JP6461603B2 - チップコンデンサ、回路アセンブリ、および電子機器 - Google Patents

チップコンデンサ、回路アセンブリ、および電子機器 Download PDF

Info

Publication number
JP6461603B2
JP6461603B2 JP2014544477A JP2014544477A JP6461603B2 JP 6461603 B2 JP6461603 B2 JP 6461603B2 JP 2014544477 A JP2014544477 A JP 2014544477A JP 2014544477 A JP2014544477 A JP 2014544477A JP 6461603 B2 JP6461603 B2 JP 6461603B2
Authority
JP
Japan
Prior art keywords
film
capacitor
electrode
substrate
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014544477A
Other languages
English (en)
Other versions
JPWO2014069363A1 (ja
Inventor
山本 浩貴
浩貴 山本
敬吏 渡邊
敬吏 渡邊
博詞 玉川
博詞 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of JPWO2014069363A1 publication Critical patent/JPWO2014069363A1/ja
Application granted granted Critical
Publication of JP6461603B2 publication Critical patent/JP6461603B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0676Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type comprising combinations of diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • H01L29/66189Conductor-insulator-semiconductor capacitors, e.g. trench capacitors with PN junction, e.g. hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10045Mounted network component having plural terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Ceramic Capacitors (AREA)

Description

この発明は、チップコンデンサに関する。また、この発明は、チップコンデンサを備えた回路アセンブリに関する。さらに、この発明は、チップコンデンサを備えた回路アセンブリを有する電子機器に関する。
特許文献1は、基板と、基板上に配置された一対の外部電極と、基板上に形成され、一対の外部電極の間に接続された複数のキャパシタ要素と、複数のキャパシタ要素と外部電極との間にそれぞれ介装された複数のヒューズとを含むチップコンデンサを開示している。
国際公開第2013/108555号
この発明の一実施形態は、基板と、前記基板上に形成された一対の外部電極と、前記一対の外部電極の間に接続されたキャパシタ素子と、前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続された双方向ダイオードとを含む、チップコンデンサを提供する。
この構成によれば、チップコンデンサは、キャパシタ素子に加えて双方向ダイオードをチップ内に備えている。キャパシタ素子は、一対の外部電極間に接続されている。双方向ダイオードは、その一対の外部電極間に、キャパシタ素子に対して並列に接続されている。静電気放電等に起因するサージ電流が外部電極に入力されると、双方向ダイオードが導通する。それによって、サージ電流は、キャパシタ素子を迂回して双方向ダイオードを流れるので、キャパシタ素子を静電気破壊から保護することができる。これにより、静電破壊耐量の大きなチップコンデンサを提供することができる。
この発明の一実施形態では、前記基板が半導体基板であり、前記双方向ダイオードが、前記半導体基板内に形成された不純物拡散層を含む。この構成により、チップコンデンサの基板内に双方向ダイオードを形成できるので、キャパシタ素子および双方向ダイオードを1チップ内に備え、かつ静電破壊耐量を向上することができる。
この発明の一実施形態では、前記キャパシタ素子が、前記半導体基板内に形成された不純物拡散層からなる下部電極を含む。この構成により、半導体基板内の不純物拡散層を下部電極として利用して、静電破壊耐量を向上したチップコンデンサを構成できる。
この発明の一実施形態では、前記基板が半導体基板であり、前記キャパシタ素子が、前記半導体基板内に形成された不純物拡散層からなる下部電極を含み、前記双方向ダイオードが、前記下部電極を構成する不純物拡散層に連続した不純物拡散層を含む。
この構成により、キャパシタ素子および双方向ダイオードがいずれも半導体基板内の不純物拡散層を利用して構成される。したがって、キャパシタ素子および双方向ダイオードのための不純物拡散層を共通のプロセスによって作製することが可能であり、それによって、製造工程を簡単にすることができる。また、キャパシタ素子の下部電極を構成する不純物拡散層に連続した不純物拡散層が双方向ダイオードを構成しているので、双方向ダイオードと下部電極とを接続するための配線を別途設ける必要がない。これによっても、製造工程を簡素化できる。しかも、配線スペースを省略できるので、チップコンデンサの小型化を図ったり、キャパシタ素子の容量増加を図ったりすることができる。こうして、製造工程、サイズ、容量等に対する制約を緩和しながら、静電破壊耐量の向上されたチップコンデンサを提供できる。
たとえば、第1導電型の半導体基板内に間隔を開けて第2導電型の一対の不純物拡散層を形成すると、その一対の不純物拡散層の境界部にそれぞれpn接合ダイオードが形成され、それらは半導体基板を介して逆方向に直列接続された双方向ダイオードを構成する。
前記一対の不純物拡散層のうちの一方をキャパシタ素子の下部電極として利用すれば、双方向ダイオードと下部電極とを接続するための配線を省くことができる。
この発明の一実施形態では、前記双方向ダイオードが、前記外部電極の直下の領域に形成されている部分を含む。この構成により、外部電極の直下の領域を利用して双方向ダイオードを構成できるので、基板上の領域を有効に利用できる。それによって、小型化および大容量化に有利で、かつ静電破壊耐量の大きなチップコンデンサを提供できる。
この発明の一実施形態では、前記双方向ダイオードの全部が、前記外部電極の直下の領域に形成されている。この構成によれば、双方向ダイオードの全部が外部電極の直下の領域に形成されているので、小型化および大容量化に一層有利で、かつ静電破壊耐量の大きなチップコンデンサを提供できる。
この発明の一実施形態では、前記双方向ダイオードが、前記基板上に形成されたポリシリコン膜を含む。この構成によれば、基板上に形成されたポリシリコン膜を用いて双方向ダイオードが構成されている。したがって、基板の材料は、半導体である必要がない。すなわち、半導体以外の材料の基板を用いるチップコンデンサにおいても、静電破壊耐量を向上できる。
この発明の一実施形態では、前記キャパシタ素子に接続された第1パッド部と、前記双方向ダイオードに接続された第2パッド部とをさらに含み、前記一対の外部電極の一方が、前記第1パッド部および前記第2パッド部に跨がって形成され、当該第1パッド部および当該第2パッド部を電気的に接続している。
この構成によれば、キャパシタ素子および双方向ダイオードにそれぞれ接続された第1および第2パッド部が設けられ、これらに跨がるように外部電極が形成されている。すなわち、第1および第2パッド部は外部電極によって互いに電気的に接続されている。第1および第2パッド部は、互いに分離されていて、外部電極が形成される前は、電気的に切り離されている。そこで、製造工程では、外部電極を形成する前に、第1パッド部を利用して、キャパシタ素子の容量を測定することができる。このとき、双方向ダイオードは第1パッド部に電気的に接続されていないので、双方向ダイオードの影響を排除して、キャパシタ素子の容量を測定できる。したがって、製造工程におけるキャパシタ素子容量の正確な測定を阻害することなく、静電破壊耐量の大きなチップコンデンサを提供できる。
この発明の一実施形態では、前記第1パッド部および前記第2パッド部の間に配置され、前記第1パッド部および前記第2パッド部を分離する絶縁層をさらに含み、前記外部電極が、前記絶縁層を跨いで前記第1パッド部および前記第2パッド部の両方に接合されている。この構成によれば、外部電極が、第1および第2パッド部を分離する絶縁層を跨いで、それらの両方に接合されているので、キャパシタ素子および双方向ダイオードを外部電極に並列に接続した構造を確実に形成できる。
この発明の一実施形態では、各外部電極が、前記基板の表面および側面に跨がって形成され、前記表面を覆う表面部分および前記側面を覆う側面部分を一体的に有している。
また、この発明の一実施形態は、基板と、前記基板上に形成された一対の外部電極と、前記一対の外部電極の間に接続されたキャパシタ素子とを含み、各外部電極が、前記基板の表面および側面に跨がって形成され、前記表面を覆う表面部分および前記側面を覆う側面部分を一体的に有している、チップコンデンサを提供する。
これらの構成によれば、外部電極は、基板の表面を覆う表面部分だけでなく、基板の側面(少なくとも一つの側面)を覆う側面部分を有していて、基板の表面および側面に跨がって一体的に形成されている。これにより、チップコンデンサを実装基板に半田付けするときに、外部電極が半田に接する接着面積を大きくすることができる。これにより、半田の吸着量を多くすることができるので、接着強度を向上できる。また、半田は、チップコンデンサの表面(基板の表面)から側面に回り込むように吸着するので、実装状態においては、基板の表面および側面の各方向からチップコンデンサを保持することができる。そのため、チップコンデンサの実装状態を安定化できる。
基板が半導体基板である場合には、外部電極と基板の側面との間に絶縁膜が介在されることが好ましい。これにより、外部電極と基板との絶縁状態を保つことができる。
この発明の一実施形態では、前記基板は、平面視において矩形状であり、前記外部電極が、前記基板の三方の側面の前記表面側の縁部を覆うように形成されている。この構成によれば、実装基板にチップコンデンサが実装された状態において、チップコンデンサを基板の側面の三方向から保持することができる。それにより、チップコンデンサの実装状態を一層安定化できる。
この発明の一実施形態では、前記キャパシタ素子が、前記基板上または前記基板内に形成され、前記一対の外部電極の一方に接続された下部電極と、前記下部電極に積層された容量膜と、前記容量膜に積層され、前記容量膜を挟んで前記下部電極に対向し、前記一対の外部電極の他方に接続された上部電極とを含む。
この構成によれば、基板上または基板内に形成された下部電極、それに積層された容量膜、およびそれに積層されて下部電極に対向する上部電極によって、キャパシタ素子が構成されている。下部電極および上部電極を一対の外部電極にそれぞれ接続することによって、チップコンデンサが構成される。
この発明の一実施形態では、前記基板に当該基板の主面と交差する側壁面を有するトレンチが形成されており、前記容量膜が前記トレンチの側壁面に沿って形成されている。この構成によれば、基板の主面と交差する側壁面を有するトレンチが基板に形成されていて、この基板に沿って容量膜が形成されている。それによって、容量膜を挟んで上部電極および下部電極が対向する対向面積の増大を図ることができるから、キャパシタ素子の大容量化を図ることができる。それによって、チップコンデンサの小型化または大容量化を図ることができる。
前記トレンチは、側壁面の底部に連なる底壁面を有していてもよい。また、複数のトレンチが、基板上に形成(たとえば周期的に形成)されていることが好ましく、それによって、キャパシタ素子の一層の大容量化を図ることができる。
むろん、基板の主面を平坦面として、平坦な容量膜を有するプレーナ型のキャパシタ素子を有するチップコンデンサとすることもできる。
この発明の一実施形態では、前記上部電極が、前記トレンチに埋め込まれたポリシリコン膜を含む。この構成によれば、上部電極がポリシリコン膜を含み、そのポリシリコン膜がトレンチ内に埋め込まれている。ポリシリコンは、微細なトレンチ内に良好な埋め込み性で埋め込むことができる。したがって、微細でアスペクト比(トレンチ開口幅とトレンチ深さとの比)の大きな多数のトレンチを基板の主面に形成し、かつ、ポリシリコン膜を容量膜に密着させることができる。それによって、キャパシタ素子の一層の大容量化を図ることができる。
ポリシリコン膜は、導電化処理がされたポリシリコン膜であることが好ましく、たとえば不純物を拡散して低抵抗化したポリシリコン膜であることが好ましい。
上部電極は、ポリシリコン膜に積層された金属膜をさらに含むことが好ましい。これにより、上部電極全体の抵抗率を低くできるので、チップコンデンサの等価直列抵抗を低減して、特性の向上を図ることができる。
この発明の一実施形態では、前記キャパシタ素子が、複数のキャパシタ要素を含み、前記基板上に設けられ、前記複数のキャパシタ要素をそれぞれ切り離し可能に前記外部電極に接続する複数のヒューズをさらに含む。この構成によれば、一つまたは複数のヒューズを選択して切断することにより、一つまたは複数のキャパシタ要素を選択的に外部電極から切り離すことができる。それによって、複数種類の容量値に、容易にかつ速やかに対応することができる。換言すれば、複数のキャパシタ要素を組み合わせることによって、様々な容量値のチップコンデンサを共通の設計で実現することができる。
前記複数のキャパシタ要素は、容量値の異なる複数のキャパシタ要素を含むことが好ましい。これにより、ヒューズの選択的な切断によって、より多くの容量値を得ることができ、一層多数種類の容量値を共通設計のチップコンデンサで実現できる。
ヒューズは、下部電極と対応する外部電極との間に介装されてもよいし、上部電極と対応する外部電極との間に介装されてもよい。上部電極が、ポリシリコン膜および金属膜を含む積層膜からなるときには、金属膜と同一層にヒューズを形成してもよい。
この発明の一実施形態では、前記キャパシタ素子が、前記一対の外部電極の間に並列に接続された複数のキャパシタ要素を含み、前記複数のキャパシタ要素が、基本容量素子と、複数の調整容量素子とを含み、前記複数の調整容量素子が、複数のヒューズを介して、それぞれ、前記外部電極に接続されている。
この構成によれば、複数の調整容量素子が複数のヒューズをそれぞれ介して外部電極に接続されているので、ヒューズを選択的に切断することにより、一つまたは複数の調整容量素子を選択的に外部電極から切り離すことができる。これにより、基本容量素子の容量と、ヒューズを介して外部電極に接続された調整容量素子の容量とで、チップコンデンサの全体の容量が決定する。基本容量素子は、ヒューズを介することなく外部電極に接続しておけばよい。
たとえば、いずれのヒューズも切断されていない状態で、上部電極と下部電極との間の容量値を測定し、その測定結果に応じて、所望の容量値に合わせ込むように、切断すべきヒューズ(すなわち、切り離すべき調整容量素子)を選択してもよい。そして、その選択されたヒューズを切断することにより、所望の容量値に高精度に合わせ込まれたチップコンデンサを得ることができる。
この発明の一実施形態では、前記複数の調整容量素子が、互いに平行な短冊形状を有し、前記一対の外部電極の一方側に一端を整列させて、長さの順に配列されており、前記基本容量素子が、前記複数の調整容量素子のうち、最短の長さの調整容量素子に隣接して前記一方の外部電極に接続される接続部と、前記接続部と一体的に、前記複数の調整容量素子を回避するように形成され、前記一対の外部電極の他方に向かうに従って幅広になる主要部とを含む。
この構成によれば、互いに平行な短冊形状の調整容量素子が、一端を外部電極の一方の側に揃えた状態で、長さの順に配列されている。一方、基本容量素子は、最も短い調整容量素子の隣に外部電極への接続部を有し、調整容量素子が配置されていないスペースに主要部を有している。この主要部は、調整容量素子が配置されていないスペースの形状に合わせて、接続部から離れるに従って幅広になっている。こうして、基板上の限られた領域を効率的に利用して、調整容量素子および基本容量素子を配置することができる。それによって、小型で大容量のチップコンデンサを実現できる。
最も長い調整容量素子の隣に接続部を配置する構成も考えられる。しかし、この構成では、接続部は、長い調整容量素子を回り込んで、複数の調整容量素子が配置されていない空きスペースに配置された主要部へと到達する必要がある。したがって、接続部の長さが長くなるので、チップコンデンサの等価直列抵抗が高くなるおそれがある。最も短い調整容量素子の隣に接続部を配置することで、その問題を回避して、優れた特性のチップコンデンサを提供できる。
双方向ダイオードを備える構成の場合には、前記基本容量素子に隣接して、前記調整容量素子とは反対側に、前記双方向ダイオードを前記外部電極に接続する配線パターンが前記基板上に形成されていてもよい。
また、前記チップコンデンサは、前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続された抵抗素子を含んでいてもよい。
この発明の一実施形態は、前述のような特徴を有するチップコンデンサと、前記基板の表面に対向する実装面に、前記外部電極に半田接合されたランドを有する実装基板とを含む、回路アセンブリを提供する。
この発明の一実施形態では、前記チップコンデンサが、前記表面部分および前記側面部分を一体的に有する外部電極を備えており、前記半田が前記外部電極の前記表面部分および前記側面部分を覆うように形成されている。これにより、信頼性の高い回路アセンブリを提供できる。
この発明の一実施形態は、前述のような回路アセンブリと、前記回路アセンブリを収容した筐体とを含む、電子機器を提供する。
図1Aは、この発明の一実施形態に係るチップコンデンサの模式的な斜視図である。 図1Bは、チップコンデンサが実装基板に実装された状態の回路アセンブリの模式的な断面図である。 図1Cは、実装基板に実装された状態のチップコンデンサを素子形成面側から見た模式的な平面図(図1Bの構成の底面図)である。 図2Aは、チップコンデンサの内部構成を説明するための平面図である。 図2Bは、チップコンデンサの内部構成を説明するための平面図である。 図2Cは、チップコンデンサの内部構成を説明するための平面図である。 図3は、チップコンデンサの内部構成を示す断面図(図2AのIII−III断面図)である。 図4は、前記チップコンデンサの一部の構成を分離して示す分解斜視図である。 図5は、前記チップコンデンサに内蔵された双方向ダイオードの働きを説明するための電気回路図である。 図6は、チップコンデンサの内部の電気的構成を示す回路図である。 図7は、チップコンデンサの製造工程の一例を説明するための流れ図である。 図8A〜図8Cは、チップコンデンサ内に備えられたヒューズを切断する工程を説明するための断面図である。 図9A〜図9Cは、チップコンデンサの総容量の測定および外部電極の形成を説明するための断面図である。 図10Aは、この発明の第2の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図10Bは、前記第2の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図10Cは、前記第2の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図11は、この発明の第3の実施形態に係るチップコンデンサの構成を説明するための断面図(図12のXI−XI断面図)である。 図12A、図12Bおよび図12Cは、前記第3の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図12Bは、前記第3の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図12Cは、前記第3の実施形態に係るチップコンデンサの内部構成を説明するための平面図である。 図13は、この発明の第4の実施形態に係るチップコンデンサの構成を示す断面図である。 図14は、この発明の第5の実施形態に係るチップコンデンサの構成を説明するための断面図である。 図15は、この発明の第6の実施形態に係るチップコンデンサの構成を説明するための断面図である。 図16は、この発明の第7の実施形態に係るチップコンデンサの構成を説明するための断面図である。 図17は、この発明の第8の実施形態に係るチップコンデンサの構成を示す断面図である。 図18は、この発明の第9の実施形態に係るチップコンデンサの構成を示す断面図である。 図19は、この発明の第10の実施形態に係るチップコンデンサの構成を説明するための断面図である。 図20は、この発明の第11の実施形態に係るチップコンデンサの構成を示す断面図である。 図21は、この発明の第12の実施形態に係るチップコンデンサの構成を示す断面図である。 図22(a)は、この発明の参考例の実施形態に係るチップ部品の構成を説明するための模式的な斜視図であり、図22(b)は、前記チップ部品が回路基板に実装された状態を示す模式的な側面図である。 図23は、図22(a)の切断面XXIII-XXIIIから見た前記チップ部品の断面図である。 図24は、複合素子の電気回路図である。 図25は、前記複合素子の抵抗の平面図であり、第1配線膜、第2配線膜および抵抗回路網の平面視の構成を示す図である。 図26Aは、前記抵抗の一部分を拡大して描いた平面図である。 図26Bは、前記抵抗における抵抗体の構成を説明するために描いた図26AのB−Bに沿う長さ方向の縦断面図である。 図26Cは、前記抵抗における抵抗体の構成を説明するために描いた図26AのC−Cに沿う幅方向の縦断面図である。 図27は、抵抗体膜ラインおよび配線膜の電気的特徴を回路記号および電気回路図で示した図である。 図28(a)は、前記チップ部品の平面図の一部分を拡大して描いたヒューズ膜を含む領域の部分拡大平面図であり、図28(b)は、図28(a)のB−Bに沿う断面構造を示す図である。 図29は、この発明の参考例の実施形態に係る抵抗の電気回路図である。 図30は、この参考例の他の実施形態に係る抵抗の電気回路図である。 図31は、この参考例のさらに他の実施形態に係る抵抗の電気回路図である。 図32は、前記チップ部品の模式的な断面図であって、抵抗部分を示している。 図33は、前記複合素子のダイオードの平面図である。 図34は、図33の切断面XXXIV−XXXIVから見た前記ダイオードの断面図である。 図35は、図33の切断面XXXV−XXXVから見た前記ダイオードの断面図である。 図36は、前記ダイオードにおいてカソード電極膜およびアノード電極膜ならびにその上に形成された構成を取り除いて、半導体基板の表面の構造を示す平面図である。 図37は、前記ダイオードの内部の電気的構造を示す電気回路図である。 図38は、同面積の半導体基板上に形成するダイオードセルの大きさおよび/またはダイオードセルの個数を様々に設定して、pn接合領域の周囲長の合計(総延長)を異ならせた複数のサンプルについてESD耐量を測定した実験結果を示す。 図39は、前記チップ部品の製造工程の一例を説明するための工程図である。 図40は、半導体ウエハに溝を形成するために用いられるレジストパターンの一部の模式的な平面図である。 図41(a)は、前記溝が形成された後の半導体ウエハの模式的な平面図であり、図41(b)は、図41(a)における一部の拡大図である。 図42Aは、前記チップ部品の製造工程途中の構成を示す断面図である。 図42Bは、図42Aの次の工程を示す図である。 図42Cは、図42Bの次の工程を示す図である。 図43は、ポリイミドのシートを前記半導体ウエハに貼り付ける状態を示す図解的な斜視図である。 図44Aおよび図44Bは、AlSi電極膜とp+型半導体基板とのオーミック接触を説明するための図である。 図45は、ダイオードのツェナー電圧(Vz)の調整に関する特徴を説明するための図である。 図46は、ツェナー電圧(Vz)の調整に関する別の特徴を説明するための図である。 図47は、前記チップ部品が用いられる電子機器の一例であるスマートフォンの外観を示す斜視図である。 図48は、前記スマートフォンの筐体に収容された電子回路アセンブリの構成を示す図解的な平面図である。
<この発明の実施形態>
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1Aは、この発明の一実施形態に係るチップコンデンサ1の模式的な斜視図である。チップコンデンサ1は、微小なチップ部品であって、直交する二辺(長辺81および短辺82)がそれぞれ0.4mm以下、0.2mm以下の矩形である。より具体的には、長さL(長辺81の長さ)が約0.3mm、幅W(短辺82の長さ)が約0.15mm、厚さTが約0.1mmであってもよい。むろん、これらの数値は、一例であり、たとえば、平面視において、0.4mm×0.2mm、または0.2mm×0.1mmなどの矩形形状を有していてもよい。
チップコンデンサ1の製造に際しては、半導体ウエハ(半導体基板。たとえばシリコンウエハ)上に多数個のチップコンデンサが格子状に形成され、その後、ウエハにチップ分割溝が形成される。さらに、ウエハが裏面からチップ分割溝に到達するまで研磨される。これにより、ウエハが、複数のチップコンデンサ1に分割される。ウエハを裏面から研磨する代わりに、チップ分割溝の底部をダイシングして、個々のチップコンデンサ1に分割してもよい。
チップコンデンサ1は、その本体部分を構成する基板2と、外部接続電極としての第1外部電極3および第2外部電極4と、第1外部電極3および第2外部電極4によって外部接続されるキャパシタ素子5と、キャパシタ素子5に対して並列に第1および第2外部電極3,4間に接続された双方向ダイオード50とを含む。基板2は、この実施形態では、シリコン基板等の半導体基板である。
チップコンデンサ1の本体部分を構成する基板2は、ほぼ直方体のチップ形状を有している。図1Aの姿勢において上面を成している基板2の表面は、素子形成面2Aである。素子形成面2Aは、基板2においてキャパシタ素子5が形成されている側の表面であり、ほぼ長方形状である。基板2の厚さ方向において素子形成面2Aとは反対側の面は、裏面2Bである。素子形成面2Aと裏面2Bとは、ほぼ同寸法および同形状であり、互いに平行である。素子形成面2Aにおける一対の長辺81および短辺82は、矩形状の表面周縁85を形成している。
基板2は、素子形成面2Aおよび裏面2Bに加えて、複数の側面2C,2D,2E,2Fを有している。当該複数の側面2C,2D,2E,2Fは、素子形成面2Aにそれぞれ交差(具体的には直交)して裏面2Bへと延びて、素子形成面2Aおよび裏面2Bを繋いでいる。
側面2Cは、素子形成面2Aおよび裏面2Bにおける長手方向一方側(図1Aにおける手前側)の短辺82の間に形成されており、側面2Dは、素子形成面2Aおよび裏面2Bにおける長手方向他方側(図1Aにおける右奥側)の短辺82の間に形成されている。側面2Cおよび2Dは、当該長手方向における基板2の両端面である。側面2Eは、素子形成面2Aおよび裏面2Bにおける短手方向一方側(図1Aにおける左奥側)の長辺81の間に形成されており、側面2Fは、素子形成面2Aおよび裏面2Bにおける短手方向他方側(図1Aにおける右手前側)の長辺81の間に形成されている。側面2E,2Fは、当該短手方向における基板2の両端面である。側面2C,2Dは、側面2E,2Fと交差(具体的には直交)しており、側面2C,2D,2E,2Fは、いずれも、素子形成面2Aおよび裏面2Bと直交している。換言すれば、素子形成面2A、裏面2B、側面2C〜2Fは、隣り合う面同士が直交している。ただし、たとえば、隣り合う側面2C,2F;2F,2D;2D,2E;2E,2Cがそれぞれ交差して形成する稜線部は、平面または湾曲面によって面取りされていてもよい。
素子形成面2Aおよび側面2C〜2Fは、それぞれの面のほぼ全域がパッシベーション膜40で覆われている。そのため、厳密には、素子形成面2Aおよび側面2C〜2Fは、パッシベーション膜40の内側に位置していて、外部には露出していない。さらに、チップコンデンサ1は、パッシベーション膜40を覆う樹脂膜41を有している。樹脂膜41は、素子形成面2A上のパッシベーション膜40の全域(表面周縁85およびその内側領域)を覆っている。
第1外部電極3および第2外部電極4は、たとえば、Ni(ニッケル)、Pd(パラジウム)およびAu(金)をこの順序で素子形成面2A上に積層することによって構成されている。第1外部電極3および第2外部電極4は、表面周縁85を覆うように、素子形成面2Aと側面2C〜2Fとに跨がって形成されている。より具体的には、第1外部電極3は、素子形成面2Aと、3つの側面2C,2E,2Fとに跨がって一体的に形成されている。すなわち、第1外部電極3は、素子形成面2Aを覆う表面部分3aと、3つの側面2C,2E,2Fとを覆う側面部分3bとを有し、それらは表面周縁85を跨がって連続して形成されて一体化している。同様に、第2外部電極4は、素子形成面2Aと、3つの側面2D,2E,2Fとに跨がって一体的に形成されている。すなわち、第2外部電極4は、素子形成面2Aを覆う表面部分4aと、3つの側面2D,2E,2Fを覆う側面部分4bとを有し、それらは表面周縁85を跨がって連続して形成されて一体化している。
第1および第2外部電極3,4の表面部分3a,4aは、素子形成面2A両端部の矩形領域を覆うように形成されている。第1外部電極3の側面部分3bは、3つの側面2E,2C,2Fに跨がって連続しており、それらの側面の素子形成面2A側の縁部の所定幅の帯状領域に形成されている。側面2E,2Fでは、側面部分3bは、表面部分3aと整合するように、側面2C側の端部領域に形成されている。同様に、第2外部電極4の側面部分4bは、3つの側面2E,2D,2Fに跨がって連続しており、それらの側面の素子形成面2A側の縁部の所定幅の帯状領域に形成されている。側面2E,2Fでは、側面部分4bは、表面部分4aと整合するように、側面2D側の端部領域に形成されている。このように、第1外部電極3の側面部分3bは、チップコンデンサ1の一方の短辺82(側面2C寄りの短辺)およびその両側の一対の長辺81に沿う三方の側面2C,2E,2Fを覆うように一体的に形成されている。一方、第2外部電極4の側面部分4bは、チップコンデンサ1の他方の短辺82(側面2D寄りの短辺)およびその両側の一対の長辺81に沿う三方の側面2D,2E,2Fを覆うように一体的に形成されている。これにより、基板2の長手方向両端部において側面同士が交わる各コーナー部7は、第1外部電極3または第2外部電極4によって覆われている。
第1外部電極3および第2外部電極4は、素子形成面2Aの法線方向から見た平面視において、ほぼ同寸法かつ同形状である。第1外部電極3は、平面視において、ほぼ長方形形状を有しており、互いに平行な一対の長辺3Aおよび互いに平行な一対の短辺3Bを有し、長辺3Aと短辺3Bとが直交している。同様に、第2外部電極4は、平面視において、ほぼ長方形形状を有しており、互いに平行な一対の長辺4Aおよび互いに平行な一対の短辺4Bを有し、長辺4Aと短辺4Bとが直交している。第1外部電極3および第2外部電極4の長辺3A,4Aは、基板2の短辺82と平行に延びており、第1外部電極3および第2外部電極4の短辺3B,4Bは、基板2の長辺81と平行に延びている。チップコンデンサ1は、裏面2Bには、電極を有していない。
キャパシタ素子5は、基板2の素子形成面2Aにおける第1外部電極3と第2外部電極4との間の領域、および第1外部電極3の直下の領域に形成されている。第1および第2外部電極3,4の間において、キャパシタ素子5は、パッシベーション膜40および樹脂膜41によって被覆されている。
図1Bは、チップコンデンサ1が実装基板9に実装された状態の回路アセンブリ10をチップコンデンサ1の長手方向に沿って切断したときの模式的な断面図であり、要部の切断面に斜線を付してある。チップコンデンサ1が実装基板9に実装されていることにより、回路アセンブリ10が構成されている。図1Bの構成における実装基板9の上面は、実装面である。実装面には、実装基板9の内部回路(図示せず)に接続された一対のランド11が形成されている。各ランド11は、たとえば、Cu(銅)からなる。各ランド11の表面には、半田13が当該表面から突出するように設けられている。
チップコンデンサ1は、自動実装機を用いて実装基板9に実装される。具体的には、自動実装機の吸着ノズル12によってチップコンデンサ1の裏面2Bが吸着され、それによって、チップコンデンサ1が保持される。その状態で吸着ノズル12を動かすことによって、チップコンデンサ1が搬送される。このとき、吸着ノズル12は、裏面2Bの長手方向におけるほぼ中央部分を吸着する。第1および第2外部電極3,4は、チップコンデンサ1の素子形成面2Aおよび側面2C〜2Fだけに設けられているので、チップコンデンサ1の裏面2Bは、電極による凹凸のない平坦面である。したがって、吸着ノズル12の吸着位置のマージンを大きくとることができる。それにより、吸着ノズル12はチップコンデンサ1を確実に吸着でき、チップコンデンサ1を搬送途中で脱落させることなく確実に搬送できる。
チップコンデンサ1を吸着した吸着ノズル12は、実装基板9上の所定の実装位置まで移動する。このとき、チップコンデンサ1の素子形成面2Aと実装基板9の実装面とが互いに対向する。その状態で、吸着ノズル12を移動させて実装基板9にチップコンデンサ1を押し付け、チップコンデンサ1の第1外部電極3を一方のランド11の半田13に接触させ、第2外部電極4を他方のランド11の半田13に接触させる。次いで、半田13を加熱して溶融させ、その後に半田13を冷却して固化させる。これにより、第1外部電極3および第2外部電極4が、対応するランド11にそれぞれ半田13を介して接合される。これにより、チップコンデンサ1が実装基板9に実装(フリップチップ接続)され、必要に応じて他の回路部品が実装基板に実装されることにより、回路アセンブリ10が完成する。
半田濡れ性の向上および信頼性の向上のためには、第1外部電極3および第2外部電極4は、Au(金)で形成するか、または表面に金めっきを施しておくことが好ましい。
完成状態の回路アセンブリ10においては、チップコンデンサ1の素子形成面2Aと実装基板9の実装面とが、隙間を隔てて対向し、互いに平行に延びている。その隙間の寸法は、第1外部電極3および第2外部電極4の素子形成面2Aからの突出高さと半田13の厚みとの合計に相当する。
図1Cは、実装基板に実装された状態のチップコンデンサ1を素子形成面側から見た模式的な平面図(図1Bの構成の底面図)である。以下、図1Bおよび図1Cを参照して、チップコンデンサ1の実装状態を説明する。
図1Bに示す断面視において、第1外部電極3および第2外部電極4は、それぞれ、素子形成面2A上の表面部分3a,4aと側面2C,2D上の側面部分3b,4bとが一体的になってL字状に形成されている。そのため、図1Cに示すように、素子形成面2Aの法線方向から回路アセンブリ10(厳密にはチップコンデンサ1と実装基板9との接合部分)を見てみると、第1外部電極3とランド11とを接合する半田13は、第1外部電極3の表面部分3aだけでなく、その側面部分3bにも吸着している。同様に、第2外部電極4とランド11とを接合する半田13も、第2外部電極4の表面部分4aだけでなく、その側面部分4bにも吸着している。
このように、第1外部電極3は基板2の三方の側面2C,2E,2Fを一体的に覆うように形成され、第2外部電極4は基板2の三方の側面2D,2E,2Fを一体的に覆うように形成されている。すなわち、基板2の素子形成面2Aに加えて側面2C〜2Fも外部電極3,4によって覆われているので、チップコンデンサ1を実装基板9に半田付けする際の接着面積を大きくすることができる。したがって、第1外部電極3および第2外部電極4に対する半田13の吸着量が多いので、大きな接着強度が得られる。
また、図1Cに示すように、半田13が基板2の素子形成面2Aから側面2C〜2Fに回り込むように吸着される。したがって、実装状態において、第1外部電極3を三方の側面2C,2E,2Fで半田13によって保持し、第2外部電極4を三方の側面2D,2E,2Fで半田13によって保持できる。これにより、矩形状のチップコンデンサ1の全ての側面2C〜2Fを半田13で固定することができる。それによって、チップコンデンサ1の実装状態を安定化できるので、信頼性の高い回路アセンブリ10を提供できる。
図2A、図2Bおよび図2Cは、チップコンデンサ1の内部構成を説明するための平面図であり、図3はその断面図であって、図2Aの切断面線III−IIIから見た切断面が示されている。さらに、図4は、前記チップコンデンサ1の一部の構成を分離して示す分解斜視図である。図2Aはキャパシタ素子5の上部電極等の配置を示し、図2Bはキャパシタ素子5の上部電極の下層側を構成するポリシリコン膜の配置を示し、図2Cはキャパシタ素子5の下部電極として機能するn+型不純物拡散層等の配置を示す。なお、図4では、パッシベーション膜40および樹脂膜41の図示を省略した。
第1および第2外部電極3,4の間の領域と、第1外部電極3の直下の領域に渡ってキャパシタ素子5が形成されている。キャパシタ素子5は、複数のキャパシタ要素C0〜C6を備えている。キャパシタ要素C0は、チップコンデンサ1の最低容量を定める基本容量素子である。キャパシタ要素C1〜C6は、基本容量素子に容量を加えることによって、チップコンデンサ1の全体の容量を精密に調整するための調整容量素子である。
キャパシタ要素C0は、第1外部電極3の直下の領域と、第1および第2外部電極3,4の間の領域とに跨がって配置されており、第1外部電極3に対して直接電気的に接続されている。一方、キャパシタ要素C1〜C6は、第1外部電極3および第2外部電極4の間の領域に全部分が位置しており、一つまたは複数のヒューズユニット17を介してそれぞれ第1外部電極3に電気的に接続されている。したがって、キャパシタ要素C1〜C6は、必要に応じて第1外部電極3から切り離すことができる調整容量素子である。キャパシタ要素C0と第1外部電極73との間にはヒューズユニットは設けられていない。したがって、キャパシタ要素C0は、第1外部電極3から切り離すことができない基本容量素子である。
図2Cおよび図3に示すように、キャパシタ素子5が配置されている領域においては、基板2に不純物(この実施形態ではn型不純物)が拡散されており、それによって、基板2の表層部にはn+型不純物拡散層15が形成されている。n+型不純物拡散層15は、複数のキャパシタ要素C0〜C6の共通の下部電極として機能している。たとえば、図3に示すように、p型シリコン基板が基板2として用いられ、その表層部に、n型不純物を導入してn+型不純物拡散層15が形成されている。n+型不純物拡散層15は、キャパシタ素子5の全領域に渡っており、さらに、第2外部電極4の直下の領域まで延びて形成されている。
基板2には、キャパシタ素子5が形成されている領域に、複数のトレンチ16が形成されている。複数のトレンチ16は、個々のキャパシタ要素C0〜C6に対応する領域に分離して形成されている。複数のトレンチ16は、n+型不純物拡散層15内に形成されている。各トレンチ16は、基板2の表面から所定の深さを有し、基板2の表面と交差する(この実施形態ではほぼ直交する)一対の側壁面16aと、それらの一対の側壁面16aをつなぐ底壁面16bとを有し、断面がほぼ矩形に形成されている。一対の側壁面16aおよび底壁面16bは、いずれも、n+型不純物拡散層15を露出させる壁面である。
複数のトレンチ16は、互いに平行なストライプ状に形成されている。各トレンチ16は、基板2の短手方向に沿って延びている。複数のトレンチ16のピッチ、および各トレンチ16の深さや幅などは、チップコンデンサ1に要求される容量値に応じて適宜設計することができる。図面を明瞭にするために図2B、図2C、図3等には、トレンチ16の幅およびピッチを実際よりも大きく描いてある。具体的には、実際の製品において、トレンチ16の幅およびピッチは、キャパシタ要素C1〜C6の幅よりも充分に小さく設定されてもよい。また、図2Bおよび図2Cには、全てのキャパシタ要素C0〜C6に対応した領域にトレンチ16が形成されている例を示してあるが、一部のキャパシタ要素の形成領域のみにトレンチ16を形成してもよい。たとえば、容量の大きなキャパシタ要素C0,C4〜C6の形成領域のみにトレンチ16を形成し、容量の小さなキャパシタ要素C1〜C3の形成領域にはトレンチ16を形成しなくてもよい。
基板2の表面には、基板2の表面に接するように容量膜(誘電体膜)20が形成されている。容量膜20は、一対の酸化シリコン膜で窒化シリコン膜を挟んだ積層膜、いわゆるONO膜であってもよい。たとえば、窒化シリコン膜の膜厚を150Å程度とし、下部電極側の酸化シリコン膜の膜厚を100Å程度とし、上部電極側の酸化シリコン膜の膜厚を50Å程度とすることができる。容量膜20は、プラズマCVD(化学的気相成長)法によって形成された膜であってもよい。
容量膜20は、n+型不純物拡散層15の表面のほぼ全域にわたって連続しており、その一方表面および他方方面がn+型不純物拡散層15の表面(素子形成面2A)に倣う(沿う)ように形成されている。これにより、複数のトレンチ16の内壁面(一対の側壁面16aおよび底壁面16bを含む)は、容量膜20で覆われている。また、容量膜20は、第2外部電極4の直下に形成された開口20bを有している。この開口20bからは、n+型不純物拡散層15が露出している。この開口20bにおいて、第2外部電極4のためのパッド金属膜24がn+型不純物拡散層15に接している。そして、パッド金属膜24の表面に第2外部電極4が接合されている。
容量膜20の上には、上部電極膜21が形成されている。上部電極膜21は、その表面が平坦に形成されている。上部電極膜21は、図2Aに示すように、複数のキャパシタ要素C0〜C6の上部電極として機能するキャパシタ電極領域21Aと、第1外部電極3との接合のためのパッド領域21Bと、パッド領域21Bとキャパシタ要素C1〜C6に対応したキャパシタ電極領域21Aとの間に配置されたヒューズ領域21Cとを有している。キャパシタ電極領域21Aは、キャパシタ要素C0〜C6の上部電極を構成している。キャパシタ要素C0の一部は第1外部電極3の直下に位置しているので、キャパシタ要素C0に対応したキャパシタ電極領域21Aは、第1外部電極3の直下において、パッド領域21Bとの重複部分を有している。ヒューズ領域21Cは、複数のヒューズユニット17を構成している。
キャパシタ電極領域21Aにおいて、上部電極膜21は、キャパシタ要素C0〜C6にそれぞれ対応した複数の電極膜部分30〜36に分割されている。
キャパシタ要素C0に対応した電極膜部分30は、パッド領域21Bとの重複部分を含み、キャパシタ電極領域21Aにおいて、最も大きな面積を占めている。他の電極膜部分31〜36は、平面視において短冊形状(長尺な矩形形状)に形成されていて、ヒューズ領域21Cから第2外部電極4に向かって帯状に延びている。複数のトレンチ16は、複数の電極膜部分30〜36に対応して分離された領域に形成されている。各トレンチ16は、この実施形態では、各電極膜部分31〜36の長手方向に直交する方向に延びてている。キャパシタ要素C1〜C6に関しては、ヒューズ領域21Cには、トレンチ16は形成されていない。
複数の電極膜部分30〜36は、複数種類の対向面積で、容量膜20を挟んでn+型不純物拡散層15(下部電極)に対向している。より具体的には、電極膜部分30は、他のいずれの電極膜部分よりも大きな対向面積でn+型不純物拡散層15に対向している。他の電極膜部分31〜36のn+型不純物拡散層15に対する対向面積は、1:2:4:8:16:16となるように定められていてもよい。対向面積とは、容量膜20を挟んで、電極膜部分30〜36(上部電極)がn+型不純物拡散層15(下部電極)に対向する部分の面積であり、トレンチ16の側壁面16aおよび底壁面16bに沿う部分の面積も含む。複数の電極膜部分31〜36は、対向面積の異なる複数の電極膜部分を含み、より詳細には、公比が2の等比数列をなすように設定された対向面積を有する複数の電極膜部分31〜35を含む。電極膜部分31〜36の対向面積の比が前述の通りである場合、キャパシタ要素C1〜C6の容量値の比は、当該対向面積の比と等しく、1:2:4:8:16:16となる。すなわち、複数のキャパシタ要素C1〜C6は、公比が2の等比数列をなすように容量値が設定された複数のキャパシタ要素C1〜C5を含むことになる。
この実施形態では、電極膜部分31,32は、幅が等しく、長さの比を1:2に設定した帯状に形成されている。「長さ」とは、基板2の表面に沿って計測される長さであり、トレンチ16が形成されている部分では、トレンチ16の側壁面16aおよび底壁面16bに沿って計測される。また、電極膜部分32〜33は、長さが等しく、幅の比を1:2に設定した帯状に形成されている。電極膜部分33,34は、長さおよび幅が異なり、対向面積の比が1:2となるように帯状に形成されている。電極膜部分34,35は、幅が等しく、長さの比が1:2となるように帯状に形成されている。電極膜部分35,36は、この実施形態では、長さおよび幅が等しい帯状に形成されており、等しい対向面積を有している。
短冊状の電極膜部分31〜36は、第1外部電極3側の端部を第1外部電極3の長辺3Aに沿って揃えて配列されている。そして、電極膜部分31〜36は、平面視における見かけ上の長さの順に従って、基板2の一方の長辺81から他方の長辺81に向かって配列されている。
基本容量素子を構成するキャパシタ要素C0のための電極膜部分30は、キャパシタ電極領域21Aおよびパッド領域21Bとの兼用部分と、この兼用部分に一体的に接続された接続部30Aと、この接続部30Aと一体的に形成された主要部30Bとを含む。接続部30Aは、第1外部電極3から第2外部電極4に向かって、チップコンデンサ1の長手方向に延びて形成されている。接続部30Aは、短冊状の電極膜部分31〜36のうち、見かけ上の長さが最も短い電極膜部分31に隣接して、2番目に短い電極膜部分32とは反対側に、配置されている。接続部30Aは、電極膜部分31と平行な帯状に形成されている。主要部30Bは、電極膜部分31〜36を回避するように形成され、第2外部電極4に近づくに従って幅広になる形状に形成されている。より具体的には、主要部30Bは、短冊状の電極膜部分31〜36の先端縁を間隔を開けて縁取るように形成された階段状縁部30aと、第2外部電極4に対向する第1直線状縁部30bと、電極膜部分31〜36とは反対側において接続部30Aの同側の縁部に連なる第2直線状縁部30cとを有している。第1直線状縁部30bは、第2外部電極4の内側の長辺4Aに沿っており、短冊状の電極膜部分31〜36とは直交する方向に延びている。第2直線状縁部30cは、第1外部電極3から第2外部電極4に向かって直線状に延びている。これにより、主要部30Bは、電極膜部分31〜36が形成されていない領域の形状に整合するように、階段状の扇形に形成されている。
パッド領域21Bは、平面視において第1外部電極3とほぼ重複しており、ほぼ矩形の平面形状を有している。図3に示すように、上部電極膜21は、パッド領域21Bにおいて、第1外部電極3に接している。上部電極膜21のパッド領域21Bは、キャパシタ要素C0の電極膜部分30を兼ねている。したがって、第1外部電極3と第2外部電極4との間の領域にキャパシタ構造(キャパシタ要素C0〜C6)が形成されているだけでなく、第1外部電極3の直下の領域にもキャパシタ構造(キャパシタ要素C0の一部)が形成されている。そのため、第1外部電極3の直下の領域をも利用して、容量値の増大が図られている。
上部電極膜21は、この実施形態では、ポリシリコン膜22と金属膜23とを積層した積層電極膜で構成されている。ポリシリコン膜22は、不純物(たとえばn型不純物)を導入して低抵抗化された低抵抗ポリシリコン膜である。図2Bに最もよく表れているように、ポリシリコン膜22は、電極膜部分30〜36に対応して分離されている。ポリシリコン膜22の電極膜部分30に対応する部分は、パッド領域21Bにも形成されている。換言すれば、キャパシタ要素C0のためのポリシリコン膜22の一部がパッド領域部分を兼ねている。一方、キャパシタ要素C1〜C6のための電極膜部分31〜36のポリシリコン膜22とパッド領域21Bのポリシリコン膜22とは、ヒューズ領域21Cで分離されている。トレンチ16が形成されている領域では、トレンチ16内にポリシリコン膜22が埋め込まれている。ポリシリコン膜22は、表面が平坦に形成されている。
ポリシリコン膜22の表面に、金属膜23が積層されている。金属膜23は、たとえば、Al、Al−Si、Al−Si−Cu等からなる。金属膜23は、電極膜部分30〜36に分離されている。金属膜23の電極膜部分30に対応する部分は、パッド領域21Bにも形成されている。換言すれば、キャパシタ要素C0のための金属膜23の一部がパッド領域部分を兼ねている。キャパシタ要素C1〜C6のための電極膜部分31〜36を構成する金属膜23と、パッド領域21Bの金属膜23とは、ヒューズ領域21Cを介して接続されている。すなわち、ヒューズ領域21Cでは、上部電極膜21は、ポリシリコン膜22を有しておらず、金属膜23のみで構成されている。
ヒューズ領域21Cは、第1外部電極3の内側の長辺3Aに沿って配列された複数のヒューズユニット17を含む。ヒューズユニット17は、上部電極膜21の金属膜23の一部で構成されており、したがって、キャパシタ素子5の上部電極と一体的に形成されている。換言すれば、ヒューズユニット17は、金属膜23と同じ金属材料で構成されている。複数の電極膜部分31〜36は、1つまたは複数個のヒューズユニット17と一体的に形成されていて、それらのヒューズユニット17を介してパッド領域21Bに接続され、このパッド領域21Bを介して第1外部電極73に電気的に接続されている。面積の比較的小さな電極膜部分31,32は、一つのヒューズユニット17によってパッド領域21Bに接続されており、面積の比較的大きな電極膜部分33〜36は複数個のヒューズユニット17を介してパッド領域21Bに接続されている。
ヒューズユニット17は、レーザ光を照射することによって切断(溶断)することができるように構成されている。それによって、電極膜部分31〜36のうち不要な電極膜部分をヒューズユニット17の切断によって第1外部電極3から電気的に切り離すことができる。つまり、キャパシタ要素C1〜C6のうち、不要なキャパシタ要素を、第1外部電極3から切り離すことができる。
図2A〜図2Cおよび図4では図示を省略したが、図3に表れている通り、上部電極膜21の表面を含むチップコンデンサ1の表面はパッシベーション膜40によって覆われている。パッシベーション膜40は、たとえば窒化膜からなっていて、たとえばプラズマCVD法で形成できる。その膜厚は、8000Å程度とされてもよい。パッシベーション膜40は、チップコンデンサ1の上面のみならず、基板2の側面2C〜2Fまで延びて、この側面2C〜2Fをも覆うように形成されている。さらに、パッシベーション膜40の上には、ポリイミド樹脂等からなる樹脂膜41が形成されている。樹脂膜41は、チップコンデンサ1の上面を覆うように形成されている。
パッシベーション膜40および樹脂膜41は、チップコンデンサ1の表面を保護する保護膜である。これらには、第1外部電極3および第2外部電極4に対応する領域にパッド開口43,44がそれぞれ形成されている。パッド開口43,44はそれぞれ上部電極膜21のパッド領域21Bの一部の領域、パッド金属膜24の一部の領域を露出させるようにパッシベーション膜40および樹脂膜41を貫通している。なお、パッド金属膜24は、上部電極膜21を構成する金属膜23と同じ材料で構成されることが好ましい。
パッド開口43,44には、第1外部電極3および第2外部電極4がそれぞれ埋め込まれている。これにより、第1外部電極3は上部電極膜21のパッド領域21Bに接合しており、第2外部電極4はパッド金属膜24に接合している。第1および第2外部電極3,4は、樹脂膜41の表面から突出するように形成されている。これにより、実装基板9に対してチップコンデンサ1をフリップチップ接合することができる。
図2Cおよび図3に表れているように、基板2内には、双方向ダイオード50を構成するn+型不純物拡散層51が形成されている。n+型不純物拡散層51は、キャパシタ素子5の下部電極を構成するn+型不純物拡散層15から所定の間隔を開けて形成されている。この間隔は、基板2(p型半導体基板)の一部であるp型領域2aによって占められている。したがって、p型領域2aを挟んで一対のn+型不純物拡散層15,51が対向しており、それによって、逆方向に直列接続した一対のpn接合ダイオードからなる双方向ダイオード50が構成されている。
図2Cに最もよく表れているように、n+型不純物拡散層51は、この実施形態では、チップコンデンサ1の一つの長辺81に沿って形成されている。より具体的には、n+型不純物拡散層51は、チップコンデンサ1の一つの長辺81の近傍において、第1外部電極3の直下の領域から第2外部電極4の手前まで帯状に延びている。
基板2の表面(正確には容量膜20の表面)には、図3に表れているように、絶縁膜45(図4では図示を省略)が形成されている。絶縁膜45は、たとえば、酸化シリコン膜からなる。絶縁膜45は、キャパシタ要素C0〜C6の周囲の領域において、上部電極膜21と容量膜20との間に形成されている。第1外部電極3の直下においては、上部電極膜21の一部が絶縁膜45上に形成されている。
さらに、n+型不純物拡散層51の上方には、双方向ダイオード50のための配線膜52が形成されている。配線膜52は、上部電極膜21の金属膜23と同じ金属材料で構成されていることが好ましい。図2Bに表れているように、双方向ダイオード50を構成するためのn+型不純物拡散層51の直上には、ポリシリコン膜22は形成されていない。配線膜52は、金属膜のみで構成されている。配線膜52は、図2Aに表れているように、n+型不純物拡散層51と整合するように、平面視において、n+型不純物拡散層51に重なるように形成されている。この配線膜52は、絶縁膜45上に形成されており、絶縁膜45に形成された開口45aおよび容量膜20に形成された開口20aを介してn+型不純物拡散層51に接合している。配線膜52は、第1外部電極3の直下にパッド領域52Aを有している。このパッド領域52Aに、パッシベーション膜40を貫通するパッド開口54を介して第1外部電極3が接合されている。これにより、n+型不純物拡散層51は、配線膜52を介して第1外部電極3に直接接続されており、したがって、双方向ダイオード50の一方が第1外部電極3に接続されている。
一方、第2外部電極4の直下の領域では、絶縁膜45に開口45bが形成されており、この開口45bおよび容量膜20の開口20bを介して、キャパシタ素子5の下部電極を構成するn+型不純物拡散層15が露出している。パッド金属膜24は、絶縁膜45上に形成されており、開口45b,20aを介して、n+型不純物拡散層15に接合されている。そして、パッド金属膜24に、第2外部電極3が接合されている。よって、第2外部電極3は、パッド金属膜24を介してn+型不純物拡散層15に直接接続されている。n+型不純物拡散層15は、キャパシタ素子5の下部電極として機能しているとともに、双方向ダイオード50を構成している。換言すれば、キャパシタ素子5の下部電極のためのn+型不純物拡散層と双方向ダイオード50のための一つのn+型不純物拡散層とが連続して一体的に形成されている。このようにして、第2外部電極3は、双方向ダイオード50の他方に接続されている。
このような構成により、第1外部電極3および第2外部電極4の間に、双方向ダイオード50が直接接続されている。この双方向ダイオード50は、キャパシタ素子5に対して並列に、第1および第2外部電極3,4間に接続されている。
第1外部電極3の直下において、上部電極膜21のパッド領域21Bと、配線膜52のパッド領域52Aとは、分離されている。より具体的には、第1外部電極3に接続される第1パッド部としてのパッド領域21Bと、同じく第1外部電極3に接続される第2パッド部としてのパッド領域52Aとは、間隔を開けて形成されており、電気的に分離されている。それらの間には、パッシベーション膜40および樹脂膜41の積層膜からなる絶縁層53が形成されている。第1外部電極3は、この絶縁層53を跨いで形成され、パッド領域21B(第1パッド部)およびパッド領域52A(第2パッド部)の両方に接合されている。つまり、第1外部電極3は、これらの第1パッド部および第2パッド部を電気的に接続している。
図5は、双方向ダイオード50の働きを説明するための電気回路図である。第1および第2外部電極3,4の間に、キャパシタ素子5および双方向ダイオード50が並列に接続されている。すなわち、双方向ダイオード50の一方の端子が第1外部電極3に接続され、双方向ダイオード50の他方の端子が第2外部電極4に接続されている。第1または第2外部電極3,4から、静電気放電等に起因するサージ電流が入力されると、双方向ダイオード50が導通し、キャパシタ素子5を迂回してサージ電流を通過させる。これにより、キャパシタ素子5を静電破壊から保護することができる。具体的には、人体モデルに対するESD(Electro-Static Discharge)耐性は、双方向ダイオード50がない構成ではたとえば60V程度であり、双方向ダイオード50を設けた構成ではたとえば4000V以上に向上する。また、マシンモデルに対するESD耐性は、双方向ダイオード50がない構成では20V程度であり、双方向ダイオード50を設けた構成では600V以上に向上する。
図6は、チップコンデンサ1の内部の電気的構成を示す回路図である。第1外部電極3と第2外部電極4との間に複数のキャパシタ要素C0〜C6が並列に接続されて、キャパシタ素子5を構成している。このキャパシタ素子5に並列に、第1および第2外部電極3,4の間に双方向ダイオード50が接続されている。複数のキャパシタ要素C0〜C6のうち、キャパシタ要素C1〜C6と第1外部電極3との間には、一つまたは複数のヒューズユニット17で構成されたヒューズF1〜F6が直列にそれぞれ介装されている。一方、キャパシタ要素C0と第1外部電極3との間には、ヒューズが介装されておらず、キャパシタ要素C0は、第1外部電極3に対して直接接続されている。
ヒューズF1〜F6が全て接続されているときは、チップコンデンサ1の容量値は、キャパシタ要素C0〜C6の容量値の総和に等しい。複数のヒューズF1〜F6から選択した1つまたは2つ以上のヒューズを切断すると、当該切断されたヒューズに対応するキャパシタ要素が切り離され、当該切り離されたキャパシタ要素の容量値だけチップコンデンサ1の容量値が減少する。ヒューズF1〜F6の全てを切断した場合、チップコンデンサ1の容量値は、キャパシタ要素C0の容量値となる。
そこで、先ず、キャパシタ要素C0〜C6の総容量値を測定するために、下部電極(n+型不純物拡散層15)と上部電極(上部電極膜21)との間の容量値、すなわち、パッド金属膜24とパッド領域21Bとの間の容量値を測定する。その後に、その測定結果に基づいて、所望の容量値に応じて、ヒューズF1〜F6から適切に選択した一つまたは複数のヒューズをレーザ光で溶断する。これにより、所望の容量値への合わせ込み(レーザトリミング)を行うことができる。とくに、キャパシタ要素C1〜C6の少なくとも一部の容量値が、公比2の等比数列をなすように設定されていれば、最小の容量値(当該等比数列の初項の値)であるキャパシタ要素C1の容量値に対応する精度で目標の容量値へと合わせ込む微調整が可能である。容量値の微調整の後に、第1および第2外部電極3,4を形成すれば、高精度に容量値が調整されたチップコンデンサ1を提供できる。
図7は、チップコンデンサ1の製造工程の一例を説明するための流れ図である。
基板2の表層部にn+型不純物拡散層15,51が形成される(ステップS1)。n+型不純物拡散層15,51の形成は、具体的には、n+型不純物拡散層15,51の形成領域に対応する開口を有するマスク膜が基板2の表面に形成され、その後、n型不純物イオンが注入される。さらに、マスク膜を剥離した後に、熱処理が施されて、注入されたn型不純物イオンが活性化される。これにより、キャパシタ素子5の下部電極および双方向ダイオード50のためのn+型不純物拡散層15,51が各所定領域に形成される。
次に、基板2を表面から選択的にエッチングすることにより、トレンチ16が形成される(ステップS2)。次に、たとえばプラズマCVD法によって、容量膜20が、基板2上に形成される(ステップS3)。容量膜20は、その一方表面および他方方面が基板2の表面に倣うように形成される。容量膜20の形成後、上部電極膜21を構成するポリシリコン膜22が全面に形成される。ポリシリコン膜22は、トレンチ16内に埋め込まれ、さらにトレンチ16外の容量膜20上に所定厚みで堆積させられる。ポリシリコン膜22の形成は、たとえばCVD法によって行われる。ポリシリコン膜22の膜厚みは、6000Å程度であってもよい。その後、ポリシリコン膜は中にn型不純物が拡散させられることにより、低抵抗ポリシリコン膜が得られる。次いで、そのポリシリコン膜22がフォトリソグラフィによってパターニングされる。これにより、キャパシタ要素C0〜C6に対応したパターンのポリシリコン膜22が得られる(ステップS4)。具体的には、パターニング後のポリシリコン膜22は、キャパシタ要素C0〜C6に対応する6つの部分に分離されている。
次に、露出した全面に絶縁膜45が形成される(ステップS5)。絶縁膜45は、たとえば酸化シリコン膜からなり、プラズマCVD法等によって形成することができる。絶縁膜45の膜厚は、9000Å程度であってもよい。その後、フォトリソグラフィによって、絶縁膜45がパターニングされる。具体的には、絶縁膜45には、分離されたポリシリコン膜22の各部分の表面を露出させる開口、双方向ダイオード50のためのn+型不純物拡散層51を露出させるための開口45a、第2外部電極4の直下でn+型不純物拡散層15を露出させるための開口45bが形成される。さらに、ポリシリコン膜22が形成されていない領域では、容量膜20が同じパターンにエッチングされる。それによって、容量膜20に、n+型不純物拡散層51,15をそれぞれ露出させる開口が絶縁膜45の開口45a,45bと整合するように形成されることになる。
次に、たとえばスパッタ法によって、Al−Si−Cu膜等からなる金属膜の材料が容量膜20の表面全域に形成される(ステップS6)。金属膜の膜厚は、10000Å程度であってもよい。この金属膜は、ポリシリコン膜22が露出した領域では当該ポリシリコン膜22に接し、n+型不純物拡散層15,51が露出した部分では、それらのn+型不純物拡散層15,51にそれぞれ接する。
次に、その金属膜の表面に、金属膜の最終形状に対応したレジストパターンが、フォトリソグラフィによって形成される。このレジストパターンをマスクとして、金属膜がエッチングされることにより、図2A等に示したパターンの金属膜が同時に得られる(ステップS7)。すなわち、キャパシタ素子5の上部電極膜21(キャパシタ電極領域21A、パッド領域21B、ヒューズ領域21C)を構成する金属膜23と、パッド金属膜24と、配線膜52とが同時に形成される。このように、上部電極膜21を構成する金属膜23、ヒューズユニット17およびパッド金属膜24を共通の金属膜をパターニングして同時に形成できるので、製造工程が簡素化されている。金属膜23は、キャパシタ電極領域21Aに複数の電極膜部分30〜36を有し、ヒューズ領域21Cに複数のヒューズユニット17を有する。電極膜部分30の一部は、第1外部電極3の直下のパッド領域21Bを構成する。金属膜のパターニングのためのエッチングは、燐酸等のエッチング液を用いたウェットエッチングによって行ってもよいし、反応性イオンエッチングによって行ってもよい。
この後、キャパシタ素子5の上部電極を構成する金属膜23のパッド領域21Bと、キャパシタ素子5の下部電極としてのn+型不純物拡散層15に接続されたパッド金属膜24とに検査用プローブを押し当てて、複数のキャパシタ要素C0〜C6の総容量値が測定される(ステップS8)。この測定された総容量値に基づき、目的とするチップコンデンサ1の容量値に応じて、切り離すべきキャパシタ要素、すなわち切断すべきヒューズが選択される(ステップS9)。
次に、図8A(図2Aの切断面線VIII−VIIIにおける断面)に示すように、基板2上の全面にたとえば窒化膜からなるカバー膜39が形成される(ステップS10)。このカバー膜39の形成は、プラズマCVD法によって行われてもよく、たとえば膜厚3000Å程度の窒化シリコン膜が形成されてもよい。カバー膜39は、金属膜23、パッド金属膜24および配線膜52を覆い、これらの金属膜23,24または配線膜52が形成されていない領域では絶縁膜45を覆う(図3を併せて参照)。カバー膜39は、ヒューズ領域21Cにおいてはヒューズユニット17を覆うことになる。
この状態から、ヒューズユニット17を溶断するためのレーザトリミングが行われる(ステップS11)。すなわち、図8Bに示すように、前記総容量値の測定結果に応じて選択されたヒューズを構成するヒューズユニット17にレーザ光38を当てることにより、そのヒューズユニット17が溶断される。これにより、対応するキャパシタ要素がパッド領域21Bから切り離される。ヒューズユニット17にレーザ光38を当てるとき、カバー膜39の働きによって、ヒューズユニット17の近傍にレーザ光38のエネルギーが蓄積され、それによって、ヒューズユニット17が確実に溶断する。これにより、チップコンデンサ1の容量値を確実に目的の容量値に調整することができる。
次に、図8Cに示すように、たとえばプラズマCVD法によって、カバー膜39上に窒化シリコン膜が堆積させられ、パッシベーション膜40が形成される(ステップS12)。カバー膜39は最終形態において、パッシベーション膜40と一体化し、このパッシベーション膜40の一部を構成する。ヒューズユニット17の切断後に形成されたパッシベーション膜40は、ヒューズユニット17の溶断の際に同時に破壊されたカバー膜39の開口内に入り込み、ヒューズユニット17の切断面を保護する。したがって、パッシベーション膜40は、ヒューズユニット17の切断箇所に異物が入り込んだり水分が侵入したりすることを防ぐ。パッシベーション膜40は、全体で、たとえば12000Å程度の膜厚を有するように形成されてもよい。
フォトリソグラフィ工程を利用した金属膜のパターニングにより、微小面積の電極膜部分30〜36を精度良く形成することができ、さらに微細なパターンのヒューズユニット17を形成することができる。そして、上部電極膜21の金属膜23をパターニングした後に、総容量値の測定を経て、切断すべきヒューズが決定される。その決定されたヒューズを切断することによって、所望の容量値に正確に合わせ込まれたチップコンデンサ1を得ることができる。
次に、第1および第2外部電極3,4を形成すべき位置に貫通孔を有するレジストパターンがパッシベーション膜40上に形成され、このレジストパターンをマスクとしてパッシベーション膜40のエッチングが行われる。それによって、上部電極膜21のパッド領域21Bを露出させるパッド開口43と、n+型不純物拡散層15に接続されたパッド金属膜24を露出させるパッド開口44と、配線膜52のパッド領域52Aを露出させるパッド開口54とが形成されることになる(ステップS13)。パッシベーション膜40のエッチングは、反応性イオンエッチングによって行われてもよい。
次に、全面に樹脂膜41が塗布される(ステップS14)。樹脂膜41としては、たとえば感光性のポリイミドの塗布膜が用いられる。この樹脂膜41に対して、前記パッド開口43,44,54に対応した領域に対する露光工程、およびその後の現像工程を行うことによって、フォトリソグラフィによる樹脂膜41のパターニングを行うことができる(ステップS15)。これにより、樹脂膜41およびパッシベーション膜40を貫通したパッド開口43,44,54が形成される。その後、樹脂膜を硬化するための熱処理(キュア処理)が行われる(ステップS16)。
さらに、パッド開口43,44,54内に、たとえば無電解めっき法によって、第1外部電極3および第2外部電極4が成長させられる(ステップS17)。こうして、図1等に示す構造のチップコンデンサ1が得られる。
図9A、図9Bおよび図9Cは、容量値の測定および第1外部電極3の形成をより詳しく説明するための断面図(図2Aの切断面線IX−IXでの断面)である。第1外部電極3の直下において、上部電極膜21のパッド領域21B(第1パッド部)と、双方向ダイオード50に接続された配線膜52のパッド領域52A(第2パッド部)とは、互いに分離されている。
第1外部電極3を形成する前には、図9Aに示すように、パッド領域21B(第1パッド部)と、パッド領域52A(第2パッド部)とは、電気的に絶縁されている。すなわち、キャパシタ素子5と双方向ダイオード50とは電気的に切り離されている。この状態で、図9Bに示すように、検査用プローブ60をパッド領域21B(第1パッド部)に押し当てて、キャパシタ素子5の総容量値が測定される(図7のステップS8)。したがって、総容量値は、双方向ダイオード50の影響を受けることなく、正確に測定できる。この総容量値の測定の後に、前述のようなレーザトリミング(図7のステップS11)が行われ、さらにパッシベーション膜40および樹脂膜41が形成される(図7のステップS12〜S16)。それによって、パッド領域21B(第1パッド部)と、パッド領域52A(第2パッド部)との間には、パッシベーション膜40および樹脂膜41を積層した絶縁層53が形成される。この後に、第1外部電極3が形成される(図7のステップS17)。
第1外部電極3は、電解めっきまたは無電解めっきによって形成される。第1外部電極3は、図9Cに示すように、パッド開口43,54からそれぞれ露出したパッド領域21B(第1パッド部)およびパッド領域52A(第2パッド部)から成長し、各パッド部から成長した部分が絶縁層53を乗り越えて一体化する。それによって、パッド領域21B(第1パッド部)およびパッド領域52A(第2パッド部)が電気的に接続される。これにより、第1外部電極3に対して、キャパシタ素子5および双方向ダイオード50が並列に接続された構成のチップコンデンサ1が得られる。
第1および第2外部電極3,4は、たとえば、上部電極膜21、配線膜52またはパッド金属膜24に接するニッケル(Ni)層と、このニッケル層上に積層したパラジウム(Pd)層と、そのパラジウム層上に積層した金(Au)層とを積層した積層構造膜からなっていてもよく、たとえば、めっき法(より具体的には無電解めっき法)で形成することができる。ニッケル層は上部電極膜21等に対する密着性の向上に寄与し、パラジウム層は上部電極膜21等の材料と第1および第2外部電極3,4の最上層の金層との相互拡散を抑制する拡散防止層として機能する。
以上のように、この実施形態のチップコンデンサ1は、キャパシタ素子5に加えて双方向ダイオード50をチップ内に備えている。キャパシタ素子5は、第1および第2外部電極3,4間に接続されている。双方向ダイオード50は、第1および第2外部電極3,4の間に、キャパシタ素子5に対して並列に接続されている。静電気放電等に起因するサージ電流が外部電極3,4に入力されると、双方向ダイオード50が導通する。それによって、サージ電流は、キャパシタ素子5を迂回して双方向ダイオード50を流れるので、キャパシタ素子5を静電気破壊から保護することができる。これにより、静電破壊耐量の大きなチップコンデンサ1を提供することができる。
また、この実施形態では、基板2が半導体基板であり、双方向ダイオード50が、半導体基板2内に形成されたn+型不純物拡散層51,15を含む。この構成により、チップコンデンサ1の基板2内に双方向ダイオード50を形成できるので、キャパシタ素子5および双方向ダイオード50を1チップ内に備え、かつ静電破壊耐量を向上することができる。
また、この実施形態では、キャパシタ素子5が、半導体基板2内に形成されたn+型不純物拡散層15からなる下部電極を含む。この構成により、半導体基板2内のn+型不純物拡散層を下部電極として利用して、静電破壊耐量を向上したチップコンデンサ1を構成できる。
また、この実施形態では、n+型不純物拡散層15が、キャパシタ素子5の下部電極として機能し、かつ双方向ダイオード50を構成している。換言すれば、キャパシタ素子5は、半導体基板2内に形成された不純物拡散層からなる下部電極を含み、双方向ダイオード50が、当該下部電極を構成する不純物拡散層に連続した不純物拡散層を含む。
この構成により、キャパシタ素子5および双方向ダイオード50がいずれも半導体基板2内のn+型不純物拡散層15を利用して構成される。したがって、キャパシタ素子5および双方向ダイオード50のための不純物拡散層を共通のプロセスによって作製することが可能であり、それによって、製造工程を簡単にすることができる。また、キャパシタ素子5の下部電極を構成する不純物拡散層に連続した不純物拡散層が双方向ダイオードを構成しているので、双方向ダイオード50と下部電極とを接続するための配線を別途設ける必要がない。これによっても、製造工程を簡素化できる。しかも、配線スペースを省略できるので、チップコンデンサ1の小型化を図ったり、キャパシタ素子5の容量増加を図ったりすることができる。こうして、製造工程、サイズ、容量等に対する制約を緩和しながら、静電破壊耐量の向上されたチップコンデンサ1を提供できる。
また、この実施形態では、双方向ダイオード50が、第1外部電極3の直下の領域に形成されている部分を含む。この構成により、第1外部電極3の直下の領域を利用して双方向ダイオード50を構成できるので、基板2上の領域を有効に利用できる。それによって、小型化および大容量化に有利で、かつ静電破壊耐量の大きなチップコンデンサ1を提供できる。
また、この実施形態では、キャパシタ素子5および双方向ダイオード50にそれぞれ接続された第1パッド部(パッド領域21B)および第2パッド部(パッド領域52A)に跨がるように第1外部電極3が形成されている。すなわち、第1および第2パッド部は第1外部電極3によって互いに電気的に接続されている。第1および第2パッド部は、互いに分離されていて、第1外部電極3が形成される前は、電気的に切り離されている。そこで、製造工程では、第1外部電極3を形成する前に、第1パッド部を利用して、キャパシタ素子5の容量を測定することができる。このとき、双方向ダイオード50は第1パッド部に電気的に接続されていないので、双方向ダイオード50の影響を排除して、キャパシタ素子5の容量を測定できる。したがって、製造工程におけるキャパシタ素子容量の正確な測定を阻害することなく、静電破壊耐量の大きなチップコンデンサ1を提供できる。
第1外部電極3は、第1パッド部(パッド領域21B)および第2パッド部(パッド領域52A)の間に配置されてそれらを分離する絶縁層53を跨いで、それらの両方に接合されているので、キャパシタ素子5および双方向ダイオード50を第1外部電極3に並列に接続した構造を確実に形成できる。
また、この実施形態では、各外部電極3,4が、基板2の素子形成面2Aおよび側面2C〜2Fに跨がって形成され、素子形成面2Aを覆う表面部分3a,4aおよび側面2C,2E,2F;2D,2E,2Fを覆う側面部分3b,4bを一体的に有している。すなわち、第1および第2外部電極3,4は、基板2の表面を覆う表面部分3a,4aだけでなく、基板2の側面を覆う側面部分3b,4bを有していて、基板2の表面および側面に跨がって一体的に形成されている。これにより、チップコンデンサ1を実装基板9に半田付けするときに、外部電極3,4が半田13に接する接着面積を大きくすることができる。これにより、半田13の吸着量を多くすることができるので、接着強度を向上できる。また、半田13は、チップコンデンサ1の表面(基板2の表面)から側面に回り込むように吸着するので、実装状態においては、基板2の表面および側面の各方向からチップコンデンサ1を保持することができる。そのため、チップコンデンサ1の実装状態を安定化できる。
外部電極3,4と基板2の側面との間には絶縁膜であるパッシベーション膜40が介在されており、これによって、外部電極3,4と基板2との電気的な絶縁状態が保たれている。
また、この実施形態では、基板2は、平面視において矩形状であり、第1および第2外部電極3,4が、それぞれ、基板2の三方の側面2C,2E,2F;2D,2E,2Fの素子形成面2Aの縁部を覆うように形成されている。この構成により、実装基板9にチップコンデンサ1が実装された状態において、第1および第2外部電極3,4は、それぞれ、チップコンデンサ1を基板2の側面の三方向から保持する。それにより、チップコンデンサ1の実装状態を一層安定化できる。
また、この実施形態では、基板2に当該基板2の主面(素子形成面2A)と交差する側壁面16aを有するトレンチ16が形成されており、容量膜20がトレンチ16の側壁面16aに沿って形成されている。これによって、容量膜20を挟んで上部電極膜21およびn+型不純物拡散層15(下部電極)が対向する対向面積の増大を図ることができるから、キャパシタ素子5の大容量化を図ることができる。それによって、チップコンデンサ1の小型化または大容量化を図ることができる。
この実施形態では、トレンチ16は、側壁面16aの底部に連なる底壁面16bを有しており、複数のトレンチ16が、基板2上に周期的に形成されている。これにより、キャパシタ素子5の一層の大容量化が図られている。
また、この実施形態では、上部電極膜21が、トレンチ16に埋め込まれたポリシリコン膜22を含む。ポリシリコンは、微細なトレンチ内に良好な埋め込み性で埋め込むことができる。したがって、微細でアスペクト比(トレンチ開口幅とトレンチ深さとの比)の大きな多数のトレンチ16を基板2の主面(素子形成面2A)に形成し、かつ、ポリシリコン膜22を容量膜に密着させることができる。それによって、キャパシタ素子5の一層の大容量化を図ることができる。
また、この実施形態では、上部電極膜21は、ポリシリコン膜22に積層された金属膜23をさらに含む。これにより、上部電極膜21の抵抗率を低くできるので、チップコンデンサ1の等価直列抵抗を低減して、特性の向上を図ることができる。
また、この実施形態では、キャパシタ素子5が、複数のキャパシタ要素C0〜C6を含む。さらに、基板2上には、複数のキャパシタ要素C1〜C6をそれぞれ切り離し可能に第1外部電極3に接続する複数のヒューズF1〜F6が設けられている。したがって、一つまたは複数のヒューズF1〜F6を選択して切断することにより、一つまたは複数のキャパシタ要素C1〜C6を選択的に外部電極から切り離すことができる。それによって、複数種類の容量値に、容易にかつ速やかに対応することができる。換言すれば、複数のキャパシタ要素C0〜C6を組み合わせることによって、様々な容量値のチップコンデンサ1を共通の設計で実現することができる。また、複数のキャパシタ要素C0〜C1は、容量値の異なる複数のキャパシタ要素を含むので、ヒューズF1〜F6の選択的な切断によって、より多くの容量値を得ることができ、一層多数種類の容量値を共通設計のチップコンデンサ1で実現できる。
ヒューズF1〜F6は、上部電極膜21と同一層に形成されているので、上部電極膜21と同一工程で形成できる。
また、この実施形態では、複数のキャパシタ要素C0〜C6が、基本容量素子C0と、複数の調整容量素子C1〜C6とを含み、複数の調整容量素子C1〜C6が、複数のヒューズF1〜F6を介して、それぞれ、第1外部電極3に接続されている。したがって、ヒューズF1〜F6を選択的に切断することにより、一つまたは複数の調整容量素子C1〜C6を選択的に第1外部電極3から切り離すことができる。これにより、基本容量素子C0の容量と、ヒューズF1〜F6を介して第1外部電極3に接続された調整容量素子C1〜C6の容量とで、チップコンデンサ1の全体の容量が決定する。
また、この実施形態では、互いに平行な短冊形状の調整容量素子C1〜C6が、各一端を第1外部電極3の側に揃えた状態で、長さの順に配列されている。一方、基本容量素子C0は、最も短い調整容量素子C1の隣に第1外部電極3への接続部30Aを有し、調整容量素子C1〜C6が配置されていないスペースに主要部30Bを有している。この主要部30Bは、調整容量素子C1〜C6が配置されていないスペースの形状に合わせて、接続部30Aから離れて第2外部電極4に向かうに従って幅広になっている。こうして、基板2上の限られた領域を効率的に利用して、調整容量素子C1〜C6および基本容量素子C0を配置することができる。それによって、小型で大容量のチップコンデンサ1を実現できる。
最も長い調整容量素子C6の隣に接続部30Aを配置する構成も考えられる。しかし、このような構成では、接続部30Aが長い調整容量素子C6を回り込んで、複数の調整容量素子C1〜C6が配置されていない空きスペースに配置された主要部30Bへと達する必要がある。したがって、接続部30Aの長さが長くなるので、接続部30Aの電気抵抗が高くなり、それに応じて、チップコンデンサ1の等価直列抵抗が高くなるおそれがある。この実施形態では、最も短い調整容量素子C1の隣に接続部30Aを配置することで、その問題を回避して、優れた特性のチップコンデンサ1を提供できる。
図10A、図10Bおよび図10Cは、この発明の第2の実施形態に係るチップコンデンサ102の構成を説明するための平面図である。図10A、図10Bおよび図10Cにおいて、前述の第1の実施形態のチップコンデンサ1の各部に対応する部分に同一参照符号を付して示す。図10Aはキャパシタ素子5の上部電極等の配置を示し、図10Bはキャパシタ素子5の上部電極の下層側を構成するポリシリコン膜の配置を示し、図10Cはキャパシタ素子5の下部電極として機能するn+型不純物拡散層等の配置を示す。
この実施形態では、図10Cに示すように、双方向ダイオード50のためのn+型不純物拡散層51の全部分が、第1外部電極3の直下の領域に配置されている。さらに、キャパシタ素子5の下部電極として機能するn+型不純物拡散層15において、n+型不純物拡散層51に対向する縁部の全部が第1外部電極3の直下の領域に配置されている。したがって、n+型不純物拡散層51,15の間に位置するp型領域2aもまた、全部分が、第1外部電極3の直下に形成されている。これにより、双方向ダイオード50は、その全部分が、第1外部電極3の直下に配置されている。
この実施形態では、n+型不純物拡散層51は、矩形形状を有し、平行な2辺が第1外部電極3の長辺3Aと平行であり、他の平行な2辺が第1外部電極3の短辺3Bと平行である。n+型不純物拡散層15は、基板2の一つのコーナー部7の付近に配置されている。一方、n+型不純物拡散層15は、第1外部電極3の直下の領域において、n+型不純物拡散層51を縁取るように間隔を開けて形成された矩形の切り欠き部を有しており、この切り欠き部にn+型不純物拡散層51が配置されている。よって、n+型不純物拡散層51,15に挟まれたp型領域2aは、矩形のn+型不純物拡散層51の2辺に沿うように直角に折れ曲がった鉤状(L字状)に形成されている。ただし、図10Cに示したn+型不純物拡散層51の形状は一例であり、たとえば、n+型不純物拡散層51の周囲長を長くするために、櫛形のn+型不純物拡散層51が第1外部電極3の直下の領域に形成されてもよい。
図10Bに表れているように、キャパシタ素子5の上部電極膜21を構成するポリシリコン膜22は、n+型不純物拡散層15の形状に整合するように、n+型不純物拡散層51を回避して形成されている。具体的には、ポリシリコン膜22は、n+型不純物拡散層51に対応した切り欠き部(この実施形態では矩形の切り欠き部)を、第1外部電極3の直下の領域に有している。n+型不純物拡散層51の直上には、容量膜20に開口20aが形成されている。
図10Aに表れているように、キャパシタ素子5の上部電極膜21を構成する金属膜23は、n+型不純物拡散層15の形状に整合するように、n+型不純物拡散層51の直上の領域を回避して形成されている。具体的には、金属膜23は、n+型不純物拡散層51に対応した切り欠き部(この実施形態では矩形の切り欠き部)を、第1外部電極3の直下の領域に有している。n+型不純物拡散層51の直上には、配線膜52が形成されている。配線膜52は、この実施形態では、全部分が第1外部電極3の直下の領域内に位置しており、n+型不純物拡散層51の形状と整合する矩形形状を有している。配線膜52は、容量膜20の開口20aを介してn+型不純物拡散層51に接合されている。
このように、前述の第1の実施形態では、双方向ダイオード50を構成するn+型不純物拡散層51の一部が第1外部電極3の直下の領域にあり、別の一部が第1外部電極3と第2外部電極4との間の領域にある。これに対して、この実施形態では、双方向ダイオード50を構成するn+型不純物拡散層51は、全部が第1外部電極3の直下の領域に配置されていて、双方向ダイオード50は、その全部分が第1外部電極3の直下に位置している。これにより、第1および第2外部電極3,4の間の領域を用いることなく、キャパシタ素子5に並列接続された双方向ダイオード50をチップ内に内蔵することができる。よって、第1および第2外部電極3,4間の領域を専らキャパシタ素子5のために用いることができるので、チップコンデンサ102の小型化および/または高容量化を図りながら、静電破壊耐量の向上を図ることができる。
図11は、この発明の第3の実施形態に係るチップコンデンサ103の構成を説明するための断面図である。また、図12A、図12Bおよび図12Cは、配線等のレイアウトを説明するための平面図である。図11には、図12Aの切断面線XI−XIにおける切断面が示されている。図11および図12において、図2A、図2B、図2Cおよび図3に示された各部の対応部分には同一参照符号を付してある。図12Aはキャパシタ素子5の上部電極等の配置を示し、図12Bはキャパシタ素子5の上部電極の下層側を構成するポリシリコン膜の配置を示し、図12Cはキャパシタ素子5の下部電極として機能するn+型不純物拡散層等の配置を示す。
この実施形態では、第1外部電極3の直下の領域以外の領域に双方向ダイオード50が形成されている。具体的には、第1および第2外部電極3,4間の領域に、キャパシタ領域65およびダイオード領域66が設定されている。キャパシタ領域65は、第1および第2外部電極3,4の間の領域から、第1外部電極3の直下の領域にまで延びている。このキャパシタ領域65にキャパシタ素子5が形成されている。ダイオード領域66は、第1および第2外部電極3,4の間の領域内に配置されている。具体的には、ダイオード領域66は、基板2の一つの長辺81の近傍の縁部に設定された矩形領域であってもよい。このダイオード領域66に双方向ダイオード50が形成されている。
基板2は、この実施形態では、n型半導体基板(より具体的にはn型シリコン基板)である。ダイオード領域66では、基板2の表層部にp型不純物拡散層67が形成されている。このp型不純物拡散層67内に、間隔を開けて、一対のn+型不純物拡散層68,69が形成されている。これにより、一対のn+型不純物拡散層68,69の間にp型不純物拡散層67が挟まれて、一対のpn接合が形成されている。すなわち、一対のpn接合ダイオードを逆方向に直列接続した構成の双方向ダイオード50が構成されている。一対のn+型不純物拡散層68,69は、第1外部電極3および第2外部電極4の対向方向に沿って延びた帯状に形成されている。
容量膜20および絶縁膜45は、p型不純物拡散層67および一対のn+型不純物拡散層68,69の表面を覆うように形成されている。容量膜20および絶縁膜45には、一対のn+型不純物拡散層68,69をそれぞれ露出させる開口20c,45c;20d,45dが形成されている。開口20c,45cは、n+型不純物拡散層68に沿って帯状に延びている。同様に、開口20d,45dは、n+型不純物拡散層69に沿って帯状に延びている。一方のn+型不純物拡散層68に開口20c,45cを介して接するように配線膜71が形成されており、他方のn+型不純物拡散層69に別の開口20d,45dを介して接するように別の配線膜72が形成されている。配線膜71,72は、上部電極膜21の金属膜23と同一金属材料で同一層に形成されていることが好ましい。それにより、金属膜23と同一工程で配線膜71,72を形成できる。
配線膜71は、n+型不純物拡散層68に沿うように帯状に延びて、第1外部電極3の直下の領域に入り込んでいる。配線膜71において第1外部電極3の直下の領域は、パッド領域71Aである。パッド領域71Aの直上には、パッシベーション膜40および樹脂膜41にパッド開口54が形成されている。このパッド開口54を介して、第1外部電極3が配線膜71のパッド領域71Aに接合している。配線膜71は、上部電極膜21のパッド領域21Bから絶縁されており、パッド領域71A,21Bの間には、絶縁層53が位置している。
配線膜72は、n+型不純物拡散層69に沿うように帯状に延びて、パッド金属膜24と一体化している。したがって、配線膜72は、第2外部電極4に接続されている。
このようにして、第1および第2外部電極3,4の間に、配線膜71,72を介して双方向ダイオード50が接続されている。したがって、第1および第2外部電極3,4の間に、キャパシタ素子5および双方向ダイオード50が並列に接続された構造のチップコンデンサ103が構成されている。このチップコンデンサ103は、第1の実施形態のチップコンデンサ1と同様な作用効果を奏する。加えて、一対のn+型不純物拡散層68,69は、長い周囲長を有するので、大電流に対する耐久性を向上することができる。それにより、より高い静電破壊耐量を有するチップコンデンサ103を提供することができる。
図13は、この発明の第4の実施形態に係るチップコンデンサ104の構成を示す断面図である。図13において、図11に示された各部の対応部分には同一参照符号を付してある。この実施形態では、絶縁膜45が、第1外部電極3の直下の領域に広く延びており、とくに、パッド領域21B(第1パッド部)の直下に形成されている。
これにより、容量値の測定のために検査用プローブ60(図9B参照)をパッド領域21Bの金属膜23に当てたとき、検査用プローブ60が金属膜23を貫通しても、ポリシリコン膜22や容量膜20を傷付けることがない。したがって、容量値の測定に起因する故障を回避できる。
ただし、図11に示した構成では、金属膜23がより広い範囲でポリシリコン膜22に接しているので、上部電極膜21の電気抵抗が低いので、キャパシタ素子5の等価直列抵抗を低くでき、良好な特性(とくに高周波特性)を有することができる。
図3に示した構成についても、図13の構成と同様に変形して、第1外部電極3の直下の領域、とくにパッド領域21Bの直下に絶縁膜45を配置してもよい。
図14は、この発明の第5の実施形態に係るチップコンデンサ105の構成を説明するための断面図である。図14において、図11に示された各部の対応部分には同一参照符号を付してある。
この実施形態では、低抵抗化した半導体基板であるn+型シリコン基板が基板2として用いられている。n+型シリコン基板2上にn型シリコンエピタキシャル層75が形成されている。このn型シリコンエピタキシャル層75にn+型不純物拡散層15が形成され、キャパシタ素子5の下部電極として機能している。このn+型不純物拡散層15は、n+型シリコン基板2に接している。さらに、n型シリコンエピタキシャル層75の表層部にp型不純物拡散層67が形成されている。このp型不純物拡散層67内に、間隔を開けて一対のn+型不純物拡散層68,69が形成されて、双方向ダイオード50を構成している。
この構成では、n+型不純物拡散層15がn+型シリコン基板2に接していることによって、キャパシタ素子5の下部電極の抵抗値が低くなる。その結果、チップコンデンサ105の等価直列抵抗を大幅に低減することができ、さらに優れた特性のチップコンデンサ105を提供できる。
第1、第2および第4の実施形態についても、同様の変形が可能である。
図15は、この発明の第6の実施形態に係るチップコンデンサ106の構成を説明するための断面図である。図15において、図11に示された各部の対応部分には同一参照符号を付してある。
この実施形態では、基板2が、p型半導体基板(具体的にはp型シリコン基板)で構成されている。このp型半導体基板2の表層部に、キャパシタ素子5の下部電極をなすn+型不純物拡散層15が形成されている。さらに、ダイオード領域66では、p型半導体基板2の表層部に、n型不純物拡散層77が形成されている。このn型不純物拡散層77内には、間隔を開けて一対のp+型不純物拡散層78,79が形成されている。したがって、一対のp+型不純物拡散層78,79の間にn型領域(n型不純物拡散層77の一部)が介装されて、双方向ダイオード50が構成されている。すなわち、一対のp+型不純物拡散層78,79とn型領域との間にそれぞれpn接合が形成されており、それによって、一対のpn接合ダイオードが逆方向に直列接続された形態の双方向ダイオード50が構成されている。
p型半導体基板の代わりに、シリコン基板の表面にp型シリコンエピタキシャル層が形成された基板を用いてもよい。そのp型シリコンエピタキシャル層に、n型不純物拡散層15および双方向ダイオード50を形成すればよい。
図16は、この発明の第7の実施形態に係るチップコンデンサ107の構成を説明するための断面図である。図16において、図11に示された各部の対応部分には同一参照符号を付してある。
この実施形態では、絶縁膜45上に形成されたポリシリコン膜90によって双方向ダイオード50が構成されている。具体的には、ダイオード領域66において、絶縁膜45上にポリシリコン膜90が形成されている。ポリシリコン膜90は、n型不純物を拡散させた一対のn型ポリシリコン領域91,92と、この一対のn型ポリシリコン領域91,92の間に配置され、p型不純物を拡散させたp型ポリシリコン領域93とを有している。したがって、p型ポリシリコン領域93と一対のn型ポリシリコン領域91,92との間にそれぞれpn接合が形成されている。これにより、一対のpn接合ダイオードを逆方向に直列接続した双方向ダイオード50が構成されている。このように、この実施形態では、ポリシリコン膜90を用いることによって、基板2外に双方向ダイオード50を構成している。
ポリシリコン膜90を覆うように層間絶縁膜94が形成されている。層間絶縁膜94には、一対のn型ポリシリコン領域91,92をそれぞれ露出させる一対の開口94a,94bが形成されている。一方の開口94a内には、第1外部電極3の直下にパッド領域71Aを有する配線膜71が入り込み、n型ポリシリコン領域91に接合されている。他方の開口94b内には、第2外部電極4の直下のパッド金属膜24に連なる配線膜72が入り込み、n型ポリシリコン領域92に接合されている。パッシベーション膜40は、層間絶縁膜94を覆うように形成されている。
基板2は、n型シリコン基板でもp型シリコン基板でもよく、また、シリコン基板の表面にn型またはp型のシリコンエピタキシャル層が形成された基板であってもよい。
図17は、この発明の第8の実施形態に係るチップコンデンサ108の構成を示す断面図である。図17において、図16に示された各部の対応部分には同一参照符号を付してある。
この実施形態では、ダイオード領域66に、p型ポリシリコン膜95が形成され、その表層部に、間隔を開けて一対のn型拡散領域96,97が形成されている。したがって、一対のn型拡散領域96,97の間にp型領域(p型ポリシリコン膜95)が介装されており、それによって、一対のpn接合が形成されている。これにより、一対のpn接合ダイオードを逆方向に直列接続した双方向ダイオード50が構成されている。
図18は、この発明の第9の実施形態に係るチップコンデンサ109の構成を示す断面図である。図18において、図16に示された各部の対応部分には同一参照符号を付してある。
この実施形態では、ダイオード領域66内で分離して形成された第1ポリシリコン膜98および第2ポリシリコン膜99でそれぞれ構成された第1ダイオード501および第2ダイオード502が備えられている。第1ポリシリコン膜98は、p型不純物を拡散したp型領域98pとn型不純物を拡散したn型領域98nとを有しており、これらが互いに接して、pn接合ダイオードからなる第1ダイオード501を構成している。第2ポリシリコン膜99も同様に、p型不純物を拡散したp型領域99pとn型不純物を拡散したn型領域99nとを有し、これらが互いに接して、pn接合ダイオードからなる第2ダイオード502を構成している。
第1および第2ダイオード501,502は、層間絶縁膜94によって覆われている。層間絶縁膜94には、第1ダイオード501のp型領域98pおよびn型領域98nをそれぞれ露出させる開口94c,94dと、第2ダイオード502のp型領域99pおよびn型領域99nをそれぞれ露出させる開口94e,94fとが間隔を開けて形成されている。層間絶縁膜94上には、第1外部電極3の直下にパッド領域71Aを有する配線膜71が形成されており、この配線膜71が開口94dに入り込んで、第1ダイオード501のn型領域98nに接合されている。層間絶縁膜94上には、さらに、第2外部電極4の直下のパッド金属膜24に連なる配線膜72が形成されており、この配線膜72が開口94fに入り込んで、第2ダイオード502のn型領域99nに接合されている。さらに、層間絶縁膜94上に形成され、配線膜71,72とは絶縁された配線膜73が、開口94c,94eに入り込み、第1ダイオード501のp型領域98pおよび第2ダイオード502のp型領域99pに接合されている。
このようにして、第1および第2ダイオード501,502は、配線膜73によって、逆方向に直列に接続された双方向ダイオード50を構成している。この双方向ダイオード50が、配線膜71,72を介して、第1および第2外部電極3,4の間に接続されている。
図19は、この発明の第10の実施形態に係るチップコンデンサ110の構成を説明するための断面図である。図19において、図11に示された各部の対応部分には同一参照符号を付してある。この実施形態では、半導体基板からなる基板2の素子形成面2Aに絶縁膜46が形成されている。絶縁膜46は、ダイオード領域66のn+型不純物拡散層68,69を露出させる開口46a,46bを有するほかは、素子形成面2Aのほぼ全域を覆っており、第2外部電極4の直下の領域にも絶縁膜46が形成されている。この絶縁膜46は、基板2の素子形成面2Aに一方表面および他方表面が倣うように形成されており、トレンチ16が形成されている領域では、その側壁面16aおよび底壁面16bに倣っている。絶縁膜46は、たとえば、酸化シリコン膜等の酸化膜からなっていてもよい。その膜厚は、500Å〜2000Å程度であってもよい。
絶縁膜46の表面に、キャパシタ要素C0〜C6の下部電極を構成する下部電極膜25が形成されている。下部電極膜25は、アルミニウム等(より具体的には、Al,Al−Si,Al−Si−Cu,W,TiNなど)の金属膜からなる。下部電極膜25は、その一方表面および他方表面が基板2の表面に倣うように形成されている。下部電極膜25は、キャパシタ要素C0〜C6が形成された全領域に渡って連続しており、さらに、第2外部電極4の直下のパッド金属膜24に接続されている。下部電極膜25の表面に、容量膜20が積層されている。このような構成により、図11の構成と電気的にほぼ同等のチップコンデンサを提供できる。
図20は、この発明の第11の実施形態に係るチップコンデンサ111の構成を示す断面図である。図20において、図19および図16の対応部分に同一参照符号を付してある。
この実施形態では、第10の実施形態(図19)の場合と同様に、基板2の表面に絶縁膜46が形成されており、その上に下部電極膜25が形成されている。さらに、第7の実施形態(図16)の場合と同様に、ポリシリコン膜90によって形成された双方向ダイオード50が基板2外に形成されている。
したがって、基板2は、シリコン基板に代表される半導体基板以外にも、ガラス基板や樹脂フィルム等の絶縁性基板を用いることもできる。
図21は、この発明の第12の実施形態に係るチップコンデンサ112の構成を示す断面図である。図21において、図3の対応部分には同一参照符号を付す。この実施形態では、基板2にはトレンチが形成されておらず、基板2は平坦な素子形成面2Aを有している。このようなプレーナ型の構成に対しても、この発明を適用できる。
以上、この発明の実施形態について説明してきたが、この発明は、次にいくつかの例を示すとおり、さらに他の形態でも実施することができる。
(1) 前述の実施形態では、キャパシタ素子が複数のキャパシタ要素を備える例を示したが、キャパシタ素子は、一つのキャパシタ要素で構成されていてもよい。キャパシタ素子が複数のキャパシタ要素を備える場合のキャパシタ要素の数は、前述の実施形態で示した7個に限らず、2〜6個、または8個以上であってもよい。
(2) 前述の実施形態では、一つのキャパシタ要素(基本容量素子)はヒューズを介することなく外部電極に接続されており、他のキャパシタ要素(調整容量素子)はヒューズを介して外部電極に接続されているが、これも一つの例に過ぎない。すなわち、複数のキャパシタ要素の全てがヒューズを介して外部電極に接続されていてもよい。逆に、全てのキャパシタ要素がヒューズを介することなく外部電極に接続されていてもよい。さらに、一つ以上のキャパシタ要素がヒューズを介することなく外部電極に接続され、別の1つ以上のキャパシタ要素がヒューズを介して外部電極に接続されていてもよい。なお、トリミング後のチップコンデンサは、1つ以上のヒューズが切断されている場合があるので、外部電極から絶縁されたキャパシタ要素を含む場合がある。
(3) 前述の実施形態では、上部電極膜にヒューズユニットを設ける構成を示したが、第10および第11の実施形態(図19および図20)の構成のように、下部電極膜を設ける構成の場合には、下部電極膜にヒューズユニットを設けることもできる。具体的には、下部電極膜25(図19等参照)を複数のキャパシタ要素に応じて複数の電極膜部分に分割し、一部または全部の電極膜部分と外部電極4との間にヒューズユニットを介装する構成とすればよい。この場合、上部電極膜は、複数のキャパシタ要素に共通の電極膜とすればよく、複数の電極膜部分に分割しなくてもよい。
(4) 表面部分および側面部分を一体的に形成した外部電極の特徴に関する発明については、双方向ダイオードがチップ内に備えられていなくてもよい。
(5) チップ内に双方向ダイオードを備えたチップコンデンサに関する発明については、外部電極は、基板の表面(素子形成面)のみを覆う構成であってもよい。
(6) 前述の実施形態では、上部電極膜がポリシリコン膜および金属膜の積層構造膜で構成されているが、上部電極膜を金属膜のみで構成してもよい。とくに、基板表面に微細なトレンチを形成しない場合には、トレンチ内への埋め込み性の問題がないので、抵抗値を低減するために、金属膜のみで上部電極膜を構成することが好ましい。金属膜としては、Al,Al−Si,Al−Si−Cu,W,TiNなどを用いることができる。
(7) 前述の実施形態では、側壁面および底壁面を有するトレンチが基板表面に形成された例を示したが、底壁面を有しないトレンチが基板表面に形成されていてもよい。具体的には、一対の側壁面がV字形断面を形成するトレンチが基板表面に形成されていてもよい。
(8) 前述の実施形態では、半導体基板としてシリコン基板を例示したが、化合物半導体等の他の半導体材料の基板を用いてもよい。
(9) 前述の実施形態では、双方向ダイオード50に代えて、後述する参考例に係る実施形態で示す抵抗206の構造が採用された抵抗素子が、キャパシタ素子5に対して並列に第1および第2外部電極3,4間に接続されていてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
<この発明の参考例の実施形態>
以下では、この発明の参考例の実施形態を、添付図面を参照して詳細に説明する。
<チップ部品の全体構成>
図22(a)は、この発明の参考例の実施形態に係るチップ部品の構成を説明するための模式的な斜視図であり、図22(b)は、前記チップ部品が回路基板に実装された状態を示す模式的な側面図である。図23は、図22(a)の切断面XXIII-XXIIIから見た前記チップ部品の断面図である。図24は、複合素子の電気回路図である。
チップ部品201は、複合素子を一つのパッケージ(1チップ)に収めたディスクリートタイプの微小なチップ部品であり、図22(a)に示すように、直方体形状をなしている。チップ部品201の寸法に関し、長辺方向の長さLが約0.3mmであり、短辺方向の幅Wが約0.15mmであり、厚さTが約0.1mmである。
チップ部品201は、半導体ウエハ(シリコンウエハ)上に多数個のチップ部品201を格子状に形成してから半導体ウエハを切断して個々のチップ部品201に分離することによって得られる。
チップ部品201は、半導体基板202と、第1外部接続電極203および第2外部接続電極204と、複合素子205とを主に備えている。これらの第1外部接続電極203、第2外部接続電極204および複合素子205は、半導体製造プロセスを用いて半導体基板202上に形成されたものである。
半導体基板202は、Si(シリコン)からなり、略直方体のチップ形状である。半導体基板202において、図22(a)における上面は、素子形成面202Aである。素子形成面202Aは、半導体基板202の表面であり、略長方形状である。半導体基板202の厚さ方向において素子形成面202Aとは反対側の面は、裏面202Bである。素子形成面202Aと裏面202Bとは、ほぼ同形状である。また、半導体基板202は、素子形成面202Aおよび裏面202B以外に、これらの面と直交して延びる側面202C、側面202D、側面202Eおよび側面202Fを有している。
側面202Cは、素子形成面202Aおよび裏面202Bにおける長手方向一端縁(図22(a)における左手前側の端縁)の間に架設されていて、側面202Dは、素子形成面202Aおよび裏面202Bにおける長手方向他端縁(図22(a)における右奥側の端縁)の間に架設されている。側面202Cおよび側面202Dは、当該長手方向における半導体基板202の両端面である。側面202Eは、素子形成面202Aおよび裏面202Bにおける短手方向一端縁(図22(a)における左奥側の端縁)の間に架設されていて、側面202Fは、素子形成面202Aおよび裏面202Bにおける短手方向他端縁(図22(a)における右手前側の端縁)の間に架設されている。側面202Eおよび側面202Fは、当該短手方向における半導体基板202の両端面である。
半導体基板202の素子形成面202Aには、図23に示すように、絶縁膜220が形成されている。絶縁膜220は、素子形成面202Aの全域を覆っている。また、半導体基板202では、素子形成面202A、側面202C、側面202D、側面202Eおよび側面202Fが保護膜223で覆われている。そのため、厳密には、図22(a)では、素子形成面202A、側面202C、側面202D、側面202Eおよび側面202Fは、保護膜223の内側(裏側)に位置していて、外部に露出されていない。さらに、素子形成面202A上の保護膜223は、樹脂膜224で覆われている。樹脂膜224は、素子形成面202Aから、側面202C、側面202D、側面202Eおよび側面202Fのそれぞれにおける素子形成面202A側の端部(図22(a)および図23における上端部)まではみ出ている。
半導体基板202では、略長方形の素子形成面202Aの一辺A(側面202C、202D、202Eおよび202Fのうちのいずれかであり、ここでは、後述するように側面202C)に相当する部分に、半導体基板202を厚さ方向に切欠く凹部210が形成されている。一辺Aは、平面視におけるチップ部品201の一辺でもある。図22(a)における凹部210は、側面202Cに形成されていて、半導体基板202の厚さ方向に延びつつ側面202D側へ窪んでいる。凹部210は、半導体基板202を厚さ方向に貫通しており、当該厚さ方向における凹部210の端部は、素子形成面202Aおよび裏面202Bのそれぞれから露出されている。凹部210は、側面202Cの延びる方向(前述した短手方向)において、側面202Cよりも小さい。半導体基板202を厚さ方向(チップ部品201の厚さ方向でもある)から見た平面視における凹部210の形状は、前記短手方向に長手の長方形状(矩形状)である。なお、平面視における凹部210の形状は、凹部210が窪む方向(側面202D側)に向けて幅狭となる台形状であってもよいし、窪む方向に向けて細くなる三角形状であってもよいし、U字形状(U字に窪んだ形状)であってもよい。いずれにせよ、このようなシンプルな形状の凹部210であれば、簡単に形成することができる。また、凹部210は、ここでは側面202Cに形成されているが、側面202Cでなく、側面202C〜202Fのうちの少なくとも1つに形成されてもよい。
凹部210は、チップ部品201を回路基板209(図22(b)参照)に実装するときにおけるチップ部品201の向き(チップ方向)を表すものである。平面視におけるチップ部品201(厳密には、半導体基板202)の輪郭は、その一辺Aに凹部210を有する矩形であるため、長手方向において非対称な外形を有している。つまり、当該非対称の外形が、側面202C、202D、202Eおよび202Fのうちのいずれか(一辺A)に、チップ方向を表す凹部210を有していて、チップ部品201は、この非対称な外形によって、長手方向における凹部210側がチップ方向であることを表している。このように、チップ部品201における半導体基板202の外形を平面視で非対称とするだけで、チップ部品201のチップ方向を認識することができる。つまり、標印工程なしでもチップ部品201の外形によってチップ方向を認識できる。とくに、チップ部品201における非対称の外形が、一辺Aにチップ方向を表す凹部210を有する矩形であるから、チップ部品201では、一辺Aと反対側の一辺Bとを結ぶ長手方向における凹部210側をチップ方向とすることができる。そのため、たとえば、平面視においてチップ部品201の長手方向と左右方向とを一致させ、このとき一辺Aが左端に位置しているときにチップ部品201を回路基板209に正しく実装できるようにしておけば、実装の際に、平面視で一辺Aが左端に位置するようにチップ部品1の向きを合わせなければならないことを、凹部210によってチップ部品1の外観から把握できる。
直方体の半導体基板202では、側面202C、側面202D、側面202Eおよび側面202Fにおいて隣り合うもの同士の境界をなすコーナー部(当該隣り合うもの同士が交差する部分)211が、面取りされたラウンド形状に整形されている(丸められている)。また、半導体基板202において、凹部210と、凹部210の周囲の側面202Cとの境界をなすコーナー部(側面202Cにおいて凹部210におけるコーナー部)212も、面取りされたラウンド形状に整形されている。ここで、コーナー部212は、凹部210とその周囲の側面202C(凹部210以外の部分)との境界だけでなく、凹部210の最深部側にも存在し、平面視において4箇所に存在する。
このように、平面視における半導体基板202の輪郭において、屈曲した部分(コーナー部211,212)がいずれもラウンド形状になっている。そのため、ラウンド形状におけるコーナー部211,212では、チッピングの発生を防止できる。これにより、チップ部品201の製造において、歩留まり向上(生産性の向上)を図ることができる。
第1外部接続電極203および第2外部接続電極204は、半導体基板202の素子形成面202A上に形成されていて、樹脂膜224から部分的に露出されている。第1外部接続電極203および第2外部接続電極204のそれぞれは、たとえば、Ni(ニッケル)、Pd(パラジウム)およびAu(金)をこの順番で素子形成面202A上に積層することによって構成されている。第1外部接続電極203および第2外部接続電極204は、素子形成面202Aの長手方向に間隔を隔てて配置されており、素子形成面202Aの短手方向において長手である。図22(a)では、素子形成面202Aにおいて、側面202C寄りの位置に第1外部接続電極203が設けられ、側面202D寄りの位置に第2外部接続電極204が設けられている。前述した側面202Cの凹部210は、第1外部接続電極203に干渉しない程度の深さで窪んでいる。ただし、場合によっては、凹部210に応じて第1外部接続電極203にも凹部(凹部210の一部となる)を設けるようにしてもよい。
複合素子205は、半導体基板202の素子形成面202Aにおける第1外部接続電極203と第2外部接続電極204との間の領域に形成されていて、保護膜223および樹脂膜224によって上から被覆されている。この実施形態の複合素子205は、素子形成面202Aの短手方向(第1外部接続電極203と第2外部接続電極204との対向方向に直交する方向)に隣り合う第1素子の一例としての抵抗206、および第2素子の一例としてのダイオード207を含む。なお、複合素子205は、抵抗206とダイオード207の組み合わせに限らず、たとえば、抵抗と抵抗の組み合わせ(R+R)、ダイオードとダイオードの組み合わせ(Di+Di)、キャパシタと抵抗の組み合わせ(C+R)等であってもよい。また、組み合わされる素子の数は、2つに限らず、3つ、4つ、それ以上であってもよい。また、複数の素子は、素子形成面202Aの長手方向に隣り合うように配置されていてもよい。
抵抗206は、抵抗回路網271と、抵抗回路網271を挟んで素子形成面202Aの長手方向一方側および他方側に配置された第1内部電極の一例としての第1配線膜214および第2内部電極の一例としての第2配線膜215とを含む。この実施形態では、第1外部接続電極203の下方に第1配線膜214が配置され、第2外部接続電極204の下方に第2配線膜215が配置されている。
ダイオード207は、ダイオードセル領域272と、ダイオードセル領域272を挟んで素子形成面202Aの長手方向一方側および他方側に配置された第3内部電極の一例としてのカソード電極膜216および第4内部電極の一例としてのアノード電極膜217とを含む。この実施形態では、第1外部接続電極203の下方にカソード電極膜216が配置され、第2外部接続電極204の下方にアノード電極膜217が配置されている。
第1配線膜214およびカソード電極膜216は、図23に示すように、絶縁膜220上において素子形成面202Aの短手方向に隣り合うように配置されている。また、第1配線膜214およびカソード電極膜216は、保護膜223および樹脂膜224によって上から被覆されている。この保護膜223および樹脂膜224には、第1配線膜214およびカソード電極膜216の一部をそれぞれ別々のパッドとして露出させるパッド開口218,219が形成されている。パッド開口218,219間の距離(パッドスペース)W1は、たとえば、7μm〜10μmであり、パッド表面(各膜の表面)から樹脂膜224の表面までの高さH1は、たとえば、3μm〜6μmである。そして、第1外部接続電極203が樹脂膜224上で連続するようにパッド開口218,219に一括して埋め込まれることによって、第1配線膜214およびカソード電極膜216は、共通の第1外部接続電極203に接続されている。
第2配線膜215およびアノード電極膜217は、図23で示した構成と同様に、絶縁膜220上において素子形成面202Aの短手方向に隣り合うように配置されている。また、第2配線膜215およびアノード電極膜217は、保護膜223および樹脂膜224によって上から被覆されている。この保護膜223および樹脂膜224には、第2配線膜215およびアノード電極膜217の一部をそれぞれ別々のパッドとして露出させるパッド開口228,229が形成されている。パッド開口228,229間の距離(パッドスペース)W2(図22(a)参照)およびパッド表面(各膜の表面)から樹脂膜224の表面までの高さは、前述の距離W1および高さH1と同じである。そして、第2外部接続電極204が樹脂膜224上で連続するようにパッド開口228,229に一括して埋め込まれることによって、第2配線膜215およびアノード電極膜217は、共通の第2外部接続電極204に接続されている。
これにより、チップ部品201では、図24に示すように、抵抗206およびダイオード207は、ダイオード207のカソード側が第1外部接続電極203によって共通接続され、ダイオード207のアノード側が第2外部接続電極204によって共通接続されることによって並列に接続されている。これによって、抵抗206およびダイオード207は、全体として1つの複合素子205として機能する。
そして、図22(b)に示すように、第1外部接続電極203と第2外部接続電極204を回路基板209に対向させて、半田213によって回路基板209の回路(図示せず)に対して電気的かつ機械的に接続することにより、チップ部品201を回路基板209にフリップチップ接続することができる。すなわち、フリップチップ接続型のチップ部品201を提供することができ、素子形成面202Aを回路基板209の実装面に対向させたフェースダウン接合によって、ワイヤレスボンディングによってチップ部品201を回路基板209に接続できる。これによって、回路基板209上におけるチップ部品201の占有空間を小さくできる。とくに、回路基板209上におけるチップ部品201の低背化を実現できる。これにより、小型電子機器等の筐体内の空間を有効に利用でき、高密度実装および小型化に寄与できる。なお、外部接続電極として機能する第1外部接続電極203および第2外部接続電極204は、半田濡れ性の向上および信頼性の向上のために、金(Au)で形成するか、または表面に金メッキを施すことが望ましい。
<抵抗の全体構成>
図25は、前記複合素子の抵抗の平面図であり、第1配線膜、第2配線膜および抵抗回路網の平面視の構成を示す図である。
抵抗206の抵抗回路網271は、一例として、行方向(半導体基板2の長手方向)に沿って配列された8個の抵抗体Rと、列方向(半導体基板202の幅方向)に沿って配列された44個の抵抗体Rとで構成された合計352個の抵抗体Rを有している。それぞれの抵抗体Rは、等しい抵抗値を有している。
これら多数個の抵抗体Rが1個〜64個の所定個数毎にまとめられて電気的に接続されることによって、複数種類の抵抗単位体(単位抵抗)が形成されている。形成された複数種類の抵抗単位体は、接続用導体膜Cを介して所定の態様に接続されている。さらに、半導体基板202の素子形成面202Aには、抵抗単位体を抵抗206に対して電気的に組み込んだり、または、抵抗206から電気的に分離したりするために溶断可能な複数のヒューズ膜Fが設けられている。複数のヒューズ膜Fおよび接続用導体膜Cは、第1配線膜214の内側辺沿いに、配置領域が直線状になるように配列されている。より具体的には、複数のヒューズ膜Fおよび接続用導体膜Cが直線状に配置されている。
図26Aは、前記抵抗の一部分を拡大して描いた平面図である。図26Bは、前記抵抗における抵抗体の構成を説明するために描いた図26AのB−Bに沿う長さ方向の縦断面図である。図26Cは、前記抵抗における抵抗体の構成を説明するために描いた図26AのC−Cに沿う幅方向の縦断面図である。
図26A、図26Bおよび図26Cを参照して、抵抗体Rの構成について説明をする。
チップ部品201は、絶縁膜220、抵抗体膜221、配線膜222、保護膜223および樹脂膜224を備えている(図26Bおよび図26C参照)。絶縁膜220、抵抗体膜221、配線膜222、保護膜223および樹脂膜224は半導体基板202(素子形成面202A)上に形成されている。
絶縁膜220は、SiO2(酸化シリコン)からなる。絶縁膜220は、半導体基板202の素子形成面202Aの全域を覆っている。絶縁膜220の厚さは、約10000Åである。
抵抗体膜221は、抵抗体Rを構成する。抵抗体膜221は、TiNまたはTiONからなり、絶縁膜220の表面上に積層されている。抵抗体膜221の厚さは、約2000Åである。抵抗体膜221は、第1配線膜214と第2配線膜215との間をライン状に延びる複数本のライン(以下「抵抗体膜ライン221A」という)を構成していて、抵抗体膜ライン221Aは、ライン方向に所定の位置で切断されている場合がある(図26A参照)。
抵抗体膜ライン221A上には、配線膜222が積層されている。配線膜222は、Al(アルミニウム)またはアルミニウムとCu(銅)との合金(AlCu合金)からなる。配線膜222の厚さは、約8000Åである。配線膜222は、抵抗体膜ライン221A上に、ライン方向に一定間隔Rを開けて積層されている。
この構成の抵抗体膜ライン221Aおよび配線膜222の電気的特徴を回路記号で示すと、図27の通りである。すなわち、図27(a)に示すように、所定間隔Rの領域の抵抗体膜ライン221A部分が、それぞれ、一定の抵抗値rを有する1つの抵抗体Rを形成している。
そして、配線膜222が積層された領域では、配線膜222が隣り合う抵抗体R同士を電気的に接続することによって、当該配線膜222で抵抗体膜ライン221Aが短絡されている。よって、図27(b)に示す抵抗rの抵抗体Rの直列接続からなる抵抗回路が形成されている。
また、隣接する抵抗体膜ライン221A同士は抵抗体膜221および配線膜222で接続されているから、図26Aに示す抵抗回路網271は、図27(c)に示す(前述した抵抗体Rの単位抵抗からなる)抵抗回路を構成している。
ここで、半導体基板202上に作り込んだ同形同大の抵抗体膜221は、ほぼ同値になるという特性に基づき、半導体基板202上にマトリックス状に配列された多数個の抵抗体Rは、等しい抵抗値を有している。
また、抵抗体膜ライン221A上に積層された配線膜222は、抵抗体Rを形成すると共に、複数個の抵抗体Rを接続して抵抗単位体を構成するための接続用配線膜の役目も果たしている。
図28(a)は、前記チップ部品の平面図の一部分を拡大して描いたヒューズ膜を含む領域の部分拡大平面図であり、図28(b)は、図28(a)のB−Bに沿う断面構造を示す図である。
図28(a)および(b)に示すように、抵抗回路網271において、前述したヒューズ膜Fおよび接続用導体膜Cも、抵抗体Rを形成する抵抗体膜221上に積層された配線膜222により形成されている。すなわち、抵抗体Rを形成する抵抗体膜ライン221A上に積層された配線膜222と同じレイヤーに、配線膜222と同じ金属材料であるAlまたはAlCu合金によってヒューズ膜Fおよび接続用導体膜Cが形成されている。
つまり、抵抗体膜221上に積層された同一レイヤーにおいて、抵抗体Rを形成するための配線膜や、ヒューズ膜Fや、接続用導体膜Cや、さらには、抵抗206を第1外部接続電極203および第2外部接続電極204に接続するための第1配線膜214および第2配線膜215が、配線膜222として、同一の金属材料(AlまたはAlCu合金)を用いて、同じ製造プロセス(後述するスパッタリングおよびフォトリソグラフィプロセス)によって形成されている。
なお、ヒューズ膜Fは、配線膜222の一部だけでなく、抵抗体R(抵抗体膜221)の一部と抵抗体膜221上の配線膜222の一部とのまとまり(ヒューズ素子)を指していてもよい。
また、ヒューズ膜Fは、接続用導体膜Cと同一のレイヤーを用いる場合のみを説明したが、接続用導体膜C部分は、その上に更に別の導体膜を積層するようにし、導体膜の抵抗値を下げるようにしてもよい。なお、この場合であっても、ヒューズ膜Fの上に導体膜を積層しなければ、ヒューズ膜Fの溶断性が悪くなることはない。
図29は、この発明の参考例の実施形態に係る抵抗の電気回路図である。
図29を参照して、抵抗206は、基準抵抗単位体R8と、抵抗単位体R64、2つの抵抗単位体R32、抵抗単位体R16、抵抗単位体R8、抵抗単位体R4、抵抗単位体R2、抵抗単位体R1、抵抗単位体R/2、抵抗単位体R/4、抵抗単位体R/8、抵抗単位体R/16、抵抗単位体R/32とを第1配線膜214からこの順番で直列接続することによって構成されている。基準抵抗単位体R8および抵抗単位体R64〜R2のそれぞれは、自身の末尾の数(R64の場合には「64」)と同数の抵抗体Rを直列接続することで構成されている。抵抗単位体R1は、1つの抵抗体Rで構成されている。抵抗単位体R/2〜R/32のそれぞれは、自身の末尾の数(R/32の場合には「32」)と同数の抵抗体Rを並列接続することで構成されている。抵抗単位体の末尾の数の意味については、後述する図30および図31においても同じである。
そして、基準抵抗単位体R8以外の抵抗単位体R64〜抵抗単位体R/32のそれぞれに対して、ヒューズ膜Fが1つずつ並列的に接続されている。ヒューズ膜F同士は、直接または接続用導体膜C(図28(a)参照)を介して直列に接続されている。
図29に示すように全てのヒューズ膜Fが溶断されていない状態では、抵抗206は、第1配線膜214および第2配線膜215間に設けられた8個の抵抗体Rの直列接続からなる基準抵抗単位体R8(抵抗値8r)の抵抗回路を構成している。たとえば、1個の抵抗体Rの抵抗値rをr=80Ωとすれば、8r=64Ωの抵抗回路により第1配線膜214および第2配線膜215が接続された抵抗206が構成されている。
また、全てのヒューズ膜Fが溶断されていない状態では、基準抵抗単位体R8以外の複数種類の抵抗単位体は、短絡された状態となっている。つまり、基準抵抗単位体R8には、12種類13個の抵抗単位体R64〜R/32が直列に接続されているが、各抵抗単位体は、それぞれ並列に接続されたヒューズ膜Fにより短絡されているので、電気的に見ると、各抵抗単位体は抵抗206に組み込まれてはいない。
この実施形態に係るチップ部品201では、要求される抵抗値に応じて、ヒューズ膜Fを選択的に、たとえばレーザ光で溶断する。それにより、並列的に接続されたヒューズ膜Fが溶断された抵抗単位体は、抵抗206に組み込まれることになる。よって、抵抗206の全体の抵抗値を、溶断されたヒューズ膜Fに対応する抵抗単位体が直列に接続されて組み込まれた抵抗値とすることができる。
とくに、複数種類の抵抗単位体は、等しい抵抗値を有する抵抗体Rが、直列に1個、2個、4個、8個、16個、32個…と、等比数列的に抵抗体Rの個数が増加されて接続された複数種類の直列抵抗単位体ならびに等しい抵抗値の抵抗体Rが並列に2個、4個、8個、16個…と、等比数列的に抵抗体Rの個数が増加されて接続された複数種類の並列抵抗単位体を備えている。そのため、ヒューズ膜F(前述したヒューズ素子も含む)を選択的に溶断することにより、抵抗206全体の抵抗値を、細かく、かつデジタル的に、任意の抵抗値となるように調整して、チップ部品201において所望の値の抵抗を発生させることができる。
図30は、この参考例の他の実施形態に係る抵抗の電気回路図である。
前述したように基準抵抗単位体R8および抵抗単位体R64〜抵抗単位体R/32を直列接続して抵抗206を構成する代わりに、図30に示すように抵抗206を構成してもかまわない。詳しくは、第1配線膜214および第2配線膜215の間で、基準抵抗単位体R/16と、12種類の抵抗単位体R/16、R/8、R/4、R/2、R1、R2、R4、R8、R16、R32、R64、R128の並列接続回路との直列接続回路によって抵抗206を構成してもよい。
この場合、基準抵抗単位体R/16以外の12種類の抵抗単位体には、それぞれ、ヒューズ膜Fが直列に接続されている。全てのヒューズ膜Fが溶断されていない状態では、各抵抗単位体は抵抗206に対して電気的に組み込まれている。要求される抵抗値に応じて、ヒューズ膜Fを選択的に、たとえばレーザ光で溶断すれば、溶断されたヒューズ膜Fに対応する抵抗単位体(ヒューズ膜Fが直列に接続された抵抗単位体)は、抵抗206から電気的に分離されるので、チップ部品201全体の抵抗値を調整することができる。
図31は、この参考例のさらに他の実施形態に係る抵抗の電気回路図である。
図31に示す抵抗206の特徴は、複数種類の抵抗単位体の直列接続と、複数種類の抵抗単位体の並列接続とが直列に接続された回路構成となっていることである。直列接続される複数種類の抵抗単位体には、先の実施形態と同様、抵抗単位体毎に、並列にヒューズ膜Fが接続されていて、直列接続された複数種類の抵抗単位体は、全てヒューズ膜Fで短絡状態とされている。したがって、ヒューズ膜Fを溶断すると、その溶断されるヒューズ膜Fで短絡されていた抵抗単位体が、抵抗206に電気的に組み込まれることになる。
一方、並列接続された複数種類の抵抗単位体には、それぞれ、直列にヒューズ膜Fが接続されている。したがって、ヒューズ膜Fを溶断することにより、溶断されたヒューズ膜Fが直列に接続されている抵抗単位体を、抵抗単位体の並列接続から電気的に切り離すことができる。
かかる構成とすれば、たとえば、1kΩ以下の小抵抗は並列接続側で作り、1kΩ以上の抵抗回路を直列接続側で作れば、数Ωの小抵抗から数MΩの大抵抗までの広範な範囲の抵抗回路を、等しい基本設計で構成した抵抗の回路網を用いて作ることができる。
図32は、前記チップ部品の模式的な断面図であって、抵抗部分を示している。
次に、図32を参照して、チップ部品201(抵抗206部分)についてさらに詳しく説明する。なお、説明の便宜上、図32では、前述した抵抗206については簡略化して示していると共に、半導体基板202以外の各要素にはハッチングを付している。
ここでは、前述した保護膜223および樹脂膜224について説明する。
保護膜223は、たとえばSiN(窒化シリコン)からなり、その厚さは、約3000Åである。保護膜223は、素子形成面202Aの全域に亘って設けられて抵抗体膜221および抵抗体膜221上の各配線膜222(つまり、抵抗206)を表面(図32の上側)から被覆する(つまり、抵抗206おける各抵抗体Rの上面を覆う)と共に、半導体基板202の4つの側面202C〜202F(図22(a)参照)のそれぞれの全域を被覆している。素子形成面202Aでは、保護膜223によって抵抗体R間における配線膜222以外での短絡(隣り合う抵抗体膜ライン221A間における短絡)が防止されている。一方、側面202C〜202Fでは、保護膜223によって、各側面202C〜202Fにおける短絡(当該側面において短絡経路が発生すること)が防止されている。
樹脂膜224は、保護膜223と共にチップ部品201を保護するものであり、ポリイミド等の樹脂からなる。樹脂膜224の厚みは、約5μmである。樹脂膜224は、保護膜223の上面を全域に亘って被覆している共に、半導体基板202の4つの側面202C〜202F上の保護膜223において素子形成面202A側の端部(図32における上端部)を被覆している。つまり、樹脂膜224は、4つの側面202C〜202F上の保護膜223において素子形成面202Aとは反対側(図32における下側)の部分を少なくとも露出させている。
このような樹脂膜224では、平面視で4つの側面202C〜202Fと一致する部分が、これらの側面202C〜202F上の保護膜223よりも側方(外側)に張り出した円弧状の張出部となっている。つまり、樹脂膜224は、側面202C〜202Fで保護膜223よりもはみ出している。このような樹脂膜224は、円弧状の張出部において側方に向かって凸のラウンド形状の側面を有している。そのため、チップ部品201が周囲のものに接触する際、樹脂膜224の張出部が周囲のものに最初に接触して、接触による衝撃を緩和するので、衝撃が複合素子205等にまで及ぶこと等を防止できる。とくに、樹脂膜224の張出部は、ラウンド形状の側面を有しているから、接触による衝撃を滑らかに緩和することができる。
なお、樹脂膜224が側面202C〜202Fで保護膜223をまったく被覆していない構成(側面202C〜202Fで保護膜223の全部を露出させた構成)もあり得る。
また前述したように、樹脂膜224において、平面視で離れた2つの位置にパッド開口218,228が1つずつ形成されている。各パッド開口218,228は、樹脂膜224および保護膜223を、それぞれの厚さ方向において連続して貫通する貫通孔である。そのため、パッド開口218,228は、樹脂膜224だけでなく保護膜223にも形成されている。各パッド開口218,228からは、第1配線膜214および第2配線膜215の一部がパッドとして露出されている。
パッド開口218は、第1外部接続電極203によって埋め尽くされ、パッド開口228は、第2外部接続電極204によって埋め尽くされている。そして、第1外部接続電極203および第2外部接続電極204のそれぞれの一部は、樹脂膜224の表面においてパッド開口218,228からはみ出している。第1外部接続電極203は、パッド開口218を介して第1配線膜214に対して電気的に接続されている。第2外部接続電極204は、パッド開口228を介して第2配線膜215に対して電気的に接続されている。これにより、第1外部接続電極203および第2外部接続電極204のそれぞれは、抵抗206に対して電気的に接続されている。
このように、パッド開口218,228が形成された樹脂膜224および保護膜223は、パッド開口218,228から第1外部接続電極203および第2外部接続電極204を露出させるように形成されている。そのため、樹脂膜224の表面においてパッド開口218,228からはみ出した第1外部接続電極203および第2外部接続電極204を介して、チップ部品201と回路基板209との間における電気的接続を達成することができる(図22(b)参照)。
<ダイオードの全体構成>
図33は、前記複合素子のダイオードの平面図であり、図34は、図33の切断面XXXIV−XXXIVから見た前記ダイオードの断面図である。さらに、図35は、図33の切断面XXXV−XXXVから見た前記ダイオードの断面図である。
ダイオード207のダイオードセル領域272は、この実施形態では、矩形に形成されている。ダイオードセル領域272内に、複数のダイオードセルD1〜D4が配置されている。複数のダイオードセルD1〜D4は、この実施形態では4個設けられており、半導体基板202の長手方向および短手方向に沿って、マトリックス状に等間隔で二次元配列されている。
図36は、カソード電極膜216およびアノード電極膜217ならびにその上に形成された構成を取り除いて、半導体基板202の表面(素子形成面202A)の構造を示す平面図である。
ダイオードセルD1〜D4の各領域内には、それぞれ、p+型の半導体基板202の表層領域にn型拡散層の一例としてのn+型領域273が形成されている。n+型領域273は、個々のダイオードセル毎に分離されている。これにより、ダイオードセルD1〜D4は、ダイオードセル毎に分離されたpn接合領域274をそれぞれ有している。
複数のダイオードセルD1〜D4は、この実施形態では等しい大きさおよび等しい形状、具体的には矩形形状に形成されており、各ダイオードセルの矩形領域内に、多角形形状のn+型領域273が形成されている。この実施形態では、n+型領域273は、正八角形に形成されており、ダイオードセルD1〜D4の矩形領域を形成する4辺にそれぞれ沿う4つの辺と、ダイオードセルD1〜D4の矩形領域の4つの角部にそれぞれ対向する別の4つの辺とを有している。
前述したように、半導体基板202の素子形成面202Aには、絶縁膜220が形成されている(図34および図35参照)。絶縁膜220には、ダイオードセルD1〜D4のそれぞれのn+型領域273の表面を露出させるコンタクト孔275(カソードコンタクト孔)と、素子形成面202Aを露出させるコンタクト孔276(アノードコンタクト孔)とが形成されている。絶縁膜220の表面には、カソード電極膜216およびアノード電極膜217が形成されている。
カソード電極膜216は、複数のダイオードセルD1,D3に接続された引き出し電極L1と、複数のダイオードセルD2,D4に接続された引き出し電極L2と、引き出し電極L1,L2(カソード引き出し電極)と一体的に形成されたカソードパッド277とを有している。カソードパッド277は、素子形成面202Aの一端部に矩形に形成されている。このカソードパッド277に第1外部接続電極203が接続されている。このようにして、第1外部接続電極203は、引き出し電極L1,L2に共通に接続されている。
アノード電極膜217は、p+型の半導体基板202に接続されており、素子形成面202Aの一端部付近にアノードパッド278を有している。アノードパッド278は、アノード電極膜217において素子形成面202Aの一端部に配置された領域からなる。このアノードパッド278に第2外部接続電極204が接続されている。アノード電極膜217において、アノードパッド278以外の領域は、コンタクト孔276から引き出されたアノード引き出し電極である。
引き出し電極L1は、絶縁膜220の表面からダイオードセルD1,D3のコンタクト孔275内に入り込み、各コンタクト孔275内でダイオードセルD1,D3の各n+型領域273にオーミック接触している。引き出し電極L1において、コンタクト孔275内でダイオードセルD1,D3に接続されている部分は、セル接続部C1,C3を構成している。同様に、引き出し電極L2は、絶縁膜220の表面からダイオードセルD2,D4のコンタクト孔275内に入り込み、各コンタクト孔275内でダイオードセルD2,D4の各n+型領域273にオーミック接触している。引き出し電極L2において、コンタクト孔275内でダイオードセルD2,D4に接続されている部分は、セル接続部C2,C4を構成している。アノード電極膜217は、絶縁膜220の表面からコンタクト孔276の内方へと延びており、コンタクト孔276内でp+型の半導体基板202にオーミック接触している。カソード電極膜216およびアノード電極膜217は、この実施形態では、同じ材料からなっている。
電極膜としては、この実施形態では、AlSi膜を用いている。AlSi膜を用いると、半導体基板202の表面にp+型領域を設けることなく、アノード電極膜217をp+型の半導体基板202にオーミック接触させることができる。すなわち、アノード電極膜217をp+型の半導体基板202に直接接触させてオーミック接合を形成できる。したがって、p+型領域を形成するための工程を省くことができる。
カソード電極膜216とアノード電極膜217との間は、スリット279によって分離されている。引き出し電極L1は、ダイオードセルD1からダイオードセルD3を通ってカソードパッド277に至る直線に沿って直線状に形成されている。同様に、引き出し電極L2は、ダイオードセルD2からダイオードセルD4を通ってカソードパッド277に至る直線に沿って直線状に形成されている。引き出し電極L1,L2は、n+型領域273からカソードパッド277まで間の至るところで一様な幅W1,W2をそれぞれ有しており、それらの幅W1,W2は、セル接続部C1,C2,C3,C4の幅よりも広い。セル接続部C1〜C4の幅は、引き出し電極L1,L2の引き出し方向に直交する方向の長さによって定義される。引き出し電極L1,L2の先端部は、n+型領域273の平面形状と整合するように整形されている。引き出し電極L1,L2の基端部は、カソードパッド277に接続されている。スリット279は、引き出し電極L1,L2を縁取るように形成されている。一方、アノード電極膜217は、ほぼ一定の幅のスリット279に対応した間隔を開けて、カソード電極膜216を取り囲むように、絶縁膜220の表面に形成されている。アノード電極膜217は、素子形成面202Aの長手方向に沿って延びる櫛歯状部分と、矩形領域からなるアノードパッド278とを一体的に有している。
カソード電極膜216およびアノード電極膜217は、前述のように、たとえば窒化膜からなる保護膜223によって覆われており、さらに保護膜223の上には樹脂膜224が形成されている。保護膜223および樹脂膜224を貫通するように、カソードパッド277を露出させるパッド開口219と、アノードパッド278を露出させるパッド開口229とが形成されている。パッド開口219,229に第1外部接続電極203および第2外部接続電極204がそれぞれ埋め込まれている。保護膜223および樹脂膜224は、引き出し電極L1,L2およびpn接合領域274への水分の浸入を抑制または防止すると共に、外部からの衝撃等を吸収し、ダイオード207の耐久性の向上に寄与している。
各ダイオードセルD1〜D4では、p型の半導体基板202とn+型領域273との間にpn接合領域274が形成されており、したがって、それぞれpn接合ダイオードが形成されている。そして、複数のダイオードセルD1〜D4のn+型領域273がカソード電極膜216に共通に接続され、ダイオードセルD1〜D4の共通のp型領域であるp+型の半導体基板202がアノード電極膜217に共通に接続されている。これによって、半導体基板202上に形成された複数のダイオードセルD1〜D4は、すべて並列に接続されている。
図37は、前記ダイオードの内部の電気的構造を示す電気回路図である。
ダイオードセルD1〜D4によってそれぞれ構成されるpn接合ダイオードは、カソード側がカソード電極膜216によって共通接続され、アノード側がアノード電極膜217によって共通接続されることによって、全て並列に接続されており、これによって、全体として1つのダイオードとして機能する。
この実施形態の構成によれば、ダイオード207は複数のダイオードセルD1〜D4を有しており、各ダイオードセルD1〜D4がpn接合領域274を有している。pn接合領域274は、ダイオードセルD1〜D4毎に分離されている。そのため、ダイオード207は、pn接合領域274の周囲長、すなわち、半導体基板202におけるn+型領域273の周囲長の合計(総延長)が長くなる。これにより、pn接合領域274の近傍における電界の集中を回避し、その分散を図ることができるので、ESD耐量の向上を図ることができる。すなわち、ダイオード207を小型に形成する場合であっても、pn接合領域274の総周囲長を大きくすることができるから、ダイオード207の小型化とESD耐量の確保とを両立することができる。
図38は、同面積の半導体基板上に形成するダイオードセルの大きさおよび/またはダイオードセルの個数を様々に設定して、pn接合領域の周囲長の合計(総延長)を異ならせた複数のサンプルについてESD耐量を測定した実験結果を示す。この実験結果から、pn接合領域の周囲長が長くなるほど、ESD耐量が大きくなることが分かる。4個以上のダイオードセルを半導体基板上に形成した場合に、8キロボルトを超えるESD耐量を実現することができた。
さらに、この実施形態では、引き出し電極L1,L2の幅W1,W2が、セル接続部C1〜C4からカソードパッド277までの間の至るところで、セル接続部C1〜C4の幅よりも広い。これにより、許容電流量を大きくとることができ、エレクトロマイグレーションを低減して、大電流に対する信頼性を向上できる。すなわち、小型でESD耐量が大きく、しかも大電流に対する信頼性をも確保したチップダイオードを提供できる。
また、この実施形態では、カソードパッド277に向かう直線上に並んだ複数のダイオードセルD1,D3;D2,D4が直線状の共通の引き出し電極L1,L2によって、カソードパッド277に接続されている。これにより、ダイオードセルD1〜D4からカソードパッド277までの引き出し電極の長さを最小にできるから、エレクトロマイグレーションを一層効果的に低減できる。また、複数のダイオードセルD1,D3;D2,D4で一つの引き出し電極L1;L2を共有できるから、多数のダイオードセルD1〜D4を形成してダイオード接合領域(pn接合領域274)の周囲長の増加を図りながら、線幅の広い引き出し電極を半導体基板202上にレイアウトできる。これにより、ESD耐量の一層の向上とエレクトロマイグレーションの低減とを両立して、信頼性を一層向上できる。
また、引き出し電極L1,L2の端部がn+型領域273の形状(多角形)に整合するように部分多角形形状となっているので、引き出し電極L1,L2の占有面積を小さくしながら、n+型領域273と接続できる。
また、この実施形態では、半導体基板202上に絶縁膜220が形成されており、その絶縁膜220に形成されたコンタクト孔275を介してダイオードセルD1〜D4に引き出し電極L1,L2のセル接続部C1〜C4が接続されている。そして、コンタクト孔275の外の領域において絶縁膜220上にカソードパッド277が配置されている。つまり、pn接合領域274の直上から離れた位置にカソードパッド277が設けられている。また、絶縁膜220に形成されたコンタクト孔276を介してアノード電極膜217が半導体基板202に接続されており、コンタクト孔276の外の領域において絶縁膜220上にアノードパッド278が配置されている。アノードパッド278もまた、pn接合領域274の直上から離れた位置にある。これにより、図22(b)に示すようにチップ部品201を回路基板209に実装するときに、pn接合領域274に大きな衝撃が加わることを回避できる。それによって、pn接合領域274の破壊を回避できるので、外力に対する耐久性に優れたチップ部品201を実現できる。
また、この実施形態では、アノード電極膜217がAlSi膜からなっている。AlSi膜は、p型半導体(とくにp型シリコン半導体)と仕事関数が近似しており、そのため、p+型の半導体基板202との間に良好なオーミック接合を形成することができる。よって、p型+半導体基板202にオーミック接合のための高不純物濃度拡散層を形成する必要がない。これにより、製造工程が簡単になるので、それに応じて生産性および生産コストを低減できる。
<チップ部品の製造方法>
図39は、前記チップ部品の製造工程の一例を説明するための工程図である。図40は、半導体ウエハに溝を形成するために用いられるレジストパターンの一部の模式的な平面図である。図41(a)は、前記溝が形成された後の半導体ウエハの模式的な平面図であり、図41(b)は、図41(a)における一部の拡大図である。図42A〜Cは、前記チップ部品の製造工程途中の構成を示す断面図である。図43は、ポリイミドのシートを前記半導体ウエハに貼り付ける状態を示す図解的な斜視図である。
まず、半導体基板202の元基板としてのp+型の半導体ウエハ230が用意される。半導体ウエハ230の表面230Aは、半導体基板202の素子形成面202Aであり、半導体ウエハ230の裏面230Bは、半導体基板202の裏面202Bである。
次に、図39と共に図34および図35を参照して、p+型の半導体ウエハ230の表面230A(半導体基板202の素子形成面202A)に、熱酸化膜やCVD酸化膜等の絶縁膜220(たとえば8000Å〜8600Åの厚さ)が形成され(S1)、その上にレジストマスクが形成される(S2)。このレジストマスクを用いたエッチングによって、n+型領域273に対応する開口が絶縁膜220に形成される(S3)。さらに、レジストマスクを剥離した後に、絶縁膜220に形成された開口から露出する半導体ウエハ230の表層部にn型不純物が導入される(S4)。n型不純物の導入は、n型不純物としての燐を表面に堆積させる工程(いわゆるリンデポ)によって行われてもよいし、n型不純物イオン(たとえば燐イオン)の注入によって行われてもよい。リンデポとは、半導体ウエハ230を拡散炉内に搬入し、拡散路内でPOCl3ガスを流して行う熱処理によって、絶縁膜220の開口内で露出する半導体ウエハ230の表面230Aに燐を堆積させる処理である。必要に応じて絶縁膜220を厚膜化(たとえばCVD酸化膜形成により1200Å程度厚膜化)した後(S5)、半導体ウエハ230に導入された不純物イオンを活性化するための熱処理(ドライブ)が行われる(S6)。これにより、半導体ウエハ230の表層部にn+型領域273が形成される。
次に、コンタクト孔275,276に整合する開口を有するさらに別のレジストマスクが絶縁膜220の上に形成される(S7)。このレジストマスクを介するエッチングによって、絶縁膜220にコンタクト孔275,276が形成される(S8)、その後、レジストマスクが剥離される。
次に、たとえばスパッタリングによって、カソード電極膜216およびアノード電極膜217を形成するための電極膜が絶縁膜220上に形成される(S9)。この実施形態では、AlSiからなる電極膜(たとえば厚さ10000Å)が形成される。そして、この電極膜上に、スリット279に対応する開口パターンを有する別のレジストマスクが形成され(S10)、このレジストマスクを介するエッチング(たとえば反応性イオンエッチング)によって、電極膜にスリット279が形成される(S11)。スリット279の幅は、3μm程度であってもよい。これにより、前記電極膜が、カソード電極膜216およびアノード電極膜217に分離される。
次に、図39と共に図32を参照して、レジスト膜を剥離した後、たとえばスパッタリングによって、絶縁膜220の上にTiNまたはTiONの抵抗体膜221が形成され(S12)、さらに、抵抗体膜221の上にアルミニウム(Al)の配線膜222が積層される(S13)。その後、フォトリソグラフィプロセスを用い、たとえばドライエッチングにより抵抗体膜221および配線膜222が選択的に除去される(S14)。これにより、平面視で、抵抗体膜221が積層された一定幅の抵抗体膜ライン221Aが一定間隔をあけて列方向に配列された構成を得る。このとき、部分的に抵抗体膜ライン221Aおよび配線膜222が切断された領域も形成される。続いて、抵抗体膜ライン221Aの上に積層された配線膜222を選択的に除去する。この結果、抵抗体膜ライン221A上に一定間隔Rをあけて配線膜222(第1配線膜214および第2配線膜215)が積層された構成の抵抗回路網271が得られる。
次に、開口を有するレジストパターン241が形成される。レジストパターン241は、図40に示すように、多数のチップ部品201を行列状(格子状でもある)に配置した場合において平面視で隣り合うチップ部品201の輪郭の間の領域(図40においてハッチングを付した部分)に整合する開口242を有している。そのため、開口242の全体形状は、互いに直交する直線部分242Aおよび242Bを複数有する格子状になっている。また、直線部分242Aおよび242Bのいずれか(ここでは、直線部分242A)には、チップ部品201の凹部210(図22(a)参照)に応じて、直線部分242Aから直交して突出する突出部分242Cが連続して設けられている。
ここで、チップ部品201では、前述したように、コーナー部211,212がラウンド形状になっている(図22(a)参照)。これに応じて、開口242において互いに直交する直線部分242Aおよび242Bは、互いに湾曲しながらつながっている。また、互いに直交する直線部分242Aおよび突出部分242Cも、互いに湾曲しながらつながっている。そのため、直線部分242Aおよび242Bの交差部分243Aならびに直線部分242Aおよび突出部分242Cの交差部分243Bは、角の丸いラウンド形状となっている。また、突出部分242Cにおいて交差部分243B以外の部分における角も丸くなっている。
そして、レジストパターン241をマスクとするプラズマエッチングにより、絶縁膜220および半導体ウエハ230のそれぞれを選択的に除去する。これにより、平面視においてレジストパターン241の開口242と一致する位置には、絶縁膜220を貫通して半導体ウエハ230の厚さ途中まで到達する溝244が形成される(S15)。溝244は、図42A〜Cに示すように、互いに対向する側面と、対向する側面の下端(半導体ウエハ230の裏面230B側の端)とを結ぶ底面とを有している。半導体ウエハ230の表面230Aを基準とした溝244の深さは約100μmであり、溝244の幅は約20μmである。
図41(b)を参照して、溝244の全体形状は、平面視でレジストパターン241の開口242(図40参照)と一致する格子状になっている。そして、半導体ウエハ230の表面230Aでは、各複合素子205が形成された領域のまわりを溝244における矩形枠体部分が取り囲んでいる。半導体ウエハ230において溝244に取り囲まれた部分は、チップ部品201の半製品250である。半導体ウエハ230の表面230Aでは、溝244に取り囲まれた領域に半製品250が1つずつ位置していて、これらの半製品250は、行列状に整列配置されている。
溝244が形成された後、レジストパターン241が除去され、図42Aに示すように、半導体ウエハ230の表面230Aに、CVD法によって保護膜223が形成される(S16)。保護膜223は、約3000Åの厚さを有している。保護膜223は、半導体ウエハ230の表面230A全域だけでなく、溝244の内面も覆うように形成される。なお、保護膜223は、溝244の内面に略一定の厚さに形成された薄膜であるので、溝244を埋め尽くしていない。次に、保護膜223が選択的にエッチングされることによって、第1配線膜214、第2配線膜215、カソード電極膜216およびアノード電極膜217を露出させる開口280が形成される(S17)。
次に、図42Bに示すように、プローブ281を用いたEDS(Electrical Die Sorting)測定が行われる(S18)。EDS測定は、第1配線膜214と第2配線膜215との間にプローブ281を接触させて抵抗206の電気的特性を検査する抵抗測定と、カソード電極膜216とアノード電極膜217との間にプローブ281を接触させてダイオード207の電気的特性を検査するダイオード測定とが別々の工程で行われる。これにより、抵抗206およびダイオード207の各電気的特性を互いに独立した値として得ることができる。
次に、図43(a)に示すように、ポリイミドからなる感光性樹脂のシート246が、半導体ウエハ230に対して、溝244以外における保護膜223の上から貼着される(S19)。
半導体ウエハ230に対して表面230A側からポリイミドのシート246が被せられた後に、図43(b)に示すように、回転するローラ247によってシート246が半導体ウエハ230に押し付けられる。シート246が溝244以外における保護膜223の表面全域に貼り付けられたとき、シート246の一部が溝244側に僅かに入り込んでいるものの、溝244の側面の上端部を覆っているだけで、シート246は、溝244の底面まで届いていない。そのため、シート246と溝244の底面との間の溝244内には、溝244とほぼ同じ大きさの空間が形成される。このときのシート246の厚さは、10μm〜30μmである。
次に、シート246に熱処理が施される(S20)。これにより、シート246の厚みは、約5μmまで熱収縮する。
次に、シート246がパターニング(露光・現像)され、シート246において平面視で溝244と一致する部分が選択的に除去される(S21)。これにより、溝244の上方でシート246が分離されると共に、シート246において分離された縁部分が溝244側へ少し垂れつつ、溝244の側面上の保護膜223に重なる。これにより、当該縁部分に、前述したラウンド形状の張出部が自然に形成された樹脂膜224が得られる。
次に、図42Cに示すように、エッチングによって、樹脂膜224および保護膜223が選択的に除去されることによって、パッド開口218,219,228,229が同時に形成される(S22)。
次に、図42Cに示すように、無電解めっきによって、Ni、PdおよびAuを積層することで構成されたNi/Pd/Au積層膜が、各パッド開口218,219,228,229に露出した膜214〜217から成長する。このめっき工程は、互いに隣り合うパッド開口218,219から成長する積層膜が、これらの間の保護膜223に跨って一体化するまで続けられる。同様に、互いに隣り合うパッド開口228,229から成長する積層膜も、これらの間の保護膜223に跨って一体化される。これにより、第1配線膜214およびカソード電極膜216に対する共通の第1外部接続電極203と、第2配線膜215およびアノード電極膜217に対する共通の第2外部接続電極204とが同時に形成される(S23)。
次に、第1外部接続電極203および第2外部接続電極204間での通電検査が行われた後に、半導体ウエハ230が裏面230Bから研削される。ここで、半導体ウエハ230において溝244の側面をなす部分の全域が保護膜223によって被覆されているため、半導体ウエハ230の研削中に、当該部分に微小クラック等が発生することを防止すると共に、仮に微小クラックが発生しても当該微小クラックを保護膜223で埋めることによって当該微小クラックの拡大を抑制できる。
そして、研削によって、溝244の底面に達するまで半導体ウエハ230が薄型化されると、隣り合う半製品250を連結するものがなくなるので、溝244を境界として半導体ウエハ230が分割され、半製品250がチップ部品201となって個別に分離する。これにより、チップ部品201が完成する。チップ部品201のチップサイズが小さくても、このように先に溝244を形成しておいてから半導体ウエハ230を裏面230Bから研削することによって、チップ部品201を個片にすることができる。そのため、従来のようにダイシングソーで半導体ウエハ230をダイシングすることでチップ部品201を個片にする場合と比べて、ダイシング工程省略によって、コスト低減や時間短縮を図り、歩留まり向上を達成できる。
この実施形態によれば、抵抗206の第1配線膜214および第2配線膜215と、ダイオード207のカソード電極膜216およびアノード電極膜217とが互いに独立しているので、これら複数の素子を並列接続する場合であっても、図42Bに示すように、抵抗206およびダイオード207の電気的特性を互いに独立して測定することができる。さらに、このEDS測定の後には、互いに独立していた電極膜同士が共通の第1外部接続電極203および第2外部接続電極204によって電気的に接続される。その結果、2電極のチップ部品201(複合素子)を提供することができる。
また、たとえば図22(a)に示すように、パッド開口218,219間のスペースW1およびパッド開口228,229間のスペースW2を適切な大きさにすることによって、第1配線膜214とカソード電極膜216同士、および第2配線膜215とアノード電極膜217同士をめっき成長によって簡単に結合することができる。
また、この実施形態では、半導体基板202がp型半導体からなっているので、半導体基板202上にエピタキシャル層を形成しなくても、安定した特性を実現できる。すなわち、n型の半導体ウエハは抵抗率の面内ばらつきが大きいので、n型半導体ウエハを用いるときには、その表面に抵抗率の面内ばらつきの少ないエピタキシャル層を形成し、このエピタキシャル層に不純物拡散層を形成してpn接合を形成する必要がある。これは、n型不純物の偏析係数が小さいために、半導体ウエハの元となるインゴット(たとえばシリコンインゴット)を形成するときに、ウエハの中心部と周縁部とで抵抗率の差が大きくなるからである。これに対して、p型不純物の偏析係数は比較的大きいので、p型半導体ウエハは抵抗率の面内ばらつきが少ない。したがって、p型半導体ウエハを用いることによって、エピタキシャル層を形成することなく、安定した特性のダイオードをウエハのいずれの箇所からも切り出すことができる。よって、p+型の半導体基板202を用いることによって、製造工程を簡単にでき、かつ製造コストを低減できる。
図44Aおよび図44Bは、AlSi電極膜とp+型半導体基板とのオーミック接触を説明するための図である。
図44Aは、p+型シリコン基板上にAlSi膜を形成したときの、p+型シリコン基板とAlSi膜との間における電圧対電流特性を示す。印加電圧に対して電流が比例しており、良好なオーミック接触が形成されていることがわかる。図43Bには、比較のために、p+型シリコン基板上に形成する電極膜を、Ti膜、TiN膜およびAlCu膜を基板表面から順に積層した積層膜で構成した場合における同様の特性を曲線290で示す。電圧対電流特性がリニアな特性となっておらず、オーミック接触が得られないことが分かる。一方、p+型シリコン基板の表面に、より高濃度にp型不純物を導入した高濃度領域を形成し、その高濃度領域に対して、Ti膜、TiN膜およびAlCu膜を基板表面から順に積層した積層膜からなる電極膜を接触させた場合の電圧対電流特性を曲線291で示す。この場合には、電圧対電流特性がリニアな特性となっていて、良好なオーミック接触が得られていることが分かる。これらのことから、電極膜としてAlSi膜を用いることによって、p+型半導体基板に高濃度領域を形成することなく、p+型半導体基板にオーミック接触するカソード電極膜およびアノード電極膜を形成でき、それによって、製造工程を簡単にできることが分かる。
図45は、ダイオード207のツェナー電圧(Vz)の調整に関する特徴を説明するための図である。すなわち、ダイオード207をツェナーダイオードとして構成する場合のツェナー電圧調整についての特徴が示されている。より具体的に説明すると、n+型領域273を形成するためにn型不純物(たとえば燐)を半導体基板202の表層部に導入した後、その導入された不純物を活性化するための熱処理(ドライブ)が行われる。この熱処理の温度および時間に応じて、ツェナー電圧が変化する。具体的には、熱処理時に半導体基板202に加えられる熱量が多い程、ツェナー電圧が高くなる傾向がある。この傾向を利用して、ツェナー電圧を調整することができる。図45から理解されるように、ツェナー電圧は、不純物のドーズ量よりも、熱処理時の熱量に大きく依存している。
図46は、ツェナー電圧(Vz)の調整に関する別の特徴を説明するための図である。具体的には、半導体基板202に導入されたn型不純物を活性化するための熱処理時の温度に対するツェナー電圧の変化が示されており、曲線293は抵抗率の比較的低い(たとえば5mΩ)半導体基板を用いた場合のツェナー電圧を示し、曲線294は抵抗率の比較的高い(たとえば15〜18mΩ)半導体基板を用いた場合のツェナー電圧を示している。曲線293,294の比較から、ツェナー電圧が半導体基板の抵抗率に依存することが分かる。したがって、目的とするツェナー電圧に応じて適切な抵抗率の半導体基板を適用することによって、ツェナー電圧を設計値に合わせることができる。
図47は、前記チップ部品が用いられる電子機器の一例であるスマートフォンの外観を示す斜視図である。
スマートフォン401は、扁平な直方体形状の筐体402の内部に電子部品を収納して構成されている。筐体402は表側および裏側に長方形状の一対の主面を有しており、その一対の主面が4つの側面で結合されている。筐体402の一つの主面には、液晶パネルや有機ELパネル等で構成された表示パネル403の表示面が露出している。表示パネル403の表示面は、タッチパネルを構成しており、使用者に対する入力インターフェースを提供している。
表示パネル403は、筐体402の一つの主面の大部分を占める長方形形状に形成されている。表示パネル403の一つの短辺に沿うように、操作ボタン404が配置されている。この実施形態では、複数(3つ)の操作ボタン404が表示パネル403の短辺に沿って配列されている。使用者は、操作ボタン404およびタッチパネルを操作することによって、スマートフォン401に対する操作を行い、必要な機能を呼び出して実行させることができる。
表示パネル403の別の一つの短辺の近傍には、スピーカ405が配置されている。スピーカ405は、電話機能のための受話口を提供すると共に、音楽データ等を再生するための音響化ユニットとしても用いられる。一方、操作ボタン404の近くには、筐体402の一つの側面にマイクロフォン406が配置されている。マイクロフォン406は、電話機能のための送話口を提供するほか、録音用のマイクロフォンとして用いることもできる。
図48は、前記スマートフォンの筐体に収容された電子回路アセンブリの構成を示す図解的な平面図である。
電子回路アセンブリ410は、配線基板411と、配線基板411の実装面に実装された回路部品とを含む。複数の回路部品は、複数の集積回路素子(IC)412−420と、複数のチップ部品とを含む。複数のICは、伝送処理IC412、ワンセグTV受信IC413、GPS受信IC414、FMチューナIC415、電源IC416、フラッシュメモリ417、マイクロコンピュータ418、電源IC419およびベースバンドIC420を含む。複数のチップ部品は、チップインダクタ421,425,435、チップ抵抗器422,424,433、チップキャパシタ427,430,434、およびチップダイオード428,431を含む。これらのチップ部品は、たとえばフリップチップ接合により配線基板411の実装面上に実装されている。チップインダクタ421,425,435、チップ抵抗器422,424,433、チップキャパシタ427,430,434、およびチップダイオード428,431には、前述のチップ部品201の構造を適用できる。
伝送処理IC412は、表示パネル403に対する表示制御信号を生成し、かつ表示パネル403の表面のタッチパネルからの入力信号を受信するための電子回路を内蔵している。表示パネル403との接続のために、伝送処理IC412には、フレキシブル配線409が接続されている。
ワンセグTV受信IC413は、ワンセグ放送(携帯機器を受信対象とする地上デジタルテレビ放送)の電波を受信するための受信機を構成する電子回路を内蔵している。ワンセグTV受信IC413の近傍には、複数のチップインダクタ421と、複数のチップ抵抗器422とが配置されている。ワンセグTV受信IC413、チップインダクタ421およびチップ抵抗器422は、ワンセグ放送受信回路423を構成している。チップインダクタ421およびチップ抵抗器422は、正確に合わせ込まれたインダクタンスおよび抵抗をそれぞれ有し、ワンセグ放送受信回路423に高精度な回路定数を与える。
GPS受信IC414は、GPS衛星からの電波を受信してスマートフォン401の位置情報を出力する電子回路を内蔵している。
FMチューナIC415は、その近傍において配線基板411に実装された複数のチップ抵抗器424および複数のチップインダクタ425と共に、FM放送受信回路426を構成している。チップ抵抗器424およびチップインダクタ425は、正確に合わせ込まれた抵抗値およびインダクタンスをそれぞれ有し、FM放送受信回路426に高精度な回路定数を与える。
電源IC416の近傍には、複数のチップキャパシタ427および複数のチップダイオード428が配線基板411の実装面に実装されている。電源IC416は、チップキャパシタ427およびチップダイオード428と共に、電源回路429を構成している。
フラッシュメモリ417は、オペレーティングシステムプログラム、スマートフォン401の内部で生成されたデータ、通信機能によって外部から取得したデータおよびプログラムなどを記録するための記憶装置である。
マイクロコンピュータ418は、CPU、ROMおよびRAMを内蔵しており、各種の演算処理を実行することにより、スマートフォン401の複数の機能を実現する演算処理回路である。より具体的には、マイクロコンピュータ418の働きにより、画像処理や各種アプリケーションプログラムのための演算処理が実現されるようになっている。
電源IC419の近くには、複数のチップキャパシタ430および複数のチップダイオード431が配線基板411の実装面に実装されている。電源IC419は、チップキャパシタ430およびチップダイオード431と共に、電源回路432を構成している。
ベースバンドIC420の近くには、複数のチップ抵抗器433、複数のチップキャパシタ434、および複数のチップインダクタ435が、配線基板411の実装面に実装されている。ベースバンドIC420は、チップ抵抗器433、チップキャパシタ434およびチップインダクタ435と共に、ベースバンド通信回路436を構成している。ベースバンド通信回路436は、電話通信およびデータ通信のための通信機能を提供する。
このような構成によって、電源回路429,432によって適切に調整された電力が、伝送処理IC412、GPS受信IC414、ワンセグ放送受信回路423、FM放送受信回路426、ベースバンド通信回路436、フラッシュメモリ417およびマイクロコンピュータ418に供給される。マイクロコンピュータ418は、伝送処理IC412を介して入力される入力信号に応答して演算処理を行い、伝送処理IC412から表示パネル403に表示制御信号を出力して表示パネル403に各種の表示を行わせる。
タッチパネルまたは操作ボタン404の操作によってワンセグ放送の受信が指示されると、ワンセグ放送受信回路423の働きによってワンセグ放送が受信される。そして、受信された画像を表示パネル403に出力し、受信された音声をスピーカ405から音響化させるための演算処理が、マイクロコンピュータ418によって実行される。
また、スマートフォン401の位置情報が必要とされるときには、マイクロコンピュータ418は、GPS受信IC414が出力する位置情報を取得し、その位置情報を用いた演算処理を実行する。
さらに、タッチパネルまたは操作ボタン404の操作によってFM放送受信指令が入力されると、マイクロコンピュータ418は、FM放送受信回路426を起動し、受信された音声をスピーカ405から出力させるための演算処理を実行する。
フラッシュメモリ417は、通信によって取得したデータの記憶や、マイクロコンピュータ418の演算や、タッチパネルからの入力によって作成されたデータを記憶するために用いられる。マイクロコンピュータ418は、必要に応じて、フラッシュメモリ417に対してデータを書き込み、またフラッシュメモリ417からデータを読み出す。
電話通信またはデータ通信の機能は、ベースバンド通信回路436によって実現される。マイクロコンピュータ418は、ベースバンド通信回路436を制御して、音声またはデータを送受信するための処理を行う。
以上、この発明の参考例の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。
たとえば、複合素子205において抵抗206およびダイオード207の代わりに、キャパシタ、インダクタ等、様々な素子を設けてもよく、またその組み合わせの適宜変更することができる。
また、第1外部接続電極203および第2外部接続電極204は、めっき法以外の方法によって形成してもよい。
また、ダイオード207の一例として、4個のダイオードセルが半導体基板上に形成された例を示したけれども、半導体基板上に1個、2個または3個のダイオードセルが形成されていてもよく、4個以上のダイオードセルが形成されていてもよい。
なお、この参考例の実施形態の内容から、特許請求の範囲に記載した発明以外にも、以下のような特徴が抽出され得る。
(項1)
素子形成面を有する基板と、
前記素子形成面に互いに独立して形成された第1素子および第2素子を含み、第1外部接続電極および第2外部接続電極の2電極からなる外部接続電極を有する複合素子と、
前記第1素子の一方および他方の極として形成された第1内部電極および第2内部電極と、
前記第2素子の一方および他方の極として形成された第3内部電極および第4内部電極とを含み、
前記第1外部接続電極は前記第1内部電極および前記第3内部電極に共通に接続され、
前記第2外部接続電極は前記第2内部電極および前記第4内部電極に共通に接続されている、チップ部品。
この構成によれば、第1素子の第1内部電極および第2内部電極と、第2素子の第3内部電極および第4内部電極とが互いに独立しているので、これら複数の素子を並列接続する場合であっても、第1素子および第2素子の電気的特性を互いに独立して測定することができる。一方、互いに独立した第1〜第4内部電極同士が共通の第1外部接続電極および第2外部接続電極によって電気的に接続されている。その結果、2電極のチップ部品(複合素子)を提供することができる。
(項2)
前記第1内部電極、前記第2内部電極、前記第3内部電極および前記第4内部電極を覆うように形成され、当該第1〜第4内部電極の一部をパッドとして露出させるパッド開口が形成された絶縁膜をさらに含み、
前記第1外部接続電極および前記第2外部接続電極は、前記絶縁膜に跨って各前記パッド開口に入り込んでいる、項1に記載のチップ部品。
(項3)
前記第1および第3内部電極用の前記パッド開口間の距離、および/または前記第2および第4内部電極用の前記パッド開口間の距離は、7μm〜10μmである、項2に記載のチップ部品。
これにより、第1内部電極と第3内部電極同士、および第2内部電極と第4内部電極同士をめっき成長によって簡単に結合することができる。
(項4)
前記第1素子は、前記基板上に形成された薄膜抵抗体で形成された抵抗と、前記抵抗に繋がる配線膜とを含み、
前記配線膜の一部が前記第1および第2内部電極を形成している、項1〜3のいずれか一項に記載のチップ部品。
これにより、チップ部品にチップ抵抗器としての機能を付与することができる。
(項5)
前記薄膜抵抗体および前記配線膜の一部がヒューズ素子として用いられている、項4に記載のチップ部品。
ヒューズ素子を溶断することによって、チップ抵抗器では、所望の値の抵抗を発生することができる。
(項6)
前記第2素子は、前記基板に形成されたダイオード接合領域を有する複数のダイオードセルと、前記ダイオードセルの一方の極に接続された第1引き出し電極と、前記ダイオードセルの他方の極に接続された第2引き出し電極とを含み、
前記第1引き出し電極の一部が前記第3内部電極を形成し、前記第2引き出し電極の一部が前記第4内部電極を形成している、項1〜5のいずれか一項に記載のチップ部品。
これにより、チップ部品にチップダイオードとしての機能を付与することができる。
(項7)
前記ダイオード接合領域がpn接合領域である、項6に記載のチップ部品。
(項8)
前記基板がp型半導体基板からなり、前記p型半導体基板との間に前記pn接合領域を形成するn型拡散層が前記p型半導体基板に形成されており、
前記第2引き出し電極が前記半導体基板に電気的に接続されており、
前記第1引き出し電極が前記n型拡散層に接している、項7に記載のチップ部品。
半導体基板がp型半導体基板からなっているので、半導体基板上にエピタキシャル層を形成しなくても、安定した特性を実現できる。すなわち、n型の半導体ウエハは、抵抗率の面内ばらつきが大きいので、表面に抵抗率の面内ばらつきの少ないエピタキシャル層を形成し、このエピタキシャル層に不純物拡散層を形成してpn接合を形成する必要がある。これに対して、p型半導体ウエハは、面内ばらつきが少ないので、エピタキシャル層を形成することなく、安定した特性のダイオードをウエハのいずれの箇所からも切り出すことができる。よって、p型半導体基板を用いることによって、製造工程を簡単にでき、かつ製造コストを低減できる。
(項9)
前記第2引き出し電極が、前記p型半導体基板に接し、AlSiからなる電極膜を含む、項8に記載のチップ部品。
AlSiは、p型半導体(とくにp型シリコン半導体)と仕事関数が近似している。そのため、AlSi電極膜は、p型半導体との間に良好なオーミック接合を形成することができる。よって、p型半導体基板にオーミック接合のための高不純物濃度拡散層を形成する必要がない。これにより、製造工程が一層簡単になるので、それに応じて生産性および生産コストを低減できる。
(項10)
前記第1外部接続電極および前記第2外部接続電極は、Ni層と、Au層とを含み、前記Au層が最表面に露出している、項1〜9のいずれか一項に記載のチップ部品。
この構成によれば、電極では、Ni層の表面がAu層によって覆われているので、Ni層が酸化することを防止できる。
(項11)
前記第1外部接続電極および前記第2外部接続電極が、前記Ni層と前記Au層との間に介装されたPd層をさらに含む、項10に記載のチップ部品。
この構成によれば、電極では、Au層を薄くすることによってAu層に貫通孔(ピンホール)ができてしまっても、Ni層とAu層との間に介装されたPd層が当該貫通孔を塞いでいるので、当該貫通孔からNi層が外部に露出されて酸化することを防止できる。
(項12)
前記基板の前記素子形成面が、コーナー部を丸めた矩形形状を有している、項1〜11のいずれか一項に記載のチップ部品。
この構成によれば、チップ部品の角部の欠け(チッピング)を抑制または防止できるので、外観不良の少ないチップ部品を提供できる。
(項13)
前記矩形形状の少なくとも一辺の途中部に凹部が形成されている、項12に記載のチップ部品。
この場合、凹部によってチップ部品の外形を非対称にすることができることから、この外形によって、チップ部品のチップ方向(実装基板に実装するときのチップ部品の向き)を認識することができるので、チップ部品の外観によってチップ方向を把握できる。
(項14)
実装基板と、
前記実装基板に実装された項1〜13のいずれか一項に記載のチップ部品とを含む、回路アセンブリ。
この構成により、外部接続電極が2電極でありながら、素子単体の電気的特性を互いに独立して測定することができる複合素子を備えるチップ部品を用いた回路アセンブリを提供できる。
(項15)
前記チップ部品が、前記実装基板にワイヤレスボンディングによって接続されている、項14に記載の回路アセンブリ。
この構成により、実装基板上におけるチップ部品の占有空間を小さくできるから、電子部品の高密度実装に寄与できる。
(項16)
項14または15に記載の回路アセンブリと、
前記回路アセンブリを収容した筐体とを含む、電子機器。
この構成により、外部接続電極が2電極でありながら、素子単体の電気的特性を互いに独立して測定することができる複合素子を備えるチップ部品を用いた回路アセンブリを筐体内に収容した電子機器を提供できる。
以上、この発明およびこの発明の参考例の実施形態を説明したが、前述の実施形態は、この発明の技術的内容を明らかにするために用いられた具体例に過ぎず、この発明はこれらの具体例に限定して解釈されるべきではなく、この発明の精神および範囲は添付の請求の範囲によってのみ限定される。
この出願は、2012年11月2日に日本国特許庁に提出された特願2012−242834号および2013年9月4日に日本国特許庁に提出された特願2013−183157号に対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
1 チップコンデンサ(第1の実施形態)
2 シリコン基板
2A 素子形成面
2B 裏面
2C,2D,2E,2F 側面
2a p型領域
3 第1外部電極
3A 長辺
3B 短辺
3a 表面部分
3b 側面部分
4 第2外部電極
4A 長辺
4B 短辺
4a 表面部分
4b 側面部分
5 キャパシタ素子
7 コーナー部
9 実装基板
10 回路アセンブリ
11 ランド
12 吸着ノズル
13 半田
15 n+型不純物拡散層(下部電極)
16 トレンチ
16a 側壁面
16b 底壁面
17 ヒューズユニット
20 容量膜
20a〜20d 開口
21 上部電極膜
21A キャパシタ電極領域
21B パッド領域
21C ヒューズ領域
22 ポリシリコン膜
23 金属膜
24 パッド金属膜
25 下部電極膜
30 電極膜部分
30A 接続部
30B 主要部
30a 階段状縁部
30b 第1直線状縁部
30c 第2直線状縁部
31〜36 電極膜部分
38 レーザ光
39 カバー膜
40 パッシベーション膜
41 樹脂膜
43,44 パッド開口
45 絶縁膜
45a〜45d 開口
46 絶縁膜
46a,46b 開口
50 双方向ダイオード
501 第1ダイオード
502 第2ダイオード
51 n+型不純物拡散層
52 配線膜
52A パッド領域
53 絶縁層
54 パッド開口
60 検査用プローブ
65 キャパシタ領域
66 ダイオード領域
67 p型不純物拡散層
68 n+型不純物拡散層
69 n+型不純物拡散層
71 配線膜
71A パッド領域
72 配線膜
73 配線膜
75 n型シリコンエピタキシャル層
77 n型不純物拡散層
78 p+型不純物拡散層
79 p+型不純物拡散層
81 長辺
82 短辺
85 表面周縁
90 ポリシリコン膜
91,92 n型ポリシリコン領域
93 p型ポリシリコン領域
94 層間絶縁膜
94a〜94f 開口
95 p型ポリシリコン膜
96,97 n型拡散領域
98 第1ポリシリコン膜
98p p型領域
98n n型領域
99 第2ポリシリコン膜
102 チップコンデンサ(第2の実施形態)
103 チップコンデンサ(第3の実施形態)
104 チップコンデンサ(第4の実施形態)
105 チップコンデンサ(第5の実施形態)
106 チップコンデンサ(第6の実施形態)
107 チップコンデンサ(第7の実施形態)
108 チップコンデンサ(第8の実施形態)
109 チップコンデンサ(第9の実施形態)
110 チップコンデンサ(第10の実施形態)
111 チップコンデンサ(第11の実施形態)
112 チップコンデンサ(第12の実施形態)
C0 キャパシタ要素(基本容量素子)
C1〜C6 キャパシタ要素(調整容量素子)
F1〜F6 ヒューズ
201 チップ部品
202 半導体基板
202A 素子形成面
203 第1外部接続電極
204 第2外部接続電極
205 複合素子
206 抵抗
207 ダイオード
209 回路基板
210 凹部
211 コーナー部
214 第1配線膜
215 第2配線膜
216 カソード電極膜
217 アノード電極膜
218 パッド開口
219 パッド開口
221 抵抗体膜
222 配線膜
223 保護膜
224 樹脂膜
228 パッド開口
229 パッド開口
273 n+型領域
274 pn接合領域
277 カソードパッド
278 アノードパッド
401 スマートフォン
402 筐体
410 電子回路アセンブリ
411 配線基板
421 チップインダクタ
422 チップ抵抗器
424 チップ抵抗器
425 チップインダクタ
427 チップキャパシタ
428 チップダイオード
430 チップキャパシタ
431 チップダイオード
433 チップ抵抗器
434 チップキャパシタ
435 チップインダクタ
L1 引き出し電極
L2 引き出し電極

Claims (34)

  1. 基板と、
    前記基板上に形成された一対の外部電極と、
    前記一対の外部電極の間に接続されたキャパシタ素子と、
    前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続された双方向ダイオードとを含み、
    前記基板が第1導電型の半導体基板であり、
    前記キャパシタ素子が、前記半導体基板内に形成された第2導電型の第1不純物拡散層からなる下部電極であって、前記一対の外部電極の一方の外部電極に電気的に接続された下部電極を含み、
    前記双方向ダイオードが、前記第1不純物拡散層と、前記第1不純物拡散層から間隔を空けて前記半導体基板内に形成され、前記一対の外部電極の他方の外部電極に電気的に接続された第2導電型の第2不純物拡散層と、前記第1不純物拡散層と前記第2不純物拡散層との間に挟まれた前記半導体基板の第1導電型の領域とで構成されている、チップコンデンサ。
  2. 前記双方向ダイオードが、前記外部電極の直下の領域に形成されている部分を含む、請求項に記載のチップコンデンサ。
  3. 前記双方向ダイオードの全部が、前記外部電極の直下の領域に形成されている、請求項1または2に記載のチップコンデンサ。
  4. 前記キャパシタ素子に接続された第1パッド部と、前記双方向ダイオードに接続された第2パッド部とをさらに含み、
    前記一対の外部電極の一方が、前記第1パッド部および前記第2パッド部に跨がって形成され、当該第1パッド部および当該第2パッド部を電気的に接続している、請求項1〜3のいずれか一項に記載のチップコンデンサ。
  5. 前記第1パッド部および前記第2パッド部の間に配置され、前記第1パッド部および前記第2パッド部を分離する絶縁層をさらに含み、
    前記外部電極が、前記絶縁層を跨いで前記第1パッド部および前記第2パッド部の両方に接合されている、請求項に記載のチップコンデンサ。
  6. 各外部電極が、前記基板の表面および側面に跨がって形成され、前記表面を覆う表面部分および前記側面を覆う側面部分を一体的に有している、請求項1〜5のいずれか一項に記載のチップコンデンサ。
  7. 前記基板は、平面視において矩形状であり、
    前記外部電極が、前記基板の三方の側面の前記表面側の縁部を覆うように形成されている、請求項に記載のチップコンデンサ。
  8. 前記キャパシタ素子が、
    記下部電極に積層された容量膜と、
    前記容量膜に積層され、前記容量膜を挟んで前記下部電極に対向し、前記一対の外部電極の他方に接続された上部電極とを含む、請求項1〜7のいずれか一項に記載のチップコンデンサ。
  9. 前記基板に当該基板の主面と交差する側壁面を有するトレンチが形成されており、前記容量膜が前記トレンチの側壁面に沿って形成されている、請求項に記載のチップコンデンサ。
  10. 前記上部電極が、前記トレンチに埋め込まれたポリシリコン膜を含む、請求項に記載のチップコンデンサ。
  11. 前記キャパシタ素子が、複数のキャパシタ要素を含み、
    前記基板上に設けられ、前記複数のキャパシタ要素をそれぞれ切り離し可能に前記外部電極に接続する複数のヒューズをさらに含む、請求項1〜10のいずれか一項に記載のチップコンデンサ。
  12. 前記キャパシタ素子が、前記一対の外部電極の間に並列に接続された複数のキャパシタ要素を含み、
    前記複数のキャパシタ要素が、
    基本容量素子と、
    複数の調整容量素子とを含み、
    前記複数の調整容量素子が、複数のヒューズを介して、それぞれ、前記外部電極に接続されている、請求項1〜10のいずれか一項に記載のチップコンデンサ。
  13. 前記複数の調整容量素子が、互いに平行な短冊形状を有し、前記一対の外部電極の一方側に一端を整列させて、長さの順に配列されており、
    前記基本容量素子が、前記複数の調整容量素子のうち、最短の長さの調整容量素子に隣接して前記一方の外部電極に接続される接続部と、前記接続部と一体的に、前記複数の調整容量素子を回避するように形成され、前記一対の外部電極の他方に向かうに従って幅広になる主要部とを含む、請求項12に記載のチップコンデンサ。
  14. 前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続された抵抗素子を含む、請求項1〜13のいずれか一項に記載のチップコンデンサ
  15. 請求項1〜14のいずれか一項に記載のチップコンデンサと、
    前記基板の表面に対向する実装面に、前記外部電極に半田接合されたランドを有する実装基板とを含む、回路アセンブリ。
  16. 前記チップコンデンサが、請求項6または7に係るチップコンデンサであって、
    田が前記外部電極の前記表面部分および前記側面部分を覆うように形成されている、請求項15に記載の回路アセンブリ。
  17. 請求項15または16に記載の回路アセンブリと、
    前記回路アセンブリを収容した筐体とを含む、電子機器。
  18. 基板と、
    前記基板上に形成された一対の外部電極と、
    前記一対の外部電極の間に接続されたキャパシタ素子と、
    前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続されたダイオードとを含み、
    前記基板が第1導電型の半導体基板であり、
    前記キャパシタ素子が、前記半導体基板内に形成された第2導電型の第1不純物拡散層からなる下部電極であって、前記一対の外部電極の一方の外部電極に電気的に接続された下部電極を含み、
    前記半導体基板には、前記第1不純物拡散層から間隔を空けて第2導電型の第2不純物拡散層が形成されており、
    前記ダイオードが、前記第1不純物拡散層と、前記第1不純物拡散層と前記第2不純物拡散層との間に挟まれた前記半導体基板の第1導電型の領域とで構成されている、チップコンデンサ。
  19. 前記ダイオードが、前記外部電極の直下の領域に形成されている部分を含む、請求項18に記載のチップコンデンサ。
  20. 前記ダイオードの全部が、前記外部電極の直下の領域に形成されている、請求項18または19に記載のチップコンデンサ。
  21. 前記キャパシタ素子に接続された第1パッド部と、前記ダイオードに接続された第2パッド部とをさらに含み、
    前記一対の外部電極の一方が、前記第1パッド部および前記第2パッド部に跨がって形成され、当該第1パッド部および当該第2パッド部を電気的に接続している、請求項18〜20のいずれか一項に記載のチップコンデンサ。
  22. 前記第1パッド部および前記第2パッド部の間に配置され、前記第1パッド部および前記第2パッド部を分離する絶縁層をさらに含み、
    前記外部電極が、前記絶縁層を跨いで前記第1パッド部および前記第2パッド部の両方に接合されている、請求項21に記載のチップコンデンサ。
  23. 各外部電極が、前記基板の表面および側面に跨がって形成され、前記表面を覆う表面部分および前記側面を覆う側面部分を一体的に有している、請求項18〜22のいずれか一項に記載のチップコンデンサ。
  24. 前記基板は、平面視において矩形状であり、
    前記外部電極が、前記基板の三方の側面の前記表面側の縁部を覆うように形成されている、請求項23に記載のチップコンデンサ。
  25. 前記キャパシタ素子が、
    記下部電極に積層された容量膜と、
    前記容量膜に積層され、前記容量膜を挟んで前記下部電極に対向し、前記一対の外部電極の他方に接続された上部電極とを含む、請求項18〜24のいずれか一項に記載のチップコンデンサ。
  26. 前記基板に当該基板の主面と交差する側壁面を有するトレンチが形成されており、前記容量膜が前記トレンチの側壁面に沿って形成されている、請求項25に記載のチップコンデンサ。
  27. 前記上部電極が、前記トレンチに埋め込まれたポリシリコン膜を含む、請求項26に記載のチップコンデンサ。
  28. 前記キャパシタ素子が、複数のキャパシタ要素を含み、
    前記基板上に設けられ、前記複数のキャパシタ要素をそれぞれ切り離し可能に前記外部電極に接続する複数のヒューズをさらに含む、請求項18〜27のいずれか一項に記載のチップコンデンサ。
  29. 前記キャパシタ素子が、前記一対の外部電極の間に並列に接続された複数のキャパシタ要素を含み、
    前記複数のキャパシタ要素が、
    基本容量素子と、
    複数の調整容量素子とを含み、
    前記複数の調整容量素子が、複数のヒューズを介して、それぞれ、前記外部電極に接続されている、請求項18〜27のいずれか一項に記載のチップコンデンサ。
  30. 前記複数の調整容量素子が、互いに平行な短冊形状を有し、前記一対の外部電極の一方側に一端を整列させて、長さの順に配列されており、
    前記基本容量素子が、前記複数の調整容量素子のうち、最短の長さの調整容量素子に隣接して前記一方の外部電極に接続される接続部と、前記接続部と一体的に、前記複数の調整容量素子を回避するように形成され、前記一対の外部電極の他方に向かうに従って幅広になる主要部とを含む、請求項29に記載のチップコンデンサ。
  31. 前記一対の外部電極の間に、前記キャパシタ素子に対して並列に接続された抵抗素子を含む、請求項18〜30のいずれか一項に記載のチップコンデンサ
  32. 請求項18〜31のいずれか一項に記載のチップコンデンサと、
    前記基板の表面に対向する実装面に、前記外部電極に半田接合されたランドを有する実装基板とを含む、回路アセンブリ。
  33. 前記チップコンデンサが、請求項23または24に係るチップコンデンサであって、
    田が前記外部電極の前記表面部分および前記側面部分を覆うように形成されている、請求項32に記載の回路アセンブリ。
  34. 請求項32または33に記載の回路アセンブリと、
    前記回路アセンブリを収容した筐体とを含む、電子機器。
JP2014544477A 2012-11-02 2013-10-25 チップコンデンサ、回路アセンブリ、および電子機器 Active JP6461603B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012242834 2012-11-02
JP2012242834 2012-11-02
JP2013183157 2013-09-04
JP2013183157 2013-09-04
PCT/JP2013/078969 WO2014069363A1 (ja) 2012-11-02 2013-10-25 チップコンデンサ、回路アセンブリ、および電子機器

Publications (2)

Publication Number Publication Date
JPWO2014069363A1 JPWO2014069363A1 (ja) 2016-09-08
JP6461603B2 true JP6461603B2 (ja) 2019-01-30

Family

ID=50627271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544477A Active JP6461603B2 (ja) 2012-11-02 2013-10-25 チップコンデンサ、回路アセンブリ、および電子機器

Country Status (4)

Country Link
US (4) US9288908B2 (ja)
JP (1) JP6461603B2 (ja)
CN (2) CN104769691A (ja)
WO (1) WO2014069363A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769691A (zh) * 2012-11-02 2015-07-08 罗姆股份有限公司 片状电容器、电路组件以及电子设备
JP6547932B2 (ja) * 2013-12-27 2019-07-24 ローム株式会社 チップ部品およびその製造方法、ならびに当該チップ部品を備えた回路アセンブリおよび電子機器
JP6723689B2 (ja) * 2014-05-16 2020-07-15 ローム株式会社 チップ部品およびその製造方法、ならびにそれを備えた回路アセンブリおよび電子機器
US9773588B2 (en) 2014-05-16 2017-09-26 Rohm Co., Ltd. Chip parts
JP2016025371A (ja) * 2014-07-16 2016-02-08 株式会社デンソー 半導体装置
JP6503943B2 (ja) * 2015-07-10 2019-04-24 株式会社村田製作所 複合電子部品および抵抗素子
US10431697B2 (en) * 2015-09-25 2019-10-01 Rohm Co., Ltd. Bi-directional Zener diode having a first and second impurity regions groups formed in surface portion of a substrate and a first electrode electrically connected to at least one first impurity regions, and not connected from at least another one
US10084035B2 (en) * 2015-12-30 2018-09-25 Teledyne Scientific & Imaging, Llc Vertical capacitor contact arrangement
JP6674677B2 (ja) * 2016-02-17 2020-04-01 ローム株式会社 チップ部品およびその製造方法
US10607779B2 (en) * 2016-04-22 2020-03-31 Rohm Co., Ltd. Chip capacitor having capacitor region directly below external electrode
KR102402798B1 (ko) * 2017-07-13 2022-05-27 삼성전기주식회사 커패시터 및 이를 포함하는 실장기판
CN110945643B (zh) * 2017-07-25 2024-01-05 株式会社村田制作所 电容器
WO2019058922A1 (ja) * 2017-09-19 2019-03-28 株式会社村田製作所 キャパシタ
KR102212747B1 (ko) * 2017-12-11 2021-02-04 주식회사 키 파운드리 보이드를 포함하는 깊은 트렌치 커패시터 및 이의 제조 방법
CN110168682A (zh) * 2017-12-15 2019-08-23 深圳市汇顶科技股份有限公司 电容器的制作方法及电容器
WO2020017547A1 (ja) * 2018-07-20 2020-01-23 株式会社村田製作所 モジュール
JP7150571B2 (ja) * 2018-11-13 2022-10-11 ローム株式会社 チップコンデンサおよびチップコンデンサの製造方法
JP7179634B2 (ja) 2019-02-07 2022-11-29 株式会社東芝 コンデンサ及びコンデンサモジュール
TWI698964B (zh) * 2019-03-15 2020-07-11 台灣愛司帝科技股份有限公司 晶片固接結構及晶片固接設備
TWI720446B (zh) * 2019-03-25 2021-03-01 佳世達科技股份有限公司 顯示面板及其製作方法
TWI722405B (zh) * 2019-03-28 2021-03-21 佳世達科技股份有限公司 顯示面板
US11063034B2 (en) 2019-06-27 2021-07-13 Micron Technology, Inc. Capacitor structures
TWI698949B (zh) * 2019-08-07 2020-07-11 台灣愛司帝科技股份有限公司 薄膜結構、晶片承載組件及晶片承載設備
JP7427400B2 (ja) * 2019-09-27 2024-02-05 太陽誘電株式会社 キャパシタ
JP7427966B2 (ja) * 2020-01-16 2024-02-06 Tdk株式会社 電子部品
US11545543B2 (en) 2020-10-27 2023-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Trench pattern for trench capacitor yield improvement
US11605703B2 (en) * 2020-12-11 2023-03-14 Nanya Technology Corporation Semiconductor device with capacitors having shared electrode and method for fabricating the same
JP7529155B2 (ja) * 2021-05-31 2024-08-06 株式会社村田製作所 電子部品
CN116779596A (zh) * 2023-07-07 2023-09-19 无锡市晶源微电子股份有限公司 基于沟槽型结构的电容器件及其制备方法

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314423C3 (de) * 1973-03-23 1981-08-27 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur Herstellung einer Referenzgleichspannungsquelle
EP0055110A3 (en) * 1980-12-22 1984-11-14 Texas Instruments Incorporated Nonvolatile high density jfet ram cell
US5365079A (en) * 1982-04-30 1994-11-15 Seiko Epson Corporation Thin film transistor and display device including same
JPH03238868A (ja) * 1990-02-15 1991-10-24 Nec Corp 縦型電界効果トランジスタ
JPH04105420A (ja) * 1990-08-27 1992-04-07 Mitsubishi Electric Corp 半導体集積回路
JP3370685B2 (ja) * 1991-07-05 2003-01-27 松下電器産業株式会社 角形チップ抵抗器の製造方法
JP3048087B2 (ja) * 1992-07-01 2000-06-05 ローム株式会社 複合電子部品
JPH06213125A (ja) 1993-01-14 1994-08-02 Fuji Heavy Ind Ltd エンジンの点火時期制御方法
JPH06243678A (ja) * 1993-02-19 1994-09-02 Hitachi Ltd ダイナミック型ramとそのプレート電圧設定方法及び情報処理システム
JPH0944820A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd 磁気抵抗効果型磁気ヘッド
JPH0955625A (ja) 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd 発振器
JP3406127B2 (ja) * 1995-09-04 2003-05-12 三菱電機株式会社 半導体装置
JPH09246093A (ja) * 1996-03-11 1997-09-19 Rohm Co Ltd 厚膜コンデンサ
US6320782B1 (en) * 1996-06-10 2001-11-20 Kabushiki Kaisha Toshiba Semiconductor memory device and various systems mounting them
CA2263357A1 (en) * 1996-08-12 1998-02-19 Energenius, Inc. Semiconductor supercapacitor system, method for making same and articles produced therefrom
JP3833769B2 (ja) * 1997-03-12 2006-10-18 ローム株式会社 チップ型複合電子部品
JP4376348B2 (ja) * 1998-05-18 2009-12-02 パナソニック株式会社 半導体装置
JP2000114494A (ja) * 1998-09-29 2000-04-21 Texas Instr Inc <Ti> 波形端部を有するコンデンサ電極
US7687858B2 (en) * 1999-01-15 2010-03-30 Broadcom Corporation System and method for ESD protection
DE19909529A1 (de) * 1999-03-04 2000-09-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Einseitig gesockelte Hochdruckentladungslampe mit im Sockel integrierter Zündvorrichtung
JP2001076912A (ja) 1999-09-06 2001-03-23 Rohm Co Ltd チップ抵抗器におけるレーザトリミング方法
US7298123B2 (en) * 2000-02-08 2007-11-20 The Furukawa Electric Co., Ltd. Apparatus and circuit for power supply, and apparatus for controlling large current load
JP4057212B2 (ja) * 2000-02-15 2008-03-05 三菱電機株式会社 マイクロフォン装置
US6538300B1 (en) * 2000-09-14 2003-03-25 Vishay Intertechnology, Inc. Precision high-frequency capacitor formed on semiconductor substrate
US7087975B2 (en) * 2000-12-28 2006-08-08 Infineon Technologies Ag Area efficient stacking of antifuses in semiconductor device
US7332585B2 (en) * 2002-04-05 2008-02-19 The Regents Of The California University Bispecific single chain Fv antibody molecules and methods of use thereof
US6727798B2 (en) * 2002-09-03 2004-04-27 Vishay Intertechnology, Inc. Flip chip resistor and its manufacturing method
JP3981324B2 (ja) * 2002-11-29 2007-09-26 ローム株式会社 双方向ツェナーダイオード
JP3908669B2 (ja) * 2003-01-20 2007-04-25 株式会社東芝 静電気放電保護回路装置
TWI223900B (en) * 2003-07-31 2004-11-11 United Epitaxy Co Ltd ESD protection configuration and method for light emitting diodes
US7173311B2 (en) * 2004-02-02 2007-02-06 Sanken Electric Co., Ltd. Light-emitting semiconductor device with a built-in overvoltage protector
WO2011143510A1 (en) * 2010-05-12 2011-11-17 Lynk Labs, Inc. Led lighting system
CA2586120A1 (en) * 2004-11-02 2006-12-28 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
CA2590213A1 (en) * 2005-01-05 2006-08-17 Lemnis Lighting Ip Gmbh Reactive circuit and rectifier circuit
JP4697397B2 (ja) * 2005-02-16 2011-06-08 サンケン電気株式会社 複合半導体装置
US8704241B2 (en) * 2005-05-13 2014-04-22 Epistar Corporation Light-emitting systems
WO2007014053A2 (en) * 2005-07-22 2007-02-01 Nanopower Technologies, Inc. High sensitivity rfid tag integrated circuits
US7988839B2 (en) * 2005-09-20 2011-08-02 University Of Louisville Research Foundation, Inc. Capillary electrophoresis systems and methods
JP4716099B2 (ja) * 2005-09-30 2011-07-06 三菱マテリアル株式会社 チップ型ヒューズの製造方法
KR100771828B1 (ko) * 2006-04-04 2007-10-30 삼성전기주식회사 도광판 및 이를 갖는 액정 디스플레이 장치
DE102006017487A1 (de) * 2006-04-13 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integriertes Beschaltungsbauelement auf Halbleiterbasis zur Schaltentlastung, Spannungsbegrenzung bzw. Schwingungsdämpfung
JP4142066B2 (ja) * 2006-06-01 2008-08-27 エプソンイメージングデバイス株式会社 電気光学装置および電子機器
US20080122032A1 (en) * 2006-08-16 2008-05-29 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices with MIM-type decoupling capacitors and fabrication method thereof
US7548405B2 (en) * 2006-12-20 2009-06-16 International Business Machines Corporation Systems and methods using diodes to protect electronic devices
US8476735B2 (en) * 2007-05-29 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Programmable semiconductor interposer for electronic package and method of forming
US7863995B2 (en) * 2007-06-16 2011-01-04 Alpha & Omega Semiconductor Ltd. Methods of achieving linear capacitance in symmetrical and asymmetrical EMI filters with TVS
JP5270124B2 (ja) * 2007-09-03 2013-08-21 ローム株式会社 コンデンサ、および電子部品
US8648539B2 (en) * 2007-10-06 2014-02-11 Lynk Labs, Inc. Multi-voltage and multi-brightness LED lighting devices and methods of using same
WO2009055140A1 (en) * 2007-10-26 2009-04-30 Hvvi Semiconductors, Inc. Semiconductor structure and method of manufacture
US20100043863A1 (en) * 2008-03-20 2010-02-25 Miasole Interconnect assembly
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
JP2010074587A (ja) * 2008-09-19 2010-04-02 Seiko Epson Corp 電圧比較器
US9078309B2 (en) * 2008-10-16 2015-07-07 Kumho Electric Inc. LED fluorescent lamp
US20160234909A1 (en) * 2008-10-16 2016-08-11 Kumho Electric Inc. Led lamp
CN101441960B (zh) * 2008-11-25 2011-05-11 南京萨特科技发展有限公司 一种多层片式保险丝及其制造方法
JP2010129893A (ja) * 2008-11-28 2010-06-10 Sony Corp 半導体集積回路
KR20100105290A (ko) * 2009-03-18 2010-09-29 서울반도체 주식회사 발광장치 및 그의 구동회로
JP2010239045A (ja) * 2009-03-31 2010-10-21 Sharp Corp 太陽光発電システムおよび太陽光発電システム用電力線
TWM366858U (en) * 2009-05-15 2009-10-11 Midas Wei Trading Co Ltd Piezoelectric resonant high-voltage lighting circuit
US8643308B2 (en) * 2009-08-14 2014-02-04 Once Innovations, Inc. Spectral shift control for dimmable AC LED lighting
JP2012023001A (ja) * 2009-08-21 2012-02-02 Toshiba Lighting & Technology Corp 点灯回路及び照明装置
TWI527261B (zh) * 2009-09-11 2016-03-21 晶元光電股份有限公司 發光元件
JP5135374B2 (ja) * 2010-03-24 2013-02-06 株式会社東芝 キャパシタ、集積装置、高周波切替装置及び電子機器
JP5584927B2 (ja) * 2010-06-04 2014-09-10 日立オートモティブシステムズ株式会社 電池制御装置および蓄電装置
US9022608B2 (en) * 2010-11-23 2015-05-05 Q Technology, Inc. Unlit LED circuit bypass element with system and method therefor
JP5796289B2 (ja) * 2010-11-26 2015-10-21 ソニー株式会社 二次電池セル、電池パック及び電力消費機器
TWI589179B (zh) * 2010-12-24 2017-06-21 晶元光電股份有限公司 發光裝置
US20120262220A1 (en) * 2011-04-13 2012-10-18 Semisouth Laboratories, Inc. Cascode switches including normally-off and normally-on devices and circuits comprising the switches
US8552420B2 (en) * 2011-08-09 2013-10-08 Universal Display Corporation OLED light panel with controlled brightness variation
US9741602B2 (en) * 2011-09-08 2017-08-22 Nxp Usa, Inc. Contact for a non-volatile memory and method therefor
JP6003048B2 (ja) * 2011-11-29 2016-10-05 ソニー株式会社 発電装置
DE112012005578B4 (de) * 2012-01-05 2019-11-07 Tdk Corporation Differenzielles Mikrofon und Verfahren zum Ansteuern eines differenziellen Mikrofons
JP6097540B2 (ja) 2012-01-17 2017-03-15 ローム株式会社 チップコンデンサおよびその製造方法
JP5915350B2 (ja) * 2012-04-19 2016-05-11 富士電機株式会社 パワー半導体モジュール
DE102012207456B4 (de) * 2012-05-04 2013-11-28 Osram Gmbh Ansteuerung von Halbleiterleuchtelementen
CN102683025A (zh) * 2012-05-13 2012-09-19 佟元江 轨道补偿电容器
US9269704B2 (en) * 2012-05-15 2016-02-23 Nuvoton Technology Corporation Semiconductor device with embedded silicon-controlled rectifier
US9041117B2 (en) * 2012-07-31 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. SRAM cell connection structure
KR20140022205A (ko) * 2012-08-13 2014-02-24 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 그 제조 방법
JP2014056941A (ja) * 2012-09-12 2014-03-27 Toshiba Corp 抵抗変化型メモリ
US9271363B2 (en) * 2012-09-20 2016-02-23 Hirokazu Honda Lighting device having LED elements
CN104718621A (zh) * 2012-10-15 2015-06-17 皇家飞利浦有限公司 具有电容耦合的led封装
US9373609B2 (en) * 2012-10-18 2016-06-21 Infineon Technologies Ag Bump package and methods of formation thereof
CN102944196B (zh) * 2012-11-02 2015-08-19 上海华力微电子有限公司 一种检测半导体圆形接触孔圆度的方法
CN104769691A (zh) * 2012-11-02 2015-07-08 罗姆股份有限公司 片状电容器、电路组件以及电子设备
US8879223B2 (en) * 2013-01-15 2014-11-04 Silergy Semiconductor Technology (Hangzhou) Ltd Integrated EMI filter circuit with ESD protection and incorporating capacitors
US20140268440A1 (en) * 2013-03-12 2014-09-18 Wisenstech Inc. Micromachined High Breakdown Voltage ESD Protection Device for Light Emitting Diode and Method of Making the Same
US9117749B1 (en) * 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
EP2787617B1 (en) * 2013-04-02 2015-11-04 ABB Research Ltd. Active snubber topology
KR101462777B1 (ko) * 2013-04-18 2014-11-20 삼성전기주식회사 전원 공급 장치
US9041114B2 (en) * 2013-05-20 2015-05-26 Kabushiki Kaisha Toshiba Contact plug penetrating a metallic transistor
DE102013107699A1 (de) * 2013-07-18 2015-01-22 Springburo GmbH Spannungsbegrenzer
EP2846608B1 (en) * 2013-09-06 2016-06-01 Tridonic GmbH & Co. KG Converter and method of operating a converter for supplying current to a light emitting means
US10187930B2 (en) * 2014-10-02 2019-01-22 Lg Electronics Inc. Induction heat cooking apparatus
EP3002991B1 (en) * 2014-10-02 2022-07-13 LG Electronics Inc. Induction heat cooking apparatus
JP6256320B2 (ja) * 2014-11-28 2018-01-10 三菱電機株式会社 Esd保護回路及びrfスイッチ
TWI578676B (zh) * 2015-10-12 2017-04-11 群光電能科技股份有限公司 電能轉換系統
KR102326999B1 (ko) * 2015-06-22 2021-11-16 엘지전자 주식회사 전자 유도 가열 조리기 및 이의 구동 방법
US9698137B2 (en) * 2015-10-07 2017-07-04 Qorvo Us, Inc. Electrostatic discharge (ESD) protection of capacitors using lateral surface Schottky diodes
US20170126116A1 (en) * 2015-10-28 2017-05-04 Cooper Technologies Company Apparatus for controlling a semiconductor switch

Also Published As

Publication number Publication date
CN110504257B (zh) 2023-12-08
US20160211077A1 (en) 2016-07-21
US9288908B2 (en) 2016-03-15
US10593480B2 (en) 2020-03-17
WO2014069363A1 (ja) 2014-05-08
CN104769691A (zh) 2015-07-08
US20150305159A1 (en) 2015-10-22
US20180323011A1 (en) 2018-11-08
CN110504257A (zh) 2019-11-26
US10026557B2 (en) 2018-07-17
US20170250029A1 (en) 2017-08-31
JPWO2014069363A1 (ja) 2016-09-08
US9685273B2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
JP6461603B2 (ja) チップコンデンサ、回路アセンブリ、および電子機器
US10763016B2 (en) Method of manufacturing a chip component
JP6547932B2 (ja) チップ部品およびその製造方法、ならびに当該チップ部品を備えた回路アセンブリおよび電子機器
JP2004079579A (ja) 半導体装置
KR102071746B1 (ko) 칩 부품 및 그 제조 방법
JP2018082182A (ja) チップダイオードおよびその製造方法
JP2019153802A (ja) 複合チップ部品、回路アセンブリおよび電子機器
JP6584574B2 (ja) チップ部品およびその製造方法
JP2014072241A (ja) チップ部品
JP2017130671A (ja) チップ部品
US20150162327A1 (en) Semiconductor module
JP6101465B2 (ja) チップ部品
JP6697774B2 (ja) チップ部品
JP2014072239A (ja) チップ部品
CN111180205B (zh) 芯片电容器及芯片电容器的制造方法
JP2018064110A (ja) チップ部品
JP2012204499A (ja) 半導体装置およびその製造方法
JP2005123378A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6461603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250