WO2019013605A1 - 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 - Google Patents

양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2019013605A1
WO2019013605A1 PCT/KR2018/008024 KR2018008024W WO2019013605A1 WO 2019013605 A1 WO2019013605 A1 WO 2019013605A1 KR 2018008024 W KR2018008024 W KR 2018008024W WO 2019013605 A1 WO2019013605 A1 WO 2019013605A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
primary particles
lithium
particles
Prior art date
Application number
PCT/KR2018/008024
Other languages
English (en)
French (fr)
Inventor
선양국
전도욱
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2019013605A1 publication Critical patent/WO2019013605A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material, a method for producing the same, and a lithium secondary battery comprising the same.
  • a technical problem to be solved by the present application is to provide a highly reliable cathode active material, a manufacturing method thereof, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a high capacity cathode active material, a method for manufacturing the same, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a long-life cathode active material, a method for producing the same, and a lithium secondary battery comprising the same.
  • Another technical problem to be solved by the present application is to provide a cathode active material having improved thermal stability, a method for producing the same, and a lithium secondary battery comprising the cathode active material.
  • the present invention provides a cathode active material.
  • the cathode active material includes primary particles and secondary particles in which the primary particles are aggregated, and the secondary particles are at least one of nickel, cobalt, manganese, or aluminum, lithium And a doping metal, wherein the aspect ratio of the primary particles is increased by the doping metal.
  • the doping metal comprises at least one of zirconium, titanium, tungsten, molybdenum, niobium, tantalum, bismuth, ruthenium, magnesium, zinc, gallium, vanadium, chromium, calcium, strontium, .
  • the primary particles may have a length of at least 1 mu m and a width of at most about 100 nm.
  • the primary particles may extend from the center of the secondary particles toward the surface of the secondary particles.
  • a moving path of lithium ions may be provided between the plurality of primary particles.
  • the cathode active material may have a twinned R-3m phase together with a spinel defect.
  • the density of the center of the secondary particles may be higher than the density of the edges of the secondary particles.
  • the aspect ratio of the primary particles relative to the surface of the secondary particles relative to the primary particles relatively adjacent to the center of the secondary particles may be greater.
  • the cathode active material includes primary particles and secondary particles in which the primary particles are aggregated, and the length of the primary particles may be 1 ⁇ or more.
  • the primary particles include at least one of nickel, cobalt, manganese, or aluminum, lithium, and a doping metal, wherein the aspect ratio of the primary particles is increased by the doping metal
  • the active material may further include a coating layer covering at least a part of the surface of the secondary particle and containing an oxide of lithium and the doping metal.
  • the primary particles may have a rod shape.
  • the present invention provides a method for producing a cathode active material.
  • the method of manufacturing a cathode active material comprises providing a reactor aqueous solution containing a base aqueous solution containing at least one of nickel, cobalt, manganese, and aluminum, and a doping metal, Preparing a cathode active material precursor, and mixing and firing the cathode active material precursor doped with the doping metal and a lithium salt to produce a cathode active material.
  • the cathode active material includes primary particles and secondary particles in which the primary particles are aggregated
  • the step of preparing the cathode active material comprises mixing and baking the cathode active material precursor and the lithium salt And adjusting the concentration of the lithium salt to form a coating layer containing lithium and an oxide of the doping metal and covering at least a part of the surface of the secondary particle.
  • the cathode active material according to an embodiment of the present invention may include primary particles and secondary particles in which the primary particles are aggregated.
  • the secondary particles comprise at least one of nickel, cobalt, manganese, or aluminum, lithium, and a doping metal, and the aspect ratio of the primary particles is increased by the doping metal. Accordingly, the lithium ions can easily move into the secondary particles, thereby improving the charge / discharge characteristics, the capacity characteristics, the life characteristics, and the like of the cathode active material.
  • FIG. 1 is a view for explaining a cathode active material according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line A-B of FIG. 1 for explaining primary particles included in a cathode active material according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line A-B of FIG. 1 for explaining primary particles included in a cathode active material according to an embodiment of the present invention.
  • FIG. 10 is a SEM photograph of a cathode active material precursor and a cathode active material according to a comparative example of the present invention.
  • FIG 11 is an SEM photograph of a cathode active material precursor and a cathode active material according to Example 1-1 of the present invention.
  • Example 12 is a SEM photograph of a cathode active material precursor and a cathode active material according to Example 1-2 of the present invention.
  • FIG. 13 is a SEM photograph of a cathode active material precursor and a cathode active material according to Embodiment 1-3 of the present invention.
  • Example 11 is an SEM photograph of a cathode active material precursor according to Example 1-1 of the present invention.
  • Example 12 is a SEM photograph of a cathode active material precursor according to Example 1-2 of the present invention.
  • Example 13 is a SEM photograph of a cathode active material precursor according to Example 1-3 of the present invention.
  • Example 14 is a TEM photograph of a cathode active material according to Example 1-1 of the present invention.
  • Example 15 is TEM photographs of a cathode active material according to Example 1-3 of the present invention.
  • FIG. 16 is a TEM photograph of a cathode active material after charging and discharging the lithium secondary battery including the cathode active material according to Embodiment 1-3 of the present invention 100 times.
  • FIG. 16 is a TEM photograph of a cathode active material after charging and discharging the lithium secondary battery including the cathode active material according to Embodiment 1-3 of the present invention 100 times.
  • FIG. 17 is a graph showing capacitance characteristics of a lithium secondary battery including a cathode active material according to Examples 1-1 to 1-3 and Comparative Examples of the present invention.
  • FIG. 19 is a graph showing a comparison of the capacity and the lifetime characteristics of a cathode active material according to an embodiment of the present invention with other types of cathode active materials.
  • FIG. 20 is a SEM photograph of a cathode active material after charge / discharge of a lithium secondary battery including a cathode active material according to Examples 1-3 and Comparative Examples of the present invention 100 times.
  • 21 is a graph showing a differential capacity of a lithium secondary battery including a cathode active material according to a comparative example of the present invention.
  • Example 22 is a graph showing a differential capacity of a lithium secondary battery including a cathode active material according to Example 1-1 of the present invention.
  • Example 23 is a graph showing a differential capacity of a lithium secondary battery including a cathode active material according to Example 1-2 of the present invention.
  • FIG. 24 is a graph showing a differential capacity of a lithium secondary battery including the cathode active material according to the example 1-3 of the present invention.
  • FIG. 25 is a graph for explaining a capacity change according to the number of charging and discharging cycles of a lithium secondary battery including a cathode active material according to Examples 1-1 to 1-3 and Comparative Examples of the present invention.
  • FIG. 25 is a graph for explaining a capacity change according to the number of charging and discharging cycles of a lithium secondary battery including a cathode active material according to Examples 1-1 to 1-3 and Comparative Examples of the present invention.
  • 26 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to a comparative example of the present invention.
  • FIG. 27 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to Example 1-1 of the present invention.
  • Example 28 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to Example 1-2 of the present invention.
  • Example 29 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to Example 1-3 of the present invention.
  • FIG. 30 is a graph showing EIS results at the initial charge-discharge times of a lithium secondary battery including a cathode active material according to Comparative Examples and Examples 1-3.
  • Example 31 is a graph comparing the R ct values of the cathode active material according to Comparative Example of the present invention and Example 1-3.
  • Fig. 34 shows the XRD measurement results of the cathode active material according to Example 1-3 of the present invention.
  • 35 is a graph comparing changes in length in the c-axis direction of the cathode active material according to Examples 1-3 and Comparative Examples of the present invention.
  • Example 37 is a TEM photograph of a cathode active material according to Example 2-1 of the present invention.
  • Example 47 is a SEM photograph of a cathode active material precursor according to Example 2-1 of the present invention.
  • Example 48 is an SEM photograph of a cathode active material precursor according to Example 2-2 of the present invention.
  • FIG. 49 is a graph showing capacitance characteristics of a lithium secondary battery including a cathode active material according to Examples 2-1 to 2-2 and Comparative Examples of the present invention.
  • Example 51 is a graph showing the differential capacity of a lithium secondary battery including a cathode active material according to Example 2-1 of the present invention.
  • Example 52 is a graph showing the differential capacity of a lithium secondary battery including the cathode active material according to Example 2-2 of the present invention.
  • FIG. 53 is a graph for explaining the capacity variation according to the number of charging and discharging cycles of a lithium secondary battery including a cathode active material according to Examples 2-1 to 2-2 and Comparative Examples of the present invention.
  • FIG. 53 is a graph for explaining the capacity variation according to the number of charging and discharging cycles of a lithium secondary battery including a cathode active material according to Examples 2-1 to 2-2 and Comparative Examples of the present invention.
  • Example 54 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to Example 2-1 of the present invention.
  • Example 55 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to Example 21-2 of the present invention.
  • first, second, third, etc. in the various embodiments of the present disclosure are used to describe various components, these components should not be limited by these terms. These terms have only been used to distinguish one component from another. Thus, what is referred to as a first component in any one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and exemplified herein also includes its complementary embodiment. Also, in this specification, 'and / or' are used to include at least one of the front and rear components.
  • the proportion of the first crystal structure in a specific portion is higher than that of the second crystal structure, it is preferable that the specific portion includes both the first crystal structure and the second crystal structure, Means that the ratio of the first crystal structure is higher than that of the second crystal structure, and it is interpreted to mean that the specific portion has only the first crystal structure.
  • a crystal system may be a triclinic, a monoclinic, an orthorhombic, a tetragonal, a trigonal or a rhombohedral, a hexagonal, , And a cubic system (cubic system).
  • mol% means the amount of any metal contained in the cathode active material or the precursor of the cathode active material, assuming that the sum of the metals other than lithium and oxygen in the cathode active material or the cathode active material precursor is 100% .
  • FIG. 1 is a view for explaining a cathode active material according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining primary particles contained in a cathode active material according to an embodiment of the present invention. And one cross section.
  • a cathode active material 100 may include at least one of nickel, cobalt, manganese, and aluminum, lithium, and a doped metal.
  • the cathode active material may be an oxide including at least one of nickel, cobalt, manganese, or aluminum, lithium, and a doping metal.
  • the doping metal may be zirconium, or titanium.
  • the doping metal may include at least one of tungsten, molybdenum, niobium, tantalum, bismuth, ruthenium, magnesium, zinc, gallium, vanadium, chromium, calcium, strontium or tin.
  • the doping metal may include at least one of heavy metal elements having a specific gravity of 4 or more.
  • the doping metal may include at least one of Group 4, Group 5, Group 6, Group 8, or Group 15 elements.
  • the cathode active material 100 may be a metal oxide including nickel, lithium, the doped metal, and oxygen.
  • the cathode active material 100 may be a metal oxide including nickel, cobalt, lithium, the doped metal, and oxygen.
  • the cathode active material 100 may be a metal oxide including nickel, cobalt, manganese, lithium, the doped metal, and oxygen.
  • the cathode active material 100 may be a metal oxide including nickel, cobalt, aluminum, lithium, the doped metal, and oxygen.
  • the concentration of the doping metal in the cathode active material 100 may be substantially constant.
  • the concentrations of the doping metals may be different from each other, or may have a concentration gradient.
  • the doping metal may have a high concentration at the particle surface of the cathode active material 100.
  • a coating layer containing a compound of the doping metal, lithium, and oxygen may be provided on the surface of the cathode active material 100.
  • the concentration of at least one of nickel, cobalt, manganese, and aluminum may be substantially constant in the cathode active material 100.
  • the concentration of at least one of nickel, cobalt, manganese, or aluminum in the cathode active material 100 may be adjusted from the center of the particle to the surface direction of the particle, Or may have a concentration gradient in some of the particles.
  • the cathode active material 100 may include a core portion and a shell portion having a different concentration of the core portion and a metal (at least one of nickel, cobalt, manganese, or aluminum).
  • the cathode active material may be represented by the following formula (1).
  • M1, M2 and M3 are any one selected from the group consisting of nickel, cobalt, manganese and aluminum, 0? A ⁇ 1, 0? B ⁇ 1, 0? C ⁇ d ⁇ 0.02, at least one of a, b, and c is greater than 0, and M1, M2, M3, and M4 may be different metals.
  • M4 may be the doped metal.
  • the cathode active material may include primary particles 30 and secondary particles in which the primary particles 30 are aggregated.
  • the primary particles 30 may extend in a direction to radiate in a region inside the secondary particle toward the surface 20 of the secondary particle.
  • One region inside the secondary particle may be the center 10 of the secondary particle.
  • the primary particles 30 may be in the form of a rod shape extending from the one area inside the secondary particle toward the surface 20 of the secondary particle.
  • the primary particles 30 extending in the direction of the surface portion 20 from the central portion 10 of the secondary particles, i.e., between the primary particles 30 having the rod shape, A metal ion (for example, lithium ion) and a path of movement of the electrolyte may be provided. Accordingly, the cathode active material according to the embodiment of the present invention can improve the charging / discharging efficiency of the secondary battery.
  • the primary particles (30) relatively adjacent to the surface (20) of the secondary particles, relative to the primary particles (30) ) May have a longer length in the direction toward the surface (20) of the secondary particle at the center (10) inside the secondary particle.
  • the length of the primary particles 30 is greater than the length of the surface of the secondary particle 20).
  • the contents of the doping metals in the primary particles 30 are substantially equal to each other can do.
  • the doping metal may have a high concentration at the surface of the primary particles 30.
  • a coating layer containing a compound of the doping metal, lithium, and oxygen may be provided on the surface of at least one of the primary particles 30.
  • the length of the primary particles 30 can be increased by the doping metal.
  • the length of the primary particles 30 may be in a direction from the center 10 of the secondary particle to the surface 20.
  • the aspect ratio corresponding to the length value of the primary particles 30 with respect to the width of the primary particles 30 can be increased. Accordingly, lithium ions can easily be provided inside the secondary particles.
  • the primary particles 30 may have a length of about 1 ⁇ or more and a width of about 100 nm.
  • a base aqueous solution containing at least one of nickel, cobalt, manganese, and aluminum, and a doping aqueous solution containing a doping metal is provided.
  • the doping aqueous solution may be zirconium sulfate.
  • the doping aqueous solution may be titanium sulfate.
  • the base aqueous solution when the base aqueous solution includes nickel, for example, the base aqueous solution may be nickel sulfate. When the base aqueous solution comprises cobalt, for example, the base aqueous solution may be cobalt sulphate. When the base aqueous solution includes manganese, the base aqueous solution may be manganese sulfate. When the base aqueous solution contains a plurality of metals in nickel, cobalt, manganese, or aluminum, the base aqueous solution may include a plurality of metal salt aqueous solutions.
  • the cathode aqueous solution and the doped aqueous solution may be provided to the reactor to prepare a cathode active material precursor doped with a metal hydroxide containing at least one of nickel, cobalt, manganese, and aluminum, the doping metal.
  • a metal hydroxide containing at least one of nickel, cobalt, manganese, and aluminum the doping metal.
  • an ammonia solution may be further provided in the reactor.
  • the doping metal may be distributed substantially uniformly.
  • the cathode active material precursor may be represented by the following formula (2).
  • x is less than 1 and may be greater than zero.
  • the cathode active material precursor when the base solution contains nickel and the doping metal is titanium, the cathode active material precursor may be represented by the following formula (3).
  • y is less than 1 and can be greater than zero.
  • the cathode active material precursor and the lithium salt may be fired to prepare a cathode active material doped with the doping metal to at least one of nickel, cobalt, manganese, or aluminum and a metal oxide containing lithium.
  • the cathode active material may be represented by the following formula (4).
  • the cathode active material when the base solution contains nickel and the doping metal is titanium, the cathode active material may be represented by the following formula (5).
  • the concentration of the lithium salt may be adjusted so that the compound containing the doping metal (lithium Doped metal oxygen compound) may form a coating layer on the surface of the cathode active material particle (secondary entrance), or a coating layer may be formed on the surface of the primary particle.
  • the lithium salt may be excessively mixed to induce the formation of the coating layer.
  • lithium can be provided to the surface of the cathode active material precursor or the cathode active material by providing an excess amount of lithium, and the doping metal uniformly provided in the cathode active material precursor by the surface lithium moves to the surface ,
  • the coating layer may be formed.
  • the cathode active material precursor and the lithium salt may be fired at a ratio of 1: 1.03 to 1: 1.05 to induce the formation of the coating layer.
  • the ratio of the lithium salt is lower or higher than 1: 1.03 to 1: 1.05, the coating layer is not easily formed, or the charge / discharge / lifetime / thermal The stability may be deteriorated.
  • the doping metal may be distributed at a substantially uniform concentration in the cathode active material precursor.
  • the compound including the doping metal Oxygen compound can form a coating layer on the surface of the cathode active material particle (secondary entrance), or a coating layer can be formed on the surface of the primary particle. Accordingly, the crystal structure of the cathode active material is stabilized, so that collapse of the crystal structure of the cathode active material during charge and discharge can be minimized, and deterioration by the electrolyte can be minimized. As a result, a long-life, high-capacity, and high-stability cathode active material can be provided.
  • the molar ratio of nickel sulfate and zirconium sulfate was 99.5: 0.5 in 0.561 liters / hour and the ammonia solution in 10.5M in 0.128 liters / hour for 20 to 35 hours,
  • a 4 M sodium hydroxide solution was supplied to prepare a Ni 0.995 Zr 0.005 (OH) 2 metal complex hydroxide as a cathode active material precursor.
  • Ni 0.995 Zr 0.005 (OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a 110 ° C vacuum dryer for 12 hours.
  • the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.03, heated at a heating rate of 2 ° C / min, pre-baked at 450 ° C for 5 hours, followeded by firing to prepare a cathode active material powder according to Example 1-1.
  • the concentration of zirconium in the cathode active material powder according to Example 1-1 was 0.4 mol%, and the concentration of nickel was measured to be 99.6 mol%.
  • Example 1-1 The same procedure as in the preparation of the cathode active material according to the above-described Example 1-1 was performed, except that a 2M aqueous metal solution having a molar ratio of nickel sulfate and zirconium sulfate of 99: 1 was used as the cathode active material precursor and Ni 0.99 Zr 0.01 ) 2- metal complex hydroxide was prepared, and the cathode active material powder according to Example 1-2 was prepared.
  • a 2M aqueous metal solution having a molar ratio of nickel sulfate and zirconium sulfate of 99: 1 was used as the cathode active material precursor and Ni 0.99 Zr 0.01 ) 2- metal complex hydroxide was prepared, and the cathode active material powder according to Example 1-2 was prepared.
  • the concentration of zirconium in the cathode active material powder according to Example 1-2 was 0.7 mol%, and the concentration of nickel was 99.3 mol%.
  • Example 1-1 The same procedure as in the preparation of the cathode active material according to the above-described Example 1-1 was performed, except that a 2M-concentration metal aqueous solution having a molar ratio of nickel sulfate and zirconium sulfate of 98: 2 was used as the cathode active material precursor and Ni 0.99 Zr 0.02 ) 2- metal complex hydroxide was prepared, and the cathode active material powder according to Example 1-3 was prepared.
  • a 2M-concentration metal aqueous solution having a molar ratio of nickel sulfate and zirconium sulfate of 98: 2 was used as the cathode active material precursor and Ni 0.99 Zr 0.02 ) 2- metal complex hydroxide was prepared, and the cathode active material powder according to Example 1-3 was prepared.
  • the concentration of zirconium in the cathode active material powder according to Example 1-3 was 1.4 mol%, and the concentration of nickel was 98.6 mol%
  • the prepared Ni 0.995 Ti 0.005 (OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a 110 ° C vacuum dryer for 12 hours.
  • the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.03, heated at a heating rate of 2 ° C / min, pre-baked at 450 ° C for 5 hours, Thereby obtaining a cathode active material powder according to Example 2-1.
  • the concentration of titanium was 0.4 mol% and the concentration of nickel was 99.6 mol%.
  • Example 2-1 The same procedure as in the production of the cathode active material according to Example 2-1 was performed except that a 2M aqueous metal solution having a molar ratio of nickel sulfate and titanium sulfate of 99: 1 was used as the cathode active material precursor and Ni 0.99 Ti 0.01 (OH ) 2- metal complex hydroxide was prepared, and the cathode active material powder according to Example 1-2 was prepared.
  • the concentration of titanium was 0.8 mol% and the concentration of nickel was 99.3 mol%.
  • Titanium and zirconium were not doped.
  • Ni (OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a 110 ° C vacuum dryer for 12 hours.
  • the metal composite hydroxide and lithium hydroxide (LiOH) were mixed at a molar ratio of 1: 1.01, heated at a heating rate of 2 ° C / min, pre-baked at 450 ° C for 5 hours, to prepare a positive electrode active material LiNiO 2 powder according to Comparative example firing.
  • the cathode active material containing zirconium has a rocksalt phase according to Example 1-1. Also, as can be seen from FIG. 4, it can be confirmed that the cathode active material containing zirconium according to Example 1-1 has an R-3m phase together with a spinel defect.
  • the cathode active material containing zirconium according to Example 1-1 has a twinned R-3m phase together with a spinel defect. Also, as shown in Fig. 5, it can be confirmed that twinning causes the primary particles having a length of about 2 mu m to be widened.
  • the cathode active material containing zirconium according to Example 1-1 has a defect-free twinned R-3m phase.
  • FIG. 10 is a SEM photograph of a cathode active material precursor and a cathode active material according to a comparative example of the present invention
  • FIG. 11 is an SEM photograph of a cathode active material precursor and a cathode active material according to Example 1-1 of the present invention
  • 12 is a SEM photograph of a cathode active material precursor and a cathode active material according to Example 1-2 of the present invention
  • FIG. 13 is a SEM photograph of a cathode active material precursor and a cathode active material according to Embodiment 1-3 of the present invention .
  • zirconium or a cathode active material precursor not doped with titanium, 0.5 mol%, 1.0 mol%, and 2.0 mol% of zirconium in accordance with Examples 1-1 to 1-3 SEM photographs of the cathode active material precursor were taken. 10 to 13, the upper left photograph is a low magnification SEM photograph of the cathode active material precursor, the lower left photograph is a high magnification SEM photograph of the cathode active material precursor, the right upper photograph is a low magnification SEM photograph of the cathode active material, This is a high magnification SEM photograph.
  • FIG. 14 is a TEM photograph of a cathode active material according to Example 1-1 of the present invention
  • FIG. 15 is a TEM photograph of a cathode active material according to Example 1-3 of the present invention
  • a TEM photograph of the cathode active material according to Example 1-1 was taken. As described with reference to FIG. 5, it can be confirmed that the cathode active material according to Example 1-1 has primary particle particles of about 2 ⁇ in length. In other words, it can be confirmed that the length of the primary particles is increased by zirconium doping.
  • FIG. 15 STEM photographs of the cathode active material according to Example 1-3 were taken.
  • 15 (a) is a mosaic image of a TEM photograph
  • Fig. 15 (b) is an enlarged view of the surface of a cathode active material particle
  • Fig. 15 (c) is an enlarged view of Fig. 15 15D is an enlarged view of FIG. 15C
  • the upper left inside photograph of FIG. 15D is the FFT result of a box
  • the results of the diffraction are shown.
  • FIG. 15 (c) it can be seen that a coating layer having a thickness of 7 nm was formed on the surface of the cathode active material particle and / or the surface of the primary particle.
  • the coating layer formed on the surface of the particles is Li 2 ZrO 3 .
  • the cathode active material precursor and the cathode active material are produced using nickel and zirconium, it can be seen that the lithium zirconium oxide is coated on the surface of the cathode active material particles and / or the surface of the primary particles.
  • FIG. 16 a lithium secondary battery including a cathode active material according to Example 1-3 was manufactured, and a TEM photograph was taken after 100 charge / discharge cycles.
  • 16 (a) is a mosaic image of a TEM photograph
  • FIG. 16 (b) is an enlargement of the surface of a cathode active material particle and an EDS profile of zirconium concentration
  • FIG. 16 (c) 16 (c) shows the FFT result of the box
  • the dotted line in FIG. 16 (c) shows the boundary between the layered structure and the second phase
  • the lower right inside photograph of FIG. 16 (c) is the FFT result of the silver layered structure.
  • the concentration of zirconium at the surface of the cathode active material particles is 6 at%, which is significantly higher than 1.4 mol% of the average zirconium concentration of the cathode active material of Example 1-3. It can also be seen that the concentration of zirconium decreases from the surface of the positive electrode active material particles to the inside thereof. Consequently, as described with reference to Fig. 15, it can be confirmed that lithium zirconium oxide is coated on the surface of the cathode active material particles.
  • FIG. 17 is a graph showing capacitance characteristics of a lithium secondary battery including a cathode active material according to Examples 1-1 to 1-3 and Comparative Examples of the present invention
  • FIG. 19 is a graph showing lifetime characteristics of a lithium secondary battery including a cathode active material according to an embodiment of the present invention and a cathode active material according to a comparative example.
  • FIG. 19 is a graph comparing the capacity and life characteristics of a cathode active material according to an embodiment of the present invention with other cathode active materials .
  • the initial capacity of the lithium secondary battery including the cathode active material according to the comparative example is lower than that of the lithium cathode including the cathode active material according to Examples 1-1 to 1-3 Which is higher than that of the secondary battery.
  • the capacity of the lithium secondary battery including the cathode active material according to the comparative example was greatly reduced.
  • the lithium secondary battery including the cathode active material according to Examples 1-1 to 1-3 It can be seen that the decrease is not relatively large. In other words, it is understood that manufacturing a lithium secondary battery using zirconium-doped cathode active material is an effective method for improving lifetime characteristics.
  • FIG. 20 is a SEM photograph of a cathode active material after charge / discharge of a lithium secondary battery including a cathode active material according to Examples 1-3 and Comparative Examples of the present invention 100 times.
  • FIG. 20 a lithium secondary battery was manufactured using the cathode active material according to Examples 1-3 and Comparative Examples, and the battery was charged and discharged 100 times at 4.3V. Thereafter, the cathode active materials according to Examples 1-3 and Comparative Examples were photographed.
  • FIG. 20 (a) is a photograph of a cathode active material according to a comparative example
  • FIG. 20 (b) is a photograph of a cathode active material according to Example 1-3.
  • the cathode active material according to the comparative example has a large number of particles collapsed due to the charge / discharge process. (See the arrow in FIG. 20) It can be seen that the collapse of the particles is relatively small.
  • the zirconium-doped cathode active material is an efficient method of minimizing the collapse of the particles of the cathode active material and improving the lifetime characteristics during charge / discharge.
  • FIG. 21 is a graph showing a differential capacity of a lithium secondary battery including a cathode active material according to a comparative example of the present invention.
  • FIG. FIG. 23 is a graph showing the differential capacity of a lithium secondary battery including a cathode active material according to Example 1-2 of the present invention
  • FIG. FIG. 25 is a graph showing the measurement of the differential capacity of a lithium secondary battery including a cathode active material
  • FIG. 25 is a graph showing the relationship between the number of times of charging and discharging of a lithium secondary battery including a cathode active material according to Examples 1-1 to 1-3 and Comparative Examples Fig.
  • the positive electrode active materials according to Examples 1-1 to 1-3 and Comparative Example exhibited H1 phase, H1 + M phase, M phase, H2 phase, H2 + H3 phase, H3 phase, H2 + H3 phase, M + H2 phase, M phase, H1 + M phase and H1 phase.
  • the H1 phase shows a crystal structure having an intrinsic lattice constant in the c-axis direction of the cathode active material according to the examples and the comparative example
  • the H2 phase shows the crystal structure of the cathode active material according to the examples and the comparative example in the c-
  • the H3 phase shows a crystal structure in which the cathode active material according to the examples and the comparative example has a lattice constant shorter than the intrinsic lattice constant in the c-axis direction
  • M phase Represents a monoclinic crystal structure.
  • FIG. 26 is a graph showing an EIS result of a lithium secondary battery including a cathode active material according to a comparative example of the present invention
  • FIG. 27 is a graph of an EIS of a lithium secondary battery including a cathode active material according to Embodiment 1-1 of the present invention
  • FIG. 28 is a graph showing the EIS results of a lithium secondary battery including a cathode active material according to Example 1-2 of the present invention
  • FIG. 29 is a graph showing the EIS of a lithium secondary battery comprising a cathode active material according to Embodiment 1-3 of the present invention
  • FIG. 30 is a graph showing the EIS results at the initial charge-discharge times of the lithium secondary battery including the cathode active material according to the comparative example and the example 1-3
  • FIG. 3 is a graph comparing the R ct values of the cathode active material according to the present invention.
  • a half cell was manufactured using the cathode active material according to Comparative Examples and Examples 1-1 to 1-3, and EIS was measured as described above.
  • FIG. 32 shows XRD measurement results of the cathode active materials according to Examples 1-3 and Comparative Examples of the present invention
  • FIG. 33 shows XRD measurement results of the cathode active material according to Comparative Example of the present invention
  • the cathode active material according to the present invention has H2 and H3 phases simultaneously at 4.3V and 4.5V.
  • the doping of the zirconium with the positive electrode active material decreases the phase change in the charging process, thereby reducing the deterioration of the positive electrode active material depending on the number of times of charging and discharging It can be confirmed that this is an efficient method.
  • 35 is a graph comparing changes in length in the c-axis direction of the cathode active material according to Examples 1-3 and Comparative Examples of the present invention.
  • the DSC characteristics of the cathode active materials according to Examples 1-1, 1-3, and Comparative Example were measured under conditions of cut off of 4.3 V and a scan rate of 5 ° C./min. As can be seen from FIG. 36, it can be confirmed that the cathode active material according to Example 1-1 and Example 1-3 in which zirconium was doped was superior in thermal stability as compared with Comparative Example in which zirconium was not doped.
  • Example 1-1 when 1.4 mol% of zirconium was doped according to Example 1-3, the thermal stability was remarkably superior to that when 0.4 mol% of zirconium was doped.
  • Example 37 is a TEM photograph of a cathode active material according to Example 2-1 of the present invention.
  • FIG. 37 a TEM photograph of the cathode active material according to Example 2-1 was taken. As can be seen from FIG. 37, it can be confirmed that the cathode active material is composed of secondary particles in which primary particles are aggregated, and the aspect ratio of primary particles is high.
  • the cathode active material doped with titanium according to Example 2-1 of the present invention has a spinel phase.
  • the cathode active material doped with titanium according to Example 2-1 of the present invention has an R-3m phase together with a defect. Specifically, in the SEAD pattern, it is confirmed that a peak occurs predominantly due to defect and an intermediate structure is observed.
  • the cathode active material doped with titanium according to Example 2-1 of the present invention has a twinned R-3m phase together with spinel defect. Also, as shown in FIG. 41, it can be confirmed that the primary particles are opened by twinning. Also, as shown in Fig. 42, it can be confirmed that the primary particles have a length of about 2 mu m.
  • the cathode active material doped with titanium according to Example 2-1 of the present invention has a rocksalt phase.
  • FIG. 47 is an SEM photograph of a cathode active material precursor according to Example 2-1 of the present invention
  • FIG. 48 is an SEM photograph of a cathode active material precursor according to Example 2-2 of the present invention.
  • FIG. 49 is a graph showing capacitance characteristics of a lithium secondary battery including a cathode active material according to Examples 2-1 to 2-2 and Comparative Examples of the present invention
  • FIG. 50 is a graph showing capacitance characteristics of Examples 2-1 to 2- -32 and the lithium secondary battery including the cathode active material according to the comparative example.
  • the initial capacity of the lithium secondary battery including the cathode active material according to the comparative example is higher than that of the lithium cathode including the cathode active material according to Examples 2-1 to 2-2 which is higher than that of the secondary battery.
  • the capacity of the lithium secondary battery including the cathode active material according to the comparative example largely decreased, but the lithium secondary battery including the cathode active material according to Examples 2-1 to 2-2 had a capacity It can be seen that the decrease is not relatively large.
  • manufacturing a lithium secondary battery using a titanium-doped cathode active material is an effective method for improving lifetime characteristics.
  • FIG. 51 is a graph of the differential capacitance of a lithium secondary battery including the cathode active material according to Example 2-1 of the present invention
  • FIG. 52 is a graph of the differential capacity of a lithium secondary battery comprising the cathode active material according to Example 2-2 of the present invention
  • FIG. 53 is a graph for explaining the capacity variation according to the number of charging and discharging cycles of the lithium secondary battery including the cathode active material according to Examples 2-1 to 2-2 and Comparative Examples of the present invention .
  • FIG. 53 shows a value obtained by integrating the area of H2 / H3 in the differential capacitance.
  • the cathode active materials according to Examples 2-1 to 2-2 and Comparative Example exhibited H1 phase, H1 + M phase, M phase, M H2 phase, H2 phase, H2 + H3 phase, H3 phase, H2 + H3 phase, M + H2 phase, M phase, H1 + M phase and H1 phase.
  • the H1 phase shows a crystal structure having an intrinsic lattice constant in the c-axis direction of the cathode active material according to the examples and the comparative example
  • the H2 phase shows the crystal structure of the cathode active material according to the examples and the comparative example in the c-
  • the H3 phase shows a crystal structure in which the cathode active material according to the examples and the comparative example has a lattice constant shorter than the intrinsic lattice constant in the c-axis direction
  • M phase Represents a monoclinic crystal structure.
  • FIG. 54 is a graph showing the EIS result of a lithium secondary battery including a cathode active material according to Example 2-1 of the present invention
  • FIG. 55 is a graph showing the EIS of a lithium secondary battery comprising a cathode active material according to Example 21-2 of the present invention The result is a graph.
  • the cathode active material according to this embodiment and the lithium secondary battery including the same can be used in various industries such as mobile electronic devices, electric vehicles, and energy storage devices.

Abstract

양극활물질이 제공된다. 상기 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하고, 상기 2차 입자는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하되, 상기 도핑 금속에 의해 상기 1차 입자의 종횡비가 증가될 수 있다.

Description

양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
본 출원은 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지에 관련된 것이다.
스마트폰, MP3 플레이어, 태블릿 PC와 같은 휴대용 모바일 전자 기기의 발전으로, 전기 에너지를 저장할 수 있는 이차 전지에 대한 수요가 폭발적으로 증가하고 있다. 특히, 전기 자동차, 중대형 에너지 저장 시스템, 및 고 에너지 밀도가 요구되는 휴대 기기의 등장으로, 리튬 이차 전지에 대한 수요가 증가하고 있는 실정이다.
이러한, 리튬 이차 전지에 대한 수요의 증가로, 리튬 이차 전지에 사용되는 양극활물질에 대한 연구 개발이 진행되고 있다. 예를 들어, 대한민국 특허공개공보 10-2014-0119621(출원번호 10-2013-0150315)에는 니켈, 망간, 코발트를 포함하는 리튬 과량 양극활물질 제조용 전구체를 이용하여, 전구체에서 치환되는 금속의 종류 및 조성을 조절하고, 첨가되는 금속의 종류 및 첨가량을 조절하여, 고전압 용량 및 장수명 특성을 갖는 이차전지가 개시되어 있다.
본 출원이 해결하고자 하는 일 기술적 과제는, 고신뢰성의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 다른 기술적 과제는, 고용량의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 장수명의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 열적 안정성이 향상된 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 데 있다.
본 출원이 해결하고자 하는 기술적 과제는, 상술된 것에 제한되지 않는다.
상기 기술적 과제를 해결하기 위해, 본 발명은 양극활물질을 제공한다.
일 실시 예에 따르면, 상기 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하고, 상기 2차 입자는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하되, 상기 도핑 금속에 의해 상기 1차 입자의 종횡비가 증가된다.
일 실시 예에 따르면, 상기 도핑 금속은, 지르코늄, 티타늄, 텅스텐, 몰리브덴, 니오븀, 탄탈륨, 비스무트, 루테늄, 마그네슘, 아연, 갈륨, 바나듐, 크롬, 칼슘, 스트론튬, 또는 주석 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 1차 입자의 길이는 1㎛ 이상이고, 폭은 약 100nm 이하일 수 있다.
일 실시 예에 따르면, 상기 1차 입자는, 상기 2차 입자의 중심에서, 상기 2차 입자의 표면을 향하여 연장할 수 있다.
일 실시 예에 따르면, 복수의 상기 1차 입자 사이에, 리튬 이온의 이동 통로가 제공될 수 있다.
일 실시 예에 따르면, 상기 양극활물질은, spinel defect와 함께 twinned R-3m phase를 가질 수 있다.
일 실시 예에 따르면, 상기 2차 입자의 중심의 밀도가 상기 2차 입자의 가장자리의 밀도보다 높을 수 있다.
일 실시 예에 따르면, 상대적으로 상기 2차 입자의 중심에 인접한 상기 1차 입자와 비교하여, 상대적으로 상기 2차 입자의 표면에 인접한 상기 1차 입자의 종횡비가 더 클 수 있다.
일 실시 예에 따르면, 상기 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하되, 상기 1차 입자의 길이가 1㎛ 이상일 수 있다.
일 실시 예에 따르면, 상기 1차 입자는 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하고, 상기 도핑 금속에 의하여 상기 1차 입자의 종횡비가 증가되고, 상기 양극활물질은, 상기 2차 입자의 표면의 적어도 일부를 덮고, 상기 리튬 및 상기 도핑 금속의 산화물을 포함하는 코팅층을 더 포함할 수 있다.
일 실시 예에 따르면, 상기 1차 입자는 로드 쉐입을 가질 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 양극활물질의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 양극활물질의 제조 방법은, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 베이스 수용액, 및 도핑 금속을 포함하는 도핑 수용액을 반응기제 제공하여, 도핑 금속이 도핑된 양극활물질 전구체를 제조하는 단계, 및 상기 도핑 금속이 도핑된 상기 양극활물질 전구체 및 리튬 염을 혼합 및 소성하여, 양극활물질을 제조하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하고, 상기 양극활물질을 제조하는 단계는, 상기 양극활물질 전구체 및 리튬 염을 혼합 및 소성하는 과정에서 상기 리튬염의 농도를 조절하여, 리튬 및 상기 도핑 금속의 산화물을 포함하고 상기 2차 입자의 표면의 적어도 일부를 덮는 코팅층을 형성하는 것을 포함할 수 있다.
본 발명의 실시 예에 따른 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함할 수 있다. 상기 2차 입자는, 상기 2차 입자는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하고, 상기 도핑 금속에 의해 상기 1차 입자의 종횡비가 증가된다. 이에 따라, 상기 2차 입자 내부로 리튬 이온이 용이하게 이동할 수 있고, 이로 인해, 상기 양극활물질의 충방전 특성, 용량 특성, 수명 특성 등이 개선될 수 있다.
도 1은 본 발명의 실시 예에 따른 양극활물질을 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예에 따른 양극활물질에 포함된 1차 입자를 설명하기 위한 것으로, 도 1의 A-B를 따라 절취한 단면을 나타낸다.
도 3 내지 도 9는 본 발명의 실시 예 1-1에 따른 양극활물질의 TEM 사진 및 SEAD 패턴이다.
도 10은 본 발명의 비교 예에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이다.
도 11은 본 발명의 실시 예 1-1에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이다.
도 12는 본 발명의 실시 예 1-2에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이다.
도 13은 본 발명의 실시 예 1-3에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이다.
도 11은 본 발명의 실시 예 1-1에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 12는 본 발명의 실시 예 1-2에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 13은 본 발명의 실시 예 1-3에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 14는 본 발명의 실시 예 1-1에 따른 양극활물질을 촬영한 TEM 사진이다.
도 15는 본 발명의 실시 예 1-3에 따른 양극활물질을 촬영한 TEM 사진들이다.
도 16은 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지를 100회 충방전 수행한 후, 양극활물질을 촬영한 TEM 사진들이다.
도 17은 본 발명의 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 용량 특성을 측정한 그래프이다.
도 18은 본 발명의 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 수명 특성을 측정한 그래프이다.
도 19는 본 발명의 실시 예에 따른 양극활물질을 다른 종류의 양극활물질과 용량 및 수명 특성을 비교한 것을 나타내는 그래프이다.
도 20은 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지를 100회 충방전 시킨 후, 양극활물질을 촬영한 SEM 사진이다.
도 21은 본 발명의 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이다.
도 22는 본 발명의 실시 예 1-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이다.
도 23은 본 발명의 실시 예 1-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이다.
도 24는 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이다.
도 25는 본 발명의 실시 예 1-1~1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충방전 횟수에 따른 용량 변화를 설명하기 위한 그래프이다.
도 26은 본 발명의 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 27은 본 발명의 실시 예 1-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 28은 본 발명의 실시 예 1-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 29는 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 30은 비교 예 및 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 초기 충방전 횟수에서 EIS 결과 그래프이다.
도 31은 본 발명의 비교 예 및 실시 예 1-3에 따른 양극활물질의 Rct 값을 비교한 그래프이다.
도 32는 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질의 XRD 측정 결과이다.
도 33은 본 발명의 비교 예에 따른 양극활물질의 XRD 측정 결과이다.
도 34는 본 발명의 실시 예 1-3에 따른 양극활물질의 XRD 측정 결과이다.
도 35는 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질의 c축 방향의 길이를 변화를 비교한 그래프이다.
도 36은 본 발명의 실시 예 1-1, 1-3, 및 비교 예에 따른 양극활물질의 열적 안정성을 비교한 DSC 그래프이다.
도 37은 본 발명의 실시 예 2-1에 따른 양극활물질의 TEM 사진이다.
도 38 내지 도 46은 본 발명의 실시 예 2-1에 따른 양극활물질의 TEM 사진 및 SEAD 패턴이다.
도 47은 본 발명의 실시 예 2-1에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 48은 본 발명의 실시 예 2-2에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 49는 본 발명의 실시 예 2-1 내지 2-2 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 용량 특성을 측정한 그래프이다.
도 50은 본 발명의 실시 예 2-1 내지 2-32 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 수명 특성을 측정한 그래프이다.
도 51은 본 발명의 실시 예 2-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 것이다.
도 52는 본 발명의 실시 예 2-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 것이다.
도 53은 본 발명의 실시 예 2-1~2-2 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충방전 횟수에 따른 용량 변화를 설명하기 위한 그래프이다.
도 54는 본 발명의 실시 예 2-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 55는 본 발명의 실시 예 21-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
또한, 본 출원 명세서에서, 특정 부분에서 제1 결정 구조의 비율이 제2 결정 구조의 비율보다 높다는 것은, 상기 특정 부분이 상기 제1 결정 구조 및 상기 제2 결정 구조를 모두 포함하되, 상기 특정 부분에서 상기 제1 결정 구조의 비율이 상기 제2 결정 구조의 비율보다 높다는 것을 의미하는 것은 물론, 상기 특정 부분이 상기 제1 결정 구조만을 갖는다는 것을 포함하는 의미로 해석된다.
또한, 본 출원 명세서에서, 결정계(crystal system)는 삼사정계(triclinic), 단사정계(monoclinic), 사방정계(orthorhombic), 정방정계(tetragonal), 삼방정계(trigonal 또는 rhombohedral), 육방정계(hexagonal), 및 입방정계(cubic)의 7개로 구성될 수 있다.
또한, 본 출원 명세서에서 "mol%"는 양극활물질 또는 양극활물질 전구체에서 리튬과 산소를 제외한 나머지 금속의 합을 100%로 가정했을 경우, 양극활물질 또는 양극활물질 전구체에 포함된 임의의 금속의 함량을 나타내는 의미로 해석된다.
도 1은 본 발명의 실시 예에 따른 양극활물질을 설명하기 위한 도면이고, 도 2는 본 발명의 실시 예에 따른 양극활물질에 포함된 1차 입자를 설명하기 위한 것으로, 도 1의 A-B를 따라 절취한 단면을 나타낸다.
도 1을 참조하면, 본 발명의 실시 예에 따른 양극활물질(100)은, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함할 수 있다. 다시 말하면, 상기 양극활물질은, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하는 산화물일 수 있다. 예를 들어, 상기 도핑 금속은 지르코늄, 또는 티타늄일 수 있다. 또는, 다른 예를 들어, 상기 도핑 금속은, 텅스텐, 몰리브덴, 니오븀, 탄탈륨, 비스무트, 루테늄, 마그네슘, 아연, 갈륨, 바나듐, 크롬, 칼슘, 스트론튬, 또는 주석 중에서 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 도핑 금속은 비중 4 이상의 중금속 원소 중의 적어도 어느 하나를 포함할 수 있다. 또는, 다른 실시 예에 따르면, 상기 도핑 금속은 4족, 5족, 6족, 8족, 또는 15족 원소 중에서 적어도 어느 하나를 포함할 수 있다.
예를 들어, 상기 양극활물질(100)은, 니켈, 리튬, 상기 도핑 금속, 및 산소를 포함하는 금속 산화물일 수 있다. 또는, 다른 예를 들어, 상기 양극활물질(100)은, 니켈, 코발트, 리튬, 상기 도핑 금속, 및 산소를 포함하는 금속 산화물일 수 있다. 또는, 또 다른 예를 들어, 상기 양극활물질(100)은, 니켈, 코발트, 망간, 리튬, 상기 도핑 금속, 및 산소를 포함하는 금속 산화물일 수 있다. 또는, 또 다른 예를 들어, 상기 양극활물질(100)은, 니켈, 코발트, 알루미늄, 리튬, 상기 도핑 금속, 및 산소를 포함하는 금속 산화물일 수 있다. 본 발명의 실시 예에 따른 기술적 사상은, 다양한 물질을 포함하는 양극활물질에 적용될 수 있다.
일 실시 예에 따르면, 상기 양극활물질(100) 내에 상기 도핑 금속의 농도는 실질적으로(substantially) 일정할 수 있다.
또는, 다른 실시 예에 따르면, 상기 양극활물질(100) 내에서, 상기 도핑 금속의 농도는 서로 다르거나, 또는 농도 구배를 가질 수 있다. 구체적으로, 상기 도핑 금속은 상기 양극활물질(100)의 입자 표면에서 높은 농도를 가질 수 있다. 다시 말하면, 상기 도핑 금속, 리튬, 및 산소의 화합물을 포함하는 코팅층이 상기 양극활물질(100) 입자의 표면에 제공될 수 있다.
일 실시 예에 따르면, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나의 농도는 상기 양극활물질(100) 내에서 실질적으로 일정할 수 있다. 또는, 다른 실시 예에 따르면, 상기 양극활물질(100) 내에서 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나의 농도는, 입자의 중심에서 상기 입자의 표면 방향으로, 상기 입자의 전체에서 농도 구배를 갖거나, 또는 상기 입자의 일부에서 농도 구배를 가질 수 있다. 또는, 또 다른 실시 예에 따르면, 상기 양극활물질(100)은 코어부, 및 상기 코어부와 금속(니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나)의 농도가 다른 쉘부를 포함할 수 있다. 본 발명의 실시 예에 따른 기술적 사상은, 다양한 구조 및 형태의 양극활물질에 적용될 수 있다.
일 실시 예에 따르면, 상기 양극활물질은 아래의 <화학식 1>로 표시될 수 있다.
<화학식 1>
LiM1aM2bM3cM4dO2
상기 <화학식 1>에서, M1, M2, M3는 니켈, 코발트, 망간, 또는 알루미늄 중에서 선택된 어느 하나이고, 0≤a<1이고, 0≤b<1이고, 0≤c<1이고, 0<d<0.02이고, a, b, 및 c 중에서 적어도 어느 하나는 0보다 크고, M1, M2, M3, 및 M4는 서로 다른 금속일 수 있다.
상기 <화학식 1>에서 M4가 상기 도핑 금속일 수 있다.
상기 양극활물질은, 1차 입자들(30), 및 상기 1차 입자들(30)이 응집된 2차 입자를 포함할 수 있다.
상기 1차 입자(30)들은, 상기 2차 입자 내부의 일 영역에서 상기 2차 입자의 표면(20)을 향하여 방사(放射, radiate)되는 방향으로 연장할 수 있다. 상기 2차 입자 내부의 일 영역은 상기 2차 입자의 중심(10)일 수 있다. 다시 말하면, 상기 1차 입자(30)는 상기 2차 입자 내부의 상기 일 영역에서 상기 2차 입자의 상기 표면(20)을 향하여 연장하는 로드 쉐입(rod shape) 형태일 수 있다.
상기 로드 형태를 갖는 상기 1차 입자(30)들 사이, 다시 말하면, 상기 2차 입자의 상기 중심부(10)에서 상기 표면부(20) 방향(D)으로 연장된 상기 1차 입자(30)들 사이에, 금속 이온(예를 들어, 리튬 이온) 및 전해질의 이동 경로가 제공될 수 있다. 이에 따라, 본 발명의 실시 예에 따른 양극활물질은, 이차 전지의 충방전 효율이 향상될 수 있다.
일 실시 예에 따르면, 상기 2차 입자 내부의 상기 중심(10)에 상대적으로 인접한 상기 1차 입자(30)보다, 상기 2차 입자의 상기 표면(20)에 상대적으로 인접한 상기 1차 입자(30)가, 상기 2차 입자의 내부의 상기 중심(10)에서 상기 2차 입자의 상기 표면(20)을 향하는 방향으로, 더 긴 길이를 가질 수 있다. 다시 말하면, 상기 2차 입자의 상기 중심(10)에서 상기 표면(20)으로 연장하는 상기 2차 입자의 적어도 일부분에서, 상기 1차 입자(30)들의 길이가, 상기 2차 입자의 상기 표면(20)에 인접할수록, 증가될 수 있다.
일 실시 예에 따르면, 도 1을 참조하여 설명된 바와 같이, 상기 양극활물질(100)이 상기 도핑 금속을 포함하는 경우, 상기 1차 입자들(30) 내 상기 도핑 금속의 함량은 실질적으로 서로 동일할 수 있다.
또는, 다른 실시 예에 따르면, 상기 도핑 금속은 상기 1차 입자들(30)의 표면에서 높은 농도를 가질 수 있다. 다시 말하면, 상기 도핑 금속, 리튬, 및 산소의 화합물을 포함하는 코팅층이 적어도 어느 하나의 상기 1차 입자(30)의 표면에 제공될 수 있다.
상기 도핑 금속에 의해 상기 1차 입자들(30)의 길이가 증가될 수 있다. 상기 1차 입자들(30)의 길이는, 상기 2차 입자의 상기 중심(10)에서 상기 표면(20)으로 향하는 방향일 수 있다. 다시 말하면, 상기 1차 입자들(30)의 폭 대비 상기 1차 입자들(30)의 길이 값에 해당하는 종횡비가 커질 수 있다. 이에 따라, 리튬 이온이 상기 2차 입자의 내부로 용이하게 제공될 수 있다. 예를 들어, 상기 1차 입자들(30)의 길이는 약 1㎛ 이상이고, 폭은 약 100nm일 수 있다.
이하, 본 발명의 실시 예에 따른 양극활물질 제조 방법이 설명된다.
니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 베이스 수용액, 및 도핑 금속을 포함하는 도핑 수용액을 준비된다.
예를 들어, 상기 도핑 금속이 지르코늄인 경우, 상기 도핑 수용액은, 황산 지르코늄일 수 있다. 다른 예를 들어, 상기 도핑 금속이 티타늄인 경우, 상기 도핑 수용액은 황산 티타늄일 수 있다.
상기 베이스 수용액이 니켈을 포함하는 경우, 예를 들어, 상기 베이스 수용액은 황산 니켈일 수 있다. 상기 베이스 수용액이 코발트를 포함하는 경우, 예를 들어, 상기 베이스 수용액은 황산 코발트일 수 있다. 상기 베이스 수용액이 망간을 포함하는 경우, 상기 베이스 수용액은 황산 망간일 수 있다. 상기 베이스 수용액이, 니켈, 코발트, 망간, 또는 알루미늄 중에서 복수개의 금속을 포함하는 경우, 상기 베이스 수용액은, 복수개의 금속염 수용액들을 포함할 수 있다.
상기 베이스 수용액 및 상기 도핑 수용액을 상기 반응기에 제공하여, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 금속 수산화물에 상기 도핑 금속이 도핑된, 양극활물질 전구체가 제조될 수 있다. 상기 베이스 수용액 및 상기 도핑 수용액 외에, 암모니아 용액이 상기 반응기에 더 제공될 수 있다. 상기 양극활물질 전구체 내에서 상기 도핑 금속은 실질적으로 균일하게 분포될 수 있다.
예를 들어, 상기 베이스 용액이 니켈을 포함하고, 상기 도핑 금속이 지르코늄인 경우, 상기 양극활물질 전구체는 아래의 <화학식 2>로 표시될 수 있다. <화학식 2>에서 x는 1보다 작고, 0보다 클 수 있다.
<화학식 2>
Ni1-xZrx(OH)2
다른 예를 들어, 상기 베이스 용액이 니켈을 포함하고, 상기 도핑 금속이 티타늄인 경우, 상기 양극활물질 전구체는 아래의 <화학식 3>로 표시될 수 있다. <화학식 3>에서 y는 1보다 작고, 0보다 클 수 있다.
<화학식 3>
Ni1-yTiy(OH)2
상기 양극활물질 전구체 및 리튬염을 소성하여, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 및 리튬를 포함하는 금속 산화물에 상기 도핑 금속이 도핑된 양극활물질이 제조될 수 있다.
상술된 바와 같이 예를 들어, 상기 베이스 용액이 니켈을 포함하고, 상기 도핑 금속이 지르코늄인 경우, 상기 양극활물질은 아래의 <화학식 4>와 같이 표시될 수 있다.
<화학식 4>
LiNi1-xZrxO2
다른 예를 들어, 상기 베이스 용액이 니켈을 포함하고, 상기 도핑 금속이 티타늄인 경우, 상기 양극활물질은 아래의 <화학식 5>와 같이 표시될 수 있다.
<화학식 5>
LiNi1-yTiyO2
일 실시 예에 따르면, 상기 양극활물질 전구체 및 상기 리튬염을 소성하는 과정에서, 상기 리튬염의 농도를 조절하여, 도 1 및 도 2를 참조하여 설명된 것과 같이, 상기 도핑 금속을 포함하는 화합물(리튬 도핑금속 산소 화합물)이 상기 양극활물질 입자(상기 2차 입장)의 표면에 코팅층을 형성하거나, 또는 상기 1차 입자의 표면에 코팅층을 형성할 수 있다. 구체적으로, 상기 양극활물질 전구체 및 상기 리튬염을 소성하는 과정에서, 상기 리튬염을 과량 혼합하여, 상기 코팅층의 형성을 유도할 수 있다. 다시 말하면, 과량의 리튬을 제공함에 따라, 상기 양극활물질 전구체 또는 상기 양극활물질의 표면에 리튬이 제공될 수 있고, 표면의 리튬에 의해 상기 양극활물질 전구체 내에 균일하게 제공된 상기 도핑 금속이 표면으로 이동하여, 상기 코팅층이 형성될 수 있다. 예를 들어, 상기 양극활물질 전구체 및 상기 리튬염을 1:1.03~1:1.05의 비율로 소성하여, 상기 코팅층의 형성이 유도될 수 있다. 이와 달리, 상기 양극활물질 전구체 및 상기 리튬염이 1:1.03~1:1.05와 비교하여 상기 리튬염의 비율이 낮거나 또는 높은 경우, 상기 코팅층이 용이하게 형성되지 않거나, 또는 충방전/수명특성/열적안정성이 저하될 수 있다.
상술된 바와 같이 상기 양극활물질 전구체에서 상기 도핑 금속은 상기 양극활물질 전구체 내에서 실질적으로 균일한 농도로 분포될 수 있다. 하지만, 상기 양극활물질 전구체 및 상기 리튬염을 소성하는 과정에서, 상기 리튬염의 농도를 조절하는 방법으로, 도 1 및 도 2를 참조하여 설명된 것과 같이, 상기 도핑 금속을 포함하는 화합물(리튬 도핑금속 산소 화합물)이 상기 양극활물질 입자(상기 2차 입장)의 표면에 코팅층을 형성하거나, 또는 상기 1차 입자의 표면에 코팅층을 형성할 수 있다. 이에 따라, 상기 양극활물질의 결정 구조가 안정화되어, 충방전 과정에서 상기 양극활물질의 결정 구조가 붕괴되는 것이 최소화될 수 있고, 전해질에 의한 열화가 최소화될 수 있다. 이로 인해, 장수명, 고용량, 및 고안정성의 양극활물질이 제공될 수 있다.
이하, 상술된 본 발명의 실시 예에 따른 양극활물질의 구제적인 제조 방법이 설명된다.
실시 예 1-1에 따른 양극활물질 제조
공침 반응기(용량 47L, 회전 모터의 출력750W 이상)에 증류수 10리터를 넣은 뒤 N2 가스를 반응기에 5리터/분의 속도로 공급하고 반응기의 온도를 45℃로 유지시키면서 350 rpm으로 교반하였다. 황산니켈 및 황산지르코늄의 몰비가 99.5:0.5인 2M 농도의 금속 수용액을 0.561리터/시간으로, 10.5M 농도의 암모니아 용액을 0.128리터/시간으로 반응기에 20~35 시간 동안 연속적으로 투입하고, 또한 pH 조정을 위해 4 M 농도의 수산화나트륨 용액을 공급하여, 양극활물질 전구체로 Ni0.995Zr0.005(OH)2 금속 복합 수산화물을 제조하였다.
제조된 Ni0.995Zr0.005(OH)2 금속 복합 수산화물을 물 세척하고 여과한 후에 110℃ 진공 건조기에서 12시간 건조시켰다. 상기 금속 복합 수산화물과 수산화 리튬(LiOH)을 1:1.03의 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 450℃에서 5시간 유지시켜 예비소성을 수행하였으며, 뒤이어 650℃에서 10 시간 소성시켜 실시 예 1-1에 따른 양극활물질 분말을 제조하였다.
ICP 분석 결과, 실시 예 1-1에 따른 양극활물질 분말에서 지르코늄의 농도는 0.4mol%이고, 니켈의 농도는 99.6mol%인 것으로 측정되었다.
실시 예 1-2에 따른 양극활물질 제조
상술된 실시 예 1-1에 따른 양극활물질 제조와 동일한 공정을 수행하되, 황산니켈 및 황산지르코늄의 몰비가 99:1인 2M 농도의 금속 수용액을 사용하여, 양극활물질 전구체로 Ni0.99Zr0.01(OH)2 금속 복합 수산화물을 제조하고, 실시 예 1-2에 따른 양극활물질 분말을 제조하였다.
ICP 분석 결과, 실시 예 1-2에 따른 양극활물질 분말에서 지르코늄의 농도는 0.7mol%이고, 니켈의 농도는 99.3mol%인 것으로 측정되었다.
실시 예 1-3에 따른 양극활물질 제조
상술된 실시 예 1-1에 따른 양극활물질 제조와 동일한 공정을 수행하되, 황산니켈 및 황산지르코늄의 몰비가 98:2인 2M 농도의 금속 수용액을 사용하여, 양극활물질 전구체로 Ni0.99Zr0.02(OH)2 금속 복합 수산화물을 제조하고, 실시 예 1-3에 따른 양극활물질 분말을 제조하였다.
ICP 분석 결과, 실시 예 1-3에 따른 양극활물질 분말에서 지르코늄의 농도는 1.4mol%이고, 니켈의 농도는 98.6mol%인 것으로 측정되었다
실시 예 2-1에 따른 양극활물질 제조
공침 반응기(용량 47L, 회전 모터의 출력750W 이상)에 증류수 10리터를 넣은 뒤 N2 가스를 반응기에 5리터/분의 속도로 공급하고 반응기의 온도를 45℃로 유지시키면서 350 rpm으로 교반하였다. 황산니켈 및 황산티타늄의 몰비가 99.5:0.5인 2M 농도의 금속 수용액을 0.561리터/시간으로, 10.5M 농도의 암모니아 용액을 0.128리터/시간으로 반응기에 20~35 시간 동안 연속적으로 투입하고, 또한 pH 조정을 위해 4 M 농도의 수산화나트륨 용액을 공급하여, 양극활물질 전구체로 Ni0.995Ti0.005(OH)2 금속 복합 수산화물을 제조하였다
제조된 Ni0.995Ti0.005(OH)2 금속 복합 수산화물을 물 세척하고 여과한 후에 110℃ 진공 건조기에서 12시간 건조시켰다. 상기 금속 복합 수산화물과 수산화 리튬(LiOH)을 1:1.03의 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 450℃에서 5시간 유지시켜 예비소성을 수행하였으며, 뒤이어 650℃에서 10 시간 소성시켜 실시 예 2-1에 따른 양극활물질 분말을 제조하였다.
ICP 분석 결과, 실시 예 2-1에 따른 양극활물질 분말에서 티타늄의 농도는 0.4mol%이고, 니켈의 농도는 99.6mol%인 것으로 측정되었다.
실시 예 2-2에 따른 양극활물질 제조
상술된 실시 예 2-1에 따른 양극활물질 제조와 동일한 공정을 수행하되, 황산니켈 및 황산티타늄의 몰비가 99:1인 2M 농도의 금속 수용액을 사용하여, 양극활물질 전구체로 Ni0.99Ti0.01(OH)2 금속 복합 수산화물을 제조하고, 실시 예 1-2에 따른 양극활물질 분말을 제조하였다.
ICP 분석 결과, 실시 예 1-2에 따른 양극활물질 분말에서 티타늄의 농도는 0.8mol%이고, 니켈의 농도는 99.3mol%인 것으로 측정되었다.
비교 예에 따른 양극활물질 제조
티타늄 및 지르코늄이 도핑되지 않은 양극활물질을 제조하였다.
구체적으로, 공침 반응기(용량 47L, 회전 모터의 출력750W 이상)에 증류수 10리터를 넣은 뒤 N2 가스를 반응기에 5리터/분의 속도로 공급하고 반응기의 온도를 45℃로 유지시키면서 350 rpm으로 교반하였다. 2M 농도의 황산니켈 수용액을 0.561리터/시간으로, 10.5M 농도의 암모니아 용액을 0.128리터/시간으로 반응기에 20~35 시간 동안 연속적으로 투입하고, 또한 pH 조정을 위해 4 M 농도의 수산화나트륨 용액을 공급하여, 양극활물질 전구체로 Ni(OH)2 금속 복합 수산화물을 제조하였다
제조된 Ni(OH)2 금속 복합 수산화물을 물 세척하고 여과한 후에 110℃ 진공 건조기에서 12시간 건조시켰다. 상기 금속 복합 수산화물과 수산화 리튬(LiOH)을 1:1.01의 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 450℃에서 5시간 유지시켜 예비소성을 수행하였으며, 뒤이어 650℃에서 10 시간 소성시켜 비교 예에 따른 LiNiO2 양극활물질 분말을 제조하였다.
도 3 내지 도 9는 본 발명의 실시 예 1-1에 따른 양극활물질의 TEM 사진 및 SEAD 패턴이다.
도 3 내지 도 9를 참조하면, 도 3에서 알 수 있듯이, 실시 예 1-1에 따라 지르코늄을 포함하는 양극활물질이 rocksalt phase를 갖는 것을 확인할 수 있다. 또한, 도 4에서 알 수 있듯이, 실시 예 1-1에 따라 지르코늄을 포함하는 양극활물질이 spinel defect와 함께 R-3m phase를 갖는 것을 확인할 수 있다.
도 5 내지 도 7에서 알 수 있듯이, 실시 예 1-1에 따라 지르코늄을 포함하는 양극활물질이 spinel defect와 함께 twinned R-3m phase를 갖는 것을 확인할 수 있다. 또한, 도 5에 도시된 것과 같이, twinning에 의해 약 2㎛ 길이를 갖는 1차 입자들 사이가 벌어진 것을 확인할 수 있다.
도 8 및 도 9에서 알 수 있듯이, 실시 예 1-1에 따라 지르코늄을 포함하는 양극활물질이 defect 없는 twinned R-3m phase를 갖는 것을 확인할 수 있다.
도 10은 본 발명의 비교 예에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이고, 도 11은 본 발명의 실시 예 1-1에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이고, 도 12는 본 발명의 실시 예 1-2에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이고, 도 13은 본 발명의 실시 예 1-3에 따른 양극활물질 전구체 및 양극활물질을 촬영한 SEM 사진이다.
도 10 내지 도 13을 참조하면, 비교 예에 따라서 지르코늄 또는 티타늄이 도핑되지 않은 양극활물질 전구체, 실시 예 1-1 내지 1-3에 따라서 지르코늄이 0.5mol%, 1.0mol%, 및 2.0mol% 첨가된 양극활물질 전구체의 SEM 사진을 촬영하였다. 도 10 내지 도 13에서, 좌측 상단 사진은 양극활물질 전구체의 저배율 SEM 사진이고, 좌측 하단 사진은 양극활물질 전구체의 고배율 SEM 사진이고, 우측 상단 사진은 양극활물질 저배율 SEM 사진이고, 우측 하단 사진은 양극활물질 고배율 SEM 사진이다.
도 14는 본 발명의 실시 예 1-1에 따른 양극활물질을 촬영한 TEM 사진이고, 도 15는 본 발명의 실시 예 1-3에 따른 양극활물질을 촬영한 TEM 사진들이고, 도 16은 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지를 100회 충방전 수행한 후, 양극활물질을 촬영한 TEM 사진들이다.
도 14를 참조하면, 실시 예 1-1에 따른 양극활물질을 TEM 사진을 촬영하였다. 도 5를 참조하여 설명된 것과 같이, 실시 예 1-1에 따른 양극활물질이 약 2㎛길이의 1차 입자 입자를 갖는 것을 확인할 수 있다. 다시 말하면, 지르코늄 도핑에 의해 1차 입자의 길이가 증가된 것을 확인할 수 있다.
도 15를 참조하면, 실시 예 1-3에 따른 양극활물질의 STEM 사진을 촬영하였다. 도 15의 (a)는 TEM 사진의 모자이크 사진이고, 도 15의 (b)는 양극활물질 입자의 표면을 확대한 것이고, 도 15의 (c)는 도 15의 (b)를 확대한 것이고, 도 15의 (d)는 도 15의 (c)를 확대한 것으로, 도 15의 (d)의 왼쪽 위 내부 사진은 박스(box)의 FFT 결과이고, 도 15의 (d)의 왼쪽 아래 내부 사진은 diffraction 결과를 도시한 것이다. 도 15의 (c)에서 알 수 있듯이, 양극활물질 입자의 표면 및/또는 1차 입자의 표면에 7nm 두께의 코팅층이 형성된 것을 확인할 수 있고, 또한 도 15의 (d)에서 알 수 있듯이, 양극활물질 입자의 표면에 생성된 코팅층은 Li2ZrO3인 것을 알 수 있다. 다시 말하면, 니켈과 지르코늄을 이용하여 양극활물질 전구체 및 양극활물질을 제조하는 경우, 리튬 지르코늄 산화물이 양극활물질 입자의 표면 및/또는 1차 입자의 표면을 코팅되는 것을 알 수 있다.
도 16을 참조하면, 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지를 제조하고, 100회 충방전을 수행한 후 TEM 사진을 촬영하였다. 도 16의 (a)는 TEM 사진의 모자이크 사진이고, 도 16의 (b)는 양극활물질 입자의 표면을 확대하고 지르코늄의 농도의 EDS 프로파일을 표시한 것이고, 도 16의 (c)는 입자 표면의 HRTEM 사진으로, 도 16의 (c)의 왼쪽 위 내부 사진은 박스(box)의 FFT 결과이고, 도 16의 (c)의 점선은 layered structure와 제2 상(secondary phase)의 경계를 표시한 것이고, 도 16의 (c)의 오른쪽 아래 내부 사진은 은 layered structure의 FFT 결과이다. 도 16에서 알 수 있듯이, 양극활물질 입자의 표면에서 지르코늄의 농도가 6at%로, 실시 예 1-3의 양극활물질의 평균 지르코늄 농도인 1.4mol%와 비교하여 현저하게 높은 것을 확인할 수 있다. 또한, 양극활물질 입자의 표면에서 내부로 갈수록 지르코늄의 농도가 감소하는 것을 알 수 있다. 결론적으로, 도 15를 참조하여 설명된 것과 같이, 리튬 지르코늄 산화물이 양극활물질 입자의 표면에 코팅되는 것을 확인할 수 있다.
도 17은 본 발명의 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 용량 특성을 측정한 그래프이고, 도 18은 본 발명의 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 수명 특성을 측정한 그래프이고, 도 19는 본 발명의 실시 예에 따른 양극활물질을 다른 종류의 양극활물질과 용량 및 수명 특성을 비교한 것을 나타내는 그래프이다.
도 17 및 도 18을 참조하면, 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질을 이용하여 half cell을 제조하고, 2.7~4.3V, 0.1C 조건에서 용량 특성을 측정하고, 2.7~4.3V, 0.5C 조건에서 충방전 횟수에 따른 용량 변화를 측정하였다.
0.1C, 1st Dis-Capacity(mAh/g) 1st Efficiency 0.2CCapacity(mAh/g) 0.2C/0.1C 0.5CCapacity (mAh/g) 0.5C/0.1C Cycle 0.5C CycleRetention L/L(mg/cm2)
비교 예 247.5 96.8% 242.3 97.9% 232.5 93.9% 100 73.7% 6.52
실시 예 1 246.5 97.0% 241.1 97.8% 230.9 93.7% 100 81.0% 3.35
실시 예 2 238.4 95.0% 231.2 97.0% 217.9 91.4% 100 82.9% 5.68
실시 예 3 232.6 93.8% 222.6 95.7% 208.5 89.6% 100 86.0% 3.06
[표 1], 도 17, 및 도 18에서 알 수 있듯이, 초기 용량은 비교 예에 따른 양극활물질을 포함하는 리튬 이차전지가, 실시 예 1-1~1-3에 따른 양극활물질을 포함하는 리튬 이차전지보다 높은 것을 확인할 수 있다. 하지만, 충방전 과정이 수행됨에 따라서, 비교 예에 따른 양극활물질을 포함하는 리튬 이차전지는 용량이 크게 감소하였지만, 실시 예 1-1~1-3에 따른 양극활물질을 포함하는 리튬 이차전지는 용량 감소가 상대적으로 크지 않은 것을 확인할 수 있다. 다시 말하면, 지르코늄이 도핑된 양극활물질을 이용하여 리튬 이차전지를 제조하는 것이, 수명 특성을 향상시키는 효과적인 방법인 것을 알 수 있다. 또한, 도 19를 참조하면, 종래에 사용되는 NCM계열(Ni, Co, Mn을 포함하는 양극활물질) 및 NCA계열(Ni, Co, Al을 포함하는 양극활물질)과 비교하여, 본 발명의 실시 예들에 따라 지르코늄이 도핑된 양극활물질(Zr-LNO)의 용량 및 수명 특성이 우수한 것을 확인할 수 있다.
도 20은 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지를 100회 충방전 시킨 후, 양극활물질을 촬영한 SEM 사진이다.
도 20을 참조하면, 실시 예 1-3 및 비교 예에 따른 양극활물질을 이용하여 리튬 이차 전지를 제조하고, 4.3V에서 100회 충방전을 수행하였다. 이후, 실시 예 1-3 및 비교 예에 따른 양극활물질을 촬영하였다. 도 20의 (a)는 비교 예에 따른 양극활물질을 촬영한 것이고, 도 20의 (b)는 실시 예 1-3에 따른 양극활물질을 촬영한 것이다.
도 20에서 알 수 있듯이, 비교 예에 따른 양극활물질은 충방전 과정이 수행됨에 따라서, 입자가 다수 붕괴된 것을 확인할 수 있다.(도 20의 화살표 참조) 반면, 실시 예 1-3에 따른 양극활물질은 상대적으로 입자의 붕괴가 현저하게 적은 것을 알 수 있다. 다시 말하면, 지르코늄이 도핑된 양극활물질을 이용하는 것이, 충방전 수행 과정에서 양극활물질의 입자가 붕괴되는 것을 최소화시키고 수명 특성을 향상시키는 효율적인 방법인 것을 알 수 있다.
도 21은 본 발명의 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이고, 도 22는 본 발명의 실시 예 1-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이고, 도 23은 본 발명의 실시 예 1-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이고, 도 24는 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 그래프이고, 도 25는 본 발명의 실시 예 1-1~1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충방전 횟수에 따른 용량 변화를 설명하기 위한 그래프이다.
도 21 내지 도 25를 참조하면, 상술된 바와 같이, 비교 예, 및 실시 예 1-1 내지 실시 예 1-3에 따른 양극활물질을 이용하여 half cell을 제조하고, 2.7~4.3V 범위, 평가온도 30℃, 0.5C 충전 조건에서, 충방전 횟수에 따른 미분 용량을 측정하였다. 또한, 도 25에 도시된 것과 같이, 도 21 내지 도 24에 따른 미분용량 측정 그래프에서, 충방전 횟수에 따른, 4.1~4.3V에서 적분 면적을 normalized하였다.
도 21 내지 도 24에서 알 수 있듯이, 충방전이 진행됨에 따라서, 실시 예 1-1 내지 1-3 및 비교 예에 따른 양극활물질이 H1 phase, H1+M phase, M phase, M+H2 phase, H2 phase, H2+H3 phase, H3 phase, H2+H3 phase, M+H2 phase, M phase, H1+M phase, H1 phase를 순차적으로 갖는 것을 확인할 수 있다. 도 21 내지 도 24에서 H1 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수를 갖는 결정 구조를 나타내고, H2 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수 보다 긴 격자 상수를 갖는 결정 구조를 나타내고, H3 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수보다 짧은 격자 상수를 갖는 결정 구조를 나타내고, M phase는 단사정계 결정 구조를 나타낸다.
또한, 지르코늄이 도핑되지 않은 경우, 도 21에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 급격하게 감소하는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 급격하게 감소하며, 도 17 및 도 18을 참조하여 상술된 바와 같이, 비교 예에 따른 경우, 충방전 횟수에 따라서 용량이 급격하게 감소하는 것을 재확인할 수 있다.
반면, 실시 예 1-1 내지 실시 예 1-3에 따른 경우, 도 22 내지 도 24에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 감소량이 적은 것을 알 수 있다. 즉, 충방전 횟수에 따라서, H2 및 H3 phase의 생성 비율의 변화량이, 지르코늄의 도핑에 의해 현저하게 감소되는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 실질적으로 일정하게 유지되며, 도 17 및 도 18을 참조하여 상술된 바와 같이, 실시 예들에 따른 경우, 충방전 횟수에 따라서 용량이 감소되는 것이 최소화될 수 있다. 구체적으로, 도 25에 도시된 바와 같이, 본 발명의 실시 예 1-1 내지 실시 예 1-3에 따른 경우, 충방전 100회 조건에서, 4.1~4.3V 범위에서 적분 면적의 감소량이, 32~33.5%이지만, 비교 예에 따른 경우 59.9%인 것을 확인할 수 있다.
도 26은 본 발명의 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이고, 도 27은 본 발명의 실시 예 1-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이고, 도 28은 본 발명의 실시 예 1-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이고, 도 29는 본 발명의 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이고, 도 30은 비교 예 및 실시 예 1-3에 따른 양극활물질을 포함하는 리튬 이차 전지의 초기 충방전 횟수에서 EIS 결과 그래프이고, 도 31은 본 발명의 비교 예 및 실시 예 1-3에 따른 양극활물질의 Rct 값을 비교한 그래프이다.
도 26 내지 도 29를 참조하면, 상술된 바와 같이, 비교 예, 및 실시 예 1-1 내지 실시 예 1-3에 따른 양극활물질을 이용하여 half cell을 제조하고, EIS를 측정하였다.
Cycle Rct (Ω)
비교 예 실시 예 1-1 실시 예 1-2 실시 예 1-3
1st 10.6 7.3 4.2 4.1
25th 21.1 18.5 4.8 4.3
50th 34.2 30.7 5.5 4.5
75th 44.9 40.9 5.8 5.1
100th 85.2 77.3 6.0 7.0
[표 2], 및 도 26 내지 도 30에서 알 수 있듯이, 비교 예에 따라서 지르코늄이 도핑되지 않은 경우, 실시 예 1-1 내지 1-3에 따라서 지르코늄이 도핑된 경우와 비교하여, Rct(전하 이동 저항) 값이 현저하게 높은 것을 확인할 수 있다. 또한, 충방전을 100회 수행한 이후에는, 실시 예 1-1에 따른 양극활물질(지르코늄 0.4mol%)과 비교하여, 실시 예 1-2 및 실시 예 1-3에 따른 양극활물질(지르코늄 0.7 및 1.4mol%)인 경우, Rct 값이 현저하게 낮은 것을 확인할 수 있다. 또한, 도 30 및 도 31에서 알 수 있듯이, 충방전 횟수가 1~5회로 상대적으로 초기인 경우, 지르코늄의 도핑에 따른 효과가 크지 않았지만, 충방전 횟수가 6회이상 되는 경우, 비교 예에 따른 양극활물질의 Rct 값은 급격하게 증가하지만, 지르코늄이 도핑된 실시 예들에 따른 양극활물질의 Rct 값이 급격하게 감소하는 것을 확인할 수 있다.
도 32는 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질의 XRD 측정 결과이고, 도 33은 본 발명의 비교 예에 따른 양극활물질의 XRD 측정 결과이고, 도 34는 본 발명의 실시 예 1-3에 따른 양극활물질의 XRD 측정 결과이다.
도 32 내지 도 34를 참조하면, 실시 예 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충전 과정에서 따라서 XRD 결과를 측정하였다. 도 32 및 도 33에서 알 수 있듯이, 비교 예에 따라 지르코늄이 도핑되지 않은 양극활물질의 경우, 충전이 진행됨에 따라서 H2 상(phase)에서 H3 상으로 완전히 변화하는 것을 확인할 수 있다. 반면, 도 32 및 도 34에서 알 수 있듯이, 실시 예 1-3에 따라 지르코늄이 도핑된 양극활물질의 경우, 충전이 진행되더라도, H2 상 및 H3 상을 동시에 갖는 것을 확인할 수 있다. 구체저긍로, 실시 얘 1-3에 따른 양극활물질의 경우, 4.3V 및 4.5V 상태에서도 H2 및 H3 상을 동시에 갖는 것을 확인할 수 있다. 결론적으로, 본 발명의 실시 예에 따라서 지르코늄이 도핑을 양극활물질에 도핑하는 것이, 충전 과정에서 상(phase)의 변화가 감소시키며, 이에 따라, 충방전 횟수에 따라서 양극활물질이 열화되는 것을 감소시키는 효율적인 방법인 것을 확인할 수 있다.
도 35는 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질의 c축 방향의 길이를 변화를 비교한 그래프이다.
도 35를 참조하면, 도 32 내지 도 34를 참조하여 설명된 것과 같이, 본 발명의 실시 예 1-3 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차전지에 인가되는 전압(4.1V, 4.2V, 4.3V, 4.5V)에 따라서 양극활물질의 a축 및 c축 방향으로 격자 상수(lattice parameter)의 길이를 측정하였다.
Voltage/V 비교 예 실시 예 1-3
a-axis /Å c-axis /Å V /Å3 a-axis/Å c-axis/Å V /Å3
4.1 2.8188 14.3761 98.925 2.8267 14.2978 98.944
4.2 2.8167 14.3061 98.296 2.8219 13.9440 96.162
2.8143 13.5857 93.192 2.8213 13.6291 93.956
4.3 2.8149 13.5943 93.288 2.8180 13.8323 95.132
2.8178 13.5688 93.305
4.5 2.8138 13.4634 92.316 2.8169 13.6672 93.925
2.8151 13.4294 92.167
[표 3] 및 도 35에서 알 수 있듯이, H2 phase와 H3 phase 사이에 상 변화가 발생하는 경우, 비교 예에 따른 양극활물질과 비교하여, 실시 예 1-3에 따른 양극활물질의 c축 방향으로 길이 변화가 현저하게 적은 것을 확인할 수 있다. 다시 말하면, 본 발명의 실시 예에 따라서 지르코늄이 도핑되는 경우, 충방전 과정에서 양극활물질의 결정 구조의 c축 방향으로 길이 변화가 감소되어, 결정 구조가 안정화됨을 확인할 수 있다.
도 36은 본 발명의 실시 예 1-1, 1-3, 및 비교 예에 따른 양극활물질의 열적 안정성을 비교한 DSC 그래프이다.
도 36을 참조하면, cut off 4.3V, scan rate 5℃/min 조건에서 실시 예 1-1, 1-3, 및 비교 예에 따른 양극활물질의 DSC 특성을 측정하였다. 도 36에서 알 수 있듯이, 지르코늄이 도핑되지 않은 비교 예와 비교하여, 지르코늄이 도핑된 실시 예 1-1 및 실시 예 1-3에 따른 양극활물질의 열적 안정성이 현저하게 우수한 것을 확인할 수 있다.
또한, 실시 예 1-1에 따라서 0.4mol%의 지르코늄이 도핑된 경우보다, 실시 예 1-3에 따라서 1.4mol%의 지르코늄이 도핑된 경우, 열적 안정성이 현저하게 우수한 것을 확인할 수 있다.
Onset temperature (℃) Peak temperature (℃) Enthalpy (J g-1)
비교 예 176.0 176.1 1860
실시 예 1-1 183.5 183.7 1645
실시 예 1-3 200.2 200.3 1182
도 37은 본 발명의 실시 예 2-1에 따른 양극활물질의 TEM 사진이다.
도 37을 참조하면, 실시 예 2-1에 따른 양극활물질의 TEM 사진을 촬영하였다. 도 37에서 알 수 있듯이, 양극활물질이 1차 입자가 응집된 2차 입자로 구성되고, 1차 입자의 종횡비가 높은 것을 확인할 수 있다.
도 38 내지 도 46은 본 발명의 실시 예 2-1에 따른 양극활물질의 TEM 사진 및 SEAD 패턴이다.
도 38을 참조하면, 본 발명의 실시 예 2-1에 따라 티타늄이 도핑된 양극활물질이 spinel phase를 갖는 것을 확인할 수 있다.
도 39 및 도 40을 참조하면, 본 발명의 실시 예 2-1에 따라 티타늄이 도핑된 양극활물질이 defect와 함께 R-3m phase를 갖는 것을 확인할 수 있다. 구체적으로, SEAD 패턴에서, defect에 의해 주가적인 피크가 발생하고, 중간상(intermediated structure) 관찰되는 것을 확인할 수 있다.
도 41 내지 도 444를 참조하면, 본 발명의 실시 예 2-1에 따라 티타늄이 도핑된 양극활물질이 spinel defect와 함께 twinned R-3m phase를 갖는 것을 확인할 수 있다. 또한, 도 41에 도시된 것과 같이, twinning에 의해 1차 입자들 사이가 벌어진 것을 확인할 수 있다. 또한, 도 42에 도시된 것과 같이, 1차 입자가 약 2㎛의 길이를 갖는 것을 확인할 수 있다.
도 45 및 도 46을 참조하면, 본 발명의 실시 예 2-1에 따라 티타늄이 도핑된 양극활물질이 rocksalt phase를 갖는 것을 확인할 수 있다.
도 47은 본 발명의 실시 예 2-1에 따른 양극활물질 전구체를 촬영한 SEM 사진이고, 도 48은 본 발명의 실시 예 2-2에 따른 양극활물질 전구체를 촬영한 SEM 사진이다.
도 47 및 도 48을 참조하면, 실시 예 1-1 내지 1-3에 따라서 티타늄이 0.5mol%, 및 1.0mol%첨가된 양극활물질 전구체의 SEM 사진을 촬영하였다.
도 49는 본 발명의 실시 예 2-1 내지 2-2 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 용량 특성을 측정한 그래프이고, 도 50은 본 발명의 실시 예 2-1 내지 2-32 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 수명 특성을 측정한 그래프이다.
도 49 및 도 50을 참조하면, 실시 예 2-1 내지 2-2 및 비교 예에 따른 양극활물질을 이용하여 half cell을 제조하고, 2.7~4.3V, 0.1C 조건에서 용량 특성을 측정하고, 2.7~4.3V, 0.5C 조건에서 충방전 횟수에 따른 용량 변화를 측정하였다.
0.1C, 1st Dis-Capacity(mAh/g) 1st Efficiency 0.2CCapacity(mAh/g) 0.2C/0.1C 0.5CCapacity (mAh/g) 0.5C/0.1C Cycle 0.5C CycleRetention L/L(mg/cm2)
비교 예 247.5 96.8% 242.3 97.9% 232.5 93.9% 100 73.7% 6.52
실시 예 2-1 241.8 97.3% 237.1 98.0% 228.4 94.4% 100 84.4% 3.68
실시 예 2-2 240.1 95.5% 232.7 96.6% 220.4 91.5% 100 88.1% 3.42
[표 5], 도 49, 및 도 50에서 알 수 있듯이, 초기 용량은 비교 예에 따른 양극활물질을 포함하는 리튬 이차전지가, 실시 예 2-1~2-2에 따른 양극활물질을 포함하는 리튬 이차전지보다 높은 것을 확인할 수 있다. 하지만, 충방전 과정이 수행됨에 따라서, 비교 예에 따른 양극활물질을 포함하는 리튬 이차전지는 용량이 크게 감소하였지만, 실시 예 2-1~2-2에 따른 양극활물질을 포함하는 리튬 이차전지는 용량 감소가 상대적으로 크지 않은 것을 확인할 수 있다. 다시 말하면, 티타늄이 도핑된 양극활물질을 이용하여 리튬 이차전지를 제조하는 것이, 수명 특성을 향상시키는 효과적인 방법인 것을 알 수 있다.
도 51은 본 발명의 실시 예 2-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 것이고, 도 52는 본 발명의 실시 예 2-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 미분 용량을 측정한 것이고, 도 53은 본 발명의 실시 예 2-1~2-2 및 비교 예에 따른 양극활물질을 포함하는 리튬 이차 전지의 충방전 횟수에 따른 용량 변화를 설명하기 위한 그래프이다.
도 51 내지 도 52를 참조하면, 상술된 바와 같이, 비교 예, 및 실시 예 1-1 내지 실시 예 1-3에 따른 양극활물질을 이용하여 half cell을 제조하고, 2.7~4.3V 범위, 평가온도 30℃, 0.5C 충전 조건에서, 충방전 횟수에 따른 미분 용량을 측정하였다. 또한, 도 53에 도시된 것과 같이, 도 51 내지 도 52, 및 도 21에 따른 미분용량 측정 그래프에서, 충방전 횟수에 따른, 4.1~4.3V에서 적분 면적을 normalized하였다. 다시 말하면, 도 53은 미분 용량 중 H2/H3의 면적을 적분한 값이다.
도 51 내지 도 52, 및 도 21에서 알 수 있듯이, 충방전이 진행됨에 따라서, 실시 예 2-1 내지 2-2 및 비교 예에 따른 양극활물질이 H1 phase, H1+M phase, M phase, M+H2 phase, H2 phase, H2+H3 phase, H3 phase, H2+H3 phase, M+H2 phase, M phase, H1+M phase, H1 phase를 순차적으로 갖는 것을 확인할 수 있다. 도 21 내지 도 24에서 H1 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수를 갖는 결정 구조를 나타내고, H2 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수 보다 긴 격자 상수를 갖는 결정 구조를 나타내고, H3 phase는 실시 예들 및 비교 예에 따른 양극활물질이 c축 방향으로 고유의 격자 상수보다 짧은 격자 상수를 갖는 결정 구조를 나타내고, M phase는 단사정계 결정 구조를 나타낸다.
또한, 티타늄이 도핑되지 않은 경우, 도 21에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 급격하게 감소하는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 급격하게 감소하며, 도 51 및 도 52를 참조하여 상술된 바와 같이, 비교 예에 따른 경우, 충방전 횟수에 따라서 용량이 급격하게 감소하는 것을 재확인할 수 있다.
반면, 실시 예 2-1 내지 실시 예 2-2에 따른 경우, 도 51 내지 도 52에 도시된 바와 같이, 충방전 횟수가 진행됨에 따라서, H2 및 H3 phase의 피크 값이 감소량이 적은 것을 알 수 있다. 즉, 충방전 횟수에 따라서, H2 및 H3 phase의 생성 비율의 변화량이, 티타늄의 도핑에 의해 현저하게 감소되는 것을 확인할 수 있다. 다시 말하면, 4.1~4.3V 범위에서 적분면적이 실질적으로 일정하게 유지되며, 도 49 및 도 50을 참조하여 상술된 바와 같이, 실시 예들에 따른 경우, 충방전 횟수에 따라서 용량이 감소되는 것이 최소화될 수 있다. 구체적으로, 도 53에 도시된 바와 같이, 본 발명의 실시 예 2-1 내지 실시 예 2-2에 따른 경우, 충방전 100회 조건에서, 4.1~4.3V 범위에서 적분 면적의 감소량이, 21.7~24.4%이지만, 비교 예에 따른 경우 59.9%인 것을 확인할 수 있다.
도 54는 본 발명의 실시 예 2-1에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이고, 도 55는 본 발명의 실시 예 21-2에 따른 양극활물질을 포함하는 리튬 이차 전지의 EIS 결과 그래프이다.
도 54 및 도 55를 참조하면, 상술된 바와 같이, 비교 예, 및 실시 예 2-1 내지 실시 예 2-2에 따른 양극활물질을 이용하여 half cell을 제조하고, EIS를 측정하였다.
Cycle Rct (Ω)
비교 예 실시 예 2-1 실시 예 2-2
1st 16.52 11.47 16.13
25th 37.34 34.74 29.7
50th 53.81 37.58 33.95
75th 78.38 40.01 35.66
100th 85.2 42.86 38.21
[표 6], 및 도 54 내지 도 55, 도 26에서 알 수 있듯이, 비교 예에 따라서 티타늄이 도핑되지 않은 경우, 실시 예 2-1 내지 2-2에 따라서 티타늄이 도핑된 경우와 비교하여, Rct(전하 이동 저항) 값이 현저하게 높은 것을 확인할 수 있다. 특히, 충방 수행 횟수가 증가함에 따라서, Rct 값의 차이가 큰 것을 확인할 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 실시 예에 따른 양극활물질 및 이를 포함하는 리튬 이차 전지는, 모바일 전자 기기, 전기 자동차, 에너지 저장 장치 등 다양한 산업에 이용될 수 있다.

Claims (13)

1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하고,
상기 2차 입자는, 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하되,
상기 도핑 금속에 의해 상기 1차 입자의 종횡비가 증가된 것을 포함하는 양극활물질.
제1 항에 있어서,
상기 도핑 금속은, 지르코늄, 티타늄, 텅스텐, 몰리브덴, 니오븀, 탄탈륨, 비스무트, 루테늄, 마그네슘, 아연, 갈륨, 바나듐, 크롬, 칼슘, 스트론튬, 또는 주석 중에서 적어도 어느 하나를 포함하는 양극활물질.
제1 항에 있어서,
상기 1차 입자의 길이는 1㎛ 이상이고, 폭은 약 100nm 이하인 것을 포함하는 양극활물질.
제1 항에 있어서,
상기 1차 입자는, 상기 2차 입자의 중심에서, 상기 2차 입자의 표면을 향하여 연장하는 것을 포함하는 양극활물질.
제1 항에 있어서,
복수의 상기 1차 입자 사이에, 리튬 이온의 이동 통로가 제공되는 것을 포함하는 양극활물질.
제1 항에 있어서,
spinel defect와 함께 twinned R-3m phase를 갖는 양극활물질.
제1 항에 있어서,
상기 2차 입자의 중심의 밀도가 상기 2차 입자의 가장자리의 밀도보다 높은 것을 포함하는 양극활물질.
제1 항에 있어서,
상대적으로 상기 2차 입자의 중심에 인접한 상기 1차 입자와 비교하여, 상대적으로 상기 2차 입자의 표면에 인접한 상기 1차 입자의 종횡비가 더 큰 것을 포함하는 양극활물질.
1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하되,
상기 1차 입자의 길이가 1㎛ 이상인 것을 포함하는 양극활물질.
제9 항에 있어서,
상기 1차 입자는 니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나, 리튬, 및 도핑 금속을 포함하고,
상기 도핑 금속에 의하여 상기 1차 입자의 종횡비가 증가되고,
상기 2차 입자의 표면의 적어도 일부를 덮고, 상기 리튬 및 상기 도핑 금속의 산화물을 포함하는 코팅층을 더 포함하는 양극활물질.
제9 항에 있어서,
상기 1차 입자는 로드 쉐입을 갖는 것을 포함하는 양극활물질.
니켈, 코발트, 망간, 또는 알루미늄 중에서 적어도 어느 하나를 포함하는 베이스 수용액, 및 도핑 금속을 포함하는 도핑 수용액을 반응기제 제공하여, 도핑 금속이 도핑된 양극활물질 전구체를 제조하는 단계; 및
상기 도핑 금속이 도핑된 상기 양극활물질 전구체 및 리튬 염을 혼합 및 소성하여, 양극활물질을 제조하는 단계를 포함하는 양극활물질의 제조 방법.
제12 항에 있어서,
상기 양극활물질은, 1차 입자, 및 상기 1차 입자가 응집된 2차 입자를 포함하고,
상기 양극활물질을 제조하는 단계는,
상기 양극활물질 전구체 및 리튬 염을 혼합 및 소성하는 과정에서 상기 리튬염의 농도를 조절하여, 리튬 및 상기 도핑 금속의 산화물을 포함하고 상기 2차 입자의 표면의 적어도 일부를 덮는 코팅층을 형성하는 것을 포함하는 양극활물질의 제조 방법.
PCT/KR2018/008024 2017-07-14 2018-07-16 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 WO2019013605A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0089578 2017-07-14
KR20170089578 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019013605A1 true WO2019013605A1 (ko) 2019-01-17

Family

ID=65001417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008024 WO2019013605A1 (ko) 2017-07-14 2018-07-16 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지

Country Status (2)

Country Link
KR (1) KR102194504B1 (ko)
WO (1) WO2019013605A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886001A (zh) * 2019-11-29 2021-06-01 艾可普罗 Bm 有限公司 正极活性材料及包括其的锂二次电池
CN113632263A (zh) * 2019-01-24 2021-11-09 辰星锂电 含有掺杂元素的锂二次电池用复合金属氧化物、由其制备的锂二次电池用正极活性材料和包括其的锂二次电池
CN114365308A (zh) * 2019-07-10 2022-04-15 辰星锂电 用于锂二次电池的正极活性物质、其制备方法和包括其的锂二次电池
EP4138160A4 (en) * 2020-12-23 2023-12-20 Beijing Easpring Material Technology Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND PREPARATION METHOD THEREFOR, AND LITHIUM-ION BATTERY

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166016A1 (en) * 2019-01-24 2022-05-26 Battery Solution Composite metal oxide for lithium secondary battery comprising doping element, positive electrode active material for lithium secondary battery prepared from same, and lithium secondary battery comprising same
US20220328821A1 (en) * 2019-06-20 2022-10-13 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material having surface portion doped with hetero elements, and method for producing same
KR102242486B1 (ko) * 2019-08-19 2021-04-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102412692B1 (ko) * 2019-10-18 2022-06-24 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
US20220388864A1 (en) * 2019-10-18 2022-12-08 Ecopro Bm Co., Ltd. Lithium secondary battery cathode active material, manufacturing method therefor, and lithium secondary battery comprising same
KR102468595B1 (ko) * 2019-11-29 2022-11-18 주식회사 에코프로비엠 리튬 복합 산화물 및 이를 포함하는 리튬 이차전지
KR20210080081A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20220113195A (ko) * 2021-02-05 2022-08-12 주식회사 엘지화학 양극 활물질 및 이의 제조방법
KR20220113201A (ko) * 2021-02-05 2022-08-12 주식회사 엘지화학 양극 활물질 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160131069A (ko) * 2014-03-06 2016-11-15 우미코르 자동차 분야 배터리용 도핑 및 코팅된 리튬 전이 금속 산화물 캐소드 재료
KR20160136688A (ko) * 2015-05-20 2016-11-30 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 에너지 저장장치, 및 상기 전극 활물질의 제조방법
KR20170017969A (ko) * 2012-06-08 2017-02-15 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170017969A (ko) * 2012-06-08 2017-02-15 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20160131069A (ko) * 2014-03-06 2016-11-15 우미코르 자동차 분야 배터리용 도핑 및 코팅된 리튬 전이 금속 산화물 캐소드 재료
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160136688A (ko) * 2015-05-20 2016-11-30 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 에너지 저장장치, 및 상기 전극 활물질의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, SHI: "Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands", ACS APPLIED MATERIALS & INTERFACES, 20 February 2017 (2017-02-20), pages 8669 - 8678, XP055679774 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632263A (zh) * 2019-01-24 2021-11-09 辰星锂电 含有掺杂元素的锂二次电池用复合金属氧化物、由其制备的锂二次电池用正极活性材料和包括其的锂二次电池
CN114365308A (zh) * 2019-07-10 2022-04-15 辰星锂电 用于锂二次电池的正极活性物质、其制备方法和包括其的锂二次电池
CN112886001A (zh) * 2019-11-29 2021-06-01 艾可普罗 Bm 有限公司 正极活性材料及包括其的锂二次电池
EP3828139A1 (en) * 2019-11-29 2021-06-02 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
US11588154B2 (en) 2019-11-29 2023-02-21 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
US11837725B2 (en) 2019-11-29 2023-12-05 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
EP4138160A4 (en) * 2020-12-23 2023-12-20 Beijing Easpring Material Technology Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND PREPARATION METHOD THEREFOR, AND LITHIUM-ION BATTERY

Also Published As

Publication number Publication date
KR20190008156A (ko) 2019-01-23
KR102194504B1 (ko) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019013605A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2019139443A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2014119973A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018101808A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019078399A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 전극, 및 상기 전극을 포함하는 리튬 이차 전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2012011760A2 (ko) 리튬 이차전지 양극활물질 전구체의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질 전구체, 및. 상기 양극활물질 전구체를 이용한 리튬 이차전지 양극활물질용 리튬금속복합산화물의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질용 리튬금속복합산화물.
WO2017213462A1 (ko) 소듐 이차전지용 양극활물질, 및 이의 제조 방법
WO2018190675A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2017188802A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2023043209A1 (ko) 양극 활물질용 신규 단일체 입자 및 신규 단일체 분말 제조방법
WO2022139290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021132762A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2020153833A1 (ko) 도핑원소를 포함하는 리튬이차전지용 복합금속산화물, 이로부터 형성된 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2016089176A1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2020256473A1 (ko) 이종원소가 도핑된 표면부를 갖는 양극활물질, 및 그 제조 방법
WO2020180160A1 (ko) 리튬 이차전지
WO2016126095A1 (ko) 양극활물질 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831451

Country of ref document: EP

Kind code of ref document: A1