KR101611784B1 - 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR101611784B1
KR101611784B1 KR1020150014136A KR20150014136A KR101611784B1 KR 101611784 B1 KR101611784 B1 KR 101611784B1 KR 1020150014136 A KR1020150014136 A KR 1020150014136A KR 20150014136 A KR20150014136 A KR 20150014136A KR 101611784 B1 KR101611784 B1 KR 101611784B1
Authority
KR
South Korea
Prior art keywords
active material
particles
cathode active
concentration
primary particles
Prior art date
Application number
KR1020150014136A
Other languages
English (en)
Other versions
KR20150024371A (ko
Inventor
선양국
노형주
박장욱
Original Assignee
한양대학교 산학협력단
주식회사 에너세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단, 주식회사 에너세라믹 filed Critical 한양대학교 산학협력단
Publication of KR20150024371A publication Critical patent/KR20150024371A/ko
Application granted granted Critical
Publication of KR101611784B1 publication Critical patent/KR101611784B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

양극 활물질이 제공된다. 상기 양극활물질은, 하나 이상의 1차 입자, 및 상기 1차 입자로 이루어진 2차 입자를 포함하되, 상기 2차 입자는 중심부 및 표면부를 포함하고, 상기 1차 입자의 결정 구조는 a축을 포함하되, 상기 1차 입자의 a축은 상기 2차 입자의 중심부에서 상기 2차 입자의 표면부를 향하는 방향으로 배열된 것을 포함한다.

Description

리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지{PRECURSOR FOR CATHOD ACTIVE MATERIAL OF LITHIUM SECONDARY BATTERY, CATHODE ACTIVE MATERIALS MADE BY THE SAME, AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME}
본 발명은 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 복수의 전이금속을 포함하고, c축 방향의 길이 대비 a축 방향의 길이가 다른 복수개의 1차 입자가 집합하여 이루어진 2차 입자인 양극활물질 전구체, 리튬복합산화물에 있어서, 상기 2차 입자를 형성하는 1차 입자의 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 상기 2차 입자의 중심에서부터 표면까지 증가하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질 전구체, 양극활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
최근 전자 제품, 전자 기기, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용될 이차 전지의 성능 개선이 크게 요구되고 있다. 이러한 요구를 만족시키는 이차 전지로 리튬 이차 전지가 있으며, 상기 리튬 이차 전지는 크게 황계 물질을 양극 활물질로 사용하는 리튬설퍼전지와 리티에이티드 전이 금속 산화물을 양극 활물질로 사용하는 리튬 이온 전지로 크게 분류할 수 있다.
양극 활물질은 리튬 이차 전지의 전지 성능 및 안전성에 가장 중요한 역할을 하는 물질로서, 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1-xCoxO 2(0<x<1), LiMnO2 등의 복합 금속 산화물들이 연구되고 있다. 이와 같은 양극 활물질을 카본 블랙과 같은 도전재, 바인더 및 용매를 혼합하여 양극 활물질 슬러리조성물을 제조한 후, 알루미늄 호일 등의 얇은 금속판에 코팅하여 리튬 이온 이차 전지의 양극으로 사용한다.
상기 양극 활물질 중 LiMn2O4, LiMnO2 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 환경에 대한 오염도 적어 매력이 있는 물질이기는 하나, 용량이 작다는 단점을 가지고 있다. LiCoO2 등의 Co계 양극 활물질은 양호한 전기 전도도와 높은 전지 전압, 그리고 우수한 전극 특성을 보이나 가격이 비싸다는 단점을 갖고 있다.
이와 같은 LiCoO2 등의 Co계 양극 활물질의 단점을 극복하기 위하여, 최근에는 보다 고용량 전지를 개발하기 위한 연구가 활발하게 진행되고 있다.또한, 휴대전화, 개인용 컴퓨터 등의 모바일 분야에 비하여, 전동 공구 등의 파워 툴 분야, 전동 모터사이클, 전동 보조 자전거 등의 동력 분야에서는 전원에 대한 부하 변동이 크고, 또한 장시간 연속 사용되기 때문에, 고출력이고 고용량 전원이 요청되고 있다.
일반적으로, 전지에 있어서 고용량과 고출력은 상반하는 성능이며, 양립시키기 어렵다. 예컨대, 고용량형 2차 전지의 대표인 리튬 이온 2차 전지 등의 비수 전해질 전지는, 0.2C 정도의 저부하로 장시간의 연속 방전이 가능하기 때문에, 모바일 분야 등의 전원 장치로서 주로 이용되고 있지만, 상기와 같은 저부하시의 전극 면적당 전류 밀도는 0.01A/cm2 정도에 불과하다. 이 때문에, 상기와 같은 고용량형의 비수 전해질 전지는, 전류 밀도가 0.1A/cm2 이상인 대전류에서의 방전이 필요하게 되는 전동 모터사이클, 전동 보조 자전거 등의 동력 분야 등에서 사용되는 고부하용의 전원으로서는 적당하지 않다.
또한, 상기와 같은 동력 분야에서는 빈번한 전원의 온, 오프가 실시되기 때문에 대전류의 펄스 방전 특성이 중요해지지만, 모바일 분야 등에서 이용되고 있는 고용량형의 비수 전해질 전지로는 충분한 펄스 방전 용량이 얻어지지 않는다. 한편, 고출력형의 전원 캐패시터 등으로는 대전류 방전은 가능하지만, 용량이 매우 작아 장시간의 연속 방전이 어렵다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 2차 입자를 구성하는 1차 입자의 형상 및 1차 입자 내에서 금속 이온의 농도 구배를 조절함으로써 고용량을 나타내는 새로운 구조의 리튬 이차 전지용 양극 활물질 전구체 및 이를 이용하여 제조된 양극활물질을 제공하는 것이다.
본 발명의 다른 목적은 상기 리튬 이차 전지용 양극활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명은 상기와 같은 과제를 해결하기 위하여 복수의 전이 금속을 포함하고, c축 방향의 길이에 대한 a축 방향의 길이가 다른 복수개의 1차 입자가 집합하여 이루어지고, 평균 입경이 4 내지 20 ㎛의 범위에 있는 2차 입자인 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 2차 입자의 중심에서부터 표면까지 상기 2차 입자를 구성하는 상기 1차 입자의 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 증가하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질 전구체를 제공한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 1차 입자를 구성하는 금속 중에서 적어도 하나 이상의 금속이 상기 1차 입자 내에서 연속적인 농도 구배는 나타내는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 1차 입자의 a 축 배향이 2차 입자인 양극 활물질의 중심을 향하고 있으며, 서로 이웃하여 일정 경로로 성장되는 것을 특징으로 한다. 본 발명의 리튬 이차 전지용 양극활물질 전구체는 이와 같이 1차 입자가 중심 방향을 향하면서 연속적으로 배열되기 때문에 입자 내에서의 접촉 저항이 현저하게 감소하게 되며, 또한 리튬 이온의 삽입이 용이해짐에 따라 출력이 향상되고, 고용량 특성을 나타내게 된다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 1차 입자의 a 축 방향의 길이가 2차 입자 반지름 길이의 0.01 내지 0.95 범위인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 1차 입자는 직육면체, 정육면체, 타원구상, 또는 기울어진 직육면체 형상을 갖는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 2차 입자는 1차 입자의 c축 방향의 길이에 대한 a축 방향의 길이 비가 일정한 제 1 내부; 및 1차 입자의 c축 방향의 길이에 대한 a축 방향의 길이의 비가 증가하는 제 2 내부로 구성되는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 제 1 내부는 1차 입자의 c축 방향의 길이에 대한 a축 방향의길이 비가 0.5 내지 2.0이고, 상기 제 2 내부는 1차 입자의 c축 방향의 길이에 대한 a축 방향의 길이 비가 2 내지 30 인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 제 2 내부의 1차 입자를 구성하는 금속 중 적어도 하나 이상의 금속이 1차 입자 내에서 상기 2차 입자의 중심에서 표면 방향으로 연속적인 농도 구배를 나타내는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 1차 입자 내에서 연속적인 농도 구배를 나타내는 금속의 농도 구배 기울기가 2개 이상인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질 전구체에 있어서, 상기 2차 입자는 금속의 농도가 일정한 표면 유지층을 더 포함하는 것을 특징으로 한다.
또한, 본 발명은 복수의 전이금속을 포함하고, c축 방향의 길이에 대한 a 축 방향의 길이 비가 다른 복수개의 1차 입자가 집합하여 이루어지고, 평균 입경이 4내지 20 ㎛의 범위에 있는 2차 입자인 리튬 이차 전지용 양극활물질에 있어서, 상기 2차 입자의 중심에서부터 표면까지 상기 2차 입자를 구성하는 1차 입자의 c 축 방향의 길이에 대한 a 축 방향 길이의 비가 증가하는 것을 특징으로 하는 리튬 이차 전지용 양극활물질을 제공한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 1차 입자를 구성하는 금속이온들 중에 적어도 하나 이상의 금속이온들이 상기 1차 입자 내에서 연속적인 농도 구배를 나타내는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 1차 입자 내에서 농도 구배를 나타내는 금속의 농도 구배 기울기가 2개 이상인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 1차 입자의 a 축 배향이 2차 입자인 양극 활물질의 중심을 향하고 있으며, 서로 이웃하여 일정 경로로 성장되는 것을 특징으로 한다. 본 발명의 리튬 이차 전지용 양극활물질은 이와 같이 1차 입자가 중심 방향을 향하면서 연속적으로 배열되기 때문에 입자 내부에서의 접촉 저항이 현저하게 감소하게 되며, 또한 리튬 이온의 삽입이 용이해짐에 따라 출력이 향상되고, 고용량 특성을 나타내게 된다.
본 발명의 리튬 이차 전지용 양극활물질은 입자 표면으로부터 입자 반경의 0.1 내지 0.7 배 되는 부분까지 Ni의 산화수가 +2 와 +3 이 혼합되는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 1차 입자는 직육면체, 정육면체, 타원구상, 또는 기울어진 직육면체 형상을 갖는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 1차 입자의 a 축 방향의 길이가 상기 양극 활물질의 반지름 길이의 0.01 내지 0.95 범위인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질은 1차 입자의 c축 방향의 길이에 대한 a축 방향의 길이의 비가 일정한 제 1 내부; 및 1차 입자의 c축 방향의 길이 에 대한 a축 방향의 길이의 비가 증가하는 제 2 내부;로 구성되는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질은, 상기 제 1 내부의 1차 입자는 c축 방향의 길이에 대한 a 축 방향의 길이의 비가 0.8 내지 1.2이고, 상기 제 2 내부의 1차 입자는 c축 방향의 길이에 대한 a 축 방향의 길이의 비가 3 내지 12 인 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 양극 활물질의 제 1 내부는 조성식 Liδ[Ni1-(a+b+c)CoaMnbMc]O2 (1.0≤δ≤1.2, 0.00≤a≤0.40, 0.00≤b≤0.35, 0.00≤c≤0.05, 0.05≤a+b+c≤0.5)로 표시되고, 상기 2차 입자의 제 2 내부는 조성식 Liδ[Ni1-(x+y+z)CoxMnyMz]O2 (1.0≤δ≤1.2, 0.07≤x≤0.3, 0.2≤y≤0.5, 0.00≤z≤0.1, 0.3≤x+y+z≤0.7)로 표시되고, 상기 화학식에 있어서, M은 원소 Al, Mg, Fe, Cr, V, Ti, Mo, Sc, Ce, 및 La 로 이루어진 그룹에서 선택되는 하나 이상으로 이루어진 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질은 상기 2차 입자의 제 1 내부에서는 금속 이온의 농도가 일정하고, 상기 제 2 내부의 1차 입자를 구성하는 금속 중 적어도 하나 이상의 금속이 상기 1차 입자 내에서 연속적인 농도 구배를 나타내는 것을 특징으로 한다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 양극활물질은 상기 양극활물질을 구성하는 금속 중 적어도 하나 이상의 금속이 상기 2차 입자의 중심으로부터 표면까지 농도 구배를 나타내는 것을 특징으로 한다. 즉, 본 발명의 리튬 이차 전지용 양극활물질에 있어서, 1차 입자 자체에서도 금속이 농도 구배를 나타내면서, 이러한 1차 입자 내에서의 금속 농도가 점진적으로 변화하여, 1차 입자가 집합하여 형성되는 2차 입자인 양극활물질에서도 양극활물질의 중심으로부터 표면까지 금속이 농도 구배를 나타내는 것을 특징으로 한다.
본 발명에 있어서, 상기 양극활물질내에서 금속이 농도 구배를 나타내는 형식에는 제한이 없다. 즉, 양극활물질 전체에서 모든 전이 금속의 농도가 농도 구배를 나타내거나, 양극활물질 전체에서 일부 전이 금속의 농도는 일정하고 나머지 전이 금속의 농도가 농도 구배를 나타낼 수 있으며, 양극활물질의 일 부분은 Ni 의 농도가 일정하면서 Co, Mn 이 농도 구배를 나타내고, 이와 연결되는 부분에서는 Co 의 농도가 일정하면서 Ni, Mn 이 농도 구배를 나타내도록 형성하는 것도 가능하다.
본 발명의 리튬 이차 전지용 양극활물질에 있어서, 상기 양극활물질은 외부에 금속 이온들의 농도가 일정한 표면 유지층을 더 포함하는 것을 특징으로 한다. 즉, 양극활물질을 구성하는 모든 전이 금속의 농도가 일정한 표면 유지층을 입자 외부에 더 형성함으로써 구조 자체의 안정성 및 전기 화학적 특성을 향상시키는 것을 특징으로 한다.
본 발명은 또한, 본 발명에 의한 양극활물질을 포함하는 리튬 이차 전지를 제공한다.
이하에서는 도면에 의하여 본 발명을 더욱 상세히 설명한다.
도 1에 본 발명에 따른 리튬 이차 전지용 양극활물질의 내부 단면도를 나타내었다.
도 1에서 보는 바와 같이 본 발명에 따른 리튬 이차 전지용 양극활물질(100)은 소결정인 1차 입자(10)가 다수 집합하여 이루어진 2차 입자로서, 상기 1차 입자의 c 축 방향의 길이에 대한 a 축 방향의 길이 비가 상기 중심점인 A 에서 A' 방향으로 갈수록 즉, 상기 2차 입자의 중심에서부터 표면까지 증가하는 것을 특징으로 한다.
도 2는, 본 발명에 의한 리튬 이차 전지용 양극활물질의 1차 입자를 x축, y축 및 z축을 갖는 3차원 좌표계의 원점 A(0, 0, 0)에 위치시킬 때, 상기 리튬 이차 전지용 양극활물질의 1차 입자가 좌표 B(a, b, c)를 가짐을 개략적으로 설명한 도면이다. 따라서, 상기 "a", "b" 및 "c"는 각각 도 2에 도시된 가상의 정육면체의 가로, 세로, 및 높이에 대응되는 것으로 판단한다.
본 발명의 일 실시예에 있어서, 상기 2차 입자는 c축 방향의 길이 대비 a축 방향의 길이 비가 일정한 제 1 내부; 및 상기 c축 방향의 길이 대비 a축 방향의 길이 비가 증가하는 제 2 내부로 구성된다. 본 발명의 일 실시예에 있어서, 상기 제 2 내부는 상기 1차 입자의 a 축 배향이 2차 입자인 양극 활물질의 중심을 향하고 있으며, 서로 이웃하여 일정 경로로 성장되는 것을 특징으로 한다.
도 3에 본 발명에 의한 리튬 이차 전지용 양극활물질(100')의 또다른 단면도를 나타내었다. 도 3에서 보는 바와 같이 본 발명의 일 실시예에 있어서, 상기 리튬 이차 전지용 양극활물질(100)은 상기 1차 입자(10)의 a축 배향이 활물질의 중심을 향하고 있으며, 또한, 상기 1차 입자가 서로 이웃하여 일정 경로로 성장되는 것을 특징으로 한다. 본 발명에 의한 리튬 이차 전지용 양극활물질은 이와 같이 1차 입자의 a 축 방향이 활물질의 중심을 향하면서 일렬로 서로 이웃하여 일정 경로로 성장되어 리튬 이차 전지용 양극활물질(100')의 내부까지 전해액이 전달되고, 일정 경로 사이에 형성된 공간에서 리튬 이온의 삽입이 용이해짐에 따라 전지의 출력이 향상되고, 입자간 접촉 저항이 감소하게 되어 입자 내부에서 발생한 전기 에너지가 효율적으로 전달되어 결과적으로 고용량을 나타내게 된다.
본 발명의 일 실시예에 있어서, 상기 제 1 내부의 1차 입자는 c축 방향의 길이 대비 a 축 방향의 길이 비가 0.5 내지 2이고, 상기 제 2 내부의 1차 입자는 c축 방향의 길이 대비 a 축 방향의 길이 비가 2 내지 30 인 것을 특징으로 한다.
즉, 본 발명의 일 실시예에 의한 상기 리튬 이차 전지용 양극활물질 (100)은 내부에는 가로 길이와 세로 길이가 0.8 내지 1.2 인 비교적 원형 타입의 1차 입자가 생성되다가 표면으로 갈수록 종횡비가 증가하는 1차 입자가 응집되는 것을 특징으로 한다. 본원 발명에 있어서, 제 1 내부보다 제 2 내부에서 c축 방향의 길이 대비 a 축 방향의 길이의 비가 크게 증가한다.
본 발명의 일 실시예에 있어서, 상기 1차 입자의 a 축 방향의 길이가 2차 입자 반지름 길이의 0.01 내지 0.95 범위인 것을 특징으로 한다. 본 발명에 있어서, 상기 1차 입자가 서로 이웃하여 일정 경로로 성장하지만, 그 범위에 있어서, 상기 1차 입자의 a 축 방향의 길이가 2차 입자 반지름 길이의 0.01 내지 0.95 범위인 것이 바람직하다.
본 발명의 일 실시예에 있어서, 상기 리튬 이차 전지용 양극활물질의 2차 입자의 제 1 내부는 조성식 Liδ[Ni1-(a+b+c)CoaMnbMc]O2 (1.0≤δ≤1.2, 0.00≤a≤0.40, 0.00≤b≤0.35, 0.00≤c≤0.05, 0.05≤a+b+c≤0.5)로 표시되고, 상기 리튬 이차 전지용 양극활물질의 2차 입자의 제 2 내부는 조성식 Liδ[Ni1-(x+y+z)CoxMnyMz]O2 (1.0≤δ≤1.2, 0.07≤x≤0.3, 0.2≤y≤0.5, 0.00≤z≤0.1, 0.3≤x+y+z≤0.7)로 표시되고, 상기 화학식에 있어서, M은 원소 Al, Mg, Fe, Cr, V, Ti, Mo, Sc, Ce, 및 La 로 이루어진 그룹에서 선택되는 하나 이상으로 이루어진 것을 특징으로 한다. 즉, 본 발명의 일 실시예에 있어서, 상기 리튬 이차 전지용 양극활물질은 제 1 내부에서는 Ni 의 함량이 높으며, 제 2 내부에서는 Ni 의 함량은 낮고, Mn 의 함량이 높은 것을 특징으로 한다.
본 발명에 따른 양극 활물질에서 상기 리튬 이차 전지용 양극활물질의 2차 입자는 입자 표면으로부터 입자 반경의 0.1 내지 0.7 배 되는 부분까지, 즉, 활물질 입자가 전해액과 직접 접촉하게 되는 부분에서의 Ni의 산화수가 +2 와 +3 이 혼합되는 것을 특징으로 한다. 이와 같이 니켈의 산화수가 혼합됨으로써, 종래 양극 활물질에 사용된 Ni의 평균 산화수에 비해 큰 산화수를 유지하게 되고, Ni의 산화수가 커짐에 따라 전하량 역시 커져 상기 전이금속 원소와 산소 간의 쿨롱력 역시 커지기 때문에 전이금속 원소와 산소간의 안정적인 결합 구조와 높은 결합력을 얻을 수 있다.
본 발명의 일 실시예에 있어서, 상기 리튬 이차 전지용 양극활물질의 상기 1차 입자를 구성하는 금속 중에 적어도 하나 이상의 금속이 상기 1차 입자 내에서 연속적인 농도 구배를 나타내며, 특히, 상기 2차 입자의 제 2 내부에 존재하는 1차 입자를 구성하는 금속 중에 적어도 하나 이상의 금속이 상기 1차 입자 자체 내에서 연속적인 농도 구배를 나타내는 것을 특징으로 한다.
본 발명에 있어서, 상기 리튬 이차 전지용 양극활물질은 1차 입자 내부에서도 연속적인 농도 구배를 나타내면서 성장하며, 또한, 상기 1차 입자의 a 축 배향이 2차 입자인 양극 활물질의 중심을 향하고 있으면서 서로 이웃하여 일정 경로로 성장된다.
본 발명의 리튬 이차 전지용 양극활물질 전구체 및 이를 이용하여 제조된 양극활물질은 2차 입자 내부에서 1차 입자의 c축 방향의 길이 대비 a 축 방향의 길이의 비가 중심으로부터 표면까지 변화하고, 또한, 상기 1차 입자의 a 축 배향이 2차 입자인 양극 활물질의 중심을 향하고 있으면서 서로 이웃하여 일정 경로로 성장되어 리튬 이온의 삽입 탈리가 용이해지고, 입자간 전기 저항을 감소시킴으로써 고용량을 나타내는 효과가 있다.
도 1은 본 발명에 따른 리튬 이차 전지용 양극활물질의 내부 구조를 나타낸다.
도 2는 본 발명에 따른 리튬 이차 전지용 양극활물질의 구조를 표시하기 위한 방법을 나타낸다.
도 3은 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질의 TEM 사진을 나타낸다.
도 4는 본 발명의 실시예에서 제조된 농도 구배를 가지는 양극 활물질 전구체 및 양극활물질 분말의 단면 TEM 사진, 도 5는 양극활물질 분말에서 a 축, c 축을 표시한 사진을 나타낸다.
도 6 은 본 발명의 실시예에서 제조된 양극 활물질 전구체 및 양극활물질 분말의 1차 입자내에서 Co/Ni 의 비율을 측정한 결과를 나타낸다.
도 7, 도 8은 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질의 TEM 사진을 나타낸다.
도 9는 본 발명의 비교예에서 제조된 리튬 이차 전지용 양극활물질의 TEM 사진을 나타낸다.
도 10은 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질의 TEM 사진을 나타낸다.
도 11 내지 도 16은 본 발명의 실시예에서 제조된 양극활물질 전구체 및 양극활물질 분말의 단면 TEM 사진을 나타낸다.
도 17은 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질의 TEM 사진을 나타낸다.
도 18, 도 19는 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질에서 코어 부분과 쉘 부분의 TEM 사진을 나타낸다.
도 20은 본 발명의 일 실시예에 의하여 제조된 리튬 이차 전지용 양극활물질의 XPS 를 측정한 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
<실시예 1> 입자 전체에서 Mn 농도가 일정하고, 입자 전체에서 Ni, Co 가 농 도 구배를 나타내는 전구체 및 활물질 제조
공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4리터를 넣은 뒤 질소 가스를 반응기에 0.5리터/분의 속도로 공급함으로써, 용존 산소를 제거하고 반응기의 온도를 50 ℃로 유지시키면서 1000 rpm 으로 교반하였다.
입자 전체에서 Mn 의 농도가 0.25로 일정하고, Co 와 Ni 전이 금속 이온의 농도가 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 75 : 0 : 25 비율로 혼합된 2.4M 농도의 금속 수용액을 0.3 리터/시간으로, 4.8 mol 농도의 암모니아 용액을 0.03 리터/시간으로 반응기에 연속적으로 투입하였다. 또한 pH 조정을 위해 4.8 mol 농도의 수산화나트륨 용액을 공급하여 pH가 11로 유지되도록 하였다. 임펠러 속도는 1000 rpm으로 조절하였다. 유량을 조절하여 용액의 반응기 내의 평균체류시간은 6 시간 정도가 되도록 하였으며 상기 복합금속수산화물의 입자 크기가 2-5μm 가 되는 시점에서 공급되던 황산니켈, 황산코발트 및 황산망간 금속 수용액의 용량을 4L 로 고정시킨 후에 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 75:0:25 에서 55:20:25 이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용하여 반응을 계속하였다. 상기 금속 복합수산화물을 여과하고, 물 세척한 후에 110℃ 온풍건조기에서 15시간 건조시켜서 양극활물질 전구체로서 금속 복합 수산화물을 제조하였다.
이와 같이 제조된 상기 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1.07 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 500 ℃에서 10시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 780 ℃에서 20시간 소성시켜 제 1 내부는 Li[Ni0.75Mn0.25]O2 로 일정하고, 제 2 내부는 Li[Ni0.75Mn0.25]O2 에서 Li[Ni0.55Co0.20Mn0.25]O2 까지 Mn 의 농도가 0.25로 유지되고, Ni, Co 는 입자 전체에서 연속적인 일정한 농도 구배를 가지며, 입자내에서의 평균 농도는 Li(Ni0.60Co0.15Mn0.25)O2 로 표시되는 실시예 1-1 의 양극 활물질 분말을 얻었다.
입자 생성 과정에서 금속 수용액의 몰 비가 55 : 20 : 25 에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 μm, 0.5 μm, 1.0 μm 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 1-1 과 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 1-2 내지 1-4의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<비교예 1>
입자 전체에서 Li(Ni0.60Co0.15Mn0.25)O2 로 표시되고, 금속 이온들의 농도가 일정한 입자를 제조하였다.
<실험예> TEM 사진 측정
상기 실시예 1-1, 실시예 1-3 및 실시예 1-4 에서 제조된 전구체, 활물질 입자 및 비교예 1에서 제조된 분말의 대략 중심을 수소 이온빔으로 절단하여 측정용 샘플을 제작하고, 각각의 샘플에 대해 TEM 사진을 측정하고 그 결과를 도 4 내지 도 8에 나타내었다.
도 4는 실시예 1-1에 따라 제조된 입자 전체에서 농도 구배를 가지는 (a)전구체, (b)양극 활물질 분말의 단면 TEM 사진, 도 5는 실시예 1-1에 따라 제조된 양극 활물질 분말에서 a 축, c 축을 표시한 사진을 나타낸다. 도 4, 도 5 에서 보는 바와 같이 실시예 1-1 에 따라 제조된 입자 전체에서 농도 구배를 가지는 양극 활물질 분말 및 전구체의 1차 입자에 있어서 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 2차 입자의 중심으로부터 표면까지 증가하며, 1차 입자가 입자의 중심을 향하여 나란히 배열되어 있음을 확인할 수 있다.
도 6은 실시예 1-1에 따라 제조된 (a)는 전구체, (b)는 양극활물질의 1차 입자내에서 Co/Ni 의 비율을 측정한 결과를 나타낸다. 도 6에서 전구체 및 양극활물질의 1차 입자내에서 Co/Ni 의 비율이 점차로 변화하고 있으며, 그 결과 중심 부분에서의 Co/Ni 보다 표면 부분에서의 Co/Ni 의 비가 더 높게 나타나는 것을 확인할 수 있다.
도 7, 8은 표면 유지 구간의 두께가 0.5 ㎛, 1.0 ㎛ 인 상기 실시예 1-3, 1-4의 활물질의 단면을 측정한 TEM 사진이다. 도 7, 도 8 에서 표면 유지 구간이 생성되더라도 1차 입자가 중앙을 향하여 방향성을 가지며, c 축 방향의길이 대비 a 축 방향의길이의 비가 증가하고 있음을 확인할 수 있다.
도 9는 상기 비교예 1에서 제조된 입자 전체에서 금속의 농도가 Li(Ni0.60Co0.15Mn0.25)O2 로 일정한 양극활물질의 단면 TEM 사진을 나타낸다. 입자 평균 농도가 Li(Ni0.60Co0.15Mn0.25)O2 로 상기 실시예 1과 동일하지만, 입자 전체에서 농도 구배를 가지는 양극 활물질과는 달리 입자 내에서 c축 방향의 길이에 대한 a축 방향의 길이가 일정하고 입자의 중앙을 향한 방향성도 나타내지 않는다는 것을 확인할 수 있다.
<실험예> 전지 특성 측정
상기 실시예 1-1 내지 1-4에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 1에 나타내었다.
아래 표 1에서 보는 바와 같이 농도 구배를 나타내지 않는 비교예에 비하여 농도구배를 나타내는 실시예 1-1 내지 1-4에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예1-1 193.0 94.5 277.3
실시예1-2 191.1 95.2 280.1
실시예1-3 188.2 96.1 287.2
실시예1-4 184.8 97.3 294.7
비교예1 181.3 93.9 266.3
<실시예 2> 입자 전체에서 Mn 농도가 일정하고, 입자 전체에서 Ni, Co 가 농 도 구배를 나타내는 전구체 및 활물질 제조
입자 전체에서 Mn 의 농도가 0.3 으로 일정하고, Co 와 Ni 의 농도가 구배를 나타내도록 하기 위해 먼저, 황산니켈, 황산코발트 및 황산망간 몰비가70 : 0 : 30 비율로 혼합된 2.4M 농도의 금속 수용액을 사용하다가 50 : 20 : 30 이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용하여 반응을 계속하는 것을 제외하고는 상기 실시예 1과 동일하게 하여 실시예 2-1의 전구체 및 활물질을 제조하였다.
복합입자 생성 과정에서 금속 수용액의 몰 비가 50 : 20 : 30 에 이르면 그 몰비를 유지한 상태로 반응을 지속하여 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 2-1 의 실시예와 동일하게 하여 실시예 2-2 의 전구체 및 활물질을 제조하였다.
<실험예> TEM 사진 측정
상기 실시예 2-2 에서 제조된 활물질 입자 분말의 대략 중심을 수소 이온빔으로 절단하여 측정용 샘플을 제작하고, TEM 사진을 측정하였다.
도 10은 실시예 2-2 에 따라 제조된 양극 활물질 분말의 단면 TEM 사진을 나타낸다. 입자 전체에서 Mn 의 농도가 0.3 으로 일정하고, Co 와 Ni 의 농도가 구배를 나타내며 표면 유지 구간이 생성되더라도 1차 입자가 중앙을 향하여 방향성을 가지며, c 축 방향의 길이 대비 a 축 방향의 길이가 증가하고 있음을 확인할 수 있다.
<실험예> 전지 특성 측정
상기 실시예 2-1 내지 2-2에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 2에 나타내었다.
아래 표 2에서 보는 바와 같이 실시예 2-1 내지 2-2에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예2-1 183.9 96.2 291.8
실시예2-2 182.3 97.0 295.3
<실시예 3> 입자 전체에서 Co 농도가 일정하고, Ni, Mn 가 농도 구배를 나타 내는 전구체 및 활물질 제조
입자 전체에서 Co 의 농도가 0.1로 일정하고, Ni 과 Mn 의 농도가 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 85 : 10 : 05 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 60 : 10 : 30이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 전구체 및 양극활물질 입자를 제조하여, 실시예 3-1 의 양극 활물질 분말을 얻었다.
상기 복합 입자 생성 과정에서 금속 수용액의 몰 비가 60 : 10 : 30 에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 3-1 과 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 3-2 및 실시예 3-3 의 구형의 니켈망간코발트 복합 수산화물 전구체를 얻었다.
<실험예> TEM 사진 측정
이와 같이 제조된 실시예 3-2 내지 실시예 3-3의 니켈망간코발트 복합 수산화물 전구체 및 양극활물질의 단면 TEM 사진을 측정한 결과를 도 11, 도 12 에 나타내었다.
도 11, 도 12 에서 실시예 3-2 및 실시예 3-3 의 (a)는 전구체, (b)는 양극활물질의 TEM 사진을 나타낸다. 표면 유지 구간이 0.2 ㎛, 0.5 ㎛ 인 경우 전구체와 활물질 모두에서 1차 입자의 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 증가하며, 1차 입자들이 2차 입자의 중앙을 향한 방향성을 가지고 성장하는 것을 확인할 수 있다.
<비교예 2>
입자 전체에서 금속 이온들의 농도가 Li(Ni0.65Co0.10Mn0.25)O2 로 일정하게 표시되는 입자를 제조하고, 단면 TEM 사진을 도 13에 나타내었다. 도 13에서 입자가 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 일정하고 입자의 중앙을 향한 방향성도 나타나지 않는다는 것을 확인할 수 있다.
<실험예> 전지 특성 측정
상기 실시예 3-1 내지 실시예 3-3 에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 3에 나타내었다.
아래 표 3에서 보는 바와 같이 농도 구배를 나타내지 않는 비교예 2에 비하여 농도구배를 나타내는 실시예 3-1 내지 실시예 3-3 에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 3-1 197.1 94.5 270.3
실시예 3-2 196.0 95.2 273.5
실시예 3-3 194.8 96.1 278.1
비교예 2 185.8 91.8 261.2
<실시예 4> 입자 전체에서 Ni 농도가 일정하고, Co, Mn 가 농도 구배를 나타 내는 전구체 및 활물질 제조
Ni 의 농도가 0.8로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 80 : 20 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 80 : 01 : 19이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.80Co0.20]O2 이고, 제 2 내부는 Li[Ni0.80Co0.20]O2 에서 Li[Ni0.80Co0.01Mn0.19]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 4-1의 양극 활물질 분말을 얻었다.
상기 복합입자 생성 과정에서 금속 수용액의 몰 비가 80 : 01 : 19 에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 4와 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 4-2 및 실시예 4-3 의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<실험예> TEM 사진 측정
이와 같이 제조된 실시예 4-3의 니켈망간코발트 복합 수산화물 전구체 및 양극활물질의 단면 TEM 사진을 측정한 결과를 도 14에 나타내었다.
도 14 에서 실시예 4-3 의 (a)는 전구체, (b)는 양극활물질의 TEM 사진을 나타낸다. Ni 의 농도가 0.8로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내면서 표면 유지 구간을 포함하는 전구체와 활물질 모두에서 1차 입자의 c 축 대비 a 축의 길이가 증가하며, 입자의 중앙을 향한 방향성을 가지고 성장하는 것을 확인할 수 있다.
<비교예 3>
입자 전체에서 금속 이온들의 농도가 Li(Ni0.65Co0.10Mn0.25)O2 로 일정하게 표시되는 입자를 제조하였다.
<실시예 5> 입자 전체에서 Ni 농도가 일정하고, Co, Mn 가 농도 구배를 나타 내는 전구체 및 활물질 제조
실시예 5-1로서 Ni 의 농도가 0.75 로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 75 : 25 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 75 : 02 : 23이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.75Co0.25]O2 이고, 제 2 내부는 Li[Ni0.75Co0.25]O2 에서 Li[Ni0.75Co0.02Mn0.23]O2 까지 연속적인 일정한 농도 구배를 가지는 양극 활물질 분말을 얻었다.
상기 복합입자 생성 과정에서 금속 수용액의 몰 비가 75 : 02 : 23 에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 4와 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 5-2 및 실시예 5-3 의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<실시예 6> 입자 전체에서 Ni 농도 일정, 입자 전체에서 Co, Mn 가 농도 구 배를 나타내는 전구체 및 활물질 제조
실시예 6으로서 Ni 의 농도가 0.70로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 70 : 30 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 70 : 02 : 28이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.70Co0.30]O2 이고, 제 2 내부는 Li[Ni0.70Co0.02Mn0.28]O2 까지 연속적인 일정한 농도 구배를 가지는 양극 활물질 분말을 얻었다.
상기 복합입자 생성 과정에서 금속 수용액의 몰 비가 70 : 02 : 28에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 4와 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 6-2 및 실시예 6-3 의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<실시예 7> 입자 전체에서 Ni 농도 일정, 입자 전체에서 Co, Mn 가 농도 구 배를 나타내는 전구체 및 활물질 제조
실시예 7 로 Ni 의 농도가 0.65로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 65 : 35 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 65 : 02 : 33이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.65Co0.35]O2 이고, 제 2 내부는 Li[Ni0.65Co0.02Mn0.33]O2 까지 연속적인 일정한 농도 구배를 가지는 양극 활물질 분말을 얻었다.
상기 복합입자 생성 과정에서 금속 수용액의 몰 비가 65 : 02 : 33에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 4 와 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 7-2 및 실시예 7-3 의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<비교예 4>
입자 전체에서 금속 이온들의 농도가 Li(Ni0.62Co0.15Mn0.23)O2 로 일정하게 표시되는 입자를 제조하였다.
<실험예> 전지 특성 측정
상기 실시예4 내지실시예 7 에서 제조된 입자 전체에서 Ni 의 농도가 일정하고, Co, Mn 이 농도 구배를 나타내는 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 4 에 나타내었다.
아래 표 4에서 보는 바와 같이 농도 구배를 나타내지 않는 비교예 4에 비하여 농도 구배를 나타내는 상기 실시예 4 내지 실시예 7 에서 제조된 활물질 입자 분말에서 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 4 211.3 86.1 244.7
실시예 4-2 210.8 86.8 245.5
실시예 4-3 209.7 87.2 247.1
실시예 5 205.6 91.0 256.5
실시예 5-2 204.7 91.7 258.8
실시예 5-3 203.9 92.5 260.1
실시예 6 200.8 92.9 266.9
실시예 6-2 199.8 935.0 268.2
실시예 6-3 198.5 94.2 270.0
실시예 7 195.7 94.3 275.1
실시예 7-2 195.2 94.9 275.9
실시예 7-3 194.5 95.7 277.2
비교예 4 200.9 53.2 229.9
<실시예 8> 입자 전체에서 Ni 농도 일정, 입자 전체에서 Co, Mn 가 농도 구 배를 나타내는 전구체 및 활물질 제조
실시예 8로 Ni 의 농도가 0.9로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 90 : 10 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 90 : 01 : 09 이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.90Co0.10]O2 이고, 제 2 내부는 Li[Ni0.90Co0.01Mn0.09]O2 까지 연속적인 일정한 농도 구배를 가지는 양극 활물질 분말을 얻었다.
<실시예 9> 입자 전체에서 Ni 농도 일정, 입자 전체에서 Co, Mn 가 농도 구 배를 나타내는 전구체 및 활물질 제조
실시예 9로 Ni 의 농도가 0.6 으로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 60 : 40 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 60 : 02 : 38이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.60Co0.40]O2 이고, 제 2 내부는 Li[Ni0.60Co0.02Mn0.38]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 9-1 의 양극 활물질 분말을 얻었다.
또한, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 60 : 20 : 20 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 60 : 02 : 38이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.60Co0.20Mn0.20]O2 이고, 제 2 내부는 Li[Ni0.60Co0.02Mn0.38]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 9-2 의 양극 활물질 분말을 얻었다.
<실시예 10> 입자 전체에서 Ni 농도 일정, 입자 전체에서 Co, Mn 가 농도 구 배를 나타내는 전구체 및 활물질 제조
실시예 10으로 Ni 의 농도가 0.5 로 일정하고, Co 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 50 : 50 : 00 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 50 : 20 : 30이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.50Co0.50]O2 이고, 제 2 내부는 Li[Ni0.50Co0.2Mn0.3]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 10-1 의 양극 활물질 분말을 얻었다.
먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 50 : 30 : 20 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 50 : 20 : 30이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.50Co0.30Mn0.20]O2 이고, 제 2 내부는 Li[Ni0.50Co0.20Mn0.30]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 10-2 의 양극 활물질 분말을 얻었다.
먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 50 : 20 : 30 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비가 50 : 05 : 45 이 될 때까지 농도 변화를 주면서 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 제 1 내부는 Li[Ni0.50Co0.20Mn0.30]O2 이고, 제 2 내부는 Li[Ni0.50Co0.05Mn0.45]O2 까지 연속적인 일정한 농도 구배를 가지는 실시예 10-2 의 양극 활물질 분말을 얻었다.
<실험예> 전지 특성 측정
상기 실시예 8 내지 실시예 10 에서 제조된 입자 전체에서 Ni 의 농도가 일정하고, Co, Mn 이 농도 구배를 나타내는 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 5에 나타내었다.
농도 구배를 나타내는 상기 실시예 8 내지 실시예 10 에서 제조된 활물질 입자 분말에서 수명 특성 및 DSC 특성이 모두 향상되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C) 탬밀도
실시예 8 215.4 87.6 241.2 2.39
실시예 9 189.8 93.6 279.3 2.48
실시예 9-2 188.2 94.8 282.2 2.53
실시예 10 184.2 95.1 291.2 2.49
실시예 10-2 182.7 95.9 295.1 2.51
실시예 10-3 178.5 93.2 302.5 2.58
<실시예 11> 입자 전체에서 Co, Ni 과 Mn 의 농도가 구배를 나타내는 경우
입자 전체에서 Co, Ni 과 Mn 의 농도가 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비가 80 : 05 : 15 비율로 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비를 다음 표 5와 같이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 Co, Ni, Mn 이 모두 농도 구배를 가지는 양극 활물질 분말을 얻었다.
Ni:Co:Mn
실시예 11-1 55:15:30
실시예 11-2 55:20:25
실시예 11-3 60:15:25
실시예 11-4 60:10:30
상기 실시예 11-4 에서 제조된 니켈망간코발트 복합 수산화물 및 양극활물질의 샘플을 제조하고 TEM 사진을 측정한 결과를 도 15에 나타내었다.
<비교예 5>
입자 전체에서 Li(Ni0.62Co0.13Mn0.25)O2로 표시되고, 금속 이온들의 농도가 일정한 입자를 제조하였다.
<실험예> 전지 특성 측정
상기 실시예 11 내지 11-4 에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 7에 나타내었다.
아래 표 7에서 보는 바와 같이 농도구배를 나타내지 않는 비교예 5에 비하여 농도구배를 나타내는 실시예 11 내지 11-4 에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 11 191.2 94.7 275.9
실시예 11-2 192.8 94.2 270.7
실시예 11-3 195.8 93.3 269.9
실시예 11-4 196.2 94.4 272.5
비교예 5 183.6 92.8 264.1
<실시예 12> 입자 전체에서 Co, Ni 과 Mn 의 농도가 구배를 나타내는 경우
Co, Ni 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비를 아래 표 8에서와 같이 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비를 55 :15 : 30 이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 입자를 제조하여, Co, Ni, Mn 이 모두 농도 구배를 가지는 니켈망간코발트 복합 수산화물, 및 양극 활물질 분말을 얻었다.
Ni:Co:Mn
실시예 12-1 80 : 00 : 20
실시예 12-2 80 : 10 : 10
실시예 12-3 80 : 15 : 05
실시예 12-4 80 : 20 : 00
상기 실시예 12-1에서 제조된 니켈망간코발트 복합 수산화물, 양극활물질의 샘플을 제조하고 TEM 사진을 측정한 결과를 도 16에 나타내었다.
<비교예 6>
입자 전체에서 Li(Ni0.62Co0.15Mn0.23)O2로 표시되고, 금속 이온들의 농도가 일정한 입자를 제조하였다.
<실험예> 전지 특성 측정
상기 실시예 12 내지 12-4 에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 9에 나타내었다.
아래 표 8에서 보는 바와 같이 농도구배를 나타내지 않는 비교예 6에 비하여 농도구배를 나타내는 실시예 12-1 내지 12-4 에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 12-1 190.8 95.1 277.9
실시예 12-2 191.4 95.0 274.7
실시예 12-3 191.5 94.7 272.9
실시예 12-4 191.9 94.5 271.8
비교예 6 184.1 92.0 260.8
<실시예 13> 입자 전체에서 Co, Ni 과 Mn 의 농도가 구배를 나타내는 경우
외부에서 조성이 63:12:25 로 일정하지만 Co, Ni 과 Mn 의 농도가 입자 전체에서 구배를 나타내도록 하기 위해, 먼저, 황산니켈, 황산코발트 및 황산망간 몰 비를 아래 표 10에서와 같이 혼합하고, 이후 황산니켈, 황산코발트 및 황산망간 금속 수용액의 몰 비를 63 :12 :25 이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 입자를 제조하여, Co, Ni 과 Mn 의 농도가 입자 전체에서 구배를 나타내는 양극 활물질 분말을 얻었다.
Ni:CO:Mn
실시예 13-1 75 : 00 : 25
실시예 13-2 80 : 00 : 20
실시예 13-3 85 : 00 : 15
실시예 13-4 75 : 10 : 15
실시예 13-5 80 : 10 : 10
실시예 13-6 85 : 10 : 05
상기 실시예 13-6에서 제조된 니켈망간코발트 복합 수산화물의 샘플을 제조하고 TEM 사진을 측정한 결과를 도 17에 나타내었다.
<비교예 7>
입자 전체에서 Li(Ni0.68Co0.12Mn0.20)O2로 표시되고, 금속 이온들의 농도가 일정한 입자를 제조하였다.
<실험예> 전지 특성 측정
상기 실시예 13-1 내지 13-6 에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 11에 나타내었다.
아래 표 11에서 보는 바와 같이 농도 구배를 나타내지 않는 비교예 7에 비하여 농도 구배를 나타내는 실시예 13-1 내지 13-6 에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 13-1 196.9 94.6 271.2
실시예 13-2 197.5 94.0 269.9
실시예 13-3 198.2 93.2 267.4
실시예 13-4 197.1 94.2 270.0
실시예 13-5 198.1 93.7 268.9
실시예 13-6 198.9 92.8 266.9
비교예 7 188.3 90.2 257.5
<실시예 14>
Co 조성이 일정하고 Ni, Mn 의 조성이 농도 구배가 있는 제 1 내부와, Mn 의 조성이 일정하고, Co, Ni 의 조성이 농도 구배가 있는 제 2 내부를 연속적으로 포함하는 양극활물질 전구체 및 양극활물질을 제조하기 위해 조성이 75:10:15 인 황산니켈, 황산코발트 및 황산망간에 조성이 65:10:25 인 황산니켈, 황산코발트 및 황산망간을 혼합하다가, 다시 조성이 55:20:25 이 될 때까지 농도 변화를 주면서, 변화되는 금속 수용액을 이용했다는 점을 제외하고는 상기 실시예 1과 동일하게 하여 양극활물질 입자를 제조하여, 제 1 내부에서는 Co 조성이 일정하고 Ni, Mn 의 조성이 농도 구배가 있고, 제 2 내부에서는 Mn 의 조성이 일정하고, Co, Ni 의 조성이 농도 구배가 있는 실시예 14-1의 양극활물질 전구체 및 양극활물질을 제조하였다.
상기 입자 생성 과정에서 금속 수용액의 몰 비가 55:20:25 에 이르면 그 몰 비를 유지한 상태로 반응을 지속하여 각각 0.2 ㎛, 0.5 ㎛ 두께의 표면 유지 구간을 더 포함하도록 하는 것을 제외하고는 상기 실시예 4와 동일하게 하여 농도 구배를 가지는 제 2 내부 및 표면 유지 구간을 가지는 실시예 14-2 및 실시예 14-3 의 구형의 니켈망간코발트 복합 수산화물을 얻었다.
<실험예> 전지 특성 측정
상기 실시예 14-1 내지 14-3 에서 제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 12에 나타내었다.
아래 표 12에서 보는 바와 같이 농도구배를 나타내지 않는 비교예 7에 비하여 농도구배를 나타내는 실시예 14-1 내지 14-3 에서 용량, 수명 특성 및 DSC 특성이 모두 향상되었으며, 특히 표면 유지 구간의 두께가 증가할수록 수명 특성 및 DSC 특성이 개선되는 것을 확인할 수 있다.
용량 (mAh g -1 ) 수명특성 (%, 100 th ) DSC ( o C)
실시예 14-1 193.1 94.2 275.7
실시예 14-2 191.0 95.0 278.8
실시예 14-3 189.5 95.9 285.9
비교예 7 181.3 93.9 266.3
<실시예 15> 코어-그래디언트쉘 전구체 및 활물질 제조
제 1 내부에서 니켈:망간:코발트의 조성이 90:05:05 로 모두 일정하고, 제 2 내부에서는 90:05:05 에서 0.33:0.33:0.33 까지 Co, Ni, Mn 의 조성이 농도 구배가 있는 실시예 15-1의 양극활물질 전구체 및 양극활물질을 제조하였다.
제 1 내부에서는 90:05:05 로 조성이 일정하고, 제 2 내부에서는 70:10:20 에서 60:10:30 까지 Co, Ni, Mn 의 조성이 농도 구배가 있는 실시예 15-2의 양극활물질 전구체 및 양극활물질을 제조하였다.
<실험예> TEM 사진 측정
이와 같이 제조된 상기 실시예 15-1 및 15-2 의 니켈망간코발트 복합 수산화물 전구체 및 양극활물질의 단면의 TEM 사진을 측정한 결과를 각각 도 18 및 도 19에 나타내었다.
도 18 및 도 19에서 (a)는 농도가 일정한 코어 부분, (b)는 농도가 구배를 나타내는 쉘 부분을 나타낸다. 도 18 및 도 19에서 농도가 일정한 코어 부분은 1차 입자가 원형 형태이나, 농도 구배를 나타내는 쉘 부분에서는 1차 입자의 c 축 방향의 길이에 대한 a 축 방향의 길이의 비가 증가하는 형태를 나타내는 것을 확인할 수 있다.
<실시예 16> 코어-쉘 전구체 및 활물질 제조
코어부 및 쉘부에서 니켈:망간:코발트의 조성이 다음 표 13과 같은 코어쉘 구조의 양극활물질 전구체 및 양극활물질을 제조하였다.
코어 조성 쉘 조성 쉘 두께
실시예 16-1 90:05:05 50:20:30 0.2㎛
실시예 16-2 80:10:10 40:30:30 0.2㎛
실시예 16-3 70:10:20 50:20:30 0.2㎛
실시예 16-4 70:10:20 40:20:40 0.2㎛
실시예 16-5 60:20:20 50:20:30 0.2㎛
실시예 16-6 70:10:20 50:20:30 0.5㎛
실시예 16-7 70:10:20 50:20:30 1.0㎛
실시예 16-8 70:10:20 50:20:30 1.5㎛
실시예 16-9 70:10:20 50:20:30 2.0㎛
실시예 16-10 70:10:20 50:20:30 2.5㎛
제조된 활물질 입자 분말을 이용하여 전지를 제조하고, 용량, 수명 특성 및 DSC 특성을 측정하고 그 결과를 아래 표 14에 나타내었다.
용량 (mAh g-1) 수명특성 (%, 100th) DSC 탭밀도
실시예 16-1 191.4 92.7 269.7 2.45
실시예 16-2 186.7 94.1 273.2 2.44
실시예 16-3 181.9 95.5 275.5 2.44
실시예 16-4 182.8 94.9 272.5 2.46
실시예 16-5 177.9 96.5 279.8 2.45
실시예 16-6 185.7 93.9 271.8 2.43
실시예 16-7 181.9 95.5 275.2 2.44
실시예 16-8 179.4 96.0 279.8 2.44
실시예 16-9 176.2 97.1 284.6 2.46
실시예 16-10 172.1 97.5 288.4 2.45
<실험예> X-ray photoelectron spectroscopy 측정
상기 실시예 1-1 에서 제조된 활물질 입자의 입자 반경 방향으로의 산화수를 측정하기 위해 X-ray photoelectron spectroscopy 를 측정하고 그 결과를 도 20에 나타내었다.
도 20에서 본 발명의 실시예에서 제조된 활물질 입자는 표면으로부터 2 ㎛ 깊이까지 Ni 의 산화수가 +2 이상으로 측정되어 +2, +3 인 혼합되어 있으며, Mn 과 Co 의 산화수는 일정하다는 것을 알 수 있다.

Claims (6)

  1. 하나 이상의 1차 입자; 및
    상기 1차 입자로 이루어지고, Ni, Co, 및 Mn 중에서 적어도 어느 2개를 포함하는 2차 입자를 포함하되,
    상기 2차 입자는 중심부 및 표면부를 포함하고,
    상기 1차 입자의 결정 구조는 a축 및 c축을 포함하되,
    상기 1차 입자의 a축 방향으로 길이는, c축 방향으로 1차 입자의 길이보다 길고,
    상기 1차 입자의 a축은 상기 2차 입자의 중심부에서 상기 2차 입자의 표면부를 향하는 방향으로 배열된 것을 포함하는 양극활물질.
  2. 제1 항에 있어서,
    서로 이웃한 상기 1차 입자들 사이에 전해액 및 금속 이온의 이동 경로 제공되고,
    상기 전해액 및 상기 금속 이온의 이동 경로는, 상기 2차 입자의 상기 표면부에서 상기 중심부룰 향하는 방향으로 연장되는 것을 포함하는 양극활물질.
  3. 제1 항에 있어서,
    상기 2차 입자의 중심부 측에 구비되는 상기 1차 입자의 c축 방향 길이에 대한 a축 방향 길이의 비율은 상기 2차 입자의 표면부 측에 구비되는 상기 1차 입자의 c축 방향 길이에 대한 a축 방향 길이의 비율보다 작게 구비되는 양극활물질.
  4. Ni, Co, 및 Mn 중에서 적어도 어느 2개를 포함하고, 복수의 1차 입자가 집합된 2차 입자를 포함하는 양극활물질에 있어서,
    상기 2차 입자는 그 내부에 일 영역(a region)을 포함하고,
    상기 복수의 1차 입자의 결정 구조는 a축 및 c축을 포함하고,
    상기 1차 입자의 a축 방향으로 길이는, c축 방향으로 1차 입자의 길이보다 길고,
    상기 복수의 1차 입자의 a축들은, 상기 일 영역에서 방사(放射, radiate)되는 방향으로 배열된 것을 포함하는 양극활물질.
  5. 복수의 1차 입자; 및
    상기 복수의 1차 입자로 이루어진 2차 입자를 포함하되,
    상기 1차 입자의 길이는 상기 2차 입자의 중심부에서 상기 2차 입자의 표면부를 향하는 방향으로 정의되고,
    상기 2차 입자의 상기 중심부에서 상기 2차 입자의 표면부로 갈수록, 상기 1차 입자의 길이가 점차적으로 증가되는 것을 포함하는 양극활물질.
  6. 제1 항 내지 제5 항 중 어느 한 항에 따른 양극활물질을 포함하는 이차 전지.
KR1020150014136A 2012-06-08 2015-01-29 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지 KR101611784B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120061836 2012-06-08
KR20120061836 2012-06-08
KR20120115047A KR20130138073A (ko) 2012-06-08 2012-10-16 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR1020120115047 2012-10-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20130065711A Division KR101510940B1 (ko) 2012-06-08 2013-06-10 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160041360A Division KR101720042B1 (ko) 2012-06-08 2016-04-05 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
KR20150024371A KR20150024371A (ko) 2015-03-06
KR101611784B1 true KR101611784B1 (ko) 2016-04-14

Family

ID=49984043

Family Applications (5)

Application Number Title Priority Date Filing Date
KR20120115047A KR20130138073A (ko) 2012-06-08 2012-10-16 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20130065711A KR101510940B1 (ko) 2012-06-08 2013-06-10 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR1020150014136A KR101611784B1 (ko) 2012-06-08 2015-01-29 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR1020160041360A KR101720042B1 (ko) 2012-06-08 2016-04-05 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR1020170015761A KR101849719B1 (ko) 2012-06-08 2017-02-03 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR20120115047A KR20130138073A (ko) 2012-06-08 2012-10-16 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20130065711A KR101510940B1 (ko) 2012-06-08 2013-06-10 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020160041360A KR101720042B1 (ko) 2012-06-08 2016-04-05 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR1020170015761A KR101849719B1 (ko) 2012-06-08 2017-02-03 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Country Status (8)

Country Link
US (2) US9337487B2 (ko)
EP (2) EP3236517B1 (ko)
KR (5) KR20130138073A (ko)
CN (3) CN107093740B (ko)
ES (1) ES2910046T3 (ko)
HU (1) HUE058161T2 (ko)
PL (1) PL2882013T3 (ko)
WO (1) WO2013183974A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149933A1 (ko) 2021-01-08 2022-07-14 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203348A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203346A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203347A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN109599531B (zh) 2013-03-12 2020-08-11 苹果公司 使用高级阴极材料的高电压、高体积能量密度锂离子电池
KR20150134259A (ko) * 2014-05-21 2015-12-01 주식회사 에너세라믹 리튬복합금속산화물 및 이를 포함하는 리튬이차전지
US10217991B2 (en) * 2014-06-02 2019-02-26 Sk Innovation Co., Ltd. Lithium secondary battery
US10490851B2 (en) * 2014-06-02 2019-11-26 Sk Innovation Co., Ltd. Lithium secondary battery
JP6246079B2 (ja) * 2014-06-18 2017-12-13 日本碍子株式会社 リチウム二次電池用正極活物質板の製造方法
WO2016002158A1 (ja) * 2014-06-30 2016-01-07 三洋電機株式会社 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
US9716265B2 (en) * 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
KR101568263B1 (ko) * 2014-08-07 2015-11-11 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101577179B1 (ko) * 2014-09-11 2015-12-16 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101555594B1 (ko) * 2014-10-02 2015-10-06 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
CN107112515B (zh) 2014-10-28 2020-08-18 株式会社Lg 化学 锂二次电池用正极活性材料、其制备方法和包含其的锂二次电池
EP3215462A1 (de) * 2014-11-07 2017-09-13 Basf Se Übergangsmetall-mischoxide für lithiumionen-batterien
KR102311460B1 (ko) * 2014-11-21 2021-10-08 에스케이이노베이션 주식회사 리튬 이차 전지
KR102296877B1 (ko) * 2014-12-03 2021-08-31 에스케이이노베이션 주식회사 리튬 이차 전지
KR102312369B1 (ko) * 2014-12-16 2021-10-12 에스케이이노베이션 주식회사 리튬 이차 전지
KR102349703B1 (ko) * 2014-12-22 2022-01-12 에스케이온 주식회사 리튬 이차 전지
KR102296819B1 (ko) * 2014-12-30 2021-08-31 에스케이이노베이션 주식회사 리튬 이차 전지
KR20160095644A (ko) * 2015-02-02 2016-08-11 한양대학교 산학협력단 양극활물질 및 이를 포함하는 이차 전지
WO2016175597A1 (ko) * 2015-04-30 2016-11-03 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
CN107534140B (zh) * 2015-04-30 2020-07-17 株式会社Lg化学 二次电池用正极活性材料、其制备方法和包含所述正极活性材料的二次电池
KR102366065B1 (ko) * 2015-06-11 2022-02-21 에스케이온 주식회사 리튬 이차 전지
KR101913906B1 (ko) * 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102494741B1 (ko) 2015-08-10 2023-01-31 에스케이온 주식회사 리튬 이차 전지
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
KR101913897B1 (ko) * 2015-09-30 2018-12-28 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101982790B1 (ko) * 2015-10-20 2019-05-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2017095134A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP6737586B2 (ja) * 2015-11-30 2020-08-12 トヨタ自動車株式会社 正極活物質とそれを用いたリチウムイオン二次電池
KR102006207B1 (ko) 2015-11-30 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095139A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102004457B1 (ko) * 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095133A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
CN108028373B (zh) * 2015-11-30 2021-02-19 株式会社Lg化学 二次电池用正极活性材料和包含其的二次电池
KR101927295B1 (ko) 2015-11-30 2018-12-10 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR20200091960A (ko) * 2016-02-08 2020-07-31 가부시키가이샤 무라타 세이사쿠쇼 이차 전지용 정극 활물질, 이차 전지용 정극, 이차 전지, 전지 팩, 전동 차량, 전력 저장 시스템, 전동 공구 및 전자 기기
WO2017150949A1 (ko) * 2016-03-04 2017-09-08 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR101937896B1 (ko) * 2016-03-04 2019-01-14 주식회사 엘지화학 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
JP6723545B2 (ja) * 2016-03-04 2020-07-15 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含む二次電池
US10164256B2 (en) 2016-03-14 2018-12-25 Apple Inc. Cathode active materials for lithium-ion batteries
KR101684219B1 (ko) * 2016-04-05 2016-12-08 한양대학교 산학협력단 양극활물질, 및 이를 포함하는 이차 전지
KR20170115939A (ko) * 2016-04-08 2017-10-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
KR101875868B1 (ko) * 2016-07-11 2018-07-06 주식회사 에코프로비엠 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
US10693136B2 (en) 2016-07-11 2020-06-23 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102295366B1 (ko) * 2016-07-20 2021-08-31 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102307908B1 (ko) * 2016-07-20 2021-10-05 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US11302919B2 (en) * 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102390594B1 (ko) * 2016-07-29 2022-04-26 스미토모 긴조쿠 고잔 가부시키가이샤 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
EP3279979B1 (en) * 2016-08-02 2021-06-02 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR101874340B1 (ko) * 2016-08-02 2018-07-05 주식회사 에코프로비엠 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
KR101912202B1 (ko) * 2016-08-02 2018-10-26 주식회사 에코프로비엠 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
US10903490B2 (en) 2016-08-02 2021-01-26 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
EP3279978B1 (en) * 2016-08-02 2020-08-19 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
PL3279977T3 (pl) * 2016-08-02 2020-08-24 Ecopro Bm Co., Ltd. Tlenek kompleksu litu do dodatniego materiału aktywnego baterii litowych ogniw wtórnych i sposób jego przygotowania
US10297823B2 (en) 2016-09-20 2019-05-21 Apple Inc. Cathode active materials having improved particle morphologies
CN109715562B (zh) 2016-09-21 2022-03-11 苹果公司 用于锂离子电池的表面稳定阴极材料及其合成方法
KR102332440B1 (ko) * 2016-10-28 2021-11-26 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101897365B1 (ko) * 2016-11-23 2018-09-10 울산과학기술원 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102172028B1 (ko) 2016-12-02 2020-10-30 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
US11355745B2 (en) 2016-12-02 2022-06-07 Samsung Sdi Co., Ltd. Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
KR102220903B1 (ko) * 2016-12-02 2021-03-02 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
JP6815977B2 (ja) 2016-12-08 2021-01-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
CN108206281B (zh) * 2016-12-20 2020-06-19 比亚迪股份有限公司 一种三元材料及其制备方法以及电池浆料和正极与锂电池
JP6979460B2 (ja) * 2016-12-22 2021-12-15 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
KR102117621B1 (ko) * 2016-12-28 2020-06-02 주식회사 엘지화학 리튬이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101866105B1 (ko) * 2016-12-30 2018-06-08 울산과학기술원 표면처리된 활물질 및 이의 표면처리 방법
KR102086100B1 (ko) * 2017-03-31 2020-03-06 (주)포스코케미칼 금속이 코팅된 리튬 이차 전지용 양극활물질의 제조방법 및 이의 의하여 제조된 리튬 이차 전지용 양극활물질
WO2019013605A1 (ko) * 2017-07-14 2019-01-17 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
CN107579236B (zh) * 2017-09-13 2021-11-05 桑顿新能源科技(长沙)有限公司 全梯度高镍三元前驱体及全梯度高镍三元正极材料的制备方法
KR102130484B1 (ko) * 2017-11-15 2020-07-06 주식회사 에코프로비엠 이차전지용 양극 활물질 및 이의 제조 방법
JP7049551B2 (ja) 2017-11-21 2022-04-07 エルジー エナジー ソリューション リミテッド 二次電池用正極材及びこれを含むリチウム二次電池
KR102268079B1 (ko) * 2017-11-21 2021-06-23 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102159243B1 (ko) 2017-11-22 2020-09-23 주식회사 에코프로비엠 리튬 이차 전지용 양극활물질
KR102041578B1 (ko) * 2017-12-08 2019-11-06 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20190075729A (ko) 2017-12-21 2019-07-01 재단법인 포항산업과학연구원 리튬 이차 전지용 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
KR102472882B1 (ko) * 2018-01-18 2022-11-30 에스케이온 주식회사 리튬 이차 전지
US20200350582A1 (en) * 2018-01-29 2020-11-05 Samsung Sdi Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including same
KR102410662B1 (ko) 2018-02-01 2022-06-17 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP6550598B1 (ja) * 2018-03-23 2019-07-31 住友化学株式会社 リチウム複合金属酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102313092B1 (ko) 2018-04-04 2021-10-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019194609A1 (ko) 2018-04-04 2019-10-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102302038B1 (ko) * 2018-05-11 2021-09-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN108649205A (zh) * 2018-05-15 2018-10-12 哈尔滨工业大学 一种具有变斜率浓度梯度掺杂结构的锂离子电池正极材料及其制备
KR102453273B1 (ko) 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102256298B1 (ko) 2018-06-26 2021-05-26 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR102288296B1 (ko) 2018-06-28 2021-08-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102513949B1 (ko) * 2018-07-06 2023-03-23 에스케이온 주식회사 리튬 이차 전지
CN116845196A (zh) 2018-07-06 2023-10-03 Sk新能源株式会社 锂二次电池
KR102513950B1 (ko) * 2018-07-06 2023-03-23 에스케이온 주식회사 리튬 이차 전지
CN108878869B (zh) * 2018-07-31 2021-07-13 桑顿新能源科技(长沙)有限公司 锂离子电池用梯度结构的ncm三元正极材料及制法与应用
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
EP3611133A1 (en) 2018-08-14 2020-02-19 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
KR102272266B1 (ko) * 2018-08-27 2021-07-02 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US11349118B2 (en) 2018-09-24 2022-05-31 Uchicago Argonne, Llc Tangent gradient concentration material for battery, digital gradient concentration material for battery
KR102182358B1 (ko) 2018-11-02 2020-11-24 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102309288B1 (ko) * 2018-11-13 2021-10-07 한양대학교 산학협력단 양극활물질 및 이를 포함하는 리튬이차전지
WO2020153833A1 (ko) * 2019-01-24 2020-07-30 한양대학교 산학협력단 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
EP3905393A4 (en) * 2019-01-24 2022-09-28 Battery Solution COMPOSITE METAL OXIDE FOR SECONDARY LITHIUM BATTERY COMPRISING DOPING ELEMENT, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM BATTERY PREPARED THEREOF AND SECONDARY LITHIUM BATTERY COMPRISING
US10978741B2 (en) 2019-02-04 2021-04-13 Uchicago Argonne, Llc Non-aqueous electrolytes for electrochemical cells
WO2021006520A1 (ko) * 2019-07-10 2021-01-14 한양대학교 산학협력단 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
KR102242486B1 (ko) * 2019-08-19 2021-04-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
KR102611043B1 (ko) 2019-08-28 2023-12-06 에스케이온 주식회사 리튬 이차 전지
KR102581269B1 (ko) * 2019-10-23 2023-09-22 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
CN112886001A (zh) * 2019-11-29 2021-06-01 艾可普罗 Bm 有限公司 正极活性材料及包括其的锂二次电池
KR102300282B1 (ko) * 2019-12-04 2021-09-10 (주)이엠티 고온 저장 특성이 우수한 리튬이온 이차전지용 양극 활물질, 이를 포함하는 리튬이온 이차전지 및 그 제조 방법
KR102545888B1 (ko) * 2019-12-26 2023-06-22 한양대학교 산학협력단 불소를 포함하는 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
EP4037030A4 (en) 2020-01-29 2022-12-21 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD OF PRODUCTION THEREOF AND LITHIUM SECONDARY BATTERY CONTAINING THIS
CN115004416A (zh) * 2020-01-29 2022-09-02 株式会社Lg化学 二次电池用正极活性材料前体、正极活性材料以及包含正极活性材料的锂二次电池
KR102595883B1 (ko) * 2020-01-29 2023-11-01 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
US20230065977A1 (en) * 2020-02-21 2023-03-02 Battery Solution Positive electrode active material having ultra-fine crystal grains and primary particles of high orientation, and lithium secondary battery comprising same
CN111370681B (zh) * 2020-03-20 2021-06-01 宁德新能源科技有限公司 正极活性材料、电化学装置和电子装置
KR102606683B1 (ko) * 2020-03-26 2023-11-28 주식회사 엘지화학 양극 활물질의 제조 방법
KR102339704B1 (ko) * 2020-06-18 2021-12-15 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022067303A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
KR102586106B1 (ko) * 2020-10-29 2023-10-05 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
KR102624905B1 (ko) * 2020-11-25 2024-01-12 (주)포스코퓨처엠 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법
CN112786834A (zh) * 2021-01-26 2021-05-11 蜂巢能源科技有限公司 一种正极极片及包含其的锂离子电池
KR20230031454A (ko) * 2021-08-27 2023-03-07 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137834A (ja) 2007-11-12 2009-06-25 Toda Kogyo Corp 非水電解液二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR100991650B1 (ko) 2005-04-28 2010-11-02 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한전지

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032757B1 (ja) * 1999-02-18 2000-04-17 株式会社東芝 非水電解液二次電池
JP2001243951A (ja) * 2000-02-28 2001-09-07 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および該正極活物質を用いた非水系電解質二次電池
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
JP4740409B2 (ja) * 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
JP4089526B2 (ja) * 2003-06-26 2008-05-28 トヨタ自動車株式会社 正極活物質およびその製造方法ならびに電池
JP4996117B2 (ja) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
KR20090024137A (ko) * 2006-06-26 2009-03-06 파나소닉 주식회사 비수전해질 이차전지용 양극 활물질 및 비수전해질 이차전지
EP2071650A4 (en) * 2007-03-30 2013-04-03 Panasonic Corp ACTIVE MATERIAL FOR A NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR THE PRODUCTION THEREOF
US8962195B2 (en) * 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP5189384B2 (ja) * 2008-02-29 2013-04-24 株式会社日立製作所 リチウム二次電池
JP2009259798A (ja) * 2008-03-19 2009-11-05 Panasonic Corp 非水電解質二次電池
US8609283B2 (en) * 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP5549437B2 (ja) * 2010-07-08 2014-07-16 ソニー株式会社 正極活物質、非水電解質電池および正極活物質の製造方法
CN101984022B (zh) * 2010-10-26 2011-08-10 西峡龙成特种材料有限公司 多管外热式煤粉分解设备
US9577261B2 (en) * 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
CN105742570B (zh) * 2011-03-25 2021-05-07 株式会社半导体能源研究所 锂离子二次电池
WO2012137391A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
WO2012137535A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
JP6011838B2 (ja) * 2011-08-31 2016-10-19 トヨタ自動車株式会社 リチウム二次電池
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991650B1 (ko) 2005-04-28 2010-11-02 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한전지
JP2009137834A (ja) 2007-11-12 2009-06-25 Toda Kogyo Corp 非水電解液二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149933A1 (ko) 2021-01-08 2022-07-14 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
KR20220100545A (ko) 2021-01-08 2022-07-15 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203348A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203346A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022203347A1 (ko) 2021-03-22 2022-09-29 주식회사 엘지화학 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Also Published As

Publication number Publication date
CN107093740A (zh) 2017-08-25
HUE058161T2 (hu) 2022-07-28
CN107093740B (zh) 2020-12-01
KR101720042B1 (ko) 2017-03-30
WO2013183974A1 (ko) 2013-12-12
EP3236517A1 (en) 2017-10-25
KR20130138073A (ko) 2013-12-18
KR20160043531A (ko) 2016-04-21
KR101510940B1 (ko) 2015-04-10
KR20130138147A (ko) 2013-12-18
EP2882013A1 (en) 2015-06-10
KR20170017969A (ko) 2017-02-15
KR20150024371A (ko) 2015-03-06
US9337487B2 (en) 2016-05-10
PL2882013T3 (pl) 2022-05-30
EP2882013B8 (en) 2022-03-16
US20160218350A1 (en) 2016-07-28
CN104521039B (zh) 2017-03-29
CN104521039A (zh) 2015-04-15
EP2882013A4 (en) 2015-11-11
ES2910046T3 (es) 2022-05-11
CN107293689B (zh) 2021-04-23
US10283757B2 (en) 2019-05-07
EP3236517B1 (en) 2020-03-04
US20140158932A1 (en) 2014-06-12
KR101849719B1 (ko) 2018-04-19
CN107293689A (zh) 2017-10-24
EP2882013B1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
KR101849719B1 (ko) 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
US10950856B2 (en) Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same
CN102612772B (zh) 活性物质粒子和其应用
KR101378580B1 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
KR101612601B1 (ko) 리튬이차전지용 양극활물질
US20140027670A1 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
KR20160010630A (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지
KR20140130063A (ko) 리튬 이차 전지용 양극활물질
KR20140148269A (ko) 리튬이차전지 양극활물질
JP5674056B2 (ja) 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
JP2021048137A (ja) リチウム二次電池用正極活物質
CN103477475A (zh) 锂二次电池
KR20190076774A (ko) 리튬 이차전지용 양극 활물질 전구체 및 그 제조방법, 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
JP7163624B2 (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
JP5326755B2 (ja) リチウム二次電池用正極活物質
JP2020513653A (ja) 電池セルの正極用の活物質、正極および電池セル
Salame 2 Transition Metal-Oxide
WO2024052940A1 (en) Tungsten doped multi-ionic cathode

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 4

J204 Request for invalidation trial [patent]
J206 Request for trial to confirm the scope of a patent right