166,便可將閘極材料沈積於空腔166內以形成閘極168,如由圖21、圖22及圖23所說明。所說明之閘極168可藉由沈積氮化鈦或其他適當導電材料而形成。閘極材料可藉由氣相反應物而輸送至基板110且輸送至空腔166中。反應物可經由淺溝槽130而流入至空腔166中且在空腔166之表面上進行反應。在一些實施例中,閘極材料在填充空腔166之前關閉淺溝槽130,藉此留下空隙170。閘極材料之覆蓋層可形成於基板110之表面上,且覆蓋層可藉由濕式蝕刻、乾式蝕刻或CMP製程而被移除。
圖24為藉由以上所描述製程而形成之電晶體171之實例的分解透視圖。然而,應注意,本技術不限於電晶體,且可用以形成諸如電容器或浮動閘極電晶體之其他裝置。所說明之電晶體171包括鰭片172、閘極介電質166及閘極168。所說明之鰭片172包括藉由與淺溝槽130對應之整體U形狹槽178而分離之兩個支柱174及176。鰭片172之遠端部分係由上部摻雜區域112製成,且鰭片172之下部部分係由下部摻雜區域114製成。邊緣180及182通常係由深隔離溝槽118界定且可長於鰭片172之側184及185。所說明之閘極166經安置成與側184及185以及狹槽178之表面皆相鄰。
在所說明實施例中,閘極168包括兩個側閘極186及188以及頂部閘極190。兩個側閘極186及188為整體反射對稱的且皆整體在X方向上延伸,其在一實質距離內具有整體均一橫截面。除了空隙170之外,側閘極186及188之形狀與犧牲材料146之形狀整體互補。所說明之頂部閘極190在Y方向上具有整體均一橫截面且其將側閘極186與188彼此接合。頂部閘極190可通常為固體、不具有空隙,或在一些實施例中,頂部閘極190亦可包括空隙。側閘極186經安置成與鰭片172之側185至少部分地相鄰,頂部閘極190經安置成至少部分地在狹槽178內,且側閘極188經安置成與鰭片172之側184至少部分地相鄰。由於閘極168經安置成與鰭片172之兩個側及頂部部分相鄰,故所說明之電晶體171可經特性化為三閘極電晶體。
在操作中,兩個支柱174及176可充當源極及汲極,且電晶體171可根據閘極168之電壓而選擇性地控制電流在源極與汲極之間的流動。所說明之電晶體171包括三個通道:由箭頭192所表示之整體水平通道,及由箭頭194所表示之兩個整體垂直通道。可藉由自頂部閘極190發散之電場而建立整體水平通道192,且可藉由自兩個側閘極186及188發散之電場而建立整體垂直通道194。
雖然本發明可易受各種修改及替代形式,但已在圖式中藉由實例而展示特定實施例且本文中已詳細地描述特定實施例。然而,應理解,本發明不意欲限於所揭示之特定形式。更確切而言,本發明將涵蓋屬於如由以下隨附申請專利範圍所界定之本發明之精神及範疇的所有修改、均等物及替代物。
110...基板
112...上部摻雜區域
114...下部摻雜區域
116...深溝槽光罩
118...深隔離溝槽
120...寬度
122...寬度
124...淺溝槽光罩
126...空間
128...寬度
130...淺隔離溝槽
132...鰭片光罩
134...寬度
136...寬度
138...側壁隔片
140...寬度
142...鰭片列
144...深度
146...犧牲材料/模具
148...凹部
150...寬度
152...寬度
154...介電區域/介電質
156...覆蓋層
158...側壁
160...空腔
162...空隙
164...空隙
166...溝槽區段/閘極介電質/空腔
168...閘極
170...空隙
171...電晶體
172...鰭片
174...支柱
176...支柱
178...U形狹槽
180...邊緣
182...邊緣
184...側
185...側
186...側閘極
188...側閘極
190...頂部閘極
192...整體水平通道
194...整體垂直通道
X...方向
Y...方向
Z...方向
圖1至圖24說明根據本技術之一實施例之製造製程的實例。
112...上部摻雜區域
114...下部摻雜區域
166...溝槽區段/閘極介電質/空腔
168...閘極
170...空隙
172...鰭片
174...支柱
176...支柱
178...U形狹槽
180...邊緣
182...邊緣
184...側
185...側
186...側閘極
188...側閘極
190...頂部閘極
192...整體水平通道
194...整體垂直通道
X...方向
Y...方向
Z...方向

Claims (25)

  1. 一種製造具有空腔界定閘之裝置之方法,其包含:形成一溝槽於一基底中;形成一第一犧牲材料於該溝槽中;形成一半導體鰭片,其中該半導體鰭片垂直於該溝槽;形成一與該半導體鰭片相鄰之第二犧牲材料;藉由一介電材料而覆蓋該第二犧牲材料;藉由移除該第一犧牲材料之至少一部分以形成一通路至該第二犧牲材料;不藉由通過該通路實質上移除該介電材質而藉由自該介電材料下方移除該第二犧牲材料以形成一空腔;及在該空腔中形成一閘極。
  2. 如請求項1之方法,其中形成該第二犧牲材料包含:形成一與該半導體鰭片相鄰之側壁隔片。
  3. 如請求項2之方法,其中形成該側壁隔片包含:形成一碳側壁隔片。
  4. 如請求項1之方法,其中移除該第二犧牲材料包含:通過該通路曝光該第二犧牲材料之至少一部分;及將該第二犧牲材料之至少一部分轉換成一流體。
  5. 如請求項1之方法,其中形成該通路包含:藉由化學機械拋光而移除安置於該第一犧牲材料上之該介電材料中之一些而非全部。
  6. 如請求項1之方法,其中形成該通路包含:移除該介電 材料,直至至少部分地曝光該第一犧牲材料之一部分。
  7. 如請求項4之方法,其中將該第二犧牲材料之至少一部分轉換成該流體包含:燃燒該第二犧牲材料之至少一實質部分。
  8. 如請求項1之方法,其中形成該空腔包含:在該半導體鰭片之任一側上形成整體線性空隙;及形成在該等整體線性空隙之間延伸之溝槽區段。
  9. 如請求項1之方法,其中在該空腔中形成該閘極包含:藉由將一反應物氣體流入至複數個開口中而進入該空腔中而形成一橫越該半導體鰭片之至少三個側的閘極。
  10. 一種具有空腔界定閘之裝置,其包含:一鰭片列,其包含複數個鰭式場效電晶體;一閘極,其經安置成與該鰭片列相鄰,其中該閘極包含:沿著該鰭片之一第一側形成之一第一中空側閘極;沿著該鰭片之一第二側形成之一第二中空側閘極,該第二側係相對於該第一側。
  11. 如請求項10之裝置,其中該閘極包含複數個溝槽區段,該等溝槽區段橫越複數個該等鰭式場效電晶體之一遠端部分。
  12. 如請求項10之裝置,其中該複數個鰭式場效電晶體當中之每一鰭式場效電晶體包含三個通道。
  13. 如請求項10之裝置,其中該複數個鰭式場效電晶體當中之每一鰭式場效電晶體包含一整體U形遠端部分。
  14. 如請求項10之裝置,其中該複數個鰭式場效電晶體當中之每一鰭式場效電晶體之一鰭片寬度小於光微影解析度極限。
  15. 一種於一裝置中形成空腔之方法,其包含:形成一第一犧牲材料於一半導體鰭片上之一溝槽中;形成一第二犧牲材料,其中該第二犧牲材料安置於相鄰該半導體鰭片;藉由一介電材料而覆蓋該第二犧牲材料;不藉由實質上移除該介電材料而藉由移除該第一犧牲材料以致能接近並移除該第二犧牲材料。
  16. 如請求項15之方法,其中該第二犧牲材料包含非晶碳、光阻或此兩者。
  17. 如請求項15之方法,其中該第二犧牲材料包含:一第一側壁隔片,該第一側壁隔片經安置成與該半導體鰭片之一側相抵;及一第二側壁隔片,該第二側壁隔片經安置成與該半導體鰭片之另一側相抵。
  18. 如請求項17之方法,其中該第一犧牲材料包含一安置於自該半導體鰭片延伸之兩個支柱之間的溝槽區段。
  19. 如請求項18之方法,其中該第一側壁隔片係藉由該溝槽區段而耦接至該第二側壁隔片。
  20. 如請求項15之方法,其包含:藉由移除該第二犧牲材料以於該介電材料下方形成一空腔並於該空腔中形成一閘極以界定與該半導體鰭片相鄰之該閘極。
  21. 一種具有空腔界定閘之裝置,其包含: 複數個三閘極電晶體,其各自包含一頂部閘極及兩個側閘極;複數個介電構件,其各自安置於相鄰三閘極電晶體之該等側閘極之間,其中該等介電構件延伸至深於該等側閘極之凹部中。
  22. 如請求項21之裝置,其中該等凹部為側壁隔片過度蝕刻之凹部。
  23. 如請求項21之裝置,其中該等凹部窄於光微影解析度極限。
  24. 如請求項21之裝置,其中該頂部閘極或該兩個側閘極中之至少一者形成於一空腔內。
  25. 如請求項24之裝置,其中該頂部閘極及該兩個側閘極中之每一者形成於一空腔內。
TW098107482A 2008-03-06 2009-03-06 具有空腔界定閘之裝置及其製造方法 TWI430371B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/043,813 US7915659B2 (en) 2008-03-06 2008-03-06 Devices with cavity-defined gates and methods of making the same

Publications (2)

Publication Number Publication Date
TW200947565A TW200947565A (en) 2009-11-16
TWI430371B true TWI430371B (zh) 2014-03-11

Family

ID=40551557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107482A TWI430371B (zh) 2008-03-06 2009-03-06 具有空腔界定閘之裝置及其製造方法

Country Status (6)

Country Link
US (3) US7915659B2 (zh)
JP (1) JP5360507B2 (zh)
KR (1) KR101547375B1 (zh)
CN (1) CN101960572B (zh)
TW (1) TWI430371B (zh)
WO (1) WO2009111225A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898857B2 (en) 2008-03-20 2011-03-01 Micron Technology, Inc. Memory structure having volatile and non-volatile memory portions
US8546876B2 (en) 2008-03-20 2013-10-01 Micron Technology, Inc. Systems and devices including multi-transistor cells and methods of using, making, and operating the same
US7969776B2 (en) 2008-04-03 2011-06-28 Micron Technology, Inc. Data cells with drivers and methods of making and operating the same
KR20090105700A (ko) * 2008-04-03 2009-10-07 주식회사 하이닉스반도체 반도체 소자의 제조방법
US8704375B2 (en) * 2009-02-04 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier structures and methods for through substrate vias
JP5718585B2 (ja) * 2010-05-19 2015-05-13 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその製造方法、並びにデータ処理システム
DE102010030760B4 (de) * 2010-06-30 2014-07-24 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Halbleiterbauelement mit Durchgangskontaktierungen mit einem Verspannungsrelaxationsmechanismus und Verfahren zur Herstellung eines solchen
US8334196B2 (en) 2010-11-01 2012-12-18 Micron Technology, Inc. Methods of forming conductive contacts in the fabrication of integrated circuitry
US8294511B2 (en) 2010-11-19 2012-10-23 Micron Technology, Inc. Vertically stacked fin transistors and methods of fabricating and operating the same
US9553193B2 (en) 2010-11-19 2017-01-24 Micron Technology, Inc. Double gated fin transistors and methods of fabricating and operating the same
US8921899B2 (en) 2010-11-19 2014-12-30 Micron Technology, Inc. Double gated 4F2 dram CHC cell and methods of fabricating the same
US8293602B2 (en) 2010-11-19 2012-10-23 Micron Technology, Inc. Method of fabricating a finFET having cross-hair cells
US8969154B2 (en) * 2011-08-23 2015-03-03 Micron Technology, Inc. Methods for fabricating semiconductor device structures and arrays of vertical transistor devices
JP5646416B2 (ja) * 2011-09-01 2014-12-24 株式会社東芝 半導体装置の製造方法
KR101823105B1 (ko) 2012-03-19 2018-01-30 삼성전자주식회사 전계 효과 트랜지스터의 형성 방법
CN103531467B (zh) * 2012-07-02 2016-08-03 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US9461143B2 (en) * 2012-09-19 2016-10-04 Intel Corporation Gate contact structure over active gate and method to fabricate same
US20140103452A1 (en) 2012-10-15 2014-04-17 Marvell World Trade Ltd. Isolation components for transistors formed on fin features of semiconductor substrates
US9263585B2 (en) * 2012-10-30 2016-02-16 Globalfoundries Inc. Methods of forming enhanced mobility channel regions on 3D semiconductor devices, and devices comprising same
US8946050B2 (en) * 2012-10-30 2015-02-03 Globalfoundries Inc. Double trench well formation in SRAM cells
CN103855026B (zh) * 2012-12-06 2017-04-19 中国科学院微电子研究所 FinFET及其制造方法
CN103928334B (zh) * 2013-01-15 2017-06-16 中国科学院微电子研究所 半导体器件及其制造方法
JP2014222682A (ja) * 2013-05-13 2014-11-27 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその製造方法
US9343320B2 (en) 2013-12-06 2016-05-17 Globalfoundries Inc. Pattern factor dependency alleviation for eDRAM and logic devices with disposable fill to ease deep trench integration with fins
US9871121B2 (en) 2014-03-10 2018-01-16 Qualcomm Incorporated Semiconductor device having a gap defined therein
TWI642110B (zh) * 2014-12-03 2018-11-21 聯華電子股份有限公司 半導體元件及其製作方法
US9466602B1 (en) 2015-06-15 2016-10-11 International Business Machines Corporation Embedded dynamic random access memory field effect transistor device
US9553194B1 (en) * 2015-07-29 2017-01-24 Globalfoundries Inc. Method for improved fin profile
CN106611787A (zh) * 2015-10-26 2017-05-03 联华电子股份有限公司 半导体结构及其制作方法
US10504821B2 (en) * 2016-01-29 2019-12-10 United Microelectronics Corp. Through-silicon via structure
US9691864B1 (en) * 2016-05-13 2017-06-27 Infineon Technologies Americas Corp. Semiconductor device having a cavity and method for manufacturing thereof
US10157745B2 (en) * 2016-06-29 2018-12-18 International Business Machines Corporation High aspect ratio gates
US9934970B1 (en) * 2017-01-11 2018-04-03 International Business Machines Corporation Self aligned pattern formation post spacer etchback in tight pitch configurations
US10770571B2 (en) * 2018-09-19 2020-09-08 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET with dummy fins and methods of making the same
US20220231023A1 (en) * 2021-01-15 2022-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Finfet device and method

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885861A (en) 1972-10-02 1975-05-27 Hughes Aircraft Co Liquid crystal digital reticle
US5196910A (en) 1987-04-24 1993-03-23 Hitachi, Ltd. Semiconductor memory device with recessed array region
US5160987A (en) 1989-10-26 1992-11-03 International Business Machines Corporation Three-dimensional semiconductor structures formed from planar layers
US5109256A (en) 1990-08-17 1992-04-28 National Semiconductor Corporation Schottky barrier diodes and Schottky barrier diode-clamped transistors and method of fabrication
KR930005234B1 (ko) 1990-09-13 1993-06-16 금성일렉트론주식회사 핀-스택구조의 셀 제조방법
US6791131B1 (en) 1993-04-02 2004-09-14 Micron Technology, Inc. Method for forming a storage cell capacitor compatible with high dielectric constant materials
US5864181A (en) 1993-09-15 1999-01-26 Micron Technology, Inc. Bi-level digit line architecture for high density DRAMs
JPH07263576A (ja) 1994-03-25 1995-10-13 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6831322B2 (en) 1995-06-05 2004-12-14 Fujitsu Limited Semiconductor memory device and method for fabricating the same
JP3853406B2 (ja) 1995-10-27 2006-12-06 エルピーダメモリ株式会社 半導体集積回路装置及び当該装置の製造方法
US6043562A (en) 1996-01-26 2000-03-28 Micron Technology, Inc. Digit line architecture for dynamic memory
WO1997028532A1 (en) 1996-02-01 1997-08-07 Micron Technology, Inc. Digit line architecture for dynamic memory
US5688709A (en) 1996-02-14 1997-11-18 Lsi Logic Corporation Method for forming composite trench-fin capacitors for DRAMS
US5793033A (en) 1996-03-29 1998-08-11 Metanetics Corporation Portable data collection device with viewing assembly
US7064376B2 (en) 1996-05-24 2006-06-20 Jeng-Jye Shau High performance embedded semiconductor memory devices with multiple dimension first-level bit-lines
US5821513A (en) 1996-06-26 1998-10-13 Telxon Corporation Shopping cart mounted portable data collection device with tethered dataform reader
US6285045B1 (en) 1996-07-10 2001-09-04 Fujitsu Limited Semiconductor device with self-aligned contact and its manufacture
JP3941133B2 (ja) 1996-07-18 2007-07-04 富士通株式会社 半導体装置およびその製造方法
US6072209A (en) 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US5925918A (en) 1997-07-30 1999-07-20 Micron, Technology, Inc. Gate stack with improved sidewall integrity
US6097212A (en) 1997-10-09 2000-08-01 Lattice Semiconductor Corporation Variable grain architecture for FPGA integrated circuits
US6130551A (en) 1998-01-19 2000-10-10 Vantis Corporation Synthesis-friendly FPGA architecture with variable length and variable timing interconnect
US6137128A (en) 1998-06-09 2000-10-24 International Business Machines Corporation Self-isolated and self-aligned 4F-square vertical fet-trench dram cells
US5858829A (en) 1998-06-29 1999-01-12 Vanguard International Semiconductor Corporation Method for fabricating dynamic random access memory (DRAM) cells with minimum active cell areas using sidewall-spacer bit lines
TW388125B (en) 1998-08-19 2000-04-21 Vanguard Int Semiconduct Corp Method for fabricating dynamic random access memory (DRAM) cells with minimum active cell areas
DE19842704C2 (de) 1998-09-17 2002-03-28 Infineon Technologies Ag Herstellverfahren für einen Kondensator mit einem Hoch-epsilon-Dielektrikum oder einem Ferroelektrikum nach dem Fin-Stack-Prinzip unter Einsatz einer Negativform
TW380316B (en) 1998-10-15 2000-01-21 Worldwide Semiconductor Mfg Manufacturing method for fin-trench-structure capacitor of DRAM
US6100129A (en) 1998-11-09 2000-08-08 Worldwide Semiconductor Manufacturing Corporation Method for making fin-trench structured DRAM capacitor
US6426175B2 (en) 1999-02-22 2002-07-30 International Business Machines Corporation Fabrication of a high density long channel DRAM gate with or without a grooved gate
US6258559B1 (en) * 1999-03-22 2001-07-10 Zymogenetics, Inc. Method for producing proteins in transformed Pichia
KR100325472B1 (ko) 1999-04-15 2002-03-04 박종섭 디램 메모리 셀의 제조 방법
JP4074051B2 (ja) 1999-08-31 2008-04-09 株式会社東芝 半導体基板およびその製造方法
DE19946719A1 (de) 1999-09-29 2001-04-19 Infineon Technologies Ag Grabenkondensator und Verfahren zu seiner Herstellung
US6282113B1 (en) 1999-09-29 2001-08-28 International Business Machines Corporation Four F-squared gapless dual layer bitline DRAM array architecture
JP3457236B2 (ja) 1999-11-05 2003-10-14 茂徳科技股▲ふん▼有限公司 深いトレンチキャパシター蓄積電極の製造方法
WO2001061738A1 (en) 2000-02-15 2001-08-23 Steag Cvd Systems Ltd. Dram capacitor with ultra-thin nitride layer
US6391753B1 (en) * 2000-06-20 2002-05-21 Advanced Micro Devices, Inc. Process for forming gate conductors
JP3983960B2 (ja) 2000-07-14 2007-09-26 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法および半導体集積回路装置
KR100466689B1 (ko) 2000-08-28 2005-01-24 인터내셔널 비지네스 머신즈 코포레이션 콤팩트형 이중 포트 동적 랜덤 액세스 메모리 아키텍쳐 시스템 및 그 제조 방법
US6509226B1 (en) 2000-09-27 2003-01-21 International Business Machines Corporation Process for protecting array top oxide
US6967147B1 (en) 2000-11-16 2005-11-22 Infineon Technologies Ag Nitrogen implantation using a shadow effect to control gate oxide thickness in DRAM semiconductor
US6258659B1 (en) 2000-11-29 2001-07-10 International Business Machines Corporation Embedded vertical DRAM cells and dual workfunction logic gates
US6576944B2 (en) 2000-12-14 2003-06-10 Infineon Technologies Ag Self-aligned nitride pattern for improved process window
CA2340985A1 (en) 2001-03-14 2002-09-14 Atmos Corporation Interleaved wordline architecture
US6809368B2 (en) 2001-04-11 2004-10-26 International Business Machines Corporation TTO nitride liner for improved collar protection and TTO reliability
TW502453B (en) * 2001-09-06 2002-09-11 Winbond Electronics Corp MOSFET and the manufacturing method thereof
US7190060B1 (en) 2002-01-09 2007-03-13 Bridge Semiconductor Corporation Three-dimensional stacked semiconductor package device with bent and flat leads and method of making same
US7019353B2 (en) 2002-07-26 2006-03-28 Micron Technology, Inc. Three dimensional flash cell
US6605514B1 (en) 2002-07-31 2003-08-12 Advanced Micro Devices, Inc. Planar finFET patterning using amorphous carbon
US6865100B2 (en) 2002-08-12 2005-03-08 Micron Technology, Inc. 6F2 architecture ROM embedded DRAM
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6927462B2 (en) 2002-08-28 2005-08-09 Infineon Technologes Richmond, Lp Method of forming a gate contact in a semiconductor device
US6670682B1 (en) 2002-08-29 2003-12-30 Micron Technology, Inc. Multilayered doped conductor
KR100481209B1 (ko) * 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
DE10248722A1 (de) 2002-10-18 2004-05-06 Infineon Technologies Ag Integrierte Schaltungsanordnung mit Kondensator und Herstellungsverfahren
JP3983167B2 (ja) * 2002-12-26 2007-09-26 華邦電子股▲ふん▼有限公司 金属酸化膜半導体電界効果型トランジスターの製造方法
DE10302128B3 (de) 2003-01-21 2004-09-09 Infineon Technologies Ag Pufferverstärkeranordnung
US6845033B2 (en) 2003-03-05 2005-01-18 International Business Machines Corporation Structure and system-on-chip integration of a two-transistor and two-capacitor memory cell for trench technology
JP2004281782A (ja) 2003-03-17 2004-10-07 Toshiba Corp 半導体装置及びその製造方法
US6794254B1 (en) 2003-05-15 2004-09-21 Taiwan Semiconductor Manufacturing Company Embedded dual-port DRAM process
US7099216B2 (en) 2003-09-05 2006-08-29 International Business Machines Corporation Single cycle read/write/writeback pipeline, full-wordline I/O DRAM architecture with enhanced write and single ended sensing
US6844591B1 (en) 2003-09-17 2005-01-18 Micron Technology, Inc. Method of forming DRAM access transistors
DE10361695B3 (de) 2003-12-30 2005-02-03 Infineon Technologies Ag Transistorstruktur mit gekrümmtem Kanal, Speicherzelle und Speicherzellenfeld für DRAMs sowie Verfahren zur Herstellung eines DRAMs
US6998666B2 (en) 2004-01-09 2006-02-14 International Business Machines Corporation Nitrided STI liner oxide for reduced corner device impact on vertical device performance
DE102004006520B4 (de) 2004-02-10 2010-05-12 Qimonda Ag Verfahren zur Herstellung einer DRAM-Speicherzellenanordnung mit Trenchkondensatoren und Stegfeldeffekttransistoren (FinFET) sowie DRAM-Speicherzellenanordnung
DE102004021052B3 (de) 2004-04-29 2005-12-29 Infineon Technologies Ag Verfahren zur Herstellung von Trench-DRAM-Speicherzellen und Trench-DRAM-Speicherzellenfeld mit Stegfeldeffekttransistoren mit gekrümmtem Kanal (CFET)
KR100605104B1 (ko) * 2004-05-04 2006-07-26 삼성전자주식회사 핀-펫 소자 및 그 제조 방법
US7098105B2 (en) 2004-05-26 2006-08-29 Micron Technology, Inc. Methods for forming semiconductor structures
JP4675585B2 (ja) * 2004-06-22 2011-04-27 シャープ株式会社 電界効果トランジスタ
US7132333B2 (en) 2004-09-10 2006-11-07 Infineon Technologies Ag Transistor, memory cell array and method of manufacturing a transistor
JP2006054431A (ja) 2004-06-29 2006-02-23 Infineon Technologies Ag トランジスタ、メモリセルアレイ、および、トランジスタ製造方法
DE102004031385B4 (de) 2004-06-29 2010-12-09 Qimonda Ag Verfahren zur Herstellung von Stegfeldeffekttransistoren in einer DRAM-Speicherzellenanordnung, Feldeffekttransistoren mit gekrümmtem Kanal und DRAM-Speicherzellenanordnung
US7442976B2 (en) 2004-09-01 2008-10-28 Micron Technology, Inc. DRAM cells with vertical transistors
DE102004043858A1 (de) 2004-09-10 2006-03-16 Infineon Technologies Ag Verfahren zur Herstellung einer Speicherzelle, einer Speicherzellenanordnung und Speicherzellenanordnung
DE102004043857B3 (de) 2004-09-10 2006-03-30 Infineon Technologies Ag DRAM-Zellenpaar und DRAM-Speicherzellenfeld mit Stack- und Trench-Speicherzellen sowie Verfahren zur Herstellung eines DRAM-Speicherzellenfeldes
KR100585161B1 (ko) 2004-10-02 2006-05-30 삼성전자주식회사 다중채널 트랜지스터 소자 제조 방법 및 이에 의한 소자
US7476920B2 (en) 2004-12-15 2009-01-13 Infineon Technologies Ag 6F2 access transistor arrangement and semiconductor memory device
US7254074B2 (en) 2005-03-07 2007-08-07 Micron Technology, Inc. Open digit line array architecture for a memory array
KR100691006B1 (ko) * 2005-04-29 2007-03-09 주식회사 하이닉스반도체 메모리 소자의 셀 트랜지스터 구조 및 그 제조방법
KR100608377B1 (ko) * 2005-05-02 2006-08-08 주식회사 하이닉스반도체 메모리 소자의 셀 트랜지스터 제조방법
US7316953B2 (en) 2005-05-31 2008-01-08 Nanya Technology Corporation Method for forming a recessed gate with word lines
KR100608380B1 (ko) 2005-06-01 2006-08-08 주식회사 하이닉스반도체 메모리 소자의 트랜지스터 및 그 제조방법
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7776715B2 (en) 2005-07-26 2010-08-17 Micron Technology, Inc. Reverse construction memory cell
US7151023B1 (en) 2005-08-01 2006-12-19 International Business Machines Corporation Metal gate MOSFET by full semiconductor metal alloy conversion
US20070058468A1 (en) 2005-09-12 2007-03-15 Promos Technologies Pte.Ltd. Singapore Shielded bitline architecture for dynamic random access memory (DRAM) arrays
KR100663366B1 (ko) 2005-10-26 2007-01-02 삼성전자주식회사 자기 정렬된 부유게이트를 갖는 플래시메모리소자의제조방법 및 관련된 소자
KR100653712B1 (ko) 2005-11-14 2006-12-05 삼성전자주식회사 핀펫에서 활성영역과 실질적으로 동일한 상면을 갖는소자분리막이 배치된 반도체 장치들 및 그 형성방법들
US7402856B2 (en) 2005-12-09 2008-07-22 Intel Corporation Non-planar microelectronic device having isolation element to mitigate fringe effects and method to fabricate same
US8716772B2 (en) 2005-12-28 2014-05-06 Micron Technology, Inc. DRAM cell design with folded digitline sense amplifier
KR100734304B1 (ko) 2006-01-16 2007-07-02 삼성전자주식회사 트랜지스터의 제조방법
KR100720238B1 (ko) 2006-01-23 2007-05-23 주식회사 하이닉스반도체 반도체 소자 및 그의 제조 방법
US20070176253A1 (en) 2006-01-31 2007-08-02 Peng-Fei Wang Transistor, memory cell and method of manufacturing a transistor
TWI294640B (en) 2006-02-16 2008-03-11 Nanya Technology Corp Alignment mark and alignment method for the fabrication of trench-capacitor dram devices
JP2007294680A (ja) * 2006-04-25 2007-11-08 Toshiba Corp 半導体素子、半導体装置及びそれらの製造方法
US7573108B2 (en) 2006-05-12 2009-08-11 Micron Technology, Inc Non-planar transistor and techniques for fabricating the same
KR100751803B1 (ko) * 2006-08-22 2007-08-23 삼성전자주식회사 반도체 소자의 제조 방법
US7452766B2 (en) * 2006-08-31 2008-11-18 Micron Technology, Inc. Finned memory cells and the fabrication thereof
US7776684B2 (en) * 2007-03-30 2010-08-17 Intel Corporation Increasing the surface area of a memory cell capacitor
KR100942961B1 (ko) * 2007-10-24 2010-02-17 주식회사 하이닉스반도체 주상 구조의 폴리실리콘 게이트전극을 구비한 반도체소자의제조 방법
US8866254B2 (en) 2008-02-19 2014-10-21 Micron Technology, Inc. Devices including fin transistors robust to gate shorts and methods of making the same
US7742324B2 (en) 2008-02-19 2010-06-22 Micron Technology, Inc. Systems and devices including local data lines and methods of using, making, and operating the same
US9190494B2 (en) 2008-02-19 2015-11-17 Micron Technology, Inc. Systems and devices including fin field-effect transistors each having U-shaped semiconductor fin
US7898857B2 (en) 2008-03-20 2011-03-01 Micron Technology, Inc. Memory structure having volatile and non-volatile memory portions
US8546876B2 (en) 2008-03-20 2013-10-01 Micron Technology, Inc. Systems and devices including multi-transistor cells and methods of using, making, and operating the same
US7808042B2 (en) 2008-03-20 2010-10-05 Micron Technology, Inc. Systems and devices including multi-gate transistors and methods of using, making, and operating the same
US7969776B2 (en) 2008-04-03 2011-06-28 Micron Technology, Inc. Data cells with drivers and methods of making and operating the same
US8076229B2 (en) 2008-05-30 2011-12-13 Micron Technology, Inc. Methods of forming data cells and connections to data cells

Also Published As

Publication number Publication date
US20140183626A1 (en) 2014-07-03
JP5360507B2 (ja) 2013-12-04
CN101960572B (zh) 2014-05-14
WO2009111225A1 (en) 2009-09-11
US8669159B2 (en) 2014-03-11
US20110143528A1 (en) 2011-06-16
JP2011514677A (ja) 2011-05-06
US7915659B2 (en) 2011-03-29
KR20100131478A (ko) 2010-12-15
CN101960572A (zh) 2011-01-26
US20090224357A1 (en) 2009-09-10
TW200947565A (en) 2009-11-16
US9331203B2 (en) 2016-05-03
KR101547375B1 (ko) 2015-08-25

Similar Documents

Publication Publication Date Title
TWI430371B (zh) 具有空腔界定閘之裝置及其製造方法
TWI481030B (zh) 具有鰭式電晶體之系統及裝置以及其使用、製造和運作方法
US8866254B2 (en) Devices including fin transistors robust to gate shorts and methods of making the same
TWI692871B (zh) 半導體結構及其製作方法
TWI544529B (zh) 鰭狀場效電晶體裝置與其形成方法
TWI691076B (zh) 半導體結構及其製作方法
KR100832017B1 (ko) 채널면적을 증가시킨 반도체소자 및 그의 제조 방법
KR100912960B1 (ko) 리세스채널을 갖는 트랜지스터 및 그의 제조 방법
CN107706110B (zh) FinFET器件的制造方法
JP2006228967A (ja) 半導体装置の製造方法