KR100596760B1 - 시각 검사 및 검증 시스템 - Google Patents
시각 검사 및 검증 시스템 Download PDFInfo
- Publication number
- KR100596760B1 KR100596760B1 KR1020007002870A KR20007002870A KR100596760B1 KR 100596760 B1 KR100596760 B1 KR 100596760B1 KR 1020007002870 A KR1020007002870 A KR 1020007002870A KR 20007002870 A KR20007002870 A KR 20007002870A KR 100596760 B1 KR100596760 B1 KR 100596760B1
- Authority
- KR
- South Korea
- Prior art keywords
- image
- mask
- wafer
- illumination source
- defect
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/82—Auxiliary processes, e.g. cleaning or inspecting
- G03F1/84—Inspecting
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
- G03F7/70441—Optical proximity correction [OPC]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
포토리소그래피 마스크의 결함을 검사하는 방법 및 장치가 제공된다. 이 검사 방법은 이미지 시뮬레이터에 결함 영역 이미지를 제공하는 단계와, 그리고 제 2 입력으로서 이미지 시뮬레이터에 리소그래피 파라미터 집합을 제공하는 단계를 포함하며, 여기서 상기 결함 영역 이미지는 포토리소그래피 마스크의 일부분의 이미지이다. 상기 결함 영역 이미지는 검사 툴에 의해 제공되며, 상기 검사툴은 고해상도의 현미경을 사용하여 결함들에 대해서 포토리소그래피 마스크를 스캔하고, 그리고 확인된 잠재적인 결함들 주변의 상기 마스크 영역들의 이미지들을 포착한다. 이미지 시뮬레이터는 결함 영역 이미지와 리소그래피 파라미터 집합에 응답하여 제 1 시뮬레이트된 이미지를 생성한다. 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션이다. 이 방법은 결함 영역 이미지에 의해 나타나는 부분에 대응하는 디자인 마스크의 상기 부분에 대한 웨이퍼 프린트의 시뮬레이션인 제 2 시뮬레이트된 이미지를 제공하는 단계를 또한 포함한다. 이 방법은 상기 포토리소그래피 마스크 상에서의 확인된 모든 잠재적인 결함들의 프린트가능성을 판단하기 위하여 제 1 및 제 2 시뮬레이트된 이미지들을 또한 비교한다. 확인된 모든 잠재적인 결함들이 공정 윈도우에 미치는 영향을 판단하는 방법이 또한 제공된다.
마스크 결함 검사, 리소그래피, 이미지 시뮬레이션, 집적 회로
Description
본 발명은 집적 회로 제조 분야에 관한 것이다. 특히, 본 발명은 집적 회로 제조에 이용되는 마스크상에서의 결함들을 검사하기 위한 시스템에 관한 것이다.
집적 회로(IC)의 디자인시, 일반적으로 엔지니어들은 특정한 기능을 수행하도록 서로 연결된 별개의 디바이스들로 구성된 회로 도면 디자인의 제작을 돕는 컴퓨터 시뮬레이션 툴에 의존한다. 실제로 반도체 기판에 이러한 회로를 제작하기 위해서, 상기 회로는 물리적인 표현(physical representation), 혹은 레이아웃으로 변환되어야만 하며, 그 다음, 상기 레이아웃은 그 자체로 템플릿(즉, 마스크) 상에, 그 다음 실리콘 표면에 전사(transfer)될 수 있다. 또한, 완성된 IC 내에서 디바이스들 자체를 구체화하는 형상들로, 개별적인 회로 소자들을 변환하는 업무에 있어서, 레이아웃 디자이너들은 컴퓨터 지원 설계(CAD) 툴들을 이용한다. 상기 형상들은, 가령 게이트 전극들, 필드 산화 영역들, 확산 영역들, 금속 배선들 등과 같은 개별적인 회로 구성 요소들을 구성한다.
일단 회로의 레이아웃이 완성되면, 집적 회로(IC)를 제조하는 다음 단계는 레이아웃을 상기 반도체 기판상에 전사하는 것이다. 이를 수행하는 한 방법은 광학 리소그래피 공정을 이용하는 것으로서, 이 공정에서는 우선 레이아웃이 물리적인 템플릿 상으로 전사되며, 그 다음, 상기 물리적인 템플릿은 상기 레이아웃을 실리콘 웨이퍼상에 광학적으로 투영하는데 사용된다.
물리적인 템플릿에 레이아웃을 전사할 때, 일반적으로 집적회로 디자인의 각 층에 대해서 마스크(대개 크롬으로 코팅된 석영판)가 생성된다. 이는 그 층에 대한 레이아웃 디자인을 나타내는 데이터를, 가령 집적회로 레이아웃 패턴을 마스크 물질 내에 기록하는 전자빔 장치와 같은, 장치 내에 입력함으로써 이루어진다. 덜 복잡하면서 밀도가 낮은 집적 회로에서, 각 마스크는 그에 대응하는 층에 대한 바람직한 회로 패턴을 나타내는 기하학적인 형태들을 포함한다. 회로 피처(feature)들의 크기가 리소그래피 공정의 광학적인 한계에 근접하는 좀 더 복잡하고 밀도가 높은 회로에서, 마스크들은 또한, 근접 효과들을 보상하도록 디자인된 서브리소그래피 크기의 피처들인 세리프들(serifs), 해머헤드들(hammerheads), 바이어스들 및 보조 바(assist bar)들과 같은 광학 근접 교정 피처(optical proximity correction feature)들을 포함한다. 다른 고급 회로 디자인에서는, 위상 천이(phase shifting) 마스크들이 이용되어, 광학 리소그래피 공정의 콘트라스트(contrast)를 향상시킴으로써 그 공정에 대한 특정한 기본적인 광학 한계를 피할 수 있다.
그 다음, 이들 마스크들은 포토레지스트 물질로 코팅된 실리콘 웨이퍼 상에 레이아웃을 광학적으로 투영하는 데에 이용된다. 상기 디자인의 각 층에 대하여, 가시광원 또는 자외선 광원을 통해 그 층에 대응하는 마스크 상에 빛이 비추어진다. 상기 광은 마스크의 투명 영역들을 통과하여 그 형상으로 하부의 포토레지스트 층을 노광시키고, 그리고 마스크의 불투명한 영역들에서는 차단되어 그 하부 포토레지스트층 부분은 노광되지 않은 채로 남는다. 그 다음, 노광된 포토레지스트 층은, 일반적으로 포토레지스트 층의 노광된/비노광된 영역들의 화학적 제거를 통해 현상된다. 최종적인 결과는 그 층의 기하구조들, 피처들, 라인들, 및 형상들을 규정하는 필요한 패턴을 나타내는, 포토레지스트 층으로 코팅된 반도체 웨이퍼이다. 그 다음, 이러한 공정이 상기 디자인의 각 층에 대해 반복된다.
집적 회로 디자인이 더욱 복잡해짐에 따라, 포토리소그래피에서 이용되는 마스크가 오리지날(original) 디자인 레이아웃을 정확하게 표현하는 것이 더욱 중요하게 되었다. 불행히도, 이들 마스크들을 제조하는 데에 이용되는 전자빔 및 다른 장치들이 오차 없이 수행될 수 있을 것으로 가정하는 것은 비현실적이다. 일반적인 제조 공정시, 제어된 공정 외부에서 다소의 마스크 결함들이 발생한다.
마스크 상에서의 결함은 디자인 데이터베이스와는 다른 모든 것들로서, 검사 툴이나 검사 엔지니어에게는 용납될 수 없는 것으로 간주된다. 도 1a 내지 도 1f는 마스크 제조 공정 동안에 발생한 일부 일반적인 마스크 결함들을 포함하는 단순한 집적회로 디자인을 나타내는 마스크(100)를 도시한다. 마스크(100)는, 일반적으로 크롬으로 형성되는 불투명 영역(105)과, 투명 영역들(110 및 120)을 포함하며, 상기 투명 영역들은 포토레지스트 층위로 전사될 근본적인 기하구조로서 일반적으로 석영(quartz)으로 형성된다. 도 1a는 마스크(100)의 불투명 영역(105) 내의 고립된 핀홀(pinhole) 결함(125)을 도시한다. 도 1b는 마스크(100)의 투명 영역(110) 내의 고립된 불투명 스폿(spot) 결함(130)을 도시한다. 도 1c는 마스크(100)의 투명 영역들(110 및 120) 내의 에지 침입(edge protrusion) 결함들(140)을 도시한다. 도 1d는 마스크(100)의 불투명 영역(105) 내의 에지 돌출 결함들(145)을 예시한다. 도 1e는 마스크(100)의 투명 영역(110) 내의 기하학적인 브레이크 결함(150)을 도시한다. 마지막으로, 도 1f는 마스크(100)의 불투명 영역(105) 내의 기하학적인 브리지(bridge) 결함(155)을 예시한다.
도 2a 및 도 2b는 광학 근접 교정 피처들을 이용하는 마스크 상에서 발생할 수 있는 가능한 결함들을 도시한다. 도 2a는 불투명 영역(205)과, 포토레지스트로 전사하려고 하는 형태를 나타내는 투명 영역(210)과, 그리고 광학 근접 효과를 교정하기 위하여 디자인에 추가되는 디자인 세리프들(215)로 구성되는 단순하고 바람직한 마스크 디자인(200)을 도시한다. 도 2b는 마스크 디자인(200)이 입력으로서 주어진 경우에, 일반적인 전자빔 장치에 의해 생산될 수 있는 마스크(220)를 도시한다. 마스크(220)는 불투명 영역(225), 투명 영역(230), 및 변형된 세리프들(235)을 포함한다. 변형된 세리프들(235)의 형태가 디자인 세리프들(215)의 형태와 다르다는 것에 주목하자. 이는, 세리프들의 크기는 매우 작고(이들은 이용되는 리소그래피 공정의 광학적인 해상도 보다 작게 디자인된다), 그리고 일반적으로 전자빔은 마스크 물질 상에 디자인 세리프(215) 형태를 완벽하게 재생할 수 없기 때문이다. 상기 결과는, 가령 해머해드들, 바이어스 바들, 및 보조 바들과 같은 다른 광학 근접 교정 피처들을 이용하는 마스크들에 대해서도 동일하다.
도 1 및 도 2에서 예시한 것들과 같은 마스크의 결함을 검사하는 적형적인 방법이 도 3의 플로우챠트에 도시된다. 집적회로를 디자인하고(300) 마스크 디자인 데이터의 데이터 파일을 만든(310) 후에, 마스크 디자인 데이터가 전자빔 또는 레이저 기록 장치와 같은 장치에 제공되어 마스크가 제조된다(315). 그 다음, 공정 블록(320)에 도시된 바와 같이, 결함들을 검사한다. 예를 들면, 이러한 검사는 고해상도 현미경(예를 들어, 광학 현미경, 스캐닝 전자 현미경, 포커스 이온 빔 현미경, 원자력 현미경, 및 근접장 광학 현미경들)으로 마스크의 표면을 스캔하여 마스크의 이미지들을 포착함으로써 실시된다. 그 다음, 상기 마스크 이미지들은 엔지니어에 의해 오프라인으로, 또는 마스크 제조업자에 의해 온라인으로 검사되어 물리적인 마스크 상의 결함들을 확인한다. 판단 블록(325)으로 도시된 다음 단계는, 검사된 마스크가 리소그래피 공정에 이용할 수 있을 만큼 충분히 양호한지 여부를 판단한다. 이 단계는 숙련된 검사 엔지니어에 의해 오프라인으로 수행되거나, 또는 가능하다면 검사 소프트웨어를 이용하여 제조업자에 의해 온라인으로 수행될 수 있다. 만일 어떠한 결함도 없거나, 혹은 결함들이 발견되기는 했지만 제조업자 또는 최종 사용자에 의해 설정된 허용오차 범위 내에 있는 것으로 판단되면, 마스크는 검사에 통과하게 되며, 그러면 공정 블록(340)에 도시한 바와 같이 상기 마스크는 웨이퍼를 노광시키는데 사용된다. 만일 허용오차 범위 밖에 있는 결함들이 발견되면, 마스크는 검사(325)에 통과하지 못하여, 마스크가 결함들의 교정(335)을 위해 세정되고 및/또는 복구될 수 있는지, 또는 결함이 너무 심각하여 새로운 마스크가 제조되어야만 하는지(315)에 대한 판단(330)이 이루어져야만 한다. 이러한 과정은 제조된 마스크가 검사(325)에 통과할 때까지 계속된다.
일단 검사에 통과한 물리적인 마스크가 제조되면, 웨이퍼가 마스크를 통해 빛에 노출된 후에 상기 마스크가 포토레지스트 상에 필요한 이미지를 생성할 것인지를 확실하게 하기 위해 상기 마스크를 더 검사하는 것이 중요하다. 이는 전형적으로, 공정 블록(340)에 나타난 바와 같이 검사되는 마스크를 이용하여 웨이퍼를 실질적으로 노광 및 처리하는 비용이 드는 단계에 의해 수행된다. 그 다음, 처리된 웨이퍼는 블록(345)에서 검사되고, 결함들이 존재하는지 및 그 결함들이 허용오차 범위 내에 있는지 여부에 대한 판단(350)이 이루어진다. 만일 발견된 결함들이 중대하다면, 전과 같이, 그 결함들이 복구될 수 있는지(335) 또는 새로운 마스크가 제조되어야 하는지(315)에 대한 판단(330)이 이루어진다. 이러한 과정은, 필요한 웨이퍼 패턴들이 제조되고 블록(350)에서와 같은 웨이퍼 레벨 검사에 통과하는 마스크가 제조될 때까지 계속된다. 그 다음, 이러한 마스크는 리소그래피 공정에 이용되어 전체 제조 공정에서 해당하는 층을 노광시키는 데에 이용된다.
그러나, 필요한 최종 결과에 대해 모든 마스크 결함들이 중요한 것은 아니다(즉, 최종 결과는 포토레지스트 물질 상의 또는 실리콘 내에 식각된 오리지날 디자인 레이아웃의 정확한 표현이면 족하다). 이는, 모든 마스크 결함들이 "프린트"되는 것은 아니기 때문이다. 대략적으로 말하면, 결함의 프린트가능성은 그 결함이 주어진(given) 포토리소그래피 및/또는 식각 공정의 결과에 어떻게 영향을 주느냐이다. 이제는 프린트가능성의 중요성이 명백해졌는바, 이는 결함 검사의 목적이 결함을 정확하게 확인하여 웨이퍼 공정의 실패를 피하는 것이기 때문이다. 결함의 프린트가능성은 주로 스테퍼 노광(stepper exposure)에 관련되기 때문에, 결함의 프린트가능성은 특정 스테퍼 노광 조건에 따른다. 따라서, 결함이 "프린트 가능성이 없다"라고 말하는 것은, 상기 결함이 특정한 스테퍼 노광의 기대되는 결과에 대해서는 거의 영향을 미치지 않는다는 것을 의미하지만, 다르게 설정된 스테퍼 노광 조건하에서는 "프린트 가능성 있음"이 될 수도 있다. 바꾸어 말하면, 결함이 일 조건 집합(set)에서는 프린트될 수 있지만 다른 조건 집합하에는 그렇지 않을 수도 있기 때문에, 프린트 가능성은 스테퍼 조건에 크게 좌우된다. 이들 조건은 특히, 결함 크기, 파장길이, 개구수(numerical aperture), 간섭 계수, 조명 모드, 노광 시간, 노광 포커스/디포커스, 및 결함의 반사/전송 특성을 포함한다.
현재, 사용되고 있는 검사 툴들은 마스크를 온라인(즉, 제조 라인 내에서) 및 오프라인 모두로 검사하는 툴들을 포함한다. 종래의 온라인 검사 툴들은 전형적으로 결함 영역들을 찾기 위해 전체 마스크 영역을 스캔하며, 그리고 일부는 결함들이 검출될 때 검사 결과를 마스크 레이아웃 데이터베이스와 또한 비교할 수 있다. 그러나, 전형적인 온라인 검사 툴들의 결함 분석은 주로(혹은 오로지) 광학계에 의해 검출된 결함의 크기에 근거하여 특정한 결함의 중대성(severity)을 정의한다. 이러한 방법이 과거에는 다소 성공적이었지만, 오늘날의 마스크는 가령 OPC와 같은 진보되고 새로운 방법으로 점점 더 작은 피처들로 디자인되고 있다. 이러한 변화들 때문에 종래의 검사 방법들이 몇 개의 문제점들에 대처하지 못하므로, 종래의 검사 방법은 급속하게 부적절하게 되었다.
첫째로, 결함이 프린트되는지 아닌지는, 단지 크기 또는 전송/반사 특성 하나에 대해서가 아니라, 그의 위치 및 크기 양쪽 모두에 크게 좌우된다. 예를 들어, 고립된 영역에서의 큰 결함 스폿은 현재 및 후속 공정 층들에 거의 영향을 주지 않거나 전혀 영향을 주지 않는다. 반면에, 코너 또는 에지, 혹은 중요한 영역 근처의 작은 스폿은 정밀한 검사 없이 간단히 처리해서는 안 된다. 이는 종래의 이진(binary) 마스크들 또는 고급 마스크들 모두에 적용된다. 두 번째로, 고급 OPC 마스크 피처들은 잘못된 결함 검출을 유발할 수 있다. 전형적인 종래 기술은, 최종 결과에 대해 실질적으로 거의 영향을 주지 않는 경우에도, OPC 피처 또는 불완전한 OPC 피처(예컨대, 도 2에 도시한 바와 같은 라운드 세리프들)를 결함으로 잘못 보고할 수 있다. 일부 기존의 마스크 검사 툴들이 "허용가능한" OPC 피처들에 대한 슬라이딩 스케일 셋팅(sliding scale setting)을 가짐에도 불구하고, 이들 특별한 피처들과 관련된 결함들이 상기 임의의 스케일로 인해 간과될 수도 있기 때문에 상기 방법은 확실한 방법이 아니다. 또한, OPC 피처들은 전형적으로 특정 스테퍼 파라미터 집합에 대해 디자인되지만, 종래 툴들의 슬라이딩 스케일들은 이들 광학 파라미터들을 고려하지 않는다.
세 번째로, 종래의 전형적인 결함 검사 방법에서는 위상 정보를 고려한다 하더라도, 정밀하게 고려하지 않았다. 따라서, 위상 천이 마스크들이 정밀하게 검사되지 못했다. 결국, 결함이 프린트되지 않는 것처럼 보여도, 생산성을 감소하는 방식으로 공정의 허용도(process latitude)에 영향을 줄 수 있지만, 종래의 온라인 결함 검출 시스템에 의해서는 검출되지 않는다.
한편, 결함들을 바로 스캔하거나 온라인 툴로부터의 이전에 저장된 미확정 결함 데이터를 재검토하는 오프라인 검사 스테이션 또한 동일한 문제에 직면한다. 게다가, 이들 문제들은 고급 엔지니어가 해결하는데 상당한 시간이 필요하여, 이에 따라 비용은 증가하는 반면 생산성은 감소한다. 엔지니어의 판단으로 결함 프린트가능성/분류 문제는 경험 및 노하우로 인해 상당히 감소하지만, 여전히, 마스크를 통한 노광 후에 실제로 웨이퍼 상에서 결함이 나타나는지를 보기 전까지는 확실성 및 정확성이 충분한 것은 아니다. 이는, 가령 환형(annular) 또는 4중(quadruple)과 같은 비표준 조명 모드들을 이용하는 오늘날의 리소그래피 스테퍼들에서 특히 그러하다. 따라서, 현존하는 검사 시스템들을 이용하면, 비용과 시간을 들여 웨이퍼 상에 마스크를 실질적으로 프린트하지 않으면서, 결함의 프린트 가능성을 판단하는 것은 거의 불가능하다.
따라서, 모든 마스크 검사 시스템에서는, 특정한 조건의 리소그래피 공정시에 소정의 결함이 하부의 포토레지스트상에 "프린트"될 것인지 여부에 대한 중대한 결정이 이루어진다. 만일 마스크 결함이 프린트되지 않거나, (포토리소그래피 공정 윈도우를 허용할 수 없을 정도로 좁히는 것과 같은) 리소그래피 공정에 다른 영향을 주지 않는다면, 결함을 갖는 마스크를 이용하여 수용가능한 리소그래피 결과를 제공할 수 있다. 따라서, 결함들이 프린트되지 않는 마스크들을 복구 및/또는 대체하는 시간과 비용을 낭비하지 않을 수 있다. 현존하는 마스크 검사 시스템들의 상기 언급한 문제들을 해결하는, 포토리소그래피 공정에서 이용되는 마스크를 검사하기 위한 방법 및 장치가 필요하다.
상기 설명한 바와 같이, 현재 공지된 마스크 검사 시스템들은, 당해 마스크를 이용하여 웨이퍼를 실제로 노광시키지 않고서는, 잠재적인 마스크 결함의 프린트가능성의 정확한 계측 및/또는 전체적인 마스크 품질 평가를 제공할 수 없다. 본 발명은 마스크 제조업자들 및 웨이퍼 제작자들에게, 검사될 마스크의 웨이퍼 이미지의 시뮬레이션을 생성할 수 있는 마스크 결함 검사 방법 및 장치를 제공한다.
따라서, 본 발명의 일 실시예에서, 리소그래피에 이용되는 마스크를 검사하는 방법이 제공된다. 상기 방법은 입력으로서 결함 영역 이미지들과 리소그래피 파라미터 집합을 제공하는 단계를 포함하며, 여기서 상기 결함 영역 이미지는 마스크 일부분의 이미지를 포함한다. 이 방법은 결함 영역 이미지에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 단계를 또한 포함한다. 제 1 시뮬레이트된 이미지는, 웨이퍼가 상기 마스크 부분을 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트될 이미지의 시뮬레이션을 포함하며, 여기서 상기 조명원의 특성은 리소그래피 파라미터 집합을 포함한다.
다른 실시예에서, 상기 방법은, 포토레지스트 공정 파라미터 집합을 제공하고, 상기 포토레지스트 공정 파라미터 집합에 응답하여 제 2 시뮬레이트된 이미지를 생성하는 추가의 단계들을 더 포함하는 것을 특징으로 한다. 제 2 시뮬레이트된 이미지는, 웨이퍼가 상기 마스크 부분을 통해 조명원에 노출되는 경우, 웨이퍼 상에 프린트될 이미지의 시뮬레이션을 포함하며, 여기서 상기 웨이퍼는 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함한다. 다른 실시예에서, 상기 제 1 시뮬레이트된 이미지가 만일 웨이퍼가 마스크의 부분을 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하도록, 상기 제 1 시뮬레이트된 이미지의 생성은 포토레지스트 공정 파라미터 집합을 고려하여 조정될 수 있으며, 여기서 상기 웨이퍼는 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함한다.
또 다른 실시예에서, 상기 방법은, 식각 공정 파라미터 집합을 제공하고 상기 식각 공정 파라미터 집합에 응답하여 제 2 시뮬레이트된 이미지를 생성하는 추가의 단계들을 더 포함하는 것을 특징으로 한다. 상기 제 2 시뮬레이트된 이미지는, 웨이퍼가 조명원에 노출된 후 식각 공정 파라미터들에 따라 식각된다면 웨이퍼 상에 전사될 이미지의 시뮬레이션을 포함한다. 다른 실시예에서, 제 1 시뮬레이트된 이미지에 만일 웨이퍼가 상기 마스크의 부분을 통해 조명원에 노출되고 식각 공정 파라미터 집합에 따라 식각되는 경우 웨이퍼 상에 전사될 이미지의 시뮬레이션이 포함되도록, 제 1 시뮬레이트된 이미지의 생성이 식각 공정 파라미터 집합을 고려하여 조정될 수 있다.
또한, 본 발명의 다른 실시예에서, 상기 방법은 상기 마스크 부분에 대한 기준 묘사(reference description)를 제공하고 기준 이미지를 제공하는 추가의 단계를 더 포함하는 것을 특징으로 한다. 상기 기준 이미지는 만일 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트될 수 있는 이미지의 표시를 포함하며, 여기서 상기 제 2 마스크는 기준 묘사에 의해 설명된다. 일 실시예에서, 기준 묘사는 결함들이 없는 것으로 판단된 물리적인 마스크를 포함한다. 다른 실시예에서, 상기 기준 묘사는, GDS-Ⅱ, MEBES, CFLAT, 디지털화 또는 이산화와 같은 포맷의 데이터를 포함하며, 상기 기준 이미지는 시뮬레이트된 이미지이다.
본 실시예의 다른 특징에 있어서, 상기 방법은 제 1 시뮬레이트된 이미지와 기준 이미지를 비교하는 단계를 포함한다. 제 1 시뮬레이트된 이미지와 기준 이미지를 비교하는 단계는 제 1 시뮬레이트된 이미지와 기준 이미지 사이의 차이를 포함하는 제 3 시뮬레이트된 이미지를 생성하는 단계, 및/또는 각 이미지들의 공정 윈도우 관련 출력을 생성하는 단계와 이들 공정 윈도우 출력들을 비교하는 단계를 포함한다. 일 실시예에서, 공정 윈도우 관련 출력들을 생성하는 단계는 웨이퍼 이미지 수용 기준 집합을 제공하는 단계, 및 광학적 리소그래피 파라미터 집합 내의 적어도 하나의 광학적 파라미터에 대한 값들의 범위를 생성하는 단계를 포함하며, 여기서 상기 이미지들은 상기 웨이퍼 이미지 수용 기준 집합 내 혹은 집합 외에 있다.
본 발명의 또 다른 실시예에서, 상기 방법은 제 1 마스크 상의 결함에 대해서 제 1 시뮬레이트된 이미지를 분석하는 추가의 단계를 더 포함하는 것을 특징으로 한다. 상기 분석 단계는 공정 윈도우 관련 출력의 생성, 분석 출력의 생성, 및/또는 성능 출력(performance output)의 생성을 포함하며, 여기에서 상기 분석 출력은 제 1 마스크가 검사에 통과했는지 또는 통과하지 못했는지를 나타내는 신호를 포함하고, 상기 성능 출력은 마스크가 집적회로의 생산에 이용되는 경우 집적회로 성능에 미치는 마스크의 영향을 나타내는 데이터를 포함한다.
마지막으로, 상기 실시예의 방법 단계들은 어떤 경우에는, 이들 단계들을 구현하는 프로그램을 실행하는 컴퓨터에 의해 수행되며, 여기서 상기 프로그램은 하드 디스크 드라이브 또는 서버와 같은 임의의 적절한 컴퓨터 저장 매체들 상에 저장된다.
상기 각 실시예들은 또한, 결함 영역 이미지의 제공 방법을 더 설명하는 실시예에 의해 더욱 특징지어질 수 있다. 예를 들어, 일 실시예에서, 검사 툴은 잠재적인 결함을 포함하는 마스크 상의 영역을 찾아내는데 이용된다. 그 다음, 상기 검사 툴은 결함 영역 이미지를 생성하고 이 결함 영역 이미지를 시뮬레이터 장치에 제공한다. 일 예에서, 검사 툴은 고해상 광학 현미경 및 CCD 카메라를 포함한다. 결함 영역 이미지는 추후의 검사를 위해 저장되거나, 또는 즉각적인 분석을 위해 온더플라이로(on the fly) 제공될 수 있다.
상기 각 실시예들은 또한, 결함 영역 이미지의 제공 방법을 더 설명하는 실시예에 의해 더욱 특징지어질 수 있다. 예를 들어, 일 실시예에서, 검사 툴은 잠재적인 결함을 포함하는 마스크 상의 영역을 찾아내는데 이용된다. 그 다음, 상기 검사 툴은 결함 영역 이미지를 생성하고 이 결함 영역 이미지를 시뮬레이터 장치에 제공한다. 일 예에서, 검사 툴은 고해상 광학 현미경 및 CCD 카메라를 포함한다. 결함 영역 이미지는 추후의 검사를 위해 저장되거나, 또는 즉각적인 분석을 위해 온더플라이로(on the fly) 제공될 수 있다.
방법 단계들에 대하여 상기 요약한 바와 같이, 대안적으로 본 발명은 광학 리소그래피에 이용되는 마스크를 검사하기 위한 장치로서 특징지어질 수 있다. 일 실시예에서, 상기 장치는 결함 영역 이미지를 수신하는 수단을 포함하며, 여기서 상기 결함 영역 이미지는 상기 마스크의 일부분의 이미지를 포함한다. 상기 장치는 광학적 리소그래피 파라미터 집합을 수신하는 수단, 및 결함 영역 이미지에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 이미지 시뮬레이터를 포함한다. 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크 부분을 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트되는 이미지의 시뮬레이션을 포함하며, 여기서 상기 조명원의 특성은 광학 리소그래피 조건 집합을 포함한다.
다른 실시예에서, 상기 장치는 포토레지스트 공정 파라미터 집합을 수신하는 수단을 또한 포함한다. 상기 이미지 시뮬레이터는 이들 포토레지스트 파라미터들에 응답하여 제 2 시뮬레이트된 이미지를 생성한다. 상기 제 2 시뮬레이트된 이미지는 웨이퍼가 상기 마스크 부분을 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트되는 이미지의 시뮬레이션을 포함하며, 여기서 상기 웨이퍼는 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함한다.
또 다른 실시예에서, 상기 장치는 식각 공정 파라미터 집합을 수신하는 수단을 포함한다. 상기 이미지 시뮬레이터는 이들 식각 파라미터들에 응답하여 제 2 시뮬레이트된 이미지를 생성한다. 상기 제 2 시뮬레이트된 이미지는 웨이퍼가 조명원에 노출된 후 식각 공정 파라미터들에 따라 식각되는 경우 웨이퍼 상에 전사될 이미지의 시뮬레이션을 포함한다.
본 발명의 다른 예에서, 상기 장치는 상기 마스크 부분에 대한 기준 묘사를 수신하는 수단, 및 기준 이미지를 제공하는 수단을 포함한다. 상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 웨이퍼 상에 프린트되는 이미지의 표현을 포함하며, 여기서 상기 제 2 마스크는 상기 기준 묘사에 의해 설명된다. 일 실시예에서, 상기 기준 묘사는 결함이 없는 것으로 판단된 물리적인 마스크를 포함한다. 다른 실시예에서, 기준 묘사는, GDS-Ⅱ, MEBES, CFLAT, 디지털화 또는 이산화와 같은 포맷의 데이터를 포함하며, 상기 기준 이미지는 이미지 시뮬레이터에 의해 생성된다.
본 실시예의 다른 특징에 있어서, 상기 장치는 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 이미지 비교기를 포함한다. 일 예에서, 상기 이미지 비교기는 제 1 시뮬레이트된 이미지와 기준 이미지 사이의 차이를 포함하는 제 3 시뮬레이트된 이미지를 생성한다. 다른 예에서, 상기 이미지 비교기는 제 1 및 제 2 공정 윈도우 관련 출력들을 생성한다. 일 실시예에서, 공정 윈도우 관련 출력들을 생성하는 단계는 웨이퍼 이미지 수용 기준 집합을 상기 이미지 비교기에 제공하는 단계를 포함한다. 그 다음, 이미지 비교기는 광학 리소그래피 파라미터 집합 내의 적어도 하나의 광학 파라미터에 대한 값들의 범위를 생성하며, 여기서 상기 이미지들은 웨이퍼 이미지 수용 기준 집합 내 혹은 집합 외에 있다.
본 발명의 또 다른 실시예에서, 상기 장치는 마스크 상의 결함들에 대해서 상기 제 1 시뮬레이트된 이미지를 분석하는 결함 분석기를 포함한다. 상기 결함 분석기는 공정 윈도우 관련 출력, 마스크가 검사에 통과했는지 또는 통과하지 못했는지를 나타내는 신호를 포함하는 분석 출력, 및/또는 성능 출력을 생성하며, 여기서 상기 성능 출력은 마스크가 집적회로의 생산에 이용되는 경우 집적회로의 성능에 미치는 마스크의 영향을 나타내는 데이터를 포함한다.
상기 장치의 각 실시예들은, 결함 영역 이미지들을 제공하는 장치를 더 설명하는 실시예에 의해 더욱 특징지어질 수 있다. 예를 들어, 상기 장치는 잠재적인 결함을 포함하는 마스크 상의 영역을 찾아내는데 이용되는 검사 툴을 포함할 수 있다. 상기 검사 툴은 또한 결함 영역 이미지를 생성하고 이 결함 영역 이미지를 시뮬레이터 장치에 제공한다. 일 예에서, 상기 검사 툴은 고해상도의 광학 현미경 및 CCD 카메라를 포함한다.
마지막으로, 본 발명의 전술한 각 실시예들의 대안적인 변형들에서, 상기 조명원은 가시 또는 불가시(가령 원자외선 또는 DUV) 조명원을 포함할 수 있다. 또한, 상기 광학 리소그래피 파라미터 집합은, 특히, 개구수, 파장길이, 시그마, 광학 리소그래피 시스템의 렌즈 수차와 디포커스, 및 마스크의 임계 치수들을 나타내는 데이터를 포함한다. 또한, 제 1 마스크의 디자인은 밝은 영역, 어두운 영역, 또는 위상 천이 마스크 디자인을 포함할 수 있다.
본 발명의 다른 양상들 및 장점들은 하기의 도면, 상세한 설명 및 청구항을 숙지함으로써 밝혀질 것이다.
도면들은 본 발명을 예시로서 설명하며, 한정하지 않는다. 유사한 참조번호는 유사한 소자를 나타낸다.
도 1a 내지 도 1f는 전형적인 포토리소그래피 마스크 결함들의 예들을 도시한다.
도 2a 및 도 2b는 전형적인 결함들을 갖는 광학 근접 교정된 포토리소그래피 마스크를 도시한다.
도 3은 포토리소그래피 마스크들의 결함들을 검사하는 데에 이용되는 전형적인 방법을 플로우챠트 형태로 도시한다.
도 4는 본 발명의 일 실시예에 따른 포토리소그래피 마스크의 결함들을 검사하는 공정을 단순화된 공정 흐름 다이어그램 형태로 도시한다.
도 5a 및 도 5b는 노광된 웨이퍼의 시뮬레이트된 스테퍼 이미지들을 생성하기 위하여 본 발명에서 이용되는 이미지 시뮬레이션 공정의 두 실시예를 단순화된 공정 흐름 다이어그램 형태로 도시한다.
도 6a 및 도 6b는 포토레지스트 물질 파라미터들과 식각 파라미터들을 통합하여 이미지 시뮬레이션을 생성하도록 본 발명의 일 실시예를 이용하는 두 방법들을 단순화된 공정 흐름 다이어그램 형태로 도시한다.
도 7a 및 도 7b는 단순화된 마스크 제조 및 웨이퍼 제작 공정 흐름 다이어그램을 도시하며, 본 발명의 실시예가 이들 공정들에 어떻게 통합될 수 있는 지를 보여준다.
도 8은 본 발명의 일 실시예에 따른 마스크의 온라인 및 오프라인 양자 모두의 검사를 위한 시스템을 예시한다.
도 9는 본 발명의 일 실시예에 따른 마스크의 검사를 위한 또 다른 시스템을 예시한다.
도 10a 내지 도 10c는 잠재적인 마스크 결함이 포토리소그래피 공정의 공정 윈도우에 어떻게 영향을 미치는지에 대한 예를 도시한다.
도 11은 도 8의 결함 분석기의 일 실시예를 나타내는 공정 흐름 차트를 도시한다.
도 12는 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 스크린샷(screen shot)을 도시하며, 여기서 결함을 갖는 마스크가 5개의 서로 다른 스테퍼 조건 집합하에서 프린트하도록 시뮬레이트된다.
도 13은 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 사용자 인터페이스를 묘사하는 스크린샷을 도시한다.
도 14는 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 스크린샷을 도시하며, 여기서 검사되는 마스크는 OPC 교정되었다.
도 15는 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 또 다른 스크린샷을 도시하며, 여기서 검사되는 마스크는 OPC 교정되었고, 공정 윈도우 관련 출력이 도시된다.
도 16은 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램에 의해, 확인된 마스크 결함이 특정한 스테퍼 조건 집합하에서는 프린트되지 않는 상태를 도시한다.
도 17은 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 몇 개의 스크린샷을 도시하며, 여기서 시뮬레이트된 마스크 이미지가 시뮬레이트된 디자인 이미지와 비교되어 잠재적인 결함 영역들을 찾아낸다.
도 18은 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 또 다른 스크린샷을 도시하며, 여기서 검사되는 마스크는 OPC 교정되었다.
도 19는 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 몇 개의 스크린샷을 도시하며, 여기서 공정 윈도우에 미치는 결함들의 영향이 나타난다.
도 20은 본 발명의 일 실시예에 따라 작동하는 컴퓨터 프로그램의 다른 스크린샷을 도시하며, 여기서 시뮬레이션 마스크 이미지가 시뮬레이션 디자인 이미지와 비교된다.
설명 및 도면들에 많은 상세한 사항들이 포함되었지만, 본 발명은 단지 청구범위에 의해서만 정의된다. 이들 청구항에서 기술된 한정사항들만이 본 발명에 적용된다.
포토리소그래피는 그 입력이 마스크이고, 그 출력이 웨이퍼 상에 프린트되는 패턴인 공정이다. 디자인 엔지니어들, 리소그래퍼들, 및 마스크 제조업자들이 실질적으로 관심을 갖는 것은 마스크로부터 프린트된 결과이다. 종래의 방법들에서, 이러한 프린트된 결과를 검사하는 유일한 방법은 웨이퍼를 실질적으로 노광시키는 것이었는바, 시간 및 비용에 있어서 잠재적으로 불필요한 낭비를 야기하였다. 본 발명은 웨이퍼를 실질적으로 노광하는 고비용의 단계들을 필요로하지 않고서도, 프린트가능성을 고려하는 마스크 검사를 제공함으로써, 상기 종래 방법들의 문제들 중 일부를 해결한다. 본 발명은, 물리적인 마스크를 충분히 정확하게 나타내는(즉, 고해상도 광학 현미경 또는 스캐닝 전자 현미경으로부터) 마스크의 포착된 이미지를 이용하고, 그리고 상기 포착된 이미지를 사용하여 주어진 스테퍼 조건 집합하에서 마스크가 제공할 웨이퍼 노광을 시뮬레이션한다. 따라서, 오리지날 마스크의 결함 검사가 수행되고 잠재적인 결함들이 확인될 때, 본 발명은 상기 잠재적인 결함들을 둘러싼 마스크 영역들의 포착된 이미지들에 기초하여 웨이퍼 노광을 시뮬레이션하는데 사용될 수 있다. 이러한 방식으로, 실질적으로 웨이퍼를 노광하는 비용 없이 잠재적인 결함들의 프린트가능성을 직접 분석할 수 있다.
또한, 시뮬레이션은 포토리소그래피 공정에 관련된 임의의 수의 파라미터들을 고려하도록 제어될 수 있으며, 이로써 프린트 가능성 결정 과정을 특정화할 수 있다. 또한, 결함 각각의 시뮬레이션이 실질적인 노광 동안에 변하는 수많은 특정한 공정 변수(디포커스와 같은) 값들에 대해 수행되어, 잠재적인 결함들이 웨이퍼 제조 공정 윈도우에 미치는 영향을 판단할 수 있다. 후속 공정 또한, 포토레지스트 공정 및 식각 공정 파라미터들을 고려하도록 공정을 조정함으로써 정확하게 그리고 속도 손실이 거의 없이 모델링될 수 있다.
도면을 참조하여 바람직한 실시예들을 상세히 설명한다. 도 4는 본 발명의 일 실시예에 따라 마스크의 결함들을 검사하는 공정을 단순화된 공정 흐름 다이어그램 형태로 도시한다. 이 공정은 검사툴(400) 및 스테퍼 이미지 생성기(410)를 이용한다. 검사툴(400)은 이미지 획득기(430), 결합 검출 프로세서(440), 및 결함 영역 이미지 생성기(442)를 포함한다. 일 실시예에서, 검사툴(400)은 상기언급한 각 요소들을 하나의 패키지로서 모두 포함할 수 있다. 상기 모두를 포함하는 검사툴(400) 장치는 전형적으로 온라인 마스크 검사에 사용된다. 다른 실시예에서, 일반적으로 오프라인 마스크 검사에 이용될 때, 상기 검사툴(400)은 서로 인터페이스하는 다수의 개별적으로 존재하는 요소들을 포함할 수도 있다. 예를 들어, 일 실시예에서, 이미지 획득기(430)는 결함 검출 프로세서(440)와 별개의 디바이스이다.
이미지 획득기(430)는, 가령 고해상도 광학 현미경, 스캐닝 전자 현미경(SEM), 포커스 이온빔, 원자력 현미경, 및 근접장 광학 현미경과 같은 마스크 검사 기술분야에서 널리 알려진 고해상도 이미징 장치를 포함한다. 이미지 획득기(430)는 물리적인 마스크(420)의 전체 또는 일부분을 스캔한다. 이미지 획득기(430)는 사용되는 특정 유형의 현미경과 인터페이스할 수 있고 이 현미경으로부터의 이미지 정보를 디지털화할 수 있는 CCD 카메라와 같은 장치를 또한 포함할 수도 있다. 예를 들어, 현미경으로부터의 이미지를 나타내는 n-비트 그레이 스케일 이미지 데이터를 생성하는 CCD 카메라가 사용할 수 있다. 이미지 데이터는, 컴퓨터 하드 디스크 드라이브, CDROM, 및 서버를 포함하는 임의의 유형의 적절한 매체에 윈도우즈 BMP와 같은 포맷으로 저장될 수 있다.
상기 결함 검출 프로세서(440)는 이미지 획득기(430)를 제어한다. 일 실시예에서, 결함 검출 프로세서(440)는 이미지 획득기(430)가 마스크를 스캔하는 방식을 제어하는 제어 신호들을 제공한다. 또한, 결함 검출 프로세서(440)는 이미지 획득기(430)에 의해 제공된 마스크 이미지들을 잠재적인 결함 기준 집합과 비교하여, 마스크의 어떤 영역들이 잠재적인 결함들을 포함하는지를 판단한다. 일 실시예에서, 결함 검출 프로세서(440)는 프로그램 명령어를 실행하고 이미지 획득기(430)와 인터페이스하는 컴퓨터를 포함하여, 마스크의 스캐닝이 바람직한 방식으로 수행되도록 한다. 일 실시예에서, 사용자가 물리적인 마스크(420) 상에서 수행되는 스캐닝의 파라미터들을 변경할 수 있도록 프로그램이 작동한다. 다른 실시예에서, 이미지 획득기(430)는 마스크 또는 마스크 일부의 선재하는(preexisting) 이미지로 대체될 수 있다. 결함 검출 프로세서(440)에 의해 분석될 수 있는 물리적인 마스크(420)의 모든 표현이 입력으로서 수용가능하기 때문이다.
결함 검출 프로세서(440)는 상기 결함 영역 이미지 생성기(442)를 또한 제어할 수 있으며, 상기 결함 영역 이미지 생성기는 결함들을 포함하는 마스크(420)의 상기 영역들의 이미지들을 제공한다. 예를 들어, 이미지 획득기(430)가 물리적인 마스크(420)로부터 스캔된 이미지 입력을 결함 검출 프로세서(440)에 제공하면, 상기 결함 검출 프로세서(440)는 소정의 결함 기준에 기초하여 마스크의 스캔된 부분이 임의의 잠재적인 결함 영역들을 포함하고 있는지를 판단한다. 일 실시예에서, 상기 기준은 시스템 사용자에 의해 변경된다. 만일 잠재적인 결함이 발견된다면, 결함 검출 프로세서(440)는 결함 영역 이미지 생성기에 신호하여 상기 잠재적인 결함을 둘러싸는 영역의 결함 영역 이미지를 제공하도록 한다. 이에 따라, 결함 영역 이미지 생성기(442)는 결함 영역 이미지 데이터(444)를 제공한다. 일 실시예에서, 결함 영역 이미지 생성기(442)는 이미지 획득기(430)의 일부분이 될 수 있으며, 예컨대, 상기 결함 영역 이미지 생성기(442)는 이미지 획득기(430)의 CCD 카메라를 포함할 수도 있다. 다른 실시예에서, 결함 영역 이미지 생성기(442)는 이미지 획득기(430)로부터 이미지 입력을 수신하는 별개의 장치일 수 있다.
검사툴(400)의 실시예들은 다수의 방법으로 스테퍼 이미지 생성기(410)에 데이터를 제공하는 데에 사용된다. 첫째로, 이미지 획득기(430)는 결함 검출 프로세서(440)로부터의 어떠한 제어도 없이 물리적인 마스크(420) 전체 또는 일부를 스캔하여, 이미지 그래버(image grabber)와 같은 디지타이징 장치(446)를 이용하여 상기 데이터를 디지털화한 후, 서버와 같은 저장 장치(447)에 상기 결과 이미지 데이터를 저장할 수 있다. 상기 동일한 이미지 데이터는 또한 실시간 데이터 공급을 통해 스테퍼 이미지 생성기(410)에 직접 제공될 수 있다. 둘째로, 이미지 획득기(430)가 결함 검출 프로세서(440)의 제어하에 있는 경우, 결함 영역 이미지 생성기(442)는 결함 영역 이미지 데이터(444)를 실시간 데이터 공급을 통해 스테퍼 이미지 생성기(410)에 직접 제공하거나(온라인 검출), 또는 결함 영역 이미지 데이터(444)를 디지타이징 장치(446)에 제공한 다음 차후의 오프라인 검사를 위해 저장 장치(447)에 제공할 수도 있다.
스테퍼 이미지 생성기(410)는 입력 장치(450) 및 이미지 시뮬레이터(460)를 포함한다. 상기 저장 장치(447)로부터 저장된 이미지 데이터의 경우, 입력 장치(450)는 이미지 데이터가 저장되는 매체 형태를 판독하기에 적합한 임의의 하드웨어를 포함할 수 있으며, 상기 하드웨어는 특히, 컴퓨터 하드 디스크 드라이브, CDROM 판독기, 및 네트워크를 통하여 서버에 접속된 개인용 컴퓨터를 포함한다. 결함 영역 이미지 생성기(442) 또는 이미지 획득기(430)로부터 이미지 데이터가 실시간 공급되는 경우, 입력 장치는 이미지 그래버와 같은 디지타이징 장치를 포함한다. 예를 들어, 일 실시예에서, 입력 장치는 MatroxTM MeteorTM 및 PulsarTM을 포함하는 당해 기술분야에서 잘 알려진 것들과 같은 8-비트 프레임 그래버 장치를 포함한다. 입력 장치(450)는 리소그래피 조건 입력(445)과 같은 다른 입력 데이터도 또한 수신한다. 일 실시예에서, 이미지 시뮬레이터(460)는 입력 장치(450)로부터 실시간으로 공급되는 데이터 또는 저장된 이미지 데이터를 받아들여, 물리적인 마스크(420)에 대한 웨이퍼 상에서의 시뮬레이트된 스테퍼 이미지(470)의 시뮬레이션을 생성하는 컴퓨터 실행 프로그램(computer implemented program)을 포함한다. 이러한 컴퓨터 실행 실시예에서, 이미지 시뮬레이터(460) 프로그램은, 특히, 독립형의 또는 네트워크에 접속된 128MB의 RAM 및 200MHZ의 펜티엄 ProTM 마이크로프로세서를 갖춘 Windows 95TM 또는 NTTM 4.0 운영 시스템을 이용하는 PC와; 그리고 SUNTM 워크스테이션 컴퓨터를 포함하는 다양한 컴퓨터 플랫폼상에서 실행된다. 어떤 경우, 이미지 시뮬레이터(460)의 일 실시예가 종래의 CCD 어레이 크기의 이미지를 시뮬레이트하는 데에 필요한 시간은 1초 미만이다.
일 실시예에서, 검사툴(400) 및 스테퍼 이미지 생성기(410)가 작동하여 시뮬레이트된 스테퍼 이미지(470)와, 물리적인 마스크(420)에 대한 시뮬레이트된 공정 윈도우(480) 출력과, 및/또는 하기와 같이 집적회로 성능에 미치는 결함(들)의 영향을 특징화, 정의, 또는 계측하는데 사용되는 다른 성능 관련 출력을 생성한다. 물리적인 마스크(420)는 검사툴(400)에 의해 제일 먼저 검사된다. 검사툴(400)은 잠재적 결함들의 검사를 위해 물리적인 마스크(420)를 스캔하며, 그리고 결함 영역 이미지 생성기(442)는 상기 결함 검출 프로세서(440)로부터의 지시에 따라 상기 잠재적 결함들을 포함하고 있는 상기 마스크 영역들의 결함 영역 이미지들을 생성한다. 그 다음, 결함 영역 이미지 데이터(444)는 입력 장치(450)에 실시간으로 공급되고, 및/또는 차후의 검사를 위하여 디지타이징 장치(446)를 통하여 저장 장치(447)에 저장된다.
입력 장치(450)는 결함 영역 이미지 생성기(442) 또는 저장 장치(447)로부터 결함 영역 이미지 데이터(444)를 수신한다. 그 다음, 상기 결함 영역 이미지 데이터(444)는 이미지 시뮬레이터(460)로 출력된다. 상기 이미지 시뮬레이터(460)는 리소그래피 조건 입력(445)을 수신한다. 리소그래피 조건 입력(445)은, 물리적 마스크가 검사에 통과한다면 후에 노광될 경우의 리소그래피 조건들 및 시스템 파라미터들에 특유한 데이터를 포함한다. 이 데이터는, 특히, 시스템의 개구수(NA), 시스템의 간섭 값(σ), 시스템에서 이용되는 조명의 파장길이(λ), 노광의 디포커스, 렌즈 수차, 기판 조건, 및 디자인상의 임계 치수들과 같은 파라미터들을 포함한다. 또한, 리소그래피 조건 입력(445)은 이러한 파라미터들 범위를 포함하여, 이들 파라미터들의 서로 다른 조합에 대해 시뮬레이션이 수차례 수행될 수 있다. 이러한 방식으로, 가능한 리소그래피 조건들 범위에 대하여 마스크 결함의 프린트가능성을 분석하여, 공정 윈도우 상에 미치는 잠재적인 마스크 결함의 영향도 또한 분석할 수 있다.
일 실시예에서, 이미지 시뮬레이터(460)는 리소그래피 조건 입력(445)과 입력 장치(450)로부터의 결함 영역 이미지 데이터(444)를 수신하여, 시뮬레이트된 스테퍼 이미지(470)를 생성하는바, 이 시뮬레이트된 스테퍼 이미지(470)는 광학 리소그래피 노광이 상기 리소그래피 조건 입력(445)과 동일한 조건 하에서 수행되는 경우 물리적인 마스크(420)의 결함 영역이 생성할 웨이퍼 노광 시뮬레이션이다. 유사하게, 이미지 시뮬레이터(460)는 공정 윈도우에 대하여 잠재적인 결함 영역이 미치는 영향을 나타내는 시뮬레이트된 공정 윈도우(480), 및/또는 상기 설명한 바와 같은 성능 출력(482)을 생성할 수 있다. 또한, 일 실시예에서, 이미지 시뮬레이터(460)는 밝은 영역, 어두운 영역, 및 감쇠된 위상-천이 마스크 디자인을 포함하는 다수의 서로 다른 유형의 마스크 디자인에 있어서의 마스크의 잠재적인 결함 영역에 대한 시뮬레이트된 스테퍼 이미지(470)를 생성할 수 있다. 그 다음, 시뮬레이트된 스테퍼 이미지(470), 시뮬레이트된 공정 윈도우(480), 및/또는 성능 출력(482)이 검사되어, 마스크를 가지고 실제 웨이퍼를 실질적으로 노광하는 비용을 들이지 않고, 확인된 모든 잠재적 결함 영역의 프린트가능성을 판단할 수 있으며, 이에 대해서는 도 8 내지 도 11을 참조하여 더 상세하게 설명할 것이다. 마지막으로, 다른 실시예들에서, 이미지 시뮬레이터(460)는 사용될 포토레지스트 물질 및/또는 노광될 웨이퍼에 사용될 식각 공정에 관련된 파라미터들을 고려하여, 블록 484로 도시한 바와 같은 이들 공정들의 최종 결과를 시뮬레이트할 수 있으며, 이는 하기에서 도 6을 참조하여 더욱 상세하게 설명한다.
도 5a 및 도 5b는 노광된 웨이퍼의 시뮬레이트된 스테퍼 이미지들을 생성하기 위하여 본 발명에서 이용되는 이미지 시뮬레이션 공정의 두 실시예를 단순화된 공정 흐름 다이어그램 형태로 도시한다. 도 5a는 도 9를 참조하여 후술할 디자인 이미지 시뮬레이터(960)와 같은 것에 의해, 디자인 마스크 상에서 사용될 때의 공정의 실시예를 도시한다. 도 5b는 도 4의 이미지 시뮬레이터(460), 도 8의 이미지 시뮬레이터들(830 및 860), 및 도 9의 마스크 이미지 시뮬레이터(950)와 디자인 이미지 시뮬레이터(960)와 같은 것에 의해, 물리적 마스크의 포착된 이미지에 대해 이용되는 공정의 실시예를 도시한다. 그러나, 도 5a 및 도 5b에 대해 개별적으로 설명하기 전에, 이에 도시된 시뮬레이션 공정에 대한 다소의 배경기술을 제공하는 것이 유익할 것이다.
개략적으로 보면, 도 5a 및 도 5b를 참조하여 설명되는 시뮬레이션 공정은 광학 리소그래피 공정을 근사하기 위하여 당해 기술분야에서 홉킨스 모델(Hopkins model)로 불리는 것을 이용한다. 충분히 일반적인 설정에 대해서, 홉킨스 모델에 의하면, 부분적 간섭성 광학 이미징(partially coherent optical imaging) 공정(이는 광학 리소그래피에서 현재 이용되는 독점적인 공정임)은 하기의 비선형 적분 방정식으로 설명될 수 있다:
여기서,
I(·) = 이미지 평면에서의 강도 이미지이며;
g(·) = 이미지 평면에서의 진폭 이미지이며;
f(·) = 이미지 대상 물체(마스크)이며;
K(·) = 간섭 점 확산 함수(coherent point spread function)로, 리소그래피 시스템의 특성을 설명하고;
J0(·) = 상호 강도 함수로, 조명의 간섭 특성을 설명한다.
그러나, 상기의 비선형 적분 방정식은 너무 복잡해서 실제 직접회로 패턴들에 효율적으로 적용할 수 없다. 따라서, 일 실시예에서, 도 5a 및 도 5b를 참조하여 설명할 이미지 시뮬레이션은 집적회로에 특정적으로 적용되는 홉킨스 모델의 단순화된 근사 공정을 이용하여 형성된다. 이러한 공정에서, 제일 먼저, 홉킨스 모델은 입력 데이터에 적용되는 다수의 저역 필터들로 효과적으로 분해된다. 그 다음, 결과 이미지들이 더해져서 시뮬레이트된 이미지를 생성한다.
홉킨스 모델 근사의 기본적인 전제는 (1994년 9월) 미국 광학 협회 잡지 제 11권 제 9 호 2438-52 페이지에서 Y.C. Pati 등에 의해 발표된 "마이크로리소그래피용 위상-천이 마스크들: 자동화된 디자인 및 마스크 요건(Phase-shifting masksfor" microlithography: automated design and mask requirements), 및 (1997년 2월) 반도체 회로 제조에 관한 IEEE 회보 제 10 권 제 1 호 62-74 페이지에서 Y.C. Pati 등(이하에서, 패티 등으로 언급됨)에 의해 발표된 "집적 회로 패턴들에 대한 고속 공중 이미지 계산시에 이용되는 구조(Exploiting Structure in Fast Aerial Image Computation for Integratedd Circuit Patterns)에 기술되며, 이들은 완전하게 설명된 것과 같이 본 원의 참고자료로서 원용한다.
상기 언급된 방법은 "최적의 간섭 근사"(OCA's) 또는 "최적의 간섭 분해"(OCD's)로 공지되어 있다. 이 방법은 제 1차로 방정식을 단순화하기 위하여 부분 간섭 홉킨스 모델로부터 추출할 수 있는 구조를 이용한다. OCA를 통해 얻어지는 제 1차 단순화는, 조명이 완전하게 간섭성인 특별한 경우에는 홉킨스 모델이 다음과 같이 단순화된다는 사실을 이용한다:
여기서, "*"는 2-D 컨볼루션 연산자를 나타내며,
따라서, 간섭의 경우, 이미지를 계산하는 데에 필요한 계산은 고속 퓨리에 변환(FFT)을 이용하여 O(N log2 N)으로 감소하며, 여기서 N은 고려되는 이산 샘플 포인트들의 수이다. 패티 등의 63-65 페이지에서 설명된 바와 같이, 계산의 수가 <<O(N log2 N)로 되도록 상당히 감소시키기 위해서 직접회로의 본래의 구조 이용과 결합된 상기 사실은 OCA's의 이용을 유발했으며, 여기서 상기 OCA's는 부분 간섭 광학 시스템의 이미지 강도를 간섭 이미지들의 유한한 비간섭성 합(finite incoherent sum)으로 다음과 같이 근사한다:
여기서, αk's 및 이미징 커널 은 조명 상호 강도 함수 J0 및 간섭 점 확산 함수 K로부터 결정되며, 그리고 근사된 이미징 시스템의 공간 불변성(invariance)을 가정한다(각각의 컨볼루션은 이하에서 프리이미지(preimage)로 언급될 것이다).
방정식(4)로부터, OCA 방법의 정확성은 합산되는 간섭 이미지들의 개수 m에 좌우됨을 유의하자. 광학 리소그래피에서 일반적으로 이용되고 있는 간섭 인자들의 범위에 있는 간섭 인자들(σ)≤0.5을 갖는 이미징 시스템에 대하여, 단지 5개 또는 6개의 커널들 , 이에 따라 단지 5개 또는 6개의 간섭 프리이미지들만이 수용가능한 근사(approximation)를 제공하는 데에 필요하다는 것이 밝혀졌다. 따라서, OCA 방법은 이미지 계산의 문제를, 적은 수(5 또는 6)의 2-D 컨볼루션 계산 및 결과 프리이미지들의 합산 중 하나로 감소시킨다.
상술한 바와 같은 OCA를 이용하는 시뮬레이션 공정은 디자인 마스크 상에서 이용될 때에, 도 5a를 참조하여 하기에서 설명되며, 이는 일 실시예에서 GDS-Ⅱ 데이터 파일에 의해 설명된다. 패티 등의 65-69 페이지에서 설명하는 바와 같이, 디자인 마스크의 시뮬레이션에 필요한 계산은 집적회로의 기하학적인 원시 구조를 이용함으로써 2 차로 단순화될 수도 있다. 이러한 집적회로 구조의 이용은 대개 1) 집적회로 패턴들을 표현하는 데에 사용될 수 있는 작은 기본 함수들 집합을 정의하고, 2) 이미징 커널들을 이용하여 상기 정의된 기본 함수들의 프리이미지들을 계산하고, 3) 빌딩 블록들 집합들로서 상기 기본 함수들의 프리이미지들을 이용하여 마스크 패턴의 프리이미지들을 구성하고, 그리고 4) 상기 프리이미지들을 결합하여 마스크 패턴의 이미지를 획득함으로써 이루어진다.
도 5a를 참조하면, 마스크의 디자인 데이터(500)를 포함하는 데이터 파일이 입력으로 제공되고, 블록 505에서 디자인에 내재하는 박스 폭들의 집합이 디자인 데이터로부터 추출된다. 블록 502에서 시뮬레이션에 대한 리소그래피 조건이 입력으로 제공되며, 이로부터 블록 515에서 설명한 바와 같이 이미징 커널들 이 계산된다. 그 다음, 블록 510에서, 추출된 박스 폭들 모두에 대한 기본 프리이미지들이 사전에 계산되어 데이터베이스 라이브러리에 존재하는 지에 대한 판단이 이루어진다. 그 다음, 블록 520에서, 기본 프리이미지들이 사전에 계산되지 않은 폭들에 대한 기본 프리이미지들이 계산된다. 블록 525에서 모든 기본 프리이미지들이 결합되어, 블록 530에서, 상기 결합된 프리이미지 각각의 강도를 취해 서로 더하여 시뮬레이트된 이상적인 디자인 스테퍼 이미지(535)를 형성한다. 각 블록에서 수행되는 계산은 패티 등의 65-69 페이지에서 상세하게 설명된다. 본 명세서에서 주목할 사항은, 블록 520에서 기본 프리이미지들을 각각 계산함에 있어서 디자인 마스크 시뮬레이션에 대한 방정식(4)의 완전한 컨볼루션이 수행되지 않는다는 것이다. 대신에, 선택된 기본 함수들의 공간 대역폭에 대한 지식만이 사용되므로, 컨볼루션은 수많은 필요한 샘플 폭들에 대해 단지 공간 도메인 내에서만 계산될 필요가 있다.
상기 설명한 바와 같은 OCA를 이용하는 시뮬레이션 공정이, 도 4의 이미지 시뮬레이터(460) 및 도 9의 마스크 이미지 시뮬레이터(950)와 같은 것에 의해 물리적 마스크의 포착된 이미지에 대해 사용되는 경우에, 도 5b를 참조하여 하기에서 설명된다. 입력 데이터 파일의 형식 때문에, 하기에 설명되는 공정의 실시예는 도 5a를 참조로 상기 설명한 것과 실질적으로 다르다. 일 실시예에서 윈도우즈 BMP와 같은 포맷의 8-비트 그레이 스케일 이미지 파일인 디지털화된 이미지 데이터를 포함하는 입력 이미지 데이터(550)가 제일 먼저 블록 555에 제공된다. 그 다음, 이 데이터는 블록 555에서 처리되어 전체 공정의 감도(sensitivity)를 증가시키고, 데이터 파일을 생성하며, 여기서 상기 데이터 파일에 의한 이미지는 마스크의 실질적인 모습과 근접하다. 이는, 실질적인 마스크가 단지 2개의 강도들(암 혹은 명(dark or clear))만을 가질 때, 현미경으로부터 얻어진 8-비트 이미지 파일내에 존재하는 다수의(256) 강도들 때문에 달성된다. 따라서, 일 실시예에서, 블록 555에서의 처리는 8-비트 파일의 256개의 가능한 강도 레벨들이 4개 또는 6개의 레벨들로 폴딩(fold)되는 복수의 임계 공정(thresholding process)을 포함한다. 대안적으로, 블록 555에서의 처리는, 하위 강도들을 강화할 수 있도록 이미지 강도의 로그(logarithm)를 취하는 것과 같은, 비선형 필터링 형식을 포함하여 공정 감도를 증가시킬 수 있다.
블록 552에서 시뮬레이션을 위한 리소그래피 조건이 입력으로서 제공되며, 이로부터의 전술한 바와 같이 이미징(imaging) 커널들 이 블록 560에서 계산된다. 블록 555으로부터 처리된 이미지 데이터 및 이미징 커널들 을 입력으로 사용하여, 웨이퍼 이미지의 프리이미지들이 블록 565에서 계산되며, 블록 570에서는 프리이미지 각각의 강도를 취하여 서로 더해서 방정식(4)에 따라 물리적인 마스크 표현의 시뮬레이트된 스테퍼 이미지(575)를 형성한다.
마스크 함수 f가 픽셀 데이터에 의해 완전히 정의되기 때문에, 디자인 마스크에 관련하여 이용할 수 있는 어떠한 공간 구조도 존재하지 않음을 주목하자. 그러나, 각 픽셀은 동일한 크기이기 때문에, 각 이미징 커널들 에 대해서 단 하나의 기본 프리이미지만 계산되기 때문에, 도 5a의 블록 525의 단계는 피할 수 있다. 블록 565에서의 프리이미지들의 계산은 또한 도 5a의 대응하는 블록 520과 다르다. 왜냐하면, 오로지 적은 수의 샘플 포인트들로 컨볼루션을 제한하고도 여전히 프리이미지의 정확한 근사를 얻을 수 있는 선재하는 지식이 없기 때문이다. 따라서, 방정식(4)의 완전한 컨볼루션이 처리된 픽셀 데이터로 구성된 마스크 함수 f를 사용하여 수행될 필요가 있는바, 이는 각 프리이미지를 근사하여 이에 따라 정확하게 최종 마스크 이미지를 근사하기 위함이다. 공간 도메인 내에서 직접 컨볼루션은 막대한 량의 데이터를 발생시켜 각 프리이미지에 대해서 대량의 처리 시간을 필요로 하게 된다. 본 발명의 상기 실시예는 각 프리이미지를 계산하기 위하여 방정식(4)에 대하여 고속 퓨리에 변환(FFT)을 이용하여 시간 영역에서 각각 컨볼루션을 수행함으로써 상기 문제들을 해결한다. 따라서, f 및 양자 모두의 FFT을 채택함으로써, k번째 프리이미지의 값이 하기와 같이 더욱 용이하게 해결될 수 있다. 즉, 하기의 방정식들은 (5)가 성립하기 때문에 (6)과 같이 되는 관계를 갖는다.
마스크 함수 f가 픽셀 데이터에 의해 완전히 정의되기 때문에, 디자인 마스크에 관련하여 이용할 수 있는 어떠한 공간 구조도 존재하지 않음을 주목하자. 그러나, 각 픽셀은 동일한 크기이기 때문에, 각 이미징 커널들 에 대해서 단 하나의 기본 프리이미지만 계산되기 때문에, 도 5a의 블록 525의 단계는 피할 수 있다. 블록 565에서의 프리이미지들의 계산은 또한 도 5a의 대응하는 블록 520과 다르다. 왜냐하면, 오로지 적은 수의 샘플 포인트들로 컨볼루션을 제한하고도 여전히 프리이미지의 정확한 근사를 얻을 수 있는 선재하는 지식이 없기 때문이다. 따라서, 방정식(4)의 완전한 컨볼루션이 처리된 픽셀 데이터로 구성된 마스크 함수 f를 사용하여 수행될 필요가 있는바, 이는 각 프리이미지를 근사하여 이에 따라 정확하게 최종 마스크 이미지를 근사하기 위함이다. 공간 도메인 내에서 직접 컨볼루션은 막대한 량의 데이터를 발생시켜 각 프리이미지에 대해서 대량의 처리 시간을 필요로 하게 된다. 본 발명의 상기 실시예는 각 프리이미지를 계산하기 위하여 방정식(4)에 대하여 고속 퓨리에 변환(FFT)을 이용하여 시간 영역에서 각각 컨볼루션을 수행함으로써 상기 문제들을 해결한다. 따라서, f 및 양자 모두의 FFT을 채택함으로써, k번째 프리이미지의 값이 하기와 같이 더욱 용이하게 해결될 수 있다. 즉, 하기의 방정식들은 (5)가 성립하기 때문에 (6)과 같이 되는 관계를 갖는다.
여기서, I(x,y)k는 k번째 프리이미지와 같다. 본 발명의 일 실시예에서 FFT이 사용되고 있지만, 공간 도메인으로부터의 컨볼루션을 제거하고 방정식(4)의 기본적인 프리이미지 계산을 수행하는 데는 어떠한 변환도 사용될 수 있다.
도 4를 참조하여 먼저 언급한 바와 같이, 대체 실시예에서 본 발명의 이미지 시뮬레이션 공정은 이용될 포토레지스트 물질 및/또는 노광된 웨이퍼에 이용될 식각 공정들에 관련된 파라미터들을 고려하여 이들 공정들의 최종 결과를 시뮬레이트할 수 있다. 도 6a 및 도 6b는 상기 파라미터들을 고려하는 본 발명의 두 개의 대체 실시예들을 단순화된 흐름 다이어그램 형태로 도시한다. 예를 들어, 도 6a는 추가의 시뮬레이션 모델들을 상술한 리소그래피 시뮬레이션과 함께 사용하여 포토레지스트 및/또는 식각 파라미터들을 고려하는 이미지들을 생성하는 것을 도시한다. 본 실시예에서, 시뮬레이트될 물리적인 마스크(604)가 리소그래피 조건(602)들과 함께 스테퍼 이미지 생성기(600)에 입력으로서 제공되며, 상기 스테퍼 이미지 생성기(600)는 도 4 및 도 5를 참조하여 상술한 방식으로 시뮬레이트된 마스크 스테퍼 이미지(606)를 생성한다. 그 다음, 시뮬레이트된 마스크 스테퍼 이미지(606)를 나타내는 데이터(이미지 강도 데이터의 형식으로 존재할 수 있음)가 포토레지스트 파라미터들(612)과 함께 포토레지스트 이미지 시뮬레이터(610)에 제공되며, 상기 포토레지스트 이미지 시뮬레이터(610)는 시뮬레이트된 포토레지스트 이미지(616)를 생성한다. 시뮬레이트된 포토레지스트 이미지(616)는 물리적인 마스크(604)를 통하여 노광된 웨이퍼의 이미지를 나타내며, 여기서 상기 웨이퍼는 포토레지스트 파라미터들(612)에 의해 설명되는 포토레지스트 물질로 코팅된다. 그 다음, 시뮬레이트된 포토레지스트 이미지(616)를 나타내는 데이터는 식각 공정 파라미터들(622)과 함께 식각 이미지 시뮬레이터(620)에 제공되고, 상기 식각 이미지 시뮬레이터(620)는 시뮬레이트된 식각 이미지(626)를 생성한다. 상기 시뮬레이트된 식각 이미지(626)는 웨이퍼가 물리적인 마스크(604)를 통해 노광된 후에 웨이퍼 상에 전사되는 이미지를 나타내며, 여기에서 상기 웨이퍼는 포토레지스트 파라미터들(612)에 의해 설명되는 포토레지스트 물질로 코팅된 다음, 식각 공정 파라미터들(622)에 따라 식각된다.
일 실시예에서, 이들 포토레지스트 파라미터들(612) 및 식각 공정 파라미터들(622)은 웨이퍼의 실질적인 생산에 사용되는 파라미터들에 맞도록 사용자에 의해 변경될 수 있다. 포토레지스트 파라미터들(612)은 특히, 포토레지스트의 두께, 콘트라스트, 프리-베이크 시간(pre-bake time), 포스트-베이크 시간(post-bake time), 현상 시간, 포토레지스트 농도, 현상액 농도, 및 포토레지스트의 광 흡수를 포함한다. 식각 공정 파라미터들(622)은 특히, 식각 시간, 식각 방법, 및 농도를 포함한다. 본 발명의 일 실시예에서, 포토레지스트 이미지 시뮬레이터(610)는, 스테퍼 이미지 생성기(600)에 의해 제공되는 이미지 데이터를 받아 시뮬레이트된 포토레지스트 이미지(616)를 생성하는 컴퓨터 실행 프로그램을 포함한다. 도 4를 참조하여 전술한 바와 같이, 이미지 데이터는 실시간으로 제공되거나, 또는 시뮬레이트된 마스크 스테퍼 이미지(606) 데이터를 사전에 저장하였던 저장 장치로부터 제공될 수 있다. 유사하게, 본 발명의 일 실시예에서, 식각 이미지 시뮬레이터(620)는 포토레지스트 이미지 시뮬레이터(610)에 의해 제공되는 이미지 데이터(실시간으로 혹은 사전에 저장되었던)를 받아 시뮬레이트된 식각 이미지(626)를 생성하는 컴퓨터 실행 프로그램을 포함한다.
이러한 컴퓨터 실행 실시예에서, 포토레지스트 이미지 시뮬레이터(610) 및 식각 이미지 시뮬레이터(620) 프로그램은, 특히, 독립형의 또는 네트워크에 접속된 128MB의 RAM 및 200MHZ의 펜티엄 ProTM 마이크로프로세서를 갖춘 Windows 95TM 또는 NTTM 4.0 운용 시스템을 이용하는 PC와; 그리고 SUNTM 워크스테이션 컴퓨터를 포함하는 다양한 컴퓨터 플랫폼상에서 실행된다. 일 실시예에서, 상술한 포토레지스트 이미지 시뮬레이터(610) 프로그램은, SPIE 제2726권 198페이지의 "레지스트 처리 효과를 위한 근사화 모델들(Approximate Models for Resist Processing Effects)"에 개시되어 있는 IBM의 T.A. Brunner와 R.A. Ferguson에 의해 개발된 포토레지스트 모델을 이용할 수 있으며, 이는 본 명세서에 완전히 설명된 것과 같이 참조로서 인용된다. 일 실시예에서, 상술한 식각 이미지 시뮬레이터(620) 프로그램은 TMA TIEMS 제Ⅸ권 제3호의 "딥 서브마이크론 상호접속 기술의 정확한 모델링(Accurate Modeling of Deep Submicron Interconnection Technology)" (1997년 가을)에 개시되어 있는 TMA에 의해 개발된 모델을 이용할 수 있으며, 이는 본 명세서에 완전히 설명된 것과 같이 참조로서 인용된다.
도 6b는 대체 실시예를 도시하는바, 여기서 도 4 및 도 5에 관하여 전술한 리소그래피 이미지 시뮬레이션을 조정함으로써, 시뮬레이션에 포토레지스트 또는 식각 파라미터들이 고려될 수 있다. 일반적으로, 도 6b에 도시된 공정은, 조정기(660)를 가지고 스테퍼 이미지 생성기(600)를 조정하는 단계를 포함하여, 물리적 마스크가 시스템에 입력으로 제공될 때에 필요한 실제 결과(650)(예컨대, 포토레지스트 이미지 혹은 식각 이미지)를 얻을 수 있다. 상기 공정은 먼저 스테퍼 이미지 생성기(600) 및 조정기(660)에 기준 데이터(655)를 제공함으로써 시스템을 초기화하는 단계를 포함한다. 기준 데이터(655)는, 시뮬레이트될 마스크에 대한 디자인 레이아웃 데이터와 같은 공지된 마스크를 나타내는 모든 데이터, 또는 결함들이 없는 것으로 판정된 유사한 마스크의 이미지들을 포함한다.
스테퍼 이미지 생성기(600)는 가산 디바이스(675)에 이미지 시뮬레이션 출력을 제공하며, 상기 가산 디바이스(675)(summing device)는 상기 출력과 조정기(660)의 출력을 합산한다. 가산 디바이스(675)의 출력은 실제 결과(650)와 함께 감산 디바이스(680)(difference device)에 제공된다. 일 실시예에서, 감산 디바이스(680)에 제공되는 필요한 실제 결과(650)는, 일 실시예에서 사용자에 의해 선택되는, 식각 결과(640) 또는 포토레지스트 결과(630)를 포함할 수 있다. 유사하게, 포토레지스트 결과는 실제 포토레지스트 이미지(636) 또는 포토레지스트 이미지 시뮬레이터(610)로부터 시뮬레이트된 포토레지스트 이미지(또한, 일실시예에서 사용자에 의해 선택될 수 있음)를 포함할 수 있다. 실제 포토레지스트 이미지(636)는 사용자가 시뮬레이트하고자 하는 포토레지스트 조건 하에서 노광되었던 웨이퍼의 실제 이미지일 수 있다. 도 6a를 참조하여 상술한 바와 같이, 포토레지스트 이미지 시뮬레이터(610)는 마스크를 통해 노광되었던 포토레지스트 코팅된 웨이퍼에 대한 이미지의 시뮬레이션을 생성한다. 이러한 경우, 기준 데이터(665)는 조정되지 않은 스테퍼 이미지 생성기(600)에 제공되며, 상기 스테퍼 이미지 생성기(600)는 그 출력을 포토레지스트 이미지 시뮬레이터(610)에 입력으로 제공하고, 상기 포토레지스트 이미지 시뮬레이터(610)는 상술한 바와 같이 포토레지스트 시뮬레이션을 생성하며, 이러한 방식으로, 실제 결과(650) 데이터와 가산 디바이스(675) 출력 사이의 적절한 비교를 수행할 수 있다.
유사하게, 식각 결과는 사용자의 선택에 따라 실제 식각 이미지(646) 또는 식각 이미지 시뮬레이터(620)로부터 시뮬레이트된 식각 이미지를 포함할 수 있다. 실제 포토레지스트 이미지(646)는 사용자가 시뮬레이트하고자 하는 포토레지스트 조건하에서 노광된 다음, 시뮬레이트하는데 필요한 식각 파라미터들에 따라 식각되었던 웨이퍼의 실제 이미지일 수 있다. 도 6a를 참조하여 상술한 바와 같이, 식각 이미지 시뮬레이터(620)는, 마스크를 통해 노광된 다음 식각되었던 포토레지스트 코팅된 웨이퍼 상에 전사되는 이미지의 시뮬레이션을 생성한다. 상술한 바와 같이, 식각 시뮬레이션의 초기 입력은 기준 데이터(655)이며, 이러한 방식으로 실제 결과 데이터와 가산 디바이스(675) 출력 사이의 적절한 비교를 수행할 수 있다.
상기 감산 디바이스(680)는 상기 실제 결과(650)와 상기 가산 디바이스(675)의 출력 사이의 차이를 취하여, 상기 감산 디바이스(680)의 출력이 상기 최소화기(670)(minimizer)에 제공된다. 상기 최소화기(670)는 가산 디바이스(675)의 출력을 조정함으로써 감산 디바이스(680)의 출력을 제로(0)로 한다. 최소화기(670)는 스테퍼 이미지 생성기(600) 및 조정기(660)에 피드백 신호를 생성하여, 특정한 물리적 및 비물리적 변수들에 각각 할당된 값들이 소정의 방식으로 변경되어 감산 디바이스(680)의 출력을 제로가 되도록함으로써 이를 수행한다.
상기 감산 디바이스(680)는 상기 실제 결과(650)와 상기 가산 디바이스(675)의 출력 사이의 차이를 취하여, 상기 감산 디바이스(680)의 출력이 상기 최소화기(670)(minimizer)에 제공된다. 상기 최소화기(670)는 가산 디바이스(675)의 출력을 조정함으로써 감산 디바이스(680)의 출력을 제로(0)로 한다. 최소화기(670)는 스테퍼 이미지 생성기(600) 및 조정기(660)에 피드백 신호를 생성하여, 특정한 물리적 및 비물리적 변수들에 각각 할당된 값들이 소정의 방식으로 변경되어 감산 디바이스(680)의 출력을 제로가 되도록함으로써 이를 수행한다.
이러한 초기화 절차는 시스템의 감산 디바이스(680)로부터 출력이 제로가 될 때까지 계속되며, 이때는, 스테퍼 이미지 생성기(600) 및 조정기(660) 내에 적절한 변수가 설정되어 있다. 이때, 스테퍼 이미지 생성기(600) 및 조정기(660) 내의 변수들은 최소화기(670)에 의해 설정되어, 가산 디바이스(675)의 출력이 필요한 실제 결과(654)와 실질적으로 동일하게 되며, 상기 필요한 실제 결과(650)는 상술한 바와 같이 일 경우에는 포토레지스트 시뮬레이션이고, 또 다른 경우에는 식각 시뮬레이션이 될 수도 있다. 그 다음, 일 실시예에서, 이러한 변수 설정은 "록 인(locked in)"되며, 실제 물리적인 마스크(604)에서 시뮬레이션이 수행되어 필요한 결과를 얻는다. 기준 데이터(655)를 가지고 시스템이 일단 초기화되면, 물리적인 마스크(604)의 시뮬레이션은 도 4를 참조하여 상술한 바와 같이 결함 영역들의 이미지 데이터를 스테퍼 이미지 생성기(600)와 조정기(660)에 단순히 제공하는 단계와, 그 다음, 이들 두 장치들의 출력을 합산하는 단계를 포함한다. 최종 결과는 포토레지스트 혹은 식각 공정들과 같은 필요한 시뮬레이션 결과를 반영하는 조정된 시뮬레이션 출력(690)이다.
일 실시예에서, 조정기(660)는 상기 기준 데이터(655) 입력과 상기 최소화기(670)로부터의 피드백에 좌우되는 값들을 갖는 비물리적인 변수들 집합을 포함하는 출력을 제공하는 컴퓨터 프로그램을 포함한다. 유사하게, 일 실시예에서, 가산 디바이스(675), 감산 디바이스(680), 및 최소화기(670)는 또한 상술한 단계들을 실행하는 컴퓨터 프로그램을 포함할 수 있다.
도 7a 및 도 7b는 본 발명이 포토리소그래피 마스크 제조 및 웨이퍼 제작에 이용될 수 있는 다양한 상황을 블록 다이어그램 형태로 도시한다. 예를 들어, 도 7a를 참조하면, 마스크 제조업자는 집적회로 디자이너에 의해 공급되는 디자인 데이터(700)를 이용하여, 웨이퍼 제작 플랜트(730)로 보내지기 전에 검사되어야만 하는 물리적인 마스크를 제조(705)한다. 만일 마스크가 검사에 통과하지 못하면, 마스크를 복구(720)하거나 재프린트(725)하고, 그 다음, 재검사해야 한다. 이러한 검사는 본 발명의 다양한 실시예들을 이용하여 온라인(710) 또는 오프라인(715)으로 수행된다. 예를 들어, 본 발명의 온라인(710) 실시예는, 온더플라이(on-the-fly)로 이루어지는 종래의 마스크 검사 툴과 함께 병행하여 작동하도록 구성될 수 있다. 상기 실시예들 모두는, 현재의 현미경 이미지의 웨이퍼 시뮬레이션을 생성하도록 마스크 검사 툴이 검출하는 모든 잠재적 결함들을 나타내는 이미지 데이터의 공급을 필요로 한다. 본 발명의 다른 실시예는 온라인 검사 시스템내에서 직접 실행되어, 예를 들어 SEM에 의해 플래그(flag)된 잠재적인 결함 영역들에 대한 고속의 실시간 평가를 제공할 수 있다. 오프라인 검사(715)에 있어서, 본 발명의 일 실시예는 오프라인 현미경 검사 스테이션과 독립적으로, 또는 함께 사전에 저장된 결함 데이터를 이용할 수 있다. 마지막으로, 본 발명의 일 실시예는 인사이츄(insitu) 방식으로 복구(720)된 마스크의 복구 부분을 검사하는 데에 마스크 제조업자들에 의해 이용되어, 마스크 상의 개별적인 복구 부분들을 별개로 검정할 수 있다.
이제 도 7b를 참조하면, 웨이퍼 제작자는 제조자로부터 물리적 마스크를 받아, 마스크가 웨이퍼들(770)을 생성하도록 리소그래피 공정(760)에 사용되기 전에 필요한 품질 규격을 충족하는지 보증하기 위해, 마스크의 품질을 체크(750)한다. 이러한 마스크 품질 체크(750) 단계는, 도 7a를 참조하여 상술한 것과 유사한 본 발명의 실시예를 사용해 마스크를 검사(755)함으로써 강화될 수 있다. 또한, 웨이퍼 제작자는 본 발명의 실시예를 사용하여, 다수의 노광에 사용되었던 마스크를 정기적으로 재점검(765)할 수 있다. 마스크들이 반복적으로 사용된 후 손상되거나 입자들에 의해 오염될 수 있기 때문에 상기 과정들은 반드시 필요하게 되었다. 따라서, 본 발명의 실시예는 마스크가 세정 또는 다시 제작될 필요가 있는지를 결정하도록 품질 제어 공정을 감독하는 것을 보조하는데 사용될 수 있다.
도 8은 본 발명의 일 실시예에 따라 포토리소그래피 마스크의 온라인 및 오프라인 양쪽 모두의 검사를 위한 시스템의 일 실시예를 공정 흐름 다이어그램으로 도시한다. 상기 시스템은 검사툴(805), 온라인 검사 스테이션(820), 및 오프라인 검사 스테이션(850)을 포함한다. 검사툴(805)은 이미지 획득기(810), 결함 검출 프로세서(815), 및 결함 영역 이미지 생성기(817)를 포함하며, 이들 각각은 도 4를 참조하여 상술한 바와 같이 작동한다. 온라인 검사 스테이션(820)은 도 4를 참조하여 전술한 바와 같은 입력 장치(825)와, 도 4 및 도 5b를 참조하여 전술한 바와 같은 이미지 시뮬레이터(830)와, 그리고 결함 분석기(835)를 포함한다. 오프라인 검사 스테이션(850)은 도 4 및 도 5b를 참조하여 전술한 바와 같은 이미지 시뮬레이터(860), 및 결함 분석기(870)를 포함한다.
도 8의 시스템은 다음과 같은 마스크 검사에 관해서 가능한 수많은 출력을 제공하도록 작동한다. 물리적인 마스크(800)는 제일 먼저 검사툴(805)에 의해 검사된다. 도 4를 참조하여 전술한 바와 같이, 검사툴(805)은 잠재적인 결함들을 검출하기 위해 물리적인 마스크(800)를 스캔하며, 결함 영역 이미지 생성기(817)는 잠재적인 결함들을 포함하는 마스크 영역들의 결함 영역 이미지들을 생성한다. 그 다음, 상기 결함 영역 이미지 데이터는 오프라인 검사 스테이션(850) 또는 온라인 검사 스테이션(820)에 의해서, 혹은 양자 모두에 의해서 분석된다.
오프라인 검사 스테이션(850)에 의해 검사될 때, 전술한 바와 같이 결함 영역 이미지 데이터가 디지타이저 장치(853)에 제공되고, 그 다음, 윈도우즈 BMP와 같은 임의의 적절한 이미지 데이터 포맷으로, 그리고 전술한 바와 같은 임의의 적당한 저장 매체들 상에서 저장 장치(855)에 저장된다. 그 다음, 결함 영역 이미지 데이터는 리소그래피 조건 입력(862)과 함께 이미지 시뮬레이터(860)에 입력되어, 마스크 결함 영역에 대한 웨이퍼 상에서의 스테퍼 이미지의 시뮬레이션이 생성된다. 리소그래피 조건 입력(862)은 도 4를 참조하여 전술한 바와 같이 공정 특유의 데이터(process specific data)를 포함한다. 일 실시예에서, 상기 시뮬레이션은 도 5b를 참조하여 설명한 바와 같이 수행된다. 그 다음, 스테퍼 이미지의 시뮬레이션이 결함 분석기(870)에 제공되어, 잠재적인 결함의 프린트가능성 및 공정 윈도우 영향에 관해서 분석될 수 있다. 결함 분석기(870)는, 리소그래피 엔지니어와 같은 조작자가 시뮬레이션의 이미지를 볼 수 있도록 하는 디바이스를 포함하여, 그리하여, 상기 조작자가 잠재적인 결함의 중대성(severity)을 판단할 수 있도록 한다. 결함 분석기(870)는 도 9를 참조하여 설명될 바와 같이, 결함 영역의 시뮬레이트된 이미지와 결함 영역에 대응하는 디자인 레이아웃상의 영역에 대한 시뮬레이션을 비교할 수 있는 디바이스를 또한 포함할 수 있다. 결함 영역이 검사된 후에, 마스크가 검사에 통과했는지에 대한 결정(875)이 이루어진다. 만일 마스크가 검사에 통과했다면, 상기 마스크는 리소그래피 공정(880)에 사용되는 반면에, 만일 검사에 통과하지 못했다면, 상기 마스크는 다시 제작되거나 또는 결함(들)이 복구된다(885).
온라인 검사 스테이션(820)에 의해 검사될 때, 상기 결함 영역 이미지 데이터는 입력 장치(825)에 실시간으로 제공될 것이며, 상기 입력 장치(825)는 상기 데이터를 이미지 시뮬레이터(830)에 출력한다. 이미지 시뮬레이터(830)는 도 4를 참조하여 전술한 바와 같이 공정 특유의 데이터를 포함하는 리소그래피 조건 입력(832)을 또한 수신한다. 이미지 시뮬레이터(830)는 마스크 결함 영역에 대한 웨이퍼 상에서의 스테퍼 이미지 시뮬레이션을 생성하는바, 이는 일 실시예에서 도 5b를 참조하여 설명된 공정에 따라 생성된다. 유사하게, 이미지 시뮬레이터(830)는 입력 리소그래피 조건들의 범위들을 사용하여 결함 영역에 대한 다수의 시뮬레이션을 생성하고, 이어서, 잠재적인 결함 영역이 공정 윈도우에 미치는 영향을 나타내는 시뮬레이트된 공정 윈도우를 생성한다. 상기 이미지 시뮬레이터(830)의 출력은 결함 분석기(835)에 제공되며, 이 결함 분석기(835)는 상기 결함 영역에 대한 다수의 시뮬레이션 및/또는 상기 시뮬레이트된 공정 윈도우를 분석하여 그 결과를 분석 출력(840)에 제공한다. 일 실시예에서, 결함 분석기(835)는 사용자 입력 결함 기준에 비추어 시뮬레이션 데이터를 처리하여, 추가의 검사를 해야할 만큼 결함이 심각한지, 또는 상기 결함 영역이 프린트되지 않거나 그렇지 않으면 사용자가 정의한 가능한 리소그래피 조건 집합에 대하여 공정 윈도우에 영향을 미치지 않는지 여부를 결정하는 컴퓨터 실행 프로그램이다.
온라인 검사 스테이션(820)에 의해 검사될 때, 상기 결함 영역 이미지 데이터는 입력 장치(825)에 실시간으로 제공될 것이며, 상기 입력 장치(825)는 상기 데이터를 이미지 시뮬레이터(830)에 출력한다. 이미지 시뮬레이터(830)는 도 4를 참조하여 전술한 바와 같이 공정 특유의 데이터를 포함하는 리소그래피 조건 입력(832)을 또한 수신한다. 이미지 시뮬레이터(830)는 마스크 결함 영역에 대한 웨이퍼 상에서의 스테퍼 이미지 시뮬레이션을 생성하는바, 이는 일 실시예에서 도 5b를 참조하여 설명된 공정에 따라 생성된다. 유사하게, 이미지 시뮬레이터(830)는 입력 리소그래피 조건들의 범위들을 사용하여 결함 영역에 대한 다수의 시뮬레이션을 생성하고, 이어서, 잠재적인 결함 영역이 공정 윈도우에 미치는 영향을 나타내는 시뮬레이트된 공정 윈도우를 생성한다. 상기 이미지 시뮬레이터(830)의 출력은 결함 분석기(835)에 제공되며, 이 결함 분석기(835)는 상기 결함 영역에 대한 다수의 시뮬레이션 및/또는 상기 시뮬레이트된 공정 윈도우를 분석하여 그 결과를 분석 출력(840)에 제공한다. 일 실시예에서, 결함 분석기(835)는 사용자 입력 결함 기준에 비추어 시뮬레이션 데이터를 처리하여, 추가의 검사를 해야할 만큼 결함이 심각한지, 또는 상기 결함 영역이 프린트되지 않거나 그렇지 않으면 사용자가 정의한 가능한 리소그래피 조건 집합에 대하여 공정 윈도우에 영향을 미치지 않는지 여부를 결정하는 컴퓨터 실행 프로그램이다.
일 실시예에서, 도 11을 참조하여 이후에 설명할 바와 같이, 분석 출력(840)은 다수의 서로 다른 결정 표시자들 중 하나를 포함한다. 예를 들어, 이들 표시자들은 사용자가 결함 분석기(835)에 입력할 수 있는 다수의 서로 다른 기준에 기초한 "거절(reject)", "복구(repair)", "수용(accept)", 및 "미결정(undecided)"을 포함할 수 있다. 분석 출력이 "수용"인 경우에, 마스크는 추가의 검사없이 리소그래피 공정(880)으로 보내진다. 만일 분석 출력이 "거절", "복구", 또는 "미결정"이라면, 결함 영역 이미지 데이터는 블록 845에 저장되고, 그 다음, 리소그래피 엔지니어와 같은 좀 더 숙련된 조작자들에 의한 추가의 분석을 위하여 오프라인 검사 스테이션(850)에 입력된다.
도 9는 본 발명의 일 실시예에 따라 포토리소그래피 마스크를 검사하는 시스템의 다른 실시예를 공정 흐름 다이어그램으로 도시한다. 이 시스템은 검사툴(900), 스테퍼 이미지 생성기(940), 및 결함 분석기(990)를 포함한다. 이 시스템으로의 입력은 물리적인 마스크(905), 기준 묘사(935), 및 리소그래피 조건(965)을 포함한다. 기준 묘사(935)는 물리적인 마스크(905)의 결함이 없는 디자인 레이아웃을 나타내는 데이터를 포함한다. 일 예에서, 상기 데이터는 기준 이미지(912)를 포함하는바, 이 기준 이미지(912)는 사전에 검사되어 결함이 없는 것으로 판단된 물리적인 마스크의 이미지일 수 있다. 다른 예에서, 상기 기준 묘사는 물리적인 마스크(905)에 대한 디자인 레이아웃 데이터(910)를 포함할 수 있다. 검사툴(900)은 이미지 획득기(915), 결함 검출 프로세서(925), 및 결함 영역 이미지 생성기(930)를 포함하며, 이들 각각은 도 4를 참조하여 상술한 바와 같이 작동한다. 스테퍼 이미지 생성기(940)는 도 4를 참조하여 상술한 것과 같은 입력 장치들(945 및 955)과, 도 4 및 도 5b를 참조하여 상술한 것과 같은 마스크 이미지 시뮬레이터(950)와, 그리고 도 5a 및/또는 도 5b를 참조하여 상술한 바와 같이 입력 장치(955)로의 입력에 따라서 작동하는 디자인 이미지 시뮬레이터(960)를 포함한다. 결함 분석기(990)는 이미지 비교기(980), 공정 윈도우 분석기(985), 및 성능 출력 장치(995)를 포함한다.
도 9의 시스템은 하기와 같이 작동하여 물리적인 마스크(905)를 검사한다. 물리적인 마스크(905)는 제일 먼저 검사툴(900)에 의해 검사된다. 도 4에 관하여 전술한 바와 같이, 검사툴(900)은 잠재적인 결함들에 대하여 물리적인 마스크(905)를 스캔하며, 결함 영역 이미지 생성기(930)는 잠재적인 결함들을 포함하는 마스크의 영역들에 대한 결함 영역 이미지들을 생성한다. 결함 검출 프로세서(925)는 또한 입력으로서 디자인 레이아웃 데이터(910)를 수신한다. 본 예에서, 생성된 결함 영역 이미지 각각에 대하여, 결함 검출 프로세서(925)는 디자인 레이아웃 데이터(910)상의 해당 영역을 찾도록 작동하여, 그 정보를 입력 장치(955)에 제공한다. 일 실시예에서, 디자인 레이아웃 데이터(910)는 GDS-Ⅱ 포맷이다. 결함 영역 이미지 생성기(930)는 전술한 바와 같이 데이터를 처리하는 스테퍼 이미지 생성기(940)의 입력 장치(945)에 결함 영역 이미지 데이터를 제공한다. 마스크 이미지 시뮬레이터(950)는 리소그래피 조건 입력(965)과 입력 장치(945)로부터 처리된 이미지 데이터를 수신하여, 도 5b에 관하여 상술한 방식으로 시뮬레이트된 마스크 스테퍼 이미지(970)와 시뮬레이트된 공정 윈도우 정보를 생성한다.
일 예에서, 스테퍼 이미지 생성기(940)의 입력 장치(955)는 결함 검출 프로세서(925)로부터 결함 영역에 대응하는 디자인 레이아웃 데이터(910)를 수신하고, 그리고 시뮬레이트된 결함 영역에 해당하는 시뮬레이트될 영역을 나타내는 디자인 데이터를 디자인 이미지 시뮬레이터(960)에 제공한다. 디자인 이미지 시뮬레이터(960)는 동일한 리소그래피 조건 입력(965)을 사용하여, 도 5a에 관하여 상술한 방식으로 시뮬레이트된 디자인 스테퍼 이미지(975)와 시뮬레이트된 공정 윈도우 정보를 생성한다. 다른 예에서, 유사하게, 기준 이미지(912)는 입력 장치(955)에 제공되며, 그 다음, 디자인 이미지 시뮬레이터(960)는 도 5b에 관하여 상술한 방식으로 기준 이미지 데이터를 사용하여, 시뮬레이트된 디자인 스테퍼 이미지(975)와 시뮬레이트된 공정 윈도우 정보를 생성한다.
시뮬레이트된 마스크 스테퍼 이미지(970)와 시뮬레이트된 디자인 스테퍼 이미지(975)는 결함 분석기(990)의 이미지 비교기(980)에 제공된다. 일 실시예에서, 결함 분석기(990)는 컴퓨터 실행 프로그램을 포함하는바, 상기 컴퓨터 실행 프로그램은 이미지들(970 및 975)을 디스플레이할 수 있으므로, 상기 두 이미지들 사이의 차이를 디스플레이하여 조작자가 모든 차이를 시각적으로 검출할 수 있도록 한다. 이러한 프로그램 실시예의 출력은 하기의 도 17 및 도 20에 도시된다. 스테퍼 이미지 생성기(940)로부터의 시뮬레이트된 공정 윈도우 데이터는 결함 분석기(990)의 공정 윈도우 분석기(985)에 제공된다. 일 실시예에서의 상기 공정 윈도우 분석기(985)는 컴퓨터 실행 프로그램인바, 상기 컴퓨터 실행 프로그램은 "완전한(perfect)" 디자인 마스크와 비교하였을 때, 잠재적인 결함 영역이 리소그래피 공정의 전체적인 공정 윈도우에 미치는 영향을 디스플레이할 수 있다. 이러한 공정 윈도우 출력은 하기의 도 10a 내지 도 10c에 관하여 더욱 상세하게 설명될 것이고, 도 15 및 도 19에 또한 도시된다. 물리적인 마스크(905)와 기준 묘사(935)에 대한 스테퍼 이미지 생성기(940)의 출력이 성능 출력 장치(995)에 또한 제공된다. 일 실시예에서 성능 출력 장치(995)는 컴퓨터 실행 프로그램인바, 상기 컴퓨터 실행 프로그램은 상기 하나 이상의 결함들이 집적회로(상기 물리적인 마스크(905)가 집적회로 생산시 사용됨)의 전체적인 성능에 미치는 영향을 판단하고 디스플레이할 수 있다.
도 10a 내지 도 10c는 잠재적인 결함 영역이 포토리소그래피 공정의 전체 공정 윈도우에 어떻게 영향을 미치는지의 예를 도시한다. 도 10a는 x축은 노광 편차(%), y축은 리소그래피 디포커스(㎚ 단위)에 관한 데이터의 x-y 좌표평면 플롯을 도시한 것이다. 데이터 곡선들(1002, 1004)은 마스크상의 결함을 갖지 않는 선택된 제 1 영역에 대한 데이터의 전형적인 플롯을 나타낸다. 상기 곡선들(1002, 1004) 사이의 영역은 사용자가 정의한 수용 기준 집합에 따라, 선택된 제 1 영역에서 수용가능한 리소그래피 결과들을 제공하는 디포커스와 노광 편차 값의 범위를 나타낸다. 데이터 곡선들(1006, 1008)은 마스크상의 결함을 갖지 않는 선택된 제 2 영역에 대한 데이터의 전형적인 플롯을 나타낸다. 상기 곡선(1006, 1008)들 사이의 영역은 동일한 사용자가 정의한 수용 기준 집합에 따라, 선택된 제 2 영역에서 수용가능한 리소그래피 결과들을 제공하는 디포커스와 노광 편차 값의 범위를 나타낸다. 영역(1010)은 상기 두 개의 경계 영역들의 중복부분으로, 사용자가 정의한 수용 기준 집합에 따라서 상기 양 영역에서 수용가능한 리소그래피 결과들을 제공하는 디포커스와 노광 편차 값의 범위를 나타낸다. 도 10a에 도시된 상기 공정 윈도우 플롯은, 허용가능한 리소그래피 조건들을 더욱 정밀하게 정의할 수 있도록 마스크 상에서 추가로 선택된 영역들을 나타내는 추가의 곡선들을 포함할 수 있다. 그리고, 리소그래피 공정에 영향을 미치는 파라미터들의 변동에 대한 수용가능한 리소그래피 조건들의 민감도를 결정하기 위해서 임계치수, 온도, 및 노광량을 포함한 다른 파라미터들이 x축과 y축 상에 도시될 수 있다.
도 10b는 선택된 제 1 영역이 결함을 갖는다는 것을 제외하고는, 도 10a의 것과 동일한 마스크에 대한 공정 윈도우를 도시한 것이다. 따라서, 데이터 곡선들(1012, 1014)은 마스크상의 결함을 갖는 선택된 제 1 영역에 대한 데이터의 전형적인 플롯을 나타낸다. 상기 곡선들(1012, 1014) 사이의 영역은 사용자가 정의한 수용 기준 집합에 따라, 선택된 제 1 영역에서 수용가능한 리소그래피 결과들을 제공하는 디포커스와 노광 편차 값의 범위를 나타낸다. 데이터 곡선들(1016, 1018)은 도 10a의 곡선들(1006, 1008)과 직접 대응하며, 그 곡선들(1016, 1018) 사이의 영역 또한 마찬가지이다. 영역(1020)은 상기 두 개의 경계 영역들의 중복부분으로, 사용자가 정의한 수용 기준 집합에 따라, 상기 양 영역들에서 수용가능한 리소그래피 결과들을 제공하는 디포커스와 노광 편차 값의 범위를 나타낸다. 본 예에서, 상기 선택된 제 1 영역에서의 결함은 수용가능한 리소그래피 결과를 제공하는 리소그래피 조건들의 범위를 좁힌다는 것을 주목하자. 어떠한 예에서는, 상기 결함이 프린트되지 않더라도 이러한 경우가 존재할 수 있음을 또한 주목하자. 도 10c는 마스크 영역에서의 결함이 상기 공정 윈도우에 미치는 영향을 명확하게 도시하기 위해 제공된다. 영역(1030)은 영역(1010)과 영역(1020) 사이의 차이를 나타내므로, 결함으로 인하여 리소그래퍼들이 실질적으로 이용 불가능하게 된 리소그래피 조건들의 범위를 나타낸다.
도 11은 도 8의 온라인 결함 분석기(835)의 일 실시예를 나타낸 공정 흐름 챠트를 도시한다. 도 8의 이미지 시뮬레이터(830)에 의해 제공된 것과 같은 시뮬레이트된 마스크 이미지(1100)가 온라인 결함 분석기(1110)에 제공된다. 상기 온라인 결함 분석기(1110)는, 상기 시뮬레이트된 마스크 이미지(1100)상의 모든 결함 영역의 상태에 관한 표시자(1150)를 마스크 제작 라인 작업자와 같은 사용자에게 제공한다. 일 실시예에서, 이러한 표시는 "수용", "거절", 혹은 "복구"인 3개의 표시자들 중 하나를 포함하고, 어떠한 수단으로든 마스크 상태에 관해서 사용자에게 경고한다. 이 수단은 상기 표시자가 "거절" 또는 "복구"일 때 발광하는 적색 빛과 상기 표시자가 "수용"일 때 발광하는 녹색 빛으로 구성될 수 있다. 상기 온라인 결함 분석기(1110)는 사용자가 입력한 검사 기준에 대해서 상기 시뮬레이트된 마스크 이미지(1100)를 분석한 것에 기초하여 표시자를 생성한다. 일 실시예에서, 상기 온라인 결함 분석기(1110)는 시뮬레이트된 마스크 이미지상의 결함에 대해 결함 중대성 스코어(severity score)(1140)를 할당하여, 상기 할당된 결함 중대성 스코어(1140)에 응답하여 상기 3가지 표시자 중 하나를 제공한다. 상기 할당된 결함 중대성 스코어(1140)는 결함 크기와 형태(1120), 결함 상황과 위치(즉, 예컨대 상기 결함이 트랜지스터 게이트 근처에 존재하면, 더욱 크게 가중된다)(1122), 결함의 프린트가능성(1125), 결함의 공정 윈도우에 대한 영향도(1130), 및 리소그래피 조건들과 같은 웨이퍼 공정 데이터(1135)를 포함하는 다양한 결함에 관련된 파라미터들을 고려하여 가중된 스코어일 수 있다. 상술한 바와 같이, 상기 웨이퍼 공정 데이터(1135)는 결함의 프린트가능성(1125)과 공정 윈도우에 대한 영향도(1130)를 판단하는데도 사용될 수 있다. 본 발명의 일 실시예에서, 상기 결함 중대성 스코어(1140)에 대한 전술한 입력 각각은 사용자의 기호에 따라 가중될 수 있다. 일 실시예에서, 상기 온라인 결함 분석기(1110)는 표시자 빛들 집합와 인터페이스하여 출력 표시자(1150)를 제공하는 컴퓨터에 의해 실행되는 프로그램이다. 도 8에 관하여 전술한 바와 같이, 상기 결함 분석기는 또한 결함 데이터를 저장하여, 후에 검사 엔지니어에 의해 오프라인으로 분석될 수 있다.
나머지 도면들은 본 발명의 일 실시예를 이용하는, 컴퓨터 실행 프로그램으로부터 취한 견본 스크린샷을 도시한다. 나머지 도면들에서 현미경 사진으로서 도시된 모든 이미지들은 투과식 현미경(transmission mode microscope)으로 찍은 것이다. 따라서, 밝은 영역들은 마스크에서 석영(투명) 영역들을 나타내고, 어두운 영역들은 크롬(불투명) 영역들 나타낸다. 나머지 도면들에서 시뮬레이트된 웨이퍼 이미지들로 도시된 이미지들은, 유사하게, 밝은 영역들은 빛에 노출될 포토레지스트 상의 영역을 나타내고, 어두운 영역들은 빛에 노출되지 않을 포토레지스트 영역들을 나타낸다.
예를 들어, 도 12는 윈도우들(1210, 1220, 1230, 1240, 1250 및 1260)을 포함하는 스크린샷(1200)을 도시하며, 여기서 결함 있는 마스크가 시뮬레이트되어 서로 다른 5개의 스테퍼 조건하에서 프린트된다. 윈도우(1210)는 결함(1212)과 같은 서로 다른 크기의 다양한 결함들을 포함하는 마스크의 이미지를 현미경으로 포착한 것을 도시한다. 윈도우(1220)는 특정한 I-라인 스테퍼 조건 집합하에서 윈도우(1210)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1230)는 환형 광원이 이용된 특정한 I-라인 스테퍼 조건 집합하에서 윈도우(1210)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1240)는 다른 특정한 I-라인 스테퍼 조건 집합하에서 윈도우(1210)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1250)는 또 다른 특정한 I-라인 스테퍼 조건 집합하에서 윈도우(1210)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 마지막으로 윈도우(1260)는 특정한 DUV(원자외선) 스테퍼 조건 집합하에서 윈도우(1210)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다.
도 12는 종래 기술에 관련된 결함들의 프린트가능성을 확인하는 문제를 나타낸다. 윈도우들(1220-1260)에 나타난 다양한 스테퍼 조건들 하에서 최종적으로 시뮬레이트된 웨이퍼 노광에, 윈도우(1210)에 존재하는 모든 결함들이 나타나지 않는지 혹은 어떻게 "프린트"되는지를 주목하자. 특히, 결함(1212)은 결함 시뮬레이션 마크들(1232 및 1242)로 도시된 바와 같이 일부 조건들에서는 프린트되지 않는 반면에, 다른 조건들 하에서는 결함(1212)이 결함 시뮬레이션 마크들(1222,1252,1262)로 도시된 바와 같이 프린트된다는 점을 주목하자. 도 12에서 제공되는 정보가 없다면, 특정한 리소그래피 조건 집합하에서 결함이 프린트될지(또는 그렇지 않으면, 후술하는 바와 같이 공정 윈도우에 악영향을 미치는지)를 판단하기 위하여, 검사 엔지니어는 자신의 경험에 의존하거나 실질적으로 웨이퍼를 노광하여야만 한다.
도 13은 본 발명의 일 실시예를 이용하는 컴퓨터 실행 프로그램의 그래픽적인 사용자 인터페이스의 일 실시예의 스크린샷(1300)을 도시한다. 상기 스크린샷(1300)은 윈도우들(1310, 1320, 1330 및 1340)을 포함한다. 윈도우(1310)는 마스크의 일부분을 현미경으로 포착한 이미지를 도시하며, 윈도우(1320)는 특정한 DUV 스테퍼 조건 집합하에서 윈도우(1310)의 상기 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1330)는 윈도우(1310)에 도시된 마스크의 상기 부분의 오리지날 마스크 레이아웃 디자인을 도시하고, 그리고 윈도우(1340)는 윈도우(1320)에 디스플레이된 시뮬레이션에 적용된 것과 동일한 스테퍼 조건들을 사용하여, 윈도우(1330)의 오리지날 마스크 레이아웃 디자인의 시뮬레이트된 웨이퍼 노광을 도시한다. 도 13으로부터 알 수 있듯이, 본 발명은 상기 오리지날 디자인상의 결함의 영향을 판단하기 위하여, 오리지날 디자인의 스테퍼 이미지를 제조된 마스크의 스테퍼 이미지와 직접 비교할 수 있도록 한다.
도 14는 본 발명 일실시예를 이용하는 컴퓨터 실행 프로그램의 스크린샷(1400)을 도시하며, 여기서 상기 검사되는 마스크는 OPC 교정되었다. 상기 스크린샷(1400)은 윈도우들(1410, 1420, 1430, 1440, 1450 및 1460)을 포함한다. 윈도우(1410)는 마스크의 일부분을 현미경으로 포착한 이미지를 도시한다. 윈도우(1420)는 OPC 교정된 마스크의 동일한 부분을 현미경으로 포착한 이미지를 도시한다. 윈도우(1430)는 OPC 보조 바(assist bar) 피처들 중 하나에 결함(1432)을 가진 OPC 교정된 마스크의 동일한 부분을 현미경으로 포착한 이미지를 도시한다. 윈도우(1430)는 라인 종단 짧아짐을 방지하기 위한 세리프(1436)와 코너의 노광 부족을 방지하기 위한 세리프(1438)와 같은 양(positive)의 세리프들과, 코너의 과다 노광을 방지하기 위한 세리프(1434)와 같은 음(negative)의 세리프들을 포함하는 다른 OPC 피처들을 또한 도시한다. 윈도우(1440)는 특정한 스테퍼 조건 집합하에서 윈도우(1410)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1450)는 상기 동일한 스테퍼 조건 집합하에서 윈도우(1420)의 OPC 교정된 마스크의 시뮬레이트된 웨이퍼 노광을 도시하며, 그리고 윈도우(1460)는 동일한 스테퍼 조건 집합하에서 윈도우(1430)의 결함이 있는 OPC 교정된 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다.
도 14로부터 알 수 있듯이, 본 발명은 조작자가 윈도우(1460)를 관찰함으로써 제조된 마스크의 스테퍼 이미지상에 OPC 결함이 프린트될지 여부를 시각적으로 검사할 수 있도록 한다. 본 예에서, 결함(1432)은 윈도우(1460)의 스테퍼 이미지 내에 결함 프린트(1460)로서 나타난다. 상기 결함이 디자인된 회로의 작동에 어떠한 악 영향을 미칠지 여부는 상술한 바와 같이 또한 판단될 수 있다. 또한, 상기 시뮬레이트된 웨이퍼 노광 이미지를 관찰함으로써, 운영자는 마스크 상에 불완전하게 재생되지 않았다고 할지라도, 디자인된 OPC 교정들이 그들의 OPC 기능을 올바르게 수행하는지 여부를 알 수 있다. 예를 들어, 만약 시뮬레이트된 웨이퍼 노광이 그 코너가 충분히 각지지 않은 원형 기하구조를 나타내고 있다면, 상기 조작자는 상기 세리프들(1436,1438) 및 음의 세리프(1434)의 크기가 적당하지 않음을 판단할 수 있다. 유사하게, 만약 상기 조작자가 OPC 피처들의 크기가 크거나 작다고 판단하면, 조작자는 그 정보를 시험하는데 이용하여, 데이터 변환 또는 마스크 기록 동안에 OPC 피처들의 변환에 문제가 존재하는지 여부를 판단할 수 있다.
비록 결함이 있는 해상도 이하의 OPC 피처들이 프린트되지 않더라도, 전체 공정에 대해 중요한 방식으로 제조 공정 윈도우에 영향을 미칠 수 있다. 예를 들어, 포토리소그래피 공정의 디포커스 변수는 주어진 스테퍼 시스템으로 노광할 때마다 조금씩 변할 수 있다. 본래는, 범위 전체에서, 결함의 전체적인 효과를 판단하기 위해서 관심있는 디포커스 값 각각에 대한 실질적인 노광들을 비교해야만 한다. 이러한 문제에 대한 본 발명의 적용은, 본 발명의 일 실시예를 이용하는 컴퓨터 실행 프로그램의 스크린샷(1500)을 도시하는 도 15에 나타나며, 여기서 상기 마스크는 OPC 교정되어 있다. 상기 스크린샷(1500)은 윈도우들(1510, 1520, 1530, 1540, 1550 및 1560)을 포함한다. 윈도우(1510)는 도 14의 윈도우(1410)에 도시된 바와 같은 마스크의 일부분을 현미경으로 포착한 동일한 이미지를 도시한다. 윈도우(1520)는 도 14의 윈도우(1420)에 도시된 바와 같은 OPC 교정된 마스크의 일부분을 현미경으로 포착한 동일한 이미지를 도시한다. 윈도우(1530)는 도 14의 윈도우(1430)에 도시된 바와 같은 OPC 보조 바 피처들 중 하나에서 결함(1532)를 가진 OPC 교정된 마스크의 일부분을 현미경으로 포착한 동일한 이미지를 도시한다. 윈도우(1530) 또한, 라인 종단 짧아짐을 방지하기 위한 세리프(1536)와 코너의 노광 부족을 방지하기 위한 세리프(1538) 같은 양의 세리프들과, 코너의 과다 노광을 방지하기 위한 세리프(1534)와 같은 음의 세리프들을 포함하는 다른 OPC 형상들을 보인다.
윈도우(1540)는 윈도우(1510)의 포착된 마스크 이미지의 시뮬레이트된 웨이퍼 이미지들의 범위에 대해 계산된 공정 윈도우를 도시하며, 여기서 다수의 서로 다른 디포커스 값들이 사용되었다. 윈도우(1540)에 도시된 상기 공정 윈도우는 윈도우(1510)에 도시된 포착된 마스크의 두 영역들에 대한 임계치수 대 광학적 디포커스의 관계를 표시한다. 곡선(1542)은 영역(#2)에 대한 시뮬레이션들의 범위로부터 얻어진 데이터를 표시하고, 곡선(1544)은 영역(#1)에 대해서 얻어진 데이터를 표시한다. 윈도우(1550)는 윈도우(1520)의 OPC 교정된 마스크 이미지에 대해 얻어진 유사한 공정 윈도우를 도시한다. 또다시, 곡선(1552)은 영역(#2)에 대한 시뮬레이션들의 범위로부터 얻어진 데이터를 표시하고, 곡선(1554)은 영역(#1)에 대해 얻어진 데이터를 표시한다. 마지막으로, 윈도우(1560)는 윈도우(1520)의 결함 있는 OPC 교정된 마스크 이미지에 대해 얻어진 유사한 공정 윈도우를 도시한다. 다시, 곡선(1562)은 영역(#2)에 대한 시뮬레이션들의 범위로부터 얻어진 데이터를 표시하고, 곡선(1564)은 영역(#1)에 대해 얻어진 데이터를 표시한다. 비록 결함(1532)이 도 14의 윈도우(1460)에서 현저하게 프린트 가능한 것으로 보이지는 않지만, 상기 동일한 결함(1532)은 윈도우들(1550,1560)에서의 곡선들을 비교함으로써 나타나는 바와 같이, 이용가능한 공정 윈도우상에 여전히 큰 영향을 미친다는 것을 주목하자.
도 16은 확인된 결함이 본 발명의 일 실시예를 통합하는 컴퓨터 실행 프로그램에 의해, 특정한 스테퍼 조건 집합 하에서 프린트되지 않는 것을 보여주는 상황을 도시한다. 도 16은 전술한 컴퓨터 프로그램으로부터의 스크린샷(1600)의 일부분을 포함하며, 상기 스크린샷(1600)은 결함(1602)을 가진 마스크의 일부분을 현미경으로 포착한 이미지를 도시한다. 도 16은 또한 전술한 컴퓨터 프로그램으로부터의 스크린샷(1610)의 일부분을 포함하며, 상기 스크린샷(1610)은 특정한 DUV 스테퍼 조건 집합 하에서 윈도우(1610)의 상기 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1610)의 영역(1612)은 상기 결함(1602)에 대응하고, 그리고 상기 결함(1602)이 상기 특정한 스테퍼 조건들 하에서는 프린트되지 않음을 보여준다. 따라서, 이러한 경우에는, 상기 마스크를 결함(1602) 때문에 폐기할 필요는 없다. 그리고, 복구된 부분에 대한 보이지 않는 손상에 대한 위험을 무릎쓰면서 결함(1602)의 복구를 수행할 필요도 또한 없다.
도 17은 본 발명의 일 실시예를 이용하는 컴퓨터 실행 프로그램의 몇 개의 스크린샷들(1700, 1710, 1720 및 1730)을 도시하며, 여기서 레이아웃 데이터베이스로부터의 스테퍼 이미지와 포착된 마스크 이미지로부터의 시뮬레이트된 스테퍼 이미지의 직접적인 비교로 인해 문제 영역들을 출력할 수 있음이 논증된다. 상기 스크린샷(1710)은 마스크의 일부분의 현미경으로 포착된 이미지를 도시하고, 상기 스크린샷(1730)은 특정한 DUV 스테퍼 조건 집합 하에서 스크린샷(1710)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 스크린샷(1700)은 스크린샷(1710)에 도시된 상기 마스크 부분의 오리지날 마스크 레이아웃 디자인을 도시하고, 그리고 스크린샷(1720)은 스크린샷(1730)에서 디스플레이된 상기 시뮬레이션에 대한 것과 동일한 스테퍼 조건들을 사용하여 스크린샷(1700)의 오리지날 마스크 레이아웃 디자인의 시뮬레이트된 웨이퍼 노광을 도시한다. 스크린샷(1730)의 영역들(1732, 1734 및 1736)을 관찰하면, 조작자에게는 고려될 문제 영역들이 존재함이 명백해진다. 그러나, 상기 시뮬레이트된 마스크 노광 이미지가 없다면, 상기 영역들은 용이하게 명백해지지 않으므로, 스크린샷(1710)의 포착된 마스크 이미지를 스크린샷(1700)의 오리지날 레이아웃 이미지와 비교해야만 한다. 스크린샷(1710)의 영역들(1712,1714 및 1716)과 스크린샷(1700)의 영역들(1702,1704 및 1706)을 비교할 때에, 이러한 문제들은 용이하게 발견되지 않는다.
도 18은 본 발명 일실시예를 이용하는 컴퓨터 실행 프로그램의 스크린샷(1800)을 도시하며, 여기서 검사되는 마스크는 OPC 교정되어 있다. 상기 스크린샷(1800)은 윈도우들(1810,1820,1830 및 1840)을 포함한다. 윈도우(1830)는 영역(1832)에서 도시된 것과 같은 보조 라인상에 작은 결함을 갖는 OPC 교정된 마스크의 일부분의 오리지날 레이아웃을 도시한다. 윈도우(1840)는 영역(1842)에 도시된 것과 같이 결함이 없는 것을 제외하고는, 상기와 동일한 OPC 교정된 마스크의 일부분의 오리지날 레이아웃을 도시한다. 윈도우(1810)는 특정한 스테퍼 조건 집합 하에서 윈도우(1830)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(1820)는 상기와 동일한 스테퍼 조건 집합하에서 윈도우(1840)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시한다.
영역(1832)에 도시된 작은 결함이 도 18에서 시뮬레이트된 특정한 스테퍼 조건들 하에서 프린트된다는 것을 주목하자. 상기 작은 결함은 OPC 교정된 마스크를 검사하는데 사용되는 종래의 방법들에서는 간과될 수도 있다. 전술한 바와 같이, 일부 종래 방법들에 의해 사용되는 OPC 피처 슬라이딩 허용오차 스케일(sliding tolerance scale)은, 만일 결함의 크기가 임의로 설정한 스케일보다 작다면, 이러한 근소한 편차는 결함으로 고려하지 않기 때문이다. 그러나, 본 명세서에 보인 바와 같이, 영역(1832)에 도시된 결함 있는 보조 라인과 같은 OPC 피처들의 위치와 목적으로 인해, 이러한 작은 결함이 프린트될 수 있으며, 이로 인하여 최종 생산된 회로의 작동에 영향을 미칠 수 있다.
도 19는 본 발명의 일 실시예를 이용하는 컴퓨터 실행 프로그램의 몇 개의 스크린샷들(1900, 1910 및 1920)을 도시하며, 여기서 포토리소그래피 공정 윈도우 상에 미치는 결함들의 영향이 논증된다. 상기 스크린샷(1900)은 마스크의 시뮬레이트된 웨이퍼 노광을 도시하며, 여기서 결함이 없는 영역(1902)과 두 개의 결함 영역들(1904, 1906)이 나타난다. 스크린샷(1910)은 영역들(1902, 1904 및 1906) 각각에 대한 임계치수 대 디포커스 관계의 시뮬레이트된 공정 윈도우 플롯을 도시하며, 여기서 데이터 라인(1)은 결함이 없는 영역(1902)에 대응하고, 데이터 라인(2)은 결함 영역(1904)에 대응하며, 그리고 데이터 라인(3)은 결함 영역(1906)에 대응한다. 라인(1912)은 마스크에 대해 사용자가 정의한 CD의 타겟값을 나타내고, 라인들(1914,1916)은 상기 마스크에 대한 수용가능한 CD의 상한 및 하한을 나타낸다. 스크린샷(1910)에 도시된 상기 시뮬레이션은 0.50의 개구수를 가진 리소그래피 시스템에 대해 실행된다. 스크린샷(1920)은 시뮬레이트된 시스템의 개구수가 0.42라는 것을 제외하고는 스크린샷(1910)과 동일한 시뮬레이션을 도시한다. 스크린샷들(1910 및 1920)에서 도시된 공정 윈도우들로부터, 사용자는 검사중에 있는 상기 마스크를 사용하는 노광에 대한 수용가능한 디포커스 값의 범위를 결정할 수 있다. 예를 들어, 스크린샷들(1910 및 1920)에 관해서, 상기 수용가능한 디포커스 값의 범위는 상기 세 개의 영역들(1902, 1904 및 1906) 각각의 CD 값들이 상기 상한과 하한(1914 및 1916) 내에 존재하는 범위이다.
마지막으로, 도 20은 본 발명의 일 실시예를 이용하는 컴퓨터 실행 프로그램의 또 다른 스크린샷(2000)을 도시한다. 상기 스크린샷(2000)은 윈도우들(2010, 2020, 2030, 2040, 2050 및 2060)을 포함한다. 윈도우(2010)는 영역(2012)에 결함을 갖는 마스크의 일부분의 현미경으로 포착된 이미지를 도시한다. 윈도우(2020)는 특정한 스테퍼 조건 집합 하에서 윈도우(2010)의 마스크의 시뮬레이트된 웨이퍼 노광을 도시하고, 그리고 영역(2022)에서 결함(2012)을 나타낸다. 윈도우(2040)는 윈도우(2010)의 포착된 마스크 이미지의 오리지날 디자인 레이아웃을 도시한다. 윈도우(2050)는 상기와 동일한 특정한 스테퍼 조건 집합 하에서 윈도우(2040)의 오리지날 디자인 레이아웃의 시뮬레이트된 웨이퍼 노광을 도시한다. 윈도우(2030)는 윈도우(2020)의 시뮬레이트된 이미지와 윈도우(2050)의 시뮬레이트된 이미지 사이의 차이를 도시하고, 영역(2032)에서, 결함(2012)이 디자인 이미지상에 미치는 전체적인 영향을 도시한다. 윈도우(2060)는 상기 결함 영역 근처에서 스테퍼 이미지의 3D 표현을 도시한다.
본 발명의 예시적인 실시예들이 첨부 도면을 참조하여 상세하게 설명되었지만, 본 발명이 상기 정밀한 실시예들에 제한되지 않음을 이해해야한다. 상기 실시예들은 모든 형태를 나열한 것이 아니며 본 발명을 개시된 정밀한 형태로 제한하지 않는다. 이와 같이, 당해 기술분야에서 숙련된 실시자에게는 수많은 수정 및 변경들이 자명할 것이다. 따라서, 본 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정의된다.
Claims (90)
- 리소그래피에서 사용되는 마스크의 결함 검사 방법으로서,제 1 입력으로서 결함 영역 이미지를 제공하는 단계와, 여기서 상기 결함 영역 이미지는 상기 마스크의 일부분의 이미지를 포함하고;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 제공하는 단계와; 그리고상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 단계를 포함하여 구성되며,여기서, 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 결함 영역 이미지를 제공하는 단계는:잠재적인 결함 기준 집합을 제공하는 단계와;상기 잠재적인 결함 기준 집합의 범위에 드는 특성을 갖는 피처들에 대하여 상기 마스크를 스캔하는 단계와; 그리고상기 마스크의 스캐닝에 응답하여 상기 결함 영역 이미지를 생성하는 단계를 포함하며,상기 결함 영역 이미지는 상기 잠재적인 결함 기준 집합의 범위에 드는 특성을 갖는 적어도 하나의 피처들을 갖는 상기 마스크의 일부분의 이미지를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 2 항에 있어서,광학 현미경, 스캐닝 전자 현미경, 포커스 이온 빔 현미경, 원자력 현미경, 및 근접장 광학 현미경을 포함하는 디바이스 그룹 중 하나를 포함하는 디바이스에 의해 상기 마스크를 스캔하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 결함 영역 이미지는 상기 결함 영역 이미지의 디지털 표현을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 조명원은 가시 조명원을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 조명원은 비가시 조명원을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스 및 임계 치수를 포함하는 파라미터 그룹 중 적어도 하나를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 마스크는 밝은 영역 마스크 디자인을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 마스크는 어두운 영역 마스크 디자인을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 마스크는 위상 천이 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,제 3 입력으로서 포토레지스트 공정 파라미터 집합을 제공하는 단계와; 그리고상기 제 3 입력에 응답하여 제 2 시뮬레이트된 이미지를 생성하는 단계를 포함하며,상기 제 2 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 상기 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 11 항에 있어서,상기 포토레지스트 공정 파라미터 집합은 포토레지스트의 두께, 콘트라스트, 프리-베이크 시간, 포스트-베이크 시간, 현상 시간, 포토레지스트 농도, 현상액 농도, 및 광 흡수를 포함하는 파라미터 그룹 중 적어도 하나의 파라미터를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크 결함 검사 방법.
- 제 1 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 단계가 포토레지스트 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 11 항에 있어서,제 4 입력으로서 식각 공정 파라미터 집합을 제공하는 단계와; 그리고상기 제 4 입력에 응답하여 제 3 시뮬레이트된 이미지를 생성하는 단계를 포함하며,상기 제 3 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된후, 상기 식각 공정 파라미터들에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 14 항에 있어서,상기 식각 공정 파라미터 집합은 식각 시간, 식각 방법, 및 농도를 포함하는 파라미터 그룹 중 적어도 하나의 파라미터를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 단계가 상기 식각 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된 후 상기 식각 공정 파라미터에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 마스크의 상기 부분의 기준 묘사를 제공하는 단계와; 그리고기준 이미지를 제공하는 단계를 포함하며,상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 표현을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하고, 그리고상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 17 항에 있어서,상기 기준 묘사는 결함이 없는 것으로 판단된 물리적인 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 17 항에 있어서,상기 기준 이미지를 제공하는 단계는 상기 기준 묘사에 응답하여 상기 기준 이미지를 생성하는 단계를 포함하며,상기 기준 이미지는 웨이퍼가 상기 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 19 항에 있어서,상기 기준 묘사는 GDS-Ⅱ, MEBES, CFLAT, 디지털화 및 이산화된 데이터를 포함하는 데이터 포맷의 그룹 중 적어도 하나를 포함하는 포맷의 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 19 항에 있어서,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 21 항에 있어서,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 단계는 상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지 사이의 차이를 포함하는 제 3 시뮬레이트된 이미지를 생성하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 21 항에 있어서,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 단계는:상기 제 1 시뮬레이트된 이미지에 응답하여 제 1 공정 윈도우 관련 출력을 생성하는 단계와;상기 기준 이미지에 응답하여 제 2 공정 윈도우 관련 출력을 생성하는 단계와; 그리고상기 제 1 공정 윈도우 관련 출력과 상기 제 2 공정 윈도우 관련 출력을 비교하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 23 항에 있어서,상기 제 1 공정 윈도우 관련 출력을 생성하는 단계는:웨이퍼 이미지 수용 기준 집합을 제공하는 단계와; 그리고상기 제 1 리소그래피 파라미터 집합을 포함하는 적어도 하나의 광학 파라미터에 대한 값들의 범위를 생성하는 단계를 포함하며,상기 범위 내에서, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 24 항에 있어서,상기 제 2 공정 윈도우 관련 출력을 생성하는 단계는:상기 제 1 리소그래피 파라미터 집합을 포함하는 상기 적어도 하나의 광학 파라미터에 대한 값들의 제 2 범위를 생성하는 단계를 포함하며,상기 제 2 범위 내에서, 상기 기준 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 25 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스, 및 임계 치수를 포함하는 그룹 중 적어도 하나를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 마스크 상의 결함들에 대하여 상기 제 1 시뮬레이트된 이미지를 분석하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 27 항에 있어서,공정 윈도우 관련 출력을 생성하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 28 항에 있어서,상기 공정 윈도우 관련 출력을 생성하는 단계는:웨이퍼 이미지 수용 기준 집합을 제공하는 단계와; 그리고상기 제 1 리소그래피 파라미터 집합을 포함하는 적어도 하나의 광학 파라미터에 대한 값들의 범위를 생성하는 단계를 포함하며,상기 범위 내에서, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 29 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스, 및 임계 치수를 포함하는 파라미터 그룹 중 적어도 하나를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 27 항에 있어서,분석 출력을 생성하는 단계를 포함하며,상기 분석 출력은, 상기 마스크가 상기 마스크 상의 결함들에 대하여 상기 제 1 시뮬레이트된 이미지를 분석하는 상기 단계에 통과했는지 통과하지 못했는지를 표시하는 신호를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 27 항에 있어서,집적회로에 대한 성능 기준 집합을 제공하는 단계와; 그리고상기 제 1 시뮬레이트된 이미지와 상기 성능 기준에 응답하여 성능 출력을 생성하는 단계를 포함하며,상기 성능 출력은, 만약 상기 마스크가 상기 집적회로의 생산에 사용된다면 상기 마스크가 상기 집적회로의 성능에 미치는 영향을 표시하는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 1 항에 있어서,상기 방법은 프로그램 명령어들을 실행하는 컴퓨팅 장치에 의해 수행되며,상기 프로그램 명령어들은 상기 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치에 수록되는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 33 항에 있어서,상기 프로그램 저장 장치는 하드 디스크 드라이브를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 33 항에 있어서,상기 프로그램 저장 장치는 서버를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치로서,여기서 상기 프로그램 저장 장치는 리소그래피에서 사용되는 마스크를 검사하기 위해 다음 단계, 즉:제 1 입력으로서 결함 영역 이미지를 수신하는 단계와, 여기서 상기 결함 영역 이미지는 상기 마스크의 일부분의 이미지를 포함하며;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 수신하는 단계와; 그리고상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지 - 이 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함한다 - 를 생성하는 단계를 수행하도록 상기 컴퓨팅 장치에 의해 실행가능한 프로그램 명령어들을 수록하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 단계가 상기 포토레지스트 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 단계가 식각 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된 후 상기 식각 공정 파라미터 집합에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 리소그래피에서 사용되는 마스크를 검사하기 위한 단계에는,상기 마스크의 상기 부분의 기준 묘사를 제공하는 단계와; 그리고기준 이미지를 제공하는 단계가 더 포함되며,상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하고, 그리고상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 39 항에 있어서,상기 리소그래피에서 사용되는 마스크를 검사하기 위한 단계에는,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 단계가 더 포함되는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 리소그래피에서 사용되는 마스크를 검사하기 위한 단계에는,상기 마스크 상의 결함들에 대하여 상기 제 1 시뮬레이트된 이미지를 분석하는 단계가 더 포함되는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 프로그램 저장 장치는 하드 디스크 드라이브를 포함하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 제 36 항에 있어서,상기 프로그램 저장 장치는 서버를 포함하는 것을 특징으로 하는 컴퓨팅 장치에 의해 판독가능한 프로그램 저장 장치.
- 리소그래피에서 사용되는 마스크의 결함 검사 방법으로서:마스크 검사툴을 제공하는 단계와;상기 마스크 검사툴에 잠재적인 결함 기준 집합을 제공하는 단계와;상기 마스크 검사툴을 사용하여, 상기 잠재적인 결함 기준 집합의 범위에 드는 특성을 갖는 피처들에 대하여 상기 마스크를 스캔하는 단계와;제 1 입력으로서 결함 영역 이미지를 생성하는 단계와, 여기서 상기 결함 영역 이미지는 잠재적인 결함을 포함하는 상기 마스크의 일부분의 이미지를 포함하며;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 제공하는 단계와; 그리고시뮬레이터 장치를 사용하여, 상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 단계를 포함하여 구성되며,여기서, 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며, 상기 조명원의 특성은 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 제 44 항에 있어서,제 3 입력으로서 상기 마스크의 상기 부분의 기준 묘사를 제공하는 단계와;기준 이미지를 제공하는 단계와, 여기서 상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고 상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하며; 그리고상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 단계를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 방법.
- 리소그래피에서 사용되는 마스크의 결함 검사 장치로서,제 1 입력으로서 결함 영역 이미지를 수신하는 수단과, 여기서 상기 결함 영역 이미지는 상기 마스크의 일부분의 이미지를 포함하며;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 수신하는 수단과; 그리고상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 이미지 시뮬레이터를 포함하여 구성되며,여기서, 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,잠재적인 결함 기준 집합을 수신하는 수단과;상기 잠재적인 결함 기준 집합의 범위에 드는 특성을 갖는 피처들에 대하여 상기 마스크를 스캔하는 스캐닝 수단과; 그리고상기 결함 영역 이미지를 생성하는 수단을 포함하며,상기 결함 영역 이미지는 상기 잠재적인 결함 기준 집합의 범위에 드는 특성을 갖는 적어도 하나의 피처들을 갖는 상기 마스크의 일부분의 이미지를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 47 항에 있어서,상기 스캐닝 수단은 광학 현미경, 스캐닝 전자 현미경, 포커스 이온 빔 현미경, 원자력 현미경, 및 근접장 광학 현미경을 포함하는 디바이스 그룹 중 하나를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 결함 영역 이미지는 상기 결함 영역 이미지의 디지털 표현을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 조명원은 가시 조명원을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 조명원은 비가시 조명원을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스, 및 임계 치수를 포함하는 파라미터 그룹 중 적어도 하나의 파라미터를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 마스크는 밝은 영역 마스크 디자인을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 마스크는 어두운 영역 마스크 디자인을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 마스크는 위상 천이 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,제 3 입력으로서 포토레지스트 공정 파라미터 집합을 수신하는 수단과; 그리고상기 제 3 입력에 응답하여 제 2 시뮬레이트된 이미지를 생성하는 수단을 포함하며,상기 제 2 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 상기 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 56 항에 있어서,상기 포토레지스트 공정 파라미터 집합은 포토레지스트의 두께, 콘트라스트, 프리-베이크 시간, 포스트-베이크 시간, 현상 시간, 포토레지스트 농도, 현상액 농도, 및 광 흡수를 포함하는 파라미터 그룹 중 적어도 하나의 파라미터를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 이미지 시뮬레이터가 포토레지스트 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 56 항에 있어서,제 4 입력으로서 식각 공정 파라미터 집합을 수신하는 수단과; 그리고상기 제 4 입력에 응답하여 제 3 시뮬레이트된 이미지를 생성하는 수단을 포함하며,상기 제 3 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된 후 상기 식각 공정 파라미터들에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 59 항에 있어서,상기 식각 공정 파라미터 집합은 식각 시간, 식각 방법, 및 농도를 포함하는 파라미터 그룹 중 적어도 하나의 파라미터를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 이미지 시뮬레이터가 상기 식각 공정 파라미터 집합에 대해 교정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된 후 상기 식각 공정 파라미터에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 마스크의 상기 부분의 기준 묘사를 수신하는 수단과; 그리고기준 이미지를 제공하는 수단을 포함하며,상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 표현을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하고, 그리고상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 62 항에 있어서,상기 기준 묘사는 결함이 없는 것으로 판정된 물리적인 마스크를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 62 항에 있어서,상기 기준 이미지를 제공하는 수단은 상기 기준 묘사에 응답하여 상기 기준 이미지를 생성하는 상기 이미지 시뮬레이터 장치를 포함하며,상기 기준 이미지는 웨이퍼가 상기 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 64 항에 있어서,상기 기준 묘사는 GDS-Ⅱ, MEBES, CFLAT, 디지털화 및 이산화된 데이터를 포함하는 데이터 포맷 그룹 중 적어도 하나를 포함하는 포맷의 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 64 항에 있어서,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 이미지 비교기를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 66 항에 있어서,상기 이미지 비교기는 상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지 사이의 차이를 포함하는 제 3 시뮬레이트된 이미지를 생성하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 66 항에 있어서,상기 이미지 비교기는 제 1 공정 윈도우 관련 출력과 제 2 공정 윈도우 관련 출력을 생성하며, 그리고상기 이미지 비교기는 상기 제 1 공정 윈도우 관련 출력과 상기 제 2 공정 윈도우 관련 출력을 비교하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 68 항에 있어서,상기 제 1 공정 윈도우 관련 출력을 생성하는 단계는:웨이퍼 이미지 수용 기준 집합을 제공하는 단계와; 그리고상기 제 1 리소그래피 파라미터 집합을 포함하는 적어도 하나의 광학 파라미터에 대한 값들의 범위를 생성하는 단계를 포함하며,상기 범위 내에서, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 69 항에 있어서,상기 제 2 공정 윈도우 관련 출력을 생성하는 단계는:상기 제 1 리소그래피 파라미터 집합을 포함하는 적어도 하나의 상기 광학 파라미터에 대한 값들의 제 2 범위를 생성하는 단계를 포함하며,상기 제 2 범위 내에서, 상기 기준 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 70 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스, 및 임계 치수를 포함하는 파라미터 그룹 중 적어도 하나를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 마스크 상의 결함들에 대하여 상기 제 1 시뮬레이트된 이미지를 분석하는 결함 분석기를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 72 항에 있어서,상기 결함 분석기는 공정 윈도우 관련 출력을 생성하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 73 항에 있어서,상기 공정 윈도우 관련 출력을 생성하는 단계는:웨이퍼 이미지 수용 기준 집합을 제공하는 단계와; 그리고상기 제 1 리소그래피 파라미터 집합을 포함하는 적어도 하나의 광학 파라미터에 대한 값들의 범위를 생성하는 단계를 포함하며,상기 범위 내에서, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼 이미지 수용 기준 집합의 범위 내 혹은 집합의 범위 외에 드는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 74 항에 있어서,상기 제 1 리소그래피 파라미터 집합은 개구수, 파장길이, 시그마, 렌즈 수차, 디포커스, 및 임계 치수를 포함하는 파라미터 그룹 중 적어도 하나를 나타내는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 72 항에 있어서,상기 결함 분석기는 분석 출력을 생성하며,상기 분석 출력은, 상기 마스크가 상기 마스크 상의 결함들에 대한 상기 제 1 시뮬레이트된 이미지의 분석에서 통과했는지 통과하지 못했는지를 표시하는 신호를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 72 항에 있어서,상기 결함 분석기는 상기 제 1 시뮬레이트된 이미지에 응답하고 그리고 집적회로에 대한 성능 기준 집합에 응답하여 성능 출력을 생성하고,상기 성능 출력은, 만약 상기 마스크가 상기 집적회로의 생산에 사용된다면 상기 마스크가 상기 집적회로의 성능에 미치는 영향을 표시하는 데이터를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 46 항에 있어서,상기 장치는, 컴퓨터가 리소그래피에서 사용되는 마스크의 결함을 검사하도록 하는 컴퓨터 판독가능 프로그램 코드가 수록된 컴퓨터 판독가능 매체를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 78 항에 있어서,상기 컴퓨터 판독가능 매체는 하드 디스크 드라이브를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 78 항에 있어서,상기 컴퓨터 판독가능 매체는 서버를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 컴퓨터가 리소그래피에서 사용되는 마스크의 결함을 검사하도록 하는 컴퓨터 판독가능 프로그램 코드가 수록된 컴퓨터 판독가능 매체로서, 상기 컴퓨터 판독가능 프로그램 코드는:제 1 입력으로서 상기 마스크의 일부분의 결함 영역 이미지를 판독하는 컴퓨터 판독가능 프로그램 코드와;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 판독하는 컴퓨터 판독가능 프로그램 코드와;상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 컴퓨터 판독가능 프로그램을 코드를 포함하며,여기서, 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 상기 컴퓨터 판독가능 프로그램 코드가 포토레지스트 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 웨이퍼는 상기 포토레지스트 공정 파라미터 집합에 의해 특징지어지는 포토레지스트 물질의 코팅을 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 제 1 시뮬레이트된 이미지를 생성하는 상기 컴퓨터 판독가능 프로그램 코드가 식각 공정 파라미터 집합에 대해 조정되어있어, 상기 제 1 시뮬레이트된 이미지는 상기 웨이퍼가 상기 조명원에 노출된 후 상기 식각 공정 파라미터들에 따라 식각되는 경우 상기 웨이퍼 상에 전사될 수 있는 이미지의 시뮬레이션을 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 마스크의 상기 부분의 기준 묘사를 수신하는 컴퓨터 판독가능 프로그램 코드와; 그리고기준 이미지를 제공하는 컴퓨터 판독가능 프로그램 코드를 포함하며,상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고,상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 84 항에 있어서,상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 컴퓨터 판독가능 프로그램 코드를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 마스크 상의 결함들에 대하여 상기 제 1 시뮬레이트된 이미지를 분석하는 컴퓨터 판독가능 프로그램 코드를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 컴퓨터 판독가능 매체는 하드 디스크 드라이브를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 제 81 항에 있어서,상기 컴퓨터 판독가능 매체는 서버를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 매체.
- 리소그래피에서 사용되는 마스크의 결함 검사 장치로서,검사툴과, 여기서 상기 검사툴은 상기 마스크의 잠재적인 결함을 포함하는 부분의 위치를 찾아내고 결함 영역 이미지를 생성하며, 상기 결함 영역 이미지는 상기 마스크의 상기 잠재적인 결함을 포함하는 부분의 이미지를 포함하고;제 1 입력으로서 상기 결함 영역 이미지를 수신하는 수단과;제 2 입력으로서 제 1 리소그래피 파라미터 집합을 수신하는 수단과; 그리고상기 제 1 입력에 응답하여 제 1 시뮬레이트된 이미지를 생성하는 이미지 시뮬레이터를 포함하며,여기서, 상기 제 1 시뮬레이트된 이미지는 웨이퍼가 상기 마스크의 상기 부분을 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하고, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크의 결함 검사 장치.
- 제 89 항에 있어서,제 3 입력으로서 상기 마스크의 상기 부분의 기준 묘사를 수신하는 수단과;기준 이미지를 제공하는 수단과, 여기서 상기 기준 이미지는 웨이퍼가 제 2 마스크를 통해 조명원에 노출되는 경우 상기 웨이퍼 상에 프린트될 수 있는 이미지의 시뮬레이션을 포함하며, 상기 조명원의 특성은 상기 제 1 리소그래피 파라미터 집합을 포함하며, 그리고 상기 제 2 마스크는 상기 기준 묘사에 의해 설명되는 마스크를 포함하며; 그리고상기 제 1 시뮬레이트된 이미지와 상기 기준 이미지를 비교하는 이미지 비교기를 포함하는 것을 특징으로 하는 리소그래피에서 사용되는 마스크 결함 검사 장치.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5930697P | 1997-09-17 | 1997-09-17 | |
US60/059,306 | 1997-09-17 | ||
US09/130,996 US6757645B2 (en) | 1997-09-17 | 1998-08-07 | Visual inspection and verification system |
US09/130,996 | 1998-08-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010024114A KR20010024114A (ko) | 2001-03-26 |
KR100596760B1 true KR100596760B1 (ko) | 2006-07-07 |
Family
ID=26738616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020007002870A KR100596760B1 (ko) | 1997-09-17 | 1998-08-11 | 시각 검사 및 검증 시스템 |
Country Status (7)
Country | Link |
---|---|
US (2) | US6757645B2 (ko) |
EP (1) | EP1012779B1 (ko) |
JP (1) | JP2001516898A (ko) |
KR (1) | KR100596760B1 (ko) |
AU (1) | AU8780998A (ko) |
DE (1) | DE69841218D1 (ko) |
WO (1) | WO1999014706A2 (ko) |
Families Citing this family (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7093229B2 (en) * | 1997-09-17 | 2006-08-15 | Synopsys, Inc. | System and method for providing defect printability analysis of photolithographic masks with job-based automation |
US7617474B2 (en) * | 1997-09-17 | 2009-11-10 | Synopsys, Inc. | System and method for providing defect printability analysis of photolithographic masks with job-based automation |
US7107571B2 (en) * | 1997-09-17 | 2006-09-12 | Synopsys, Inc. | Visual analysis and verification system using advanced tools |
US6578188B1 (en) * | 1997-09-17 | 2003-06-10 | Numerical Technologies, Inc. | Method and apparatus for a network-based mask defect printability analysis system |
US6757645B2 (en) * | 1997-09-17 | 2004-06-29 | Numerical Technologies, Inc. | Visual inspection and verification system |
US6178360B1 (en) * | 1998-02-05 | 2001-01-23 | Micron Technology, Inc. | Methods and apparatus for determining optimum exposure threshold for a given photolithographic model |
US6301697B1 (en) * | 1999-04-30 | 2001-10-09 | Nicolas B. Cobb | Streamlined IC mask layout optical and process correction through correction reuse |
US7072503B2 (en) * | 1999-05-04 | 2006-07-04 | Speedline Technologies, Inc. | Systems and methods for detecting defects in printed solder paste |
US6891967B2 (en) * | 1999-05-04 | 2005-05-10 | Speedline Technologies, Inc. | Systems and methods for detecting defects in printed solder paste |
US6704695B1 (en) * | 1999-07-16 | 2004-03-09 | International Business Machines Corporation | Interactive optical proximity correction design method |
US7391929B2 (en) | 2000-02-11 | 2008-06-24 | Sony Corporation | Masking tool |
US7120285B1 (en) * | 2000-02-29 | 2006-10-10 | Advanced Micro Devices, Inc. | Method for evaluation of reticle image using aerial image simulator |
JP2002107309A (ja) * | 2000-09-28 | 2002-04-10 | Toshiba Corp | 欠陥検査装置及び欠陥検査方法 |
JP3266602B1 (ja) * | 2000-10-30 | 2002-03-18 | 洋一 奥寺 | アドレス照会システム、コンピュータプログラム製品及びその方法 |
JP4216592B2 (ja) * | 2000-11-30 | 2009-01-28 | シノプシス ゲーエムベーハー | 集積回路の特性を測定するプロセスと装置 |
US6653026B2 (en) * | 2000-12-20 | 2003-11-25 | Numerical Technologies, Inc. | Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask |
US6553559B2 (en) * | 2001-01-05 | 2003-04-22 | International Business Machines Corporation | Method to determine optical proximity correction and assist feature rules which account for variations in mask dimensions |
US6602728B1 (en) * | 2001-01-05 | 2003-08-05 | International Business Machines Corporation | Method for generating a proximity model based on proximity rules |
US6816997B2 (en) * | 2001-03-20 | 2004-11-09 | Cheehoe Teh | System and method for performing design rule check |
US6925202B2 (en) | 2001-03-20 | 2005-08-02 | Synopsys, Inc. | System and method of providing mask quality control |
AU2002245560A1 (en) * | 2001-03-20 | 2002-10-03 | Numerial Technologies, Inc. | System and method of providing mask defect printability analysis |
US6873720B2 (en) * | 2001-03-20 | 2005-03-29 | Synopsys, Inc. | System and method of providing mask defect printability analysis |
US20030014146A1 (en) * | 2001-07-12 | 2003-01-16 | Kabushiki Kaisha Toshiba | Dangerous process/pattern detection system and method, danger detection program, and semiconductor device manufacturing method |
JP4122735B2 (ja) * | 2001-07-24 | 2008-07-23 | 株式会社日立製作所 | 半導体デバイスの検査方法および検査条件設定方法 |
US6560766B2 (en) | 2001-07-26 | 2003-05-06 | Numerical Technologies, Inc. | Method and apparatus for analyzing a layout using an instance-based representation |
US6721928B2 (en) | 2001-07-26 | 2004-04-13 | Numerical Technologies, Inc. | Verification utilizing instance-based hierarchy management |
ATE344530T1 (de) * | 2001-07-26 | 2006-11-15 | Koninkl Philips Electronics Nv | Verfahren zum messen der leistung eine raster- elektronenmikroskops |
US7014955B2 (en) | 2001-08-28 | 2006-03-21 | Synopsys, Inc. | System and method for indentifying dummy features on a mask layer |
US6670082B2 (en) | 2001-10-09 | 2003-12-30 | Numerical Technologies, Inc. | System and method for correcting 3D effects in an alternating phase-shifting mask |
US6898596B2 (en) * | 2001-10-23 | 2005-05-24 | Therma-Wave, Inc. | Evolution of library data sets |
US6976240B2 (en) * | 2001-11-14 | 2005-12-13 | Synopsys Inc. | Simulation using design geometry information |
US7085698B2 (en) * | 2001-12-18 | 2006-08-01 | Synopsys, Inc. | Method for providing flexible and dynamic reporting capability using simulation tools |
US6658640B2 (en) | 2001-12-26 | 2003-12-02 | Numerical Technologies, Inc. | Simulation-based feed forward process control |
JP4138318B2 (ja) * | 2002-01-08 | 2008-08-27 | 株式会社ルネサステクノロジ | リソグラフィプロセスマージン評価装置、リソグラフィプロセスマージン評価方法およびリソグラフィプロセスマージン評価プログラム |
US7305144B2 (en) * | 2002-01-15 | 2007-12-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | System and method for compressing the dynamic range of an image |
US6943810B2 (en) * | 2002-02-06 | 2005-09-13 | International Business Machines Corporation | Layered article data verification |
US7257247B2 (en) * | 2002-02-21 | 2007-08-14 | International Business Machines Corporation | Mask defect analysis system |
US7136796B2 (en) * | 2002-02-28 | 2006-11-14 | Timbre Technologies, Inc. | Generation and use of integrated circuit profile-based simulation information |
US6745372B2 (en) | 2002-04-05 | 2004-06-01 | Numerical Technologies, Inc. | Method and apparatus for facilitating process-compliant layout optimization |
US7085622B2 (en) * | 2002-04-19 | 2006-08-01 | Applied Material, Inc. | Vision system |
US7233841B2 (en) * | 2002-04-19 | 2007-06-19 | Applied Materials, Inc. | Vision system |
US6954911B2 (en) * | 2002-05-01 | 2005-10-11 | Synopsys, Inc. | Method and system for simulating resist and etch edges |
DE10230532B4 (de) * | 2002-07-05 | 2007-03-08 | Infineon Technologies Ag | Verfahren zum Bestimmen des Aufbaus einer Maske zum Mikrostrukturieren von Halbleitersubstraten mittels Fotolithographie |
DE10230755A1 (de) * | 2002-07-09 | 2004-01-22 | Carl Zeiss Jena Gmbh | Anordnung zur Herstellung von Photomasken |
EP1523696B1 (en) * | 2002-07-15 | 2016-12-21 | KLA-Tencor Corporation | Defect inspection methods that include acquiring aerial images of a reticle for different lithographic process variables |
US6902855B2 (en) * | 2002-07-15 | 2005-06-07 | Kla-Tencor Technologies | Qualifying patterns, patterning processes, or patterning apparatus in the fabrication of microlithographic patterns |
US6782525B2 (en) | 2002-09-05 | 2004-08-24 | Lsi Logic Corporation | Wafer process critical dimension, alignment, and registration analysis simulation tool |
US7043071B2 (en) * | 2002-09-13 | 2006-05-09 | Synopsys, Inc. | Soft defect printability simulation and analysis for masks |
US7149340B2 (en) | 2002-09-20 | 2006-12-12 | Lsi Logic Corporation | Mask defect analysis for both horizontal and vertical processing effects |
US7123356B1 (en) * | 2002-10-15 | 2006-10-17 | Kla-Tencor Technologies Corp. | Methods and systems for inspecting reticles using aerial imaging and die-to-database detection |
JP2004157475A (ja) * | 2002-11-08 | 2004-06-03 | Toshiba Corp | 集積回路のパターン設計方法、露光マスクの作成方法、露光マスク、および集積回路装置の製造方法 |
JP2004163348A (ja) * | 2002-11-15 | 2004-06-10 | Nippon Avionics Co Ltd | 検査状況表示方法 |
US6768958B2 (en) | 2002-11-26 | 2004-07-27 | Lsi Logic Corporation | Automatic calibration of a masking process simulator |
US7131100B2 (en) * | 2002-12-10 | 2006-10-31 | Synopsys Inc. | Identifying phantom images generated by side-lobes |
US7152219B2 (en) | 2002-12-10 | 2006-12-19 | Synopsys Inc. | Reference image generation from subject image for photolithography mask analysis |
US7171047B2 (en) | 2002-12-20 | 2007-01-30 | Lsi Logic Corporation | Adaptive Sem edge recognition algorithm |
US6996790B2 (en) * | 2003-01-30 | 2006-02-07 | Synopsys, Inc. | System and method for generating a two-dimensional yield map for a full layout |
DE10316821A1 (de) * | 2003-04-03 | 2004-10-21 | Infineon Technologies Ag | Verfahren und Vorrichtung zur Korrektur von Abbildungsfehlern eines optischen Systems sowie eine Verwendung der Vorrichtung |
US9002497B2 (en) * | 2003-07-03 | 2015-04-07 | Kla-Tencor Technologies Corp. | Methods and systems for inspection of wafers and reticles using designer intent data |
US20050234684A1 (en) * | 2004-04-19 | 2005-10-20 | Mentor Graphics Corp. | Design for manufacturability |
WO2005017997A1 (en) * | 2003-08-01 | 2005-02-24 | Applied Materials Israel, Ltd. | Charged particle beam inspection |
US7558419B1 (en) | 2003-08-14 | 2009-07-07 | Brion Technologies, Inc. | System and method for detecting integrated circuit pattern defects |
US8073667B2 (en) * | 2003-09-30 | 2011-12-06 | Tokyo Electron Limited | System and method for using first-principles simulation to control a semiconductor manufacturing process |
US8036869B2 (en) * | 2003-09-30 | 2011-10-11 | Tokyo Electron Limited | System and method for using first-principles simulation to control a semiconductor manufacturing process via a simulation result or a derived empirical model |
US8296687B2 (en) * | 2003-09-30 | 2012-10-23 | Tokyo Electron Limited | System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool |
US8032348B2 (en) * | 2003-09-30 | 2011-10-04 | Tokyo Electron Limited | System and method for using first-principles simulation to facilitate a semiconductor manufacturing process |
US8050900B2 (en) * | 2003-09-30 | 2011-11-01 | Tokyo Electron Limited | System and method for using first-principles simulation to provide virtual sensors that facilitate a semiconductor manufacturing process |
US7003758B2 (en) * | 2003-10-07 | 2006-02-21 | Brion Technologies, Inc. | System and method for lithography simulation |
US7010776B2 (en) * | 2003-10-27 | 2006-03-07 | International Business Machines Corporation | Extending the range of lithographic simulation integrals |
JP2005157043A (ja) * | 2003-11-27 | 2005-06-16 | Toshiba Corp | マスクパターン補正結果検証方法およびマスクパターン補正結果検証装置 |
US8151220B2 (en) * | 2003-12-04 | 2012-04-03 | Kla-Tencor Technologies Corp. | Methods for simulating reticle layout data, inspecting reticle layout data, and generating a process for inspecting reticle layout data |
US7069534B2 (en) * | 2003-12-17 | 2006-06-27 | Sahouria Emile Y | Mask creation with hierarchy management using cover cells |
JP2005189655A (ja) | 2003-12-26 | 2005-07-14 | Nec Electronics Corp | マスク検査方法 |
JP4758358B2 (ja) * | 2004-01-29 | 2011-08-24 | ケーエルエー−テンカー コーポレイション | レチクル設計データにおける欠陥を検出するためのコンピュータに実装される方法 |
US9188974B1 (en) | 2004-02-13 | 2015-11-17 | Kla-Tencor Technologies Corp. | Methods for improved monitor and control of lithography processes |
US7162223B2 (en) * | 2004-02-17 | 2007-01-09 | Teamon Systems, Inc. | System and method for notifying users of an event using alerts |
US7269804B2 (en) * | 2004-04-02 | 2007-09-11 | Advanced Micro Devices, Inc. | System and method for integrated circuit device design and manufacture using optical rule checking to screen resolution enhancement techniques |
US7448012B1 (en) | 2004-04-21 | 2008-11-04 | Qi-De Qian | Methods and system for improving integrated circuit layout |
JP2005309140A (ja) * | 2004-04-22 | 2005-11-04 | Toshiba Corp | フォトマスク製造方法、フォトマスク欠陥修正箇所判定方法、及びフォトマスク欠陥修正箇所判定装置 |
JP2005317818A (ja) * | 2004-04-30 | 2005-11-10 | Dainippon Screen Mfg Co Ltd | パターン検査装置およびパターン検査方法 |
EP1745373A4 (en) * | 2004-05-09 | 2009-04-15 | Mentor Graphics Corp | DEFEKTORT IDENTIFICATION FOR MICROELECTION MANUFACTURING AND VERIFICATION |
CA2567280A1 (en) * | 2004-05-21 | 2005-12-01 | Pressco Technology Inc. | Graphical re-inspection user setup interface |
US7475379B2 (en) * | 2004-06-23 | 2009-01-06 | International Business Machines Corporation | Methods and systems for layout and routing using alternating aperture phase shift masks |
US7788629B2 (en) * | 2004-07-21 | 2010-08-31 | Kla-Tencor Technologies Corp. | Systems configured to perform a non-contact method for determining a property of a specimen |
US7663741B2 (en) * | 2004-08-31 | 2010-02-16 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, calibration method and computer program product |
JP4904034B2 (ja) * | 2004-09-14 | 2012-03-28 | ケーエルエー−テンカー コーポレイション | レチクル・レイアウト・データを評価するための方法、システム及び搬送媒体 |
US8532949B2 (en) * | 2004-10-12 | 2013-09-10 | Kla-Tencor Technologies Corp. | Computer-implemented methods and systems for classifying defects on a specimen |
US7400390B2 (en) * | 2004-11-29 | 2008-07-15 | Applied Materials, Israel, Ltd. | Inspection system and a method for aerial reticle inspection |
US7729529B2 (en) * | 2004-12-07 | 2010-06-01 | Kla-Tencor Technologies Corp. | Computer-implemented methods for detecting and/or sorting defects in a design pattern of a reticle |
DE102005032601A1 (de) * | 2005-01-07 | 2006-07-20 | Heidelberger Druckmaschinen Ag | Druckmaschine |
JP4916116B2 (ja) * | 2005-02-01 | 2012-04-11 | 株式会社ホロン | パターン特定方法およびパターン特定装置 |
DE102005009536A1 (de) * | 2005-02-25 | 2006-08-31 | Carl Zeiss Sms Gmbh | Verfahren zur Maskeninspektion im Rahmen des Maskendesigns und der Maskenherstellung |
JP2006244073A (ja) * | 2005-03-02 | 2006-09-14 | Matsushita Electric Ind Co Ltd | 半導体設計装置 |
US7356787B2 (en) * | 2005-04-06 | 2008-04-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Alternative methodology for defect simulation and system |
US7305334B2 (en) * | 2005-05-24 | 2007-12-04 | International Business Machines Corporation | Methodology for image fidelity verification |
US7853920B2 (en) * | 2005-06-03 | 2010-12-14 | Asml Netherlands B.V. | Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing |
US7369129B2 (en) * | 2005-06-13 | 2008-05-06 | Sap Aktiengesellschaft | Automated user interface testing |
US7769225B2 (en) | 2005-08-02 | 2010-08-03 | Kla-Tencor Technologies Corp. | Methods and systems for detecting defects in a reticle design pattern |
JP2007071678A (ja) * | 2005-09-07 | 2007-03-22 | Hitachi High-Technologies Corp | 検査システム |
US7676077B2 (en) | 2005-11-18 | 2010-03-09 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US7570796B2 (en) | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US8041103B2 (en) * | 2005-11-18 | 2011-10-18 | Kla-Tencor Technologies Corp. | Methods and systems for determining a position of inspection data in design data space |
JP4860294B2 (ja) * | 2006-02-16 | 2012-01-25 | 株式会社日立ハイテクノロジーズ | 電子顕微鏡 |
JP4572862B2 (ja) * | 2006-04-05 | 2010-11-04 | 富士ゼロックス株式会社 | 画像形成装置シミュレーション装置、画像形成装置シミュレーション方法及びプログラム |
TW200746259A (en) * | 2006-04-27 | 2007-12-16 | Nikon Corp | Measuring and/or inspecting method, measuring and/or inspecting apparatus, exposure method, device manufacturing method, and device manufacturing apparatus |
KR100699899B1 (ko) * | 2006-05-08 | 2007-03-28 | 삼성전자주식회사 | 집적회로 장치 제조용 마스크 검사 장치 및 그 검사 방법 |
JP4205739B2 (ja) | 2006-07-26 | 2009-01-07 | エルピーダメモリ株式会社 | レチクルパターンの欠陥修正装置およびその修正方法 |
JP4203089B2 (ja) * | 2006-09-11 | 2008-12-24 | 株式会社東芝 | キャリブレーション方法、検査方法、及び半導体装置の製造方法 |
WO2008077100A2 (en) | 2006-12-19 | 2008-06-26 | Kla-Tencor Corporation | Systems and methods for creating inspection recipes |
US8194968B2 (en) * | 2007-01-05 | 2012-06-05 | Kla-Tencor Corp. | Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions |
US8611637B2 (en) * | 2007-01-11 | 2013-12-17 | Kla-Tencor Corporation | Wafer plane detection of lithographically significant contamination photomask defects |
JP2008177064A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法 |
US8544064B2 (en) * | 2007-02-09 | 2013-09-24 | Sony Corporation | Techniques for automatic registration of appliances |
US7716023B2 (en) * | 2007-02-13 | 2010-05-11 | Oracle America, Inc. | Multidimensional process corner derivation using surrogate based simultaneous yield analysis |
DE102007000981B4 (de) | 2007-02-22 | 2020-07-30 | Vistec Semiconductor Systems Gmbh | Vorrichtung und Verfahren zum Vermessen von Strukturen auf einer Maske und zur Berechnung der aus den Strukturen resultierenden Strukturen in einem Photoresist |
US8335369B2 (en) * | 2007-02-28 | 2012-12-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mask defect analysis |
US7738093B2 (en) | 2007-05-07 | 2010-06-15 | Kla-Tencor Corp. | Methods for detecting and classifying defects on a reticle |
US7962863B2 (en) * | 2007-05-07 | 2011-06-14 | Kla-Tencor Corp. | Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer |
US8213704B2 (en) * | 2007-05-09 | 2012-07-03 | Kla-Tencor Corp. | Methods and systems for detecting defects in a reticle design pattern |
US7818710B2 (en) | 2007-07-03 | 2010-10-19 | Micron Technology, Inc. | Method and system for lithographic simulation and verification |
KR100891336B1 (ko) * | 2007-07-05 | 2009-03-31 | 삼성전자주식회사 | 마스크 레이아웃 이미지의 생성 방법, 이를 수행하는프로그래밍된 명령을 저장하는 컴퓨터에서 판독 가능한저장 매체 및 이미징 시스템 |
DE102007033243A1 (de) * | 2007-07-12 | 2009-01-15 | Carl Zeiss Sms Gmbh | Verfahren und Anordnung zur Analyse einer Gruppe von Photolithographiemasken |
US7796804B2 (en) * | 2007-07-20 | 2010-09-14 | Kla-Tencor Corp. | Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer |
US7711514B2 (en) * | 2007-08-10 | 2010-05-04 | Kla-Tencor Technologies Corp. | Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan |
US7975245B2 (en) * | 2007-08-20 | 2011-07-05 | Kla-Tencor Corp. | Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects |
US8068674B2 (en) * | 2007-09-04 | 2011-11-29 | Evolution Robotics Retail, Inc. | UPC substitution fraud prevention |
KR101328611B1 (ko) * | 2007-10-19 | 2013-11-11 | 삼성전자주식회사 | 반도체 메모리 디바이스 제조를 위한 패턴 매칭 방법 |
JP4554691B2 (ja) * | 2008-02-25 | 2010-09-29 | アドバンスド・マスク・インスペクション・テクノロジー株式会社 | 補正パターン画像生成装置、パターン検査装置および補正パターン画像生成方法 |
US8139844B2 (en) * | 2008-04-14 | 2012-03-20 | Kla-Tencor Corp. | Methods and systems for determining a defect criticality index for defects on wafers |
US7995199B2 (en) * | 2008-06-16 | 2011-08-09 | Kla-Tencor Corporation | Method for detection of oversized sub-resolution assist features |
US9659670B2 (en) | 2008-07-28 | 2017-05-23 | Kla-Tencor Corp. | Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer |
JP2010107737A (ja) * | 2008-10-30 | 2010-05-13 | Toshiba Corp | マスク検証方法、半導体装置の製造方法及び露光条件の調整プログラム |
JP5287178B2 (ja) * | 2008-11-27 | 2013-09-11 | 富士通セミコンダクター株式会社 | 欠陥レビュー装置 |
US8775101B2 (en) | 2009-02-13 | 2014-07-08 | Kla-Tencor Corp. | Detecting defects on a wafer |
US8204297B1 (en) | 2009-02-27 | 2012-06-19 | Kla-Tencor Corp. | Methods and systems for classifying defects detected on a reticle |
US8112241B2 (en) * | 2009-03-13 | 2012-02-07 | Kla-Tencor Corp. | Methods and systems for generating an inspection process for a wafer |
US20110047519A1 (en) * | 2009-05-11 | 2011-02-24 | Juan Andres Torres Robles | Layout Content Analysis for Source Mask Optimization Acceleration |
JP2011040560A (ja) * | 2009-08-11 | 2011-02-24 | Toshiba Corp | 発光解析装置および発光解析方法 |
JP4942800B2 (ja) * | 2009-08-18 | 2012-05-30 | 株式会社ニューフレアテクノロジー | 検査装置 |
US8166423B2 (en) * | 2009-09-08 | 2012-04-24 | International Business Machines Corporation | Photomask design verification |
JP4918598B2 (ja) | 2010-01-18 | 2012-04-18 | 株式会社ニューフレアテクノロジー | 検査装置および検査方法 |
US9035673B2 (en) * | 2010-01-25 | 2015-05-19 | Palo Alto Research Center Incorporated | Method of in-process intralayer yield detection, interlayer shunt detection and correction |
JP5695924B2 (ja) | 2010-02-01 | 2015-04-08 | 株式会社ニューフレアテクノロジー | 欠陥推定装置および欠陥推定方法並びに検査装置および検査方法 |
US8477299B2 (en) * | 2010-04-01 | 2013-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for monitoring mask process impact on lithography performance |
US8781781B2 (en) | 2010-07-30 | 2014-07-15 | Kla-Tencor Corp. | Dynamic care areas |
JP5591675B2 (ja) | 2010-12-06 | 2014-09-17 | 株式会社ニューフレアテクノロジー | 検査装置および検査方法 |
CN102566291B (zh) * | 2010-12-29 | 2015-04-29 | 中芯国际集成电路制造(上海)有限公司 | 投影掩膜版的测试系统 |
US8211717B1 (en) | 2011-01-26 | 2012-07-03 | International Business Machines Corporation | SEM repair for sub-optimal features |
JP5603798B2 (ja) * | 2011-02-14 | 2014-10-08 | 株式会社キーエンス | 欠陥検出装置、欠陥検出方法及びコンピュータプログラム |
US9170211B2 (en) | 2011-03-25 | 2015-10-27 | Kla-Tencor Corp. | Design-based inspection using repeating structures |
JP5345169B2 (ja) * | 2011-03-25 | 2013-11-20 | 株式会社東芝 | マスク検査装置及びマスク検査方法 |
JP2012252055A (ja) * | 2011-05-31 | 2012-12-20 | Toshiba Corp | マスク検査方法、マスク作製方法および半導体装置の製造方法 |
EP2724255B1 (en) | 2011-06-27 | 2020-12-09 | Yissum Research Development Company of The Hebrew University of Jerusalem Ltd. | Applying rapid numerical approximation of convolutions with filters for image processing purposes |
US9087367B2 (en) | 2011-09-13 | 2015-07-21 | Kla-Tencor Corp. | Determining design coordinates for wafer defects |
US8831334B2 (en) | 2012-01-20 | 2014-09-09 | Kla-Tencor Corp. | Segmentation for wafer inspection |
US8826200B2 (en) | 2012-05-25 | 2014-09-02 | Kla-Tencor Corp. | Alteration for wafer inspection |
US20140064596A1 (en) | 2012-08-29 | 2014-03-06 | Micron Technology, Inc. | Descriptor guided fast marching method for analyzing images and systems using the same |
US9189844B2 (en) | 2012-10-15 | 2015-11-17 | Kla-Tencor Corp. | Detecting defects on a wafer using defect-specific information |
US8965102B2 (en) | 2012-11-09 | 2015-02-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for defect analysis of a substrate |
US9053527B2 (en) | 2013-01-02 | 2015-06-09 | Kla-Tencor Corp. | Detecting defects on a wafer |
US9134254B2 (en) | 2013-01-07 | 2015-09-15 | Kla-Tencor Corp. | Determining a position of inspection system output in design data space |
US9311698B2 (en) | 2013-01-09 | 2016-04-12 | Kla-Tencor Corp. | Detecting defects on a wafer using template image matching |
KR102029645B1 (ko) * | 2013-01-14 | 2019-11-18 | 삼성전자 주식회사 | 맞춤형 마스크의 제조 방법 및 맞춤형 마스크를 이용한 반도체 장치의 제조 방법 |
KR102019534B1 (ko) | 2013-02-01 | 2019-09-09 | 케이엘에이 코포레이션 | 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출 |
US9865512B2 (en) | 2013-04-08 | 2018-01-09 | Kla-Tencor Corp. | Dynamic design attributes for wafer inspection |
US9310320B2 (en) | 2013-04-15 | 2016-04-12 | Kla-Tencor Corp. | Based sampling and binning for yield critical defects |
US9778207B2 (en) * | 2013-05-14 | 2017-10-03 | Kla-Tencor Corp. | Integrated multi-pass inspection |
CN103617170B (zh) * | 2013-10-23 | 2017-04-12 | 上海华力微电子有限公司 | 曝光机文件自动检查系统 |
US9529255B2 (en) * | 2013-12-04 | 2016-12-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image process method to improve mask inspection performance |
US9478019B2 (en) * | 2014-05-06 | 2016-10-25 | Kla-Tencor Corp. | Reticle inspection using near-field recovery |
EP2952963B1 (en) * | 2014-06-03 | 2020-12-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for calculating the metrics of an ic manufacturing process |
US10312161B2 (en) * | 2015-03-23 | 2019-06-04 | Applied Materials Israel Ltd. | Process window analysis |
KR102343850B1 (ko) | 2015-05-06 | 2021-12-28 | 삼성전자주식회사 | 광 근접 보정에서 공통의 바이어스 값을 이용하여 마스크를 제작하는 방법 |
WO2016202546A1 (en) * | 2015-06-16 | 2016-12-22 | Asml Netherlands B.V. | Methods for defect validation |
US10395361B2 (en) * | 2015-08-10 | 2019-08-27 | Kla-Tencor Corporation | Apparatus and methods for inspecting reticles |
JP6840129B2 (ja) * | 2015-08-10 | 2021-03-10 | ケーエルエー コーポレイション | ウエハレベル欠陥の転写性を予測する装置および方法 |
US10008422B2 (en) * | 2015-08-17 | 2018-06-26 | Qoniac Gmbh | Method for assessing the usability of an exposed and developed semiconductor wafer |
US10699971B2 (en) * | 2015-08-17 | 2020-06-30 | Qoniac Gmbh | Method for processing of a further layer on a semiconductor wafer |
JP6527808B2 (ja) | 2015-10-27 | 2019-06-05 | 株式会社ニューフレアテクノロジー | 検査方法および検査装置 |
KR102387459B1 (ko) * | 2015-11-20 | 2022-04-15 | 삼성전자주식회사 | 반도체 소자의 패턴 형성 방법 |
CN205556762U (zh) * | 2016-05-05 | 2016-09-07 | 鄂尔多斯市源盛光电有限责任公司 | 掩膜板、母板、掩膜板制造设备和显示基板蒸镀系统 |
US10429314B2 (en) * | 2017-07-31 | 2019-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | EUV vessel inspection method and related system |
US20200282654A1 (en) * | 2019-03-06 | 2020-09-10 | Owens-Brockway Glass Container Inc. | Repairing an Outer Surface of a Glass Product |
JP7270417B2 (ja) * | 2019-03-08 | 2023-05-10 | キヤノン株式会社 | インプリント装置の制御方法、インプリント装置、および物品製造方法 |
US11188212B2 (en) | 2020-03-19 | 2021-11-30 | Panasonic Intellectual Property Management Co., Ltd. | Methods and systems for monitoring objects for image-inspection |
CN113009775A (zh) * | 2021-02-25 | 2021-06-22 | 广州粤芯半导体技术有限公司 | 光罩及光罩缺陷检查的方法 |
CN113237888B (zh) * | 2021-05-21 | 2022-06-14 | 哈尔滨工业大学 | 大口径光学元件损伤点在线与离线暗场图像匹配方法 |
WO2023016723A1 (en) * | 2021-08-11 | 2023-02-16 | Asml Netherlands B.V. | Mask defect detection |
CN117132460B (zh) * | 2023-09-12 | 2024-02-27 | 上海世禹精密设备股份有限公司 | 视觉检测标准图的生成方法、装置、电子设备及存储介质 |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4812962A (en) | 1987-04-09 | 1989-03-14 | Harris Corp. | Area feature sorting mechanism for neighborhood-based proximity correction in lithography processing of integrated circuit patterns |
US5182718A (en) | 1989-04-04 | 1993-01-26 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for writing a pattern on a semiconductor sample based on a resist pattern corrected for proximity effects resulting from direct exposure of the sample by a charged-particle beam or light |
US5051598A (en) | 1990-09-12 | 1991-09-24 | International Business Machines Corporation | Method for correcting proximity effects in electron beam lithography |
JPH04165353A (ja) | 1990-10-30 | 1992-06-11 | Oki Electric Ind Co Ltd | ホトマスク修正方法 |
IL97022A0 (en) | 1991-01-24 | 1992-03-29 | Ibm Israel | Partitioning method for e-beam lithography |
JP2974821B2 (ja) | 1991-06-19 | 1999-11-10 | 沖電気工業株式会社 | パターン形成方法 |
US5563702A (en) * | 1991-08-22 | 1996-10-08 | Kla Instruments Corporation | Automated photomask inspection apparatus and method |
DE69208413T2 (de) | 1991-08-22 | 1996-11-14 | Kla Instr Corp | Gerät zur automatischen Prüfung von Photomaske |
US5242770A (en) | 1992-01-16 | 1993-09-07 | Microunity Systems Engineering, Inc. | Mask for photolithography |
US5326659A (en) | 1992-03-05 | 1994-07-05 | Regents Of The University Of California | Method for making masks |
CA2132005A1 (en) | 1992-04-06 | 1993-10-14 | Jang Fung Chen | Method for improved lithographic patterning in a semiconductor fabrication process |
JP3730263B2 (ja) * | 1992-05-27 | 2005-12-21 | ケーエルエー・インストルメンツ・コーポレーション | 荷電粒子ビームを用いた自動基板検査の装置及び方法 |
US5282140A (en) | 1992-06-24 | 1994-01-25 | Intel Corporation | Particle flux shadowing for three-dimensional topography simulation |
US5256505A (en) | 1992-08-21 | 1993-10-26 | Microunity Systems Engineering | Lithographical mask for controlling the dimensions of resist patterns |
US5538815A (en) | 1992-09-14 | 1996-07-23 | Kabushiki Kaisha Toshiba | Method for designing phase-shifting masks with automatization capability |
EP0608657A1 (en) | 1993-01-29 | 1994-08-03 | International Business Machines Corporation | Apparatus and method for preparing shape data for proximity correction |
JPH0728226A (ja) | 1993-04-30 | 1995-01-31 | Internatl Business Mach Corp <Ibm> | 領域的イメージを測定する装置及び方法 |
US5533148A (en) | 1993-09-30 | 1996-07-02 | International Business Machines Corporation | Method for restructuring physical design images into hierarchical data models |
US5424154A (en) | 1993-12-10 | 1995-06-13 | Intel Corporation | Lithographic emhancement method and apparatus for randomly spaced structures |
US5447810A (en) | 1994-02-09 | 1995-09-05 | Microunity Systems Engineering, Inc. | Masks for improved lithographic patterning for off-axis illumination lithography |
GB2291219B (en) | 1994-07-05 | 1998-07-01 | Nec Corp | Photo-mask fabrication and use |
US5573890A (en) | 1994-07-18 | 1996-11-12 | Advanced Micro Devices, Inc. | Method of optical lithography using phase shift masking |
US5538833A (en) | 1994-08-03 | 1996-07-23 | International Business Machines Corporation | High resolution phase edge lithography without the need for a trim mask |
JPH08297692A (ja) | 1994-09-16 | 1996-11-12 | Mitsubishi Electric Corp | 光近接補正装置及び方法並びにパタン形成方法 |
JP3964469B2 (ja) | 1994-11-08 | 2007-08-22 | 株式会社東芝 | 形状シミュレーション方法 |
US5532090A (en) | 1995-03-01 | 1996-07-02 | Intel Corporation | Method and apparatus for enhanced contact and via lithography |
JP3409493B2 (ja) | 1995-03-13 | 2003-05-26 | ソニー株式会社 | マスクパターンの補正方法および補正装置 |
US5553273A (en) | 1995-04-17 | 1996-09-03 | International Business Machines Corporation | Vertex minimization in a smart optical proximity correction system |
US5657235A (en) | 1995-05-03 | 1997-08-12 | International Business Machines Corporation | Continuous scale optical proximity correction by mask maker dose modulation |
US5663893A (en) | 1995-05-03 | 1997-09-02 | Microunity Systems Engineering, Inc. | Method for generating proximity correction features for a lithographic mask pattern |
JP3331822B2 (ja) * | 1995-07-17 | 2002-10-07 | ソニー株式会社 | マスクパターン補正方法とそれを用いたマスク、露光方法および半導体装置 |
US5825482A (en) | 1995-09-29 | 1998-10-20 | Kla-Tencor Corporation | Surface inspection system with misregistration error correction and adaptive illumination |
EP0853856B1 (en) | 1995-10-02 | 2004-12-22 | KLA-Tencor Corporation | Alignment correction prior to image sampling in inspection systems |
JP2917879B2 (ja) | 1995-10-31 | 1999-07-12 | 日本電気株式会社 | フォトマスク及びその製造方法 |
JP3469422B2 (ja) | 1996-02-23 | 2003-11-25 | 株式会社東芝 | 荷電ビーム描画方法及び描画装置 |
US5705301A (en) | 1996-02-27 | 1998-01-06 | Lsi Logic Corporation | Performing optical proximity correction with the aid of design rule checkers |
US5801954A (en) | 1996-04-24 | 1998-09-01 | Micron Technology, Inc. | Process for designing and checking a mask layout |
US5805290A (en) | 1996-05-02 | 1998-09-08 | International Business Machines Corporation | Method of optical metrology of unresolved pattern arrays |
JP2776416B2 (ja) | 1996-05-07 | 1998-07-16 | 日本電気株式会社 | レチクル外観検査装置 |
US5862058A (en) | 1996-05-16 | 1999-01-19 | International Business Machines Corporation | Optical proximity correction method and system |
US5707765A (en) | 1996-05-28 | 1998-01-13 | Microunity Systems Engineering, Inc. | Photolithography mask using serifs and method thereof |
US5740068A (en) | 1996-05-30 | 1998-04-14 | International Business Machines Corporation | Fidelity enhancement of lithographic and reactive-ion-etched images by optical proximity correction |
US5849440A (en) | 1996-07-02 | 1998-12-15 | Motorola, Inc. | Process for producing and inspecting a lithographic reticle and fabricating semiconductor devices using same |
US5795688A (en) * | 1996-08-14 | 1998-08-18 | Micron Technology, Inc. | Process for detecting defects in photomasks through aerial image comparisons |
US6076465A (en) | 1996-09-20 | 2000-06-20 | Kla-Tencor Corporation | System and method for determining reticle defect printability |
US5807649A (en) * | 1996-10-31 | 1998-09-15 | International Business Machines Corporation | Lithographic patterning method and mask set therefor with light field trim mask |
US5917588A (en) | 1996-11-04 | 1999-06-29 | Kla-Tencor Corporation | Automated specimen inspection system for and method of distinguishing features or anomalies under either bright field or dark field illumination |
US5804340A (en) | 1996-12-23 | 1998-09-08 | Lsi Logic Corporation | Photomask inspection method and inspection tape therefor |
US5978501A (en) * | 1997-01-03 | 1999-11-02 | International Business Machines Corporation | Adaptive inspection method and system |
US5847959A (en) | 1997-01-28 | 1998-12-08 | Etec Systems, Inc. | Method and apparatus for run-time correction of proximity effects in pattern generation |
JP3750270B2 (ja) | 1997-04-21 | 2006-03-01 | 凸版印刷株式会社 | フォトマスク欠陥解析装置および欠陥解析方法 |
JP3750272B2 (ja) | 1997-04-30 | 2006-03-01 | 凸版印刷株式会社 | フォトマスク欠陥解析装置および欠陥解析方法ならびに該欠陥解析プログラムを記録した記録媒体 |
US6078738A (en) * | 1997-05-08 | 2000-06-20 | Lsi Logic Corporation | Comparing aerial image to SEM of photoresist or substrate pattern for masking process characterization |
US6016357A (en) * | 1997-06-16 | 2000-01-18 | International Business Machines Corporation | Feedback method to repair phase shift masks |
US6757645B2 (en) | 1997-09-17 | 2004-06-29 | Numerical Technologies, Inc. | Visual inspection and verification system |
US7107571B2 (en) | 1997-09-17 | 2006-09-12 | Synopsys, Inc. | Visual analysis and verification system using advanced tools |
US6011911A (en) | 1997-09-30 | 2000-01-04 | Synopsys, Inc. | Layout overlap detection with selective flattening in computer implemented integrated circuit design |
US6009251A (en) | 1997-09-30 | 1999-12-28 | Synopsys, Inc. | Method and system for layout verification of an integrated circuit design with reusable subdesigns |
US6009250A (en) | 1997-09-30 | 1999-12-28 | Synopsys, Inc. | Selective flattening in layout areas in computer implemented integrated circuit design |
US5965306A (en) * | 1997-10-15 | 1999-10-12 | International Business Machines Corporation | Method of determining the printability of photomask defects |
US6081658A (en) | 1997-12-31 | 2000-06-27 | Avant! Corporation | Proximity correction system for wafer lithography |
US6282309B1 (en) * | 1998-05-29 | 2001-08-28 | Kla-Tencor Corporation | Enhanced sensitivity automated photomask inspection system |
US6529621B1 (en) | 1998-12-17 | 2003-03-04 | Kla-Tencor | Mechanisms for making and inspecting reticles |
US6249904B1 (en) | 1999-04-30 | 2001-06-19 | Nicolas Bailey Cobb | Method and apparatus for submicron IC design using edge fragment tagging to correct edge placement distortion |
US6467076B1 (en) | 1999-04-30 | 2002-10-15 | Nicolas Bailey Cobb | Method and apparatus for submicron IC design |
US6301697B1 (en) | 1999-04-30 | 2001-10-09 | Nicolas B. Cobb | Streamlined IC mask layout optical and process correction through correction reuse |
-
1998
- 1998-08-07 US US09/130,996 patent/US6757645B2/en not_active Expired - Lifetime
- 1998-08-11 DE DE69841218T patent/DE69841218D1/de not_active Expired - Lifetime
- 1998-08-11 KR KR1020007002870A patent/KR100596760B1/ko not_active IP Right Cessation
- 1998-08-11 WO PCT/US1998/016742 patent/WO1999014706A2/en active IP Right Grant
- 1998-08-11 JP JP2000512171A patent/JP2001516898A/ja active Pending
- 1998-08-11 EP EP98939366A patent/EP1012779B1/en not_active Expired - Lifetime
- 1998-08-11 AU AU87809/98A patent/AU8780998A/en not_active Abandoned
-
2004
- 2004-06-28 US US10/878,847 patent/US7523027B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7523027B2 (en) | 2009-04-21 |
JP2001516898A (ja) | 2001-10-02 |
WO1999014706A2 (en) | 1999-03-25 |
EP1012779A2 (en) | 2000-06-28 |
KR20010024114A (ko) | 2001-03-26 |
AU8780998A (en) | 1999-04-05 |
WO1999014706A3 (en) | 1999-05-06 |
US6757645B2 (en) | 2004-06-29 |
EP1012779B1 (en) | 2009-10-07 |
DE69841218D1 (de) | 2009-11-19 |
EP1012779A4 (en) | 2007-10-17 |
US20040243320A1 (en) | 2004-12-02 |
US20020019729A1 (en) | 2002-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100596760B1 (ko) | 시각 검사 및 검증 시스템 | |
US7107571B2 (en) | Visual analysis and verification system using advanced tools | |
US7043071B2 (en) | Soft defect printability simulation and analysis for masks | |
US7003755B2 (en) | User interface for a networked-based mask defect printability analysis system | |
JP4904034B2 (ja) | レチクル・レイアウト・データを評価するための方法、システム及び搬送媒体 | |
US6691052B1 (en) | Apparatus and methods for generating an inspection reference pattern | |
JP4637114B2 (ja) | レチクル・レイアウト・データをシミュレートし、レチクル・レイアウト・データを検査し、レチクル・レイアウト・データの検査プロセスを生成する方法 | |
JP6594876B2 (ja) | フォトリソグラフィレチクル認定方法及びシステム | |
JP5334956B2 (ja) | 個別マスクエラーモデルを使用するマスク検証を行うシステムおよび方法 | |
US6091845A (en) | Inspection technique of photomask | |
JP4940056B2 (ja) | リソグラフィマスク用の検査方法及び装置 | |
TWI240217B (en) | System and method for examining mask pattern fidelity | |
JP4216592B2 (ja) | 集積回路の特性を測定するプロセスと装置 | |
US7469057B2 (en) | System and method for inspecting errors on a wafer | |
JP2004177961A (ja) | マスキング・プロセス・シミュレータの自動較正方法及びシステム | |
CN112015046B (zh) | 图形显影情况的检测方法 | |
US20090046920A1 (en) | Approximating Wafer Intensity Change To Provide Fast Mask Defect Scoring | |
US6999611B1 (en) | Reticle defect detection using simulation | |
Martin et al. | Manufacturability study of masks created by inverse lithography technology (ILT) | |
CN112099310B (zh) | 光强阈值的获取方法以及辅助图形显影情况的检测方法 | |
TW396393B (en) | Visual inspection and verification system | |
JP2023064098A (ja) | 半導体試料製造のためのマスク検査 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130603 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140605 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150602 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |