JP5110092B2 - 複合圧電基板の製造方法 - Google Patents

複合圧電基板の製造方法 Download PDF

Info

Publication number
JP5110092B2
JP5110092B2 JP2009546984A JP2009546984A JP5110092B2 JP 5110092 B2 JP5110092 B2 JP 5110092B2 JP 2009546984 A JP2009546984 A JP 2009546984A JP 2009546984 A JP2009546984 A JP 2009546984A JP 5110092 B2 JP5110092 B2 JP 5110092B2
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
substrate
piezoelectric
composite
composite piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009546984A
Other languages
English (en)
Other versions
JPWO2009081651A1 (ja
Inventor
始 神藤
義治 芳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009546984A priority Critical patent/JP5110092B2/ja
Publication of JPWO2009081651A1 publication Critical patent/JPWO2009081651A1/ja
Application granted granted Critical
Publication of JP5110092B2 publication Critical patent/JP5110092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、複合圧電基板の製造方法に関し、詳しくは、圧電膜を有する複合圧電基板の製造方法に関する。
近年、極めて薄い圧電体(極薄圧電膜)を利用したフィルタ等の開発が活発に行われている。これらのフィルタ等の極薄圧電膜には、一般には、スパッタ法やCVD法などの堆積法で形成されたAlN薄膜やZnO薄膜が用いられているが、いずれもC軸が基板の上下に整列したC軸配向膜である。
一方、圧電体の単結晶基板を支持基板に張り合わせた後に、研磨により圧電体の単結晶基板を薄化することにより、圧電膜を有する複合圧電基板を製造することも提案されている。
例えば図6の断面図に示す弾性表面波装置100では、励振電極105が形成されている単結晶からなる圧電基板101は、予めガラス層108を介して保護基板103に接合された状態で研磨され薄板化されたものである(例えば、特許文献1、非特許文献1参照)。
また、圧電基板に水素イオンを注入し、圧電基板と支持基板を湿潤雰囲気下に置いて、それぞれの基板表面に親水基を形成した後に、圧電基板と支持基板を張り合わせ、その後、高速加熱して、イオン注入した深さで圧電基板を割って圧電薄膜を得る手法が提案されている(例えば、特許文献2参照)。

特開2002−16468号公報 特表2002−534885号公報 Y. Osugi et a1、「Single crysta1 FBAR with LiNbO3 and LiTaO3 piezoelectric substance layers」、2007 IEEE MTT−S International Microwave Symposium、p.873−876
しかしながら、堆積法で形成した圧電膜は、配向膜を得るための成膜温度や成膜条件などから材料制約が厳しく、主としてAlNが利用される。また、結晶軸の配向方向を制御することもできず、C軸配向膜が主として採用されるため、圧電軸を傾斜させることによる振動モードの工夫が難しい。
一方、圧電体の単結晶基板を研磨して形成した圧電膜は、大半の圧電単結晶を研磨クズとして廃棄するため、材料の利用効率が悪い。さらに、圧電膜の厚みは、研磨速度のばらつき、研磨前の基板のうねりにより左右されるため、均質な厚みを得るための制御は難しく生産性が悪い。
特許文献2では、親水基による接合が用いられる。この接合方法では、圧電基板表面と支持基板表面に親水基を形成し、その親水基を介して接合される。この親水基による接合は極めて弱いため、強固な接合を得るために、親水基を分解できる温度(例えば400℃)で加熱して、親水基(OH)から水素(H)を脱離させ、圧電基板表面と支持基板表面のボンドを強固にする工程を経る必要がある。
しかしながら、接合後に水素ガスを脱離するため、接合界面にガスが溜まり、マイクロキャビティを形成したり、水素ガスが十分に除去できずに圧電結晶中に残留し、結晶構造を破損し、圧電性を劣化させるなどの問題点があった。マイクロキャビティや結晶破壊による接合界面の不均一は、表面波フィルタやバルク波フィルタに応用するときに、弾性散乱や吸音による発熱を引き起こし、フィルタの挿入損失の劣化や発熱による耐電力性能の劣化を引き起こす要因となっていた。
特に、Li系圧電材料であるLiTaOやLiNbOを用いる場合、水素が残留すると、LiイオンサイトのLiと水素が置換し、圧電性の劣化を生じやすい。
例えば、圧電基板としてタンタル酸リチウムやニオブ酸リチウム基板、支持基板としてもタンタル酸リチウムやニオブ酸リチウム基板を用い、圧電基板と支持基板の表面をCMP(化学機械研磨)により平滑化し、その後、湿潤雰囲気下に圧電基板と支持基板を晒して親水基を形成し、基板表面同士を接して張り合わせて親水基による弱い接合をし、500℃で1時間加熱して親水基を分解して強固な接合を行った。このような方法で接合した複合圧電基板は、親水基による弱い接合をした後、500℃で加熱する前は、外力を加えることにより接合界面で容易に剥離することができた。一方、500℃で加熱した後は、接合が強化されたが、接合界面には、目視できる程度のキャビティが随所に形成されていた。また、接合界面の結晶配列をTEM(透過型電子戦顕微鏡)で観察すると、数十nmのキャビティや結晶配列の乱れが観察された。
さらに、非線形誘電率顕微鏡を用いて、Hイオンを注入し、400℃で加熱してLiTaOの分極状態を調査したところ、当初整列していた分極極性がドメイン単位で局所的に反転し、圧電性が劣化していることが分かった。より高温の500℃で加熱すると更に圧電性劣化が顕著となる。
本発明は、かかる実情に鑑み、圧電体材料を効率良く利用して、均質な厚みの極薄圧電膜を形成することができる、複合圧電基板の製造方法を提供しようとするものである。
本発明は、以下のように構成した複合圧電基板の製造方法を提供する。
複合圧電基板の製造方法は、(a)圧電体基板と、支持基板とを準備する、第1の工程と、(b)前記圧電体基板の表面からイオンを注入して、前記圧電体基板内において前記表面から所定深さの領域に欠陥層を形成する、第2の工程と、(c)前記欠陥層が形成された前記圧電体基板の前記表面に前記支持基板を接合して基板接合体を形成する、第3の工程と、(d)前記基板接合体を、前記圧電体基板内に形成された前記欠陥層で分離して、前記圧電体基板の前記表面と前記欠陥層との間の剥離層が前記圧電体基板から剥離されて前記支持基板に接合された複合圧電基板を形成する、第4の工程と、(e)前記複合圧電基板の前記剥離層の表面を平滑化する、第5の工程とを含む。複合圧電基板の製造方法は、(f)前記第2の工程の後かつ前記第3の工程の前又はそれ以降に、前記第2の工程でのイオン注入によって生じた前記複合圧電基板の前記剥離層における分極の極性の反転を修復する分極処理を行う分極処理工程をさらに含む。
上記方法によれば、イオン注入によりに分極が反転しても、修復することができる
好ましくは、(f)前記欠陥層が形成された前記圧電体基板の表面と前記支持基板の表面との少なくとも一方について、当該表面に付着した不純物を除去して当該表面を構成する原子を直接露出させ、活性化させる、清浄活性化工程をさらに含む。
好ましくは、接合界面に金属元素を配する。
好ましくは、前記圧電体基板にリチウム系圧電材料を用いる。
上記方法で製造された複合圧電基板に形成された圧電体基板の剥離層の極めて薄い圧電体を利用して、弾性表面波素子、弾性境界波素子、バルク波素子、板波素子などの弾性波素子を形成することができる。これらの弾性波素子を有する電子部品の製造に、上記方法で製造された複合圧電基板を用いると、高価な圧電体基板の使用量を削減できる。
本発明の複合圧電基板の製造方法によれば、圧電体材料を効率良く利用して、均質な厚みの極薄圧電膜を形成することができる。
複合圧電基板の製造工程を示す断面図である。(実施例1) BAWデバイスの製造工程を示す断面図である。(実施例2) BAWデバイスの製造工程を示す断面図である。(実施例3) BAWデバイスの断面図である。(実施例3) SAWデバイスの製造工程を示す断面図である。(実施例1) 弾性表面波装置の断面図である。(従来例)
符号の説明
2 圧電体基板
3 剥離層
4 欠陥層
10,10x 支持基板
30,30a 複合圧電基板
以下、本発明の実施の形態について、図1〜図5を参照しながら説明する。
<実施例1> 実施例1のSAW(surface acoustic wave;弾性表面波)デバイスの製造方法について、図1、図5を参照しながら説明する。
まず、SAWデバイスに用いる複合圧電基板30の製造工程について、図1を参照しながら説明する。図1は、複合圧電基板30の製造工程を示す断面図である。
(工程1) 図1(a−1)及び(a−2)に示すように、圧電体基板2と支持基板10を準備する。例えば、圧電体基板2として42°YカットLiTaO基板、支持基板10としてSi基板を準備する。それぞれの基板2、10の表面2a,10aは、予め鏡面研磨しておく。
(工程2) 次いで、図1(b)に示すように、圧電体基板2の表面2aに、矢印8で示すように、イオンを注入して、圧電体基板2内において表面2aから所定深さの領域に、破線で模式的に示す欠陥層4を形成する。例えば、LiTaO圧電体基板2にHイオンを注入する。注入エネルギーは150KeV、ドーズ量は9×1016cm−1である。このとき、Hイオンが圧電体基板2の表面2aから1μm程度の深さに分布する欠陥層4が形成される。
(洗浄活性化工程) 圧電体基板2と支持基板20を減圧チャンバに入れ、それぞれの表面2a,10aにArイオンをビーム照射し、表面2a,10aに付着した親水基、水素、酸化被膜などの不純物を除去する。不純物が除去された表面2a,10aは、基板2,10を構成する原子が直接露出し、活性化される。このように、清浄活性化した表面2a,10a同士を真空中で接触させると、元素同士が直接ボンドを結び、強固な接合が得られる。接合界面に不純物が存在しないため、接合後に不純物を除去する必要がなく、接合界面付近の結晶の破損も抑制される。
(工程3) 次いで、図1(c)に示すように、圧電体基板2の表面2aと、支持基板10の表面10aとを接合して、基板接合体40を形成する。
LiTaO圧電体基板2とSi支持基板10の場合には、線熱膨張係数が異なるので、常温において、基板表面2a,10aをプラズマにより活性化し、真空中で接合する常温直接接合を行うことが望ましい。
LiTaO圧電体基板2とSi支持基板10とを接合した後、500℃で加熱する。これにより、Hイオンを注入したLiTaO圧電体基板2の表面2aから1μmの深さの欠陥層4には、表面2aに沿ってマイクロキャビティが発生し、加熱によりこのキャビティが成長する。
なお、接合界面に、元素同士のボンドを強化するために微量(数nm)のFeなどの金属元素を配してもよい。金属元素は大気中での酸化反応などにより汚染されやすい。そこで、金属イオンの堆積は、接合を行う真空に減圧したチャンバ内で、接合の直前に行うことが望ましい。
(工程4) 次いで、図1(d)に示すように、基板接合体40の圧電体基板2と支持基板10とを、圧電体基板2内に形成された欠陥層4で分離して、圧電体基板2の表面2aと欠陥層4との間の剥離層3が圧電体基板2から剥離されて支持基板10に接合された複合圧電基板30を形成する。
例えば、LiTaO圧電体基板2の表面2aから1μmの深さの欠陥層4に形成されたマイクロキャビティに沿って分離するため、1μmの厚さのLiTaO薄膜の剥離層3が支持基板10の表面10aに接合された複合圧電基板30と、表面2a側からLiTaO薄膜の剥離層3が剥離されたLiTaO圧電体基板2とに分離する。
(工程5) 次いで、図1(e−1)及び(e−2)に模式的に示すように凹凸が形成された破断面である圧電体基板2と複合圧電基板30の表面2a,3aを研磨し、図1(f−1)及び(f−2)に示すように圧電体基板2と複合圧電基板30の表面2k,3kを平滑化する。
例えば、LiTaO薄膜の剥離層3の破断面が現れる複合圧電基板30の表面3aと、LiTaO薄膜の剥離層3が剥離されたLiTaO圧電体基板2の表面2aは、RMS(root mean square)で1nm程度の荒れた面になっているため、CMP(chemical-mechanical polishing;化学機械研磨)により表面2a,3aから厚さ100nm程度研磨して除去して平滑化する。
(工程6) 表面3kが平滑化された複合圧電基板30について、剥離層3の圧電体の分極反転を修正するため、分極処理を行う。例えば、表面3aを平滑化したLiTaO薄膜の剥離層3について、400℃で5ms、22kVのパルス電圧を印加する分極処理を行う。
圧電体結晶を構成する原子の一部は、正又は負に荷電しイオン化している。このイオン化した原子に、例えば電界を印加すると正に荷電したイオンは陰極側に、負に荷電したイオンは陽極側に結晶内をわずかにシフトし、電気双板子を生ずる。この現象は電気分極と呼ばれている。電界の印加を止めても分極の状態を維持することができる結晶も存在し、この状態は前述した自発分極と呼ばれる。自発分極する圧電体結晶に高エネルギーで多量のイオンを注入すると、このイオンのシフトした状態が変化し、分極の極性が反転したりする。部分的な分極の反転は圧電性の劣化を引き起こすため、好ましくない。
そこで、イオン注入した後に分極処理を行うことで分極の反転を修復できる。例えば、LiNbOの場合、700℃の加熱雰囲気で22kV/mmの電界を印加する。分極処理は剥離工程後に行うことが望ましく、温度は支持基板や電極の融点や熱膨張係数差を考慮して、200〜1200℃で行う。高温であるほど抗電界が下がるので、印加する電界を低く抑えることができる。また、電界は1μs〜1分の範囲で断続的に印加すると直流電界による結晶へのダメージを抑制できるので、望ましい。また、200℃以上での加熱は、イオン注入により受けた結晶のひずみを緩和するため望ましい。結晶ひずみをとるための加熱温度は、分極の解消を避けるためにキューリー温度より100℃以上低くする。
なお、分極反転などの圧電性の劣化は工程6の分極処理により回復できるが、結晶に負担がかかるため、工程6に至る前の分極反転などの圧電性劣化は極力抑制しておくことが望ましい。また、結晶材料や結晶方位によっては分極処理が難しい圧電体も存在するため、工程6に至る前の圧電性劣化の抑制策は重要である。
分極はイオン化した圧電結晶の構成元素がわずかにシフトすることで生じる。一般に、わずかにシフトさせるためのエネルギー量は、構成元素が結晶単位からはずれるエネルギー量に比べて小さい。そこで、自発分極を示すイオンのシフトしている方向と同一方向からイオンを注入することで、自発分極の極性反転が生じるのを抑制できる。
例えば、LiTaOやLiNbOの場合、LiイオンやTaイオン、Nbイオンは+C軸方向にわずかにシフトしているので、−C軸側から+C軸側に向かってイオンを注入することが望ましい。なお、イオンの注入方向に対してC軸のなす角度θが−90°<θ<+90°の範囲とすれば効果が得られる。
また、工程4において、剥離は圧電体のキューリー温度以下で行うことが望ましい。キューリー温度を超えると、分極が一旦開放されるため、圧電性が劣化する。
本願発明者の知見によれば、工程4において、欠陥層で剥離するために必要な加熱温度は500〜600℃である。一般に電子部品用に供給されているLiTaOウェハは、キューリー温度が600℃前後と低く、剥離に必要な加熱温度とキューリー温度が近接している。このため、圧電性が劣化しやすい。LiTaOやLiNbOにおいて、LiのTaやNbに対する組成比xが48.0%≦x<49.5%の場合、コングルエント組成と呼ばれ、前述の電子部品用圧電基板として大量に供給されているウェハに用いられている。一方、組成比が49.5%≦x≦50.5%はストイキオ組成と呼ばれている。LiTaOの場合、コングルエント組成の場合はキューリー温度が590〜650℃と低く、ストイキオ組成の場合は660〜700℃となる。そこで、LiTaOを用いる場合、LiのTaに対する組成比を49.5%≦x≦50.5%としたストイキオ組成とすることが工程4における加熱時の圧電性劣化を抑制できるので望ましい。
なお、LiNbOの場合、コングルエント組成の場合は1100〜1180℃、ストイキオ組成の場合は1180〜1200℃となる。
また、工程4において、圧電体がLiTaOやLiNbOのように焦電性をもつ場合、昇温や降温により基板表面に電荷が蓄積される。表面に蓄積された電荷による電界が分極方向と逆方向から圧電体の抗電界を超えて加わると分極が反転し圧電性が劣化する。工程4では昇温と降温のいずれかにおいて、分極と逆方向から電界が加わるため、圧電性の劣化を生じやすい。
本願発明者は圧電体の導電率を高め、かつ、温度変化のペースを焦電荷による電界が圧電体の抗電界以下となるようにすることにより、圧電性の劣化を抑制できることを見出した。
実施例1において、LiTaOの導電率を高めて4×1010S/cmとなるように処理したウェハを用い、工程4において表面の電位が200V以下となるように昇温及び降温のペースを低下させることにより圧電性の劣化を抑制できた。LiTaOやLiNbOの導電率を高める処理は、特開2004−328712のように低酸素雰囲気中で高温アニールしたり、特開2005−119906や特開2005−179117のように金属粉末中で加熱する手段が知られている。
以上に説明した製造工程により製造された複合圧電基板の作製例について、観察した。すなわち、圧電体基板としてLiTaO基板、支持基板としてもLiTaO基板を用い、圧電体基板と支持基板の表面をCMPにより平滑化し、真空中で圧電体基板と支持基板の表面にArイオンビームを照射して、基板表面を清浄活性化し、基板表面同士を接して張り合わせて、基板の元素同士が直接ボンドする強固な接合を行った後の複合圧電基板の外形写真を撮影した。撮影した写真には、接合界面に目視できるようなキャビティはなかった。また、接合界面の結晶配列をTEM(透過型電子戦顕微鏡)で観察すると、整列した結晶配列が観察された。
以上に説明した製造工程により製造された複合圧電基板30は、表面に圧電体の剥離層3を有しているので、弾性波素子を作製するために用いることができる。残った圧電体基板2は、次の複合圧電基板30を作製するための素材として再び利用する。
次に、SAWデバイスの製造工程について、図5の断面図を参照しながら説明する。
図5(a)に示すように、前述の工程1〜6で製造された複合圧電基板30を準備し、図5(b)に示すように、複合圧電基板30の表面3kに、IDT電極15等を形成する。
例えば、支持基板10の表面10aにLiTaO薄膜の剥離層3が接合された複合圧電基板30の表面3kに露出するLiTaO薄膜の剥離層3の平滑化された表面に、フォトリソグラフィ技術を用いてアルミニウム膜をパターンニングし、IDT電極15、パッド電極(不図示)、IDT電極15とパッド電極との間を接続する配線(不図示)などの導体パターンを形成して、SAWフィルタなどのSAWデバイスを作製する。
以上に説明した工程でSAWデバイスを作製すると、次のような効果を得ることができる。
(1) SAWデバイスを製造する上で、圧電体の材料、結晶方位は、電気機械結合係数や周波数温度特性、音速に影響するため、SAWデバイスの周波数や帯域幅、挿入損失などに重要な影響を与える。圧電体の材料や結晶方位の選択自由度が高い方が、優れたSAWデバイスを構成しやすい。
すなわち、スパッタやCVDなどの成膜法で圧電体薄膜を形成すると、薄膜の材料、結晶方位が制約される。薄膜材料はAlNやZnOなど、成膜法で形成できる膜の種類は少なく、圧電体を単結晶化することは難しく、通常はC軸配向膜が得られるに過ぎない。このため、圧電軸が上下にしか向かないのでSH型のSAWを励振することが困難だった。
一方、圧電体単結晶から薄膜を剥離する本発明の手法であれば、圧電体の結晶方位の自由度が高く、優れたSH型SAWが励振する36°〜46゜Yカットの圧電基板を得ることができる。
(2) 単結晶の育成速度が遅く、割れやすいためスライスしづらく、LiやTaなどの原料が希少で高価なために、基板が高価なLiTaO基板やLiNbO基板、水晶基板などの圧電体基板に比べ、Si基板は安価である。
すなわち、従来は、1枚のSAWデバイス用ウェハには、1枚の高価な圧電体基板が用いられていた。これに対し、本発明の複合圧電基板は、1枚のSAWデバイス用ウェハを製造するために、1枚の安価なSi基板と圧電体薄膜のみを材料とし、この圧電薄膜は1枚の圧電体基板から数十枚〜数百枚得ることができるので、材料の使用量としては無視できる程度の量に抑えることができる。このため、希少で高価なLiやTaなどの使用量を抑制でき、環境負荷が小さく、安価な圧電基板を得ることができる。
(3) 携帯電話用のRFフィルタには、1〜2Wの大きな電力印加に耐えることが望まれる。SAWフィルタの耐電力性能は、電気信号を加えたときのIDT領域の温度により大きな影響を受ける。電力印加によりIDT領域が250℃などの高温になると、SAWフィルタが破壊するまでの時間が著しく短くなる。IDT領域の温度上昇は、電気的なオーミック損に起因するジュール熱や弾性的な吸音による発熱が、圧電体基板の熱伝導率の低さにより十分に放熱されないことが要因である。LiTaOやLiNbOなどの圧電体のみで構成された圧電基板は、熱伝導率がSiに比べて小さく、放熱性がよくない。本発明の複合圧電基板は、Siと同等の熱伝導率を得ることができるため、放熱性がよい。このため、大きな電力印加に耐えることができる。
(4) 極薄圧電体の厚みはイオン注入するときのエネルギーで決まる。したがって、研磨のように基板うねりに厚みが左右されることはなく、極薄圧電体でも安定した厚みが得られる。圧電体薄膜の厚みは、SAWの音速(周波数=音速/波長なので周波数が決まる)を決定するので重要である。本発明の複合圧電基板は、一定厚みの圧電薄膜を形成できるので、SAWデバイスの特性が安定する。
(5) 42°YカットのLiTaO基板は、−Z軸が42°傾斜して表面側となる。LiTaOを構成するLi原子とTa原子は、わずかに裏面側(+Z軸側)にシフトして自発分極している。本発明では、−Z軸側からイオンを注入することで、分極反転を抑制している。
(6) 工程1〜6で作製した複合圧電基板は、SAWフィルタに限らず、境界波やラム波などの板波を用いたフィルタなどにも用いることができる。境界波の場合は、次の実施例2のように複合圧電基板に素子部を構成すればよい。板波を用いる場合は、次の実施例3のように、支持基板を裏面からエッチングして圧電体の剥離層を裏面から露出させればよい。
(7) SiはLiTaOに比べて線膨張係数が小さいため、Si支持基板にLiTaO剥離膜が接合された複合圧電基板は、周波数温度係数を抑制できる。
<実施例2> 実施例2のBAW(bulk acoustic wave;バルク弾性波)デバイスについて、図2を参照しながら説明する。図2は、BAWデバイスの製造工程を示す断面図である。
実施例2のBAWデバイスは、次の工程で製造する。
まず、図2(a)に示すように、複合圧電基板30を準備する。例えば、20°YカットLiTaO圧電体基板とSi支持基板10とを用い、実施例1の工程1〜5と同じ工程で、Si支持基板10の表面10aに20°YカットのLiTaO剥離層3が接合された複合圧電基板30を作製する。
次いで、図2(b)に示すように、複合圧電基板30の表面3kに上部電極16を形成する。例えば、LiTaO剥離層3の表面3kに、電子ビーム蒸着法とフォトリソグラフィ法により、アルミニウムで上部電極16を形成する。
次いで、図2(c)に示すように、支持基板10に穴13を形成し、剥離層3の裏面3sを露出させる。例えば、Si支持基板10の剥離層3とは反対側の裏面10bから、フォトリソグラフィ法とリアクティブイオンエッチング法により、Si支持基板10をエッチングして穴13を形成し、圧電体の剥離層3の裏面3sを露出させる。
次いで、図2(d)に示すように、剥離層3の裏面3sに下部電極14を形成する。例えば、LiTaO剥離層3の裏面3sに、アルミニウムで下部電極14を電子ビーム蒸着法とフォトリソグラフィ法により形成する。
次いで、図2(e)に示すように、剥離層3に下部電極14が露出する孔20を形成する。例えば、LiTaO剥離層3の表面3k側から、フォトリソグラフィ法とリアクティブイオンエッチング法で孔20を形成する。
次いで、図2(f)に示すように、孔20を介して下部電極14に電気的に接続された配線18を形成する。例えば、フォトリソグラフィ法と蒸着法でアルミニウムにより配線18を形成し、LiTaO剥離層3の孔20を介して、配線18と下部電極14を接続する。図示していないが、さらに、配線18の電気抵抗を下げるために、バルク波素子の振動領域(下部電極14と上部電極16とが剥離層3を挟んで対向する領域)以外の領域にアルミニウムを厚付けし、配線18を外部端子に接続してパッケージングする。
以上の工程でBAWデバイスを作製すると、次のような効果を得ることができる。
(1) BAWデバイスを製造する上で、圧電体の材料、結晶方位は、電気機械結合係数や周波数温度特性、音速に影響するため、BAWデバイスの周波数や帯域幅、挿入損失などに重要な影響を与える。圧電体の材料や結晶方位の選択自由度が高い方が、優れたBAWデバイスを構成しやすい。スパッタやCVDなどの成膜法で圧電体薄膜を形成すると、薄膜の材料、結晶方位が制約される。薄膜材料はAlNやZnOなど成膜法で形成できる膜の種類は少なく、圧電体を単結晶化することは難しく、通常はC軸配向膜が得られるに過ぎない。このため、圧電軸が上下にしか向かないので厚みすべり型のBAWを励振することが困難だった。
一方、圧電体単結晶から薄膜を剥離する本発明の手法であれば、圧電体の結晶方位の自由度が高く、優れた厚みすべり型BAWが励振する基板を得ることができる。
また、BAWデバイスのエネルギー閉じ込め状態やスプリアス応用は、励振されるバルク波の分散関係により決定されるが、材料や結晶方位を調整することで、エネルギー閉じ込めとスプリアス抑制を両立した高Qなバルク波素子が作成できる。
(2) 単結晶の育成速度が遅く、割れやすいためスライスしづらく、LiやTaなどの原料が希少で高価なために、LiTaO基板やLiNbO基板、水晶基板などの圧電体基板は高価である。単結晶薄膜を形成した複合圧電基板を得る手段として、Si基板と圧電基板を張り合わせた後にCMP(chemical-mechanical polishing;化学機械研磨)で圧電体を研磨しで薄化する手段も考えられるが、この場合、1枚の複合圧電基板を得るために、1枚のSi基板と1枚の圧電体基板が必要であるため、高価な圧電体の材料効率が悪い。
本発明の複合圧電基板は、1枚のBAWデバイス用ウェハを製造するために、1枚の安価なSi基板と圧電体薄膜のみを材料とし、この圧電薄膜は1枚の圧電体基板から数十枚〜数百枚得ることができるので、材料の使用量としては無視できる程度に抑えることができる。このため、希少で高価なLiやTaなどの使用量を抑制でき、環境負荷が小さく、安価な圧電基板を得ることができる。
(3) 極薄圧電体の厚みはイオン注入するときのエネルギーで決まる。したがって、研磨のように基板うねりに厚みが左右されることはなく、極薄圧電体でも安定した厚みが得られる。圧電体薄膜の厚みは、BAWの波長(周波数=音速/波長なので周波数が決まる)を決定するので、重要である。
<実施例3> 実施例3のBAWデバイスについて、図3及び図4を参照しながら説明する。図3は、BAWデバイスの製造工程を示す断面図である。図4はBAWデバイスの平面図である。
実施例3のBAWデバイスは、次の工程で製造する。
まず、実施例1の工程1〜5と略同様の工程で、複合圧電基板を準備する。
すなわち、工程1で、20°YカットLiTaO圧電体基板と、図3(a)に示す支持基板10xを準備する。支持基板10xは、実施例1と異なり、Si支持基板11にリアクティブイオンエッチングで窪み13aを形成し、窪み13aに犠牲層13xを形成し、Si支持基板11の表面11aをCMPで平滑化し、スパッタ法により、W(タングステン)で下部電極14aを形成したものである。工程2において、実施例2と同じく、圧電体基板にイオン注入する。工程3において、圧電体基板を支持基板10xの下部電極14aに金属接合に接合して基板接合体を形成し、実施例1と同様に、工程4において基板接合体を圧電体基板の欠陥層で剥離し、工程5において圧電体基板及び支持基板の表面を平滑化し、図3(b)に示すように、20°YカットLiTaOの剥離層3aを有する複合圧電基板30aを準備する。
次いで、図3(c)に示すように、LiTaOの剥離層3aの表面3kに、アルミニウムで上部電極16aを電子ビーム蒸着法とフォトリソグラフィ法により形成する。
次いで、図3(d)に示すように、剥離層3aと下部電極14aに、フォトリソグラフィ法とリアクティブイオンエッチング法で、犠牲層13xに達する孔22と、下部電極14aに達する孔24とを形成する。
次いで、図3(e)に示すように、犠牲層13xに達する孔22を通してドライエッチングにより犠牲層13xを除去する。
次いで、図3(f)及び図4に示すように、フォトリソグラフィ法と蒸着法でアルミニウムにより配線18aを形成し、下部電極14aに達する孔24を介して下部電極14aと接続される配線18aを形成する。図示していないが、さらに、配線18aの電気抵抗を下げるために、バルク波素子の振動領域(下部電極14aと上部電極16aとが剥離層3aを挟んで対向する領域)以外の領域にアルミニウムを厚付けし、配線18aを外部端子に接続してパッケージングする。
実施例2のように支持基板10の裏面10bに穴13が開いていると、裏面10b側に別途基板を張り合わせるなどしてフタをする必要があるが、実施例3の構造は支持基板11に穴が開いていないため、裏面側の密閉は不要となる。その他の効果は、実施例2と同じである。
<まとめ> 以上に説明した方法で複合圧電基板を製造すると、圧電体材料を効率良く利用して、均質な厚みの極薄圧電膜を形成することができる。
なお、本発明は、上記した実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
例えば、本発明の方法で製造された複合圧電基板は、SAW素子、BAW素子、センサー素子、屈曲振動子、その他の種々の素子に用いることができる。

Claims (4)

  1. 圧電体基板と、支持基板とを準備する、第1の工程と、
    前記圧電体基板の表面からイオンを注入して、前記圧電体基板内において前記表面から所定深さの領域に欠陥層を形成する、第2の工程と、
    前記欠陥層が形成された前記圧電体基板の前記表面に前記支持基板を接合して基板接合体を形成する、第3の工程と、
    前記基板接合体を、前記圧電体基板内に形成された前記欠陥層で分離して、前記圧電体基板の前記表面と前記欠陥層との間の剥離層が前記圧電体基板から剥離されて前記支持基板に接合された複合圧電基板を形成する、第4の工程と、
    前記複合圧電基板の前記剥離層の表面を平滑化する、第5の工程と、
    を含み、
    前記第2の工程の後かつ前記第3の工程の前又はそれ以降に、前記第2の工程でのイオン注入によって生じた前記複合圧電基板の前記剥離層における分極の極性の反転を修復する分極処理を行う分極処理工程をさらに含むことを特徴とする、複合圧電基板の製造方法。
  2. 前記欠陥層が形成された前記圧電体基板の表面と前記支持基板の表面との少なくとも一方について、当該表面に付着した不純物を除去して当該表面を構成する原子を直接露出させ、活性化させる、清浄活性化工程をさらに含むことを特徴とする、請求項に記載の複合圧電基板の製造方法。
  3. 接合界面に金属元素を配したことを特徴とする、請求項1又は2に記載の複合圧電基板の製造方法。
  4. 前記圧電体基板にリチウム系圧電材料を用いたことを特徴とする、請求項1乃至のいずれか一つに記載の複合圧電基板の製造方法。
JP2009546984A 2007-12-25 2008-10-23 複合圧電基板の製造方法 Active JP5110092B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009546984A JP5110092B2 (ja) 2007-12-25 2008-10-23 複合圧電基板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007333044 2007-12-25
JP2007333044 2007-12-25
PCT/JP2008/069212 WO2009081651A1 (ja) 2007-12-25 2008-10-23 複合圧電基板の製造方法
JP2009546984A JP5110092B2 (ja) 2007-12-25 2008-10-23 複合圧電基板の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012177723A Division JP5408312B2 (ja) 2007-12-25 2012-08-10 複合圧電基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2009081651A1 JPWO2009081651A1 (ja) 2011-05-06
JP5110092B2 true JP5110092B2 (ja) 2012-12-26

Family

ID=40800967

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009546984A Active JP5110092B2 (ja) 2007-12-25 2008-10-23 複合圧電基板の製造方法
JP2012177723A Active JP5408312B2 (ja) 2007-12-25 2012-08-10 複合圧電基板の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012177723A Active JP5408312B2 (ja) 2007-12-25 2012-08-10 複合圧電基板の製造方法

Country Status (6)

Country Link
US (2) US8973229B2 (ja)
EP (1) EP2226934B1 (ja)
JP (2) JP5110092B2 (ja)
KR (2) KR101196990B1 (ja)
CN (2) CN102569640B (ja)
WO (1) WO2009081651A1 (ja)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636292B2 (ja) 2008-08-27 2011-02-23 株式会社村田製作所 電子部品及び電子部品の製造方法
JP4582235B2 (ja) * 2008-10-31 2010-11-17 株式会社村田製作所 圧電デバイスの製造方法
JP5182379B2 (ja) * 2009-01-29 2013-04-17 株式会社村田製作所 複合基板の製造方法
JP5152410B2 (ja) * 2009-06-09 2013-02-27 株式会社村田製作所 圧電デバイスの製造方法
JP5581619B2 (ja) * 2009-07-07 2014-09-03 株式会社村田製作所 圧電デバイスの製造方法および圧電デバイス
JP5413025B2 (ja) * 2009-07-29 2014-02-12 株式会社村田製作所 複合基板の製造方法
FR2951336B1 (fr) * 2009-10-09 2017-02-10 Commissariat A L'energie Atomique Dispositif a ondes acoustiques comprenant un filtre a ondes de surface et un filtre a ondes de volume et procede de fabrication
JP5569537B2 (ja) * 2009-11-26 2014-08-13 株式会社村田製作所 圧電デバイスの製造方法
JP5370100B2 (ja) * 2009-11-26 2013-12-18 株式会社村田製作所 圧電デバイスの製造方法
JP5471379B2 (ja) * 2009-12-04 2014-04-16 株式会社村田製作所 圧電デバイスの製造方法
JP2011124738A (ja) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd 圧電デバイスの製造方法
WO2011074329A1 (ja) * 2009-12-18 2011-06-23 株式会社村田製作所 圧電デバイスの製造方法
KR101350244B1 (ko) * 2010-01-28 2014-01-13 가부시키가이샤 무라타 세이사쿠쇼 튜너블 필터
WO2011099381A1 (ja) * 2010-02-09 2011-08-18 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
JP5429200B2 (ja) * 2010-05-17 2014-02-26 株式会社村田製作所 複合圧電基板の製造方法および圧電デバイス
FR2962598B1 (fr) 2010-07-06 2012-08-17 Commissariat Energie Atomique Procede d'implantation d'un materiau piezoelectrique
JP5648695B2 (ja) 2010-12-24 2015-01-07 株式会社村田製作所 弾性波装置及びその製造方法
US8620164B2 (en) * 2011-01-20 2013-12-31 Intel Corporation Hybrid III-V silicon laser formed by direct bonding
JP5786393B2 (ja) * 2011-03-18 2015-09-30 株式会社村田製作所 水晶デバイスの製造方法
WO2012128268A1 (ja) * 2011-03-22 2012-09-27 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
JP5796316B2 (ja) * 2011-03-22 2015-10-21 株式会社村田製作所 圧電デバイスの製造方法
JP5835329B2 (ja) * 2011-07-29 2015-12-24 株式会社村田製作所 圧電デバイス、および、圧電デバイスの製造方法
JP5817830B2 (ja) * 2011-09-01 2015-11-18 株式会社村田製作所 圧電バルク波装置及びその製造方法
JP5807715B2 (ja) * 2012-03-23 2015-11-10 株式会社村田製作所 弾性波フィルタ素子及びその製造方法
WO2014027538A1 (ja) * 2012-08-17 2014-02-20 日本碍子株式会社 複合基板,弾性表面波デバイス及び複合基板の製造方法
CN103091774A (zh) * 2012-11-13 2013-05-08 东北大学秦皇岛分校 悬空式铌酸锂光波导
JP5583876B1 (ja) 2012-11-14 2014-09-03 日本碍子株式会社 複合基板
CN103999366B (zh) * 2012-11-14 2016-07-06 日本碍子株式会社 复合基板及其制法
KR102094026B1 (ko) 2013-02-19 2020-03-27 엔지케이 인슐레이터 엘티디 복합 기판, 탄성파 디바이스 및 탄성파 디바이스의 제법
JP6052388B2 (ja) 2013-02-22 2016-12-27 株式会社村田製作所 センサタグ、センサタグの製造方法
JP6333540B2 (ja) * 2013-11-11 2018-05-30 太陽誘電株式会社 圧電薄膜共振子、フィルタ、及び分波器
JP6335831B2 (ja) * 2015-04-16 2018-05-30 信越化学工業株式会社 接合基板の製造方法
US20180048283A1 (en) * 2015-04-16 2018-02-15 Shin-Etsu Chemical Co., Ltd. Lithium tantalate single crystal substrate, bonded substrate, manufacturing method of the bonded substrate, and surface acoustic wave device using the bonded substrate
JP6396852B2 (ja) * 2015-06-02 2018-09-26 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6396853B2 (ja) * 2015-06-02 2018-09-26 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6396854B2 (ja) * 2015-06-02 2018-09-26 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6454606B2 (ja) * 2015-06-02 2019-01-16 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6660113B2 (ja) * 2015-07-24 2020-03-04 日本碍子株式会社 複合基板およびその製造方法
JP2017034527A (ja) * 2015-08-04 2017-02-09 セイコーエプソン株式会社 圧電素子、プローブ、超音波測定装置、電子機器、分極処理方法、及び、初期化装置
JP6100984B1 (ja) 2015-09-15 2017-03-22 日本碍子株式会社 複合基板の製造方法
FR3045678B1 (fr) 2015-12-22 2017-12-22 Soitec Silicon On Insulator Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche
FR3045677B1 (fr) 2015-12-22 2019-07-19 Soitec Procede de fabrication d'une couche monocristalline, notamment piezoelectrique
JP6549054B2 (ja) 2016-02-02 2019-07-24 信越化学工業株式会社 複合基板および複合基板の製造方法
US10110189B2 (en) * 2016-11-02 2018-10-23 Akoustis, Inc. Structure and method of manufacture for acoustic resonator or filter devices using improved fabrication conditions and perimeter structure modifications
US11558023B2 (en) 2016-03-11 2023-01-17 Akoustis, Inc. Method for fabricating an acoustic resonator device
JP6360847B2 (ja) 2016-03-18 2018-07-18 太陽誘電株式会社 弾性波デバイス
FR3051979B1 (fr) * 2016-05-25 2018-05-18 Soitec Procede de guerison de defauts dans une couche obtenue par implantation puis detachement d'un substrat
FR3051785A1 (fr) 2016-05-25 2017-12-01 Soitec Silicon On Insulator Procede de fabrication d'une couche
US10256786B1 (en) * 2016-07-11 2019-04-09 Akoustis, Inc. Communication filter using single crystal acoustic resonator devices
US10855250B2 (en) * 2016-07-11 2020-12-01 Akoustis, Inc. Communication filter for LTE band 41
FR3054930B1 (fr) * 2016-08-02 2018-07-13 Soitec Utilisation d'un champ electrique pour detacher une couche piezo-electrique a partir d'un substrat donneur
JP6998650B2 (ja) 2016-08-10 2022-01-18 株式会社日本製鋼所 接合基板、弾性表面波素子、弾性表面波デバイスおよび接合基板の製造方法
CN109891612A (zh) 2016-10-20 2019-06-14 天工方案公司 具有亚波长厚度的压电层的弹性波器件
DE102016120324B4 (de) * 2016-10-25 2020-12-17 Tdk Electronics Ag Verfahren zur Bereitstellung einer Vorrichtung zur Erzeugung eines Atmosphärendruck-Plasmas
JP6963423B2 (ja) 2017-06-14 2021-11-10 株式会社日本製鋼所 接合基板、弾性表面波素子および接合基板の製造方法
WO2019039474A1 (ja) 2017-08-25 2019-02-28 日本碍子株式会社 接合体および弾性波素子
KR102218935B1 (ko) 2017-08-25 2021-02-23 엔지케이 인슐레이터 엘티디 접합체 및 탄성파 소자
CN111033774B (zh) * 2017-11-22 2023-11-17 株式会社村田制作所 压电器件以及压电器件的制造方法
WO2019102951A1 (ja) * 2017-11-22 2019-05-31 株式会社村田製作所 圧電デバイス及び圧電デバイスの製造方法
DE112018004250B4 (de) 2017-12-28 2022-06-15 Ngk Insulators, Ltd. Anordnung eines Substrats aus einem piezoelektrischen Material und eines Trägersubstrats und Verfahren zur Herstellung der Anordnung
DE112018006912B4 (de) 2018-01-22 2024-02-08 Ngk Insulators, Ltd. Anordnung aus einem Substrat aus einem piezoelektrischen Material und einem Trägersubstrat und Verfahren zu deren Herstellung
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US10911023B2 (en) * 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
FR3078822B1 (fr) * 2018-03-12 2020-02-28 Soitec Procede de preparation d’une couche mince de materiau ferroelectrique a base d’alcalin
DE102018107489B4 (de) * 2018-03-28 2019-12-05 RF360 Europe GmbH BAW-Resonator mit verbesserter Kopplung, HF-Filter, das einen BAW-Resonator umfasst, und Verfahren zum Herstellen eines BAW-Resonators
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US10797675B2 (en) 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
JP7127472B2 (ja) * 2018-10-15 2022-08-30 日本電信電話株式会社 波長変換素子の作製方法
DE112019006862T5 (de) * 2019-02-12 2021-11-04 Murata Manufacturing Co., Ltd. Piezoelektrisches bauelement
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
DE112020001227T5 (de) 2019-03-14 2022-02-10 Resonant Inc. Transversal angeregter akustischer Filmresonator mit Lambda-Halbe-Dielektrikumschicht
JP7279432B2 (ja) * 2019-03-15 2023-05-23 日本電気硝子株式会社 複合基板、電子デバイス、複合基板の製造方法及び電子デバイスの製造方法
FR3094573B1 (fr) 2019-03-29 2021-08-13 Soitec Silicon On Insulator Procede de preparation d’une couche mince de materiau ferroelectrique
WO2020209152A1 (ja) * 2019-04-08 2020-10-15 株式会社村田製作所 弾性波デバイスおよびそれを備えたフィルタ装置
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
WO2021053892A1 (ja) * 2019-09-17 2021-03-25 株式会社村田製作所 圧電デバイスおよびその製造方法
JP6771635B2 (ja) * 2019-11-21 2020-10-21 信越化学工業株式会社 複合ウェーハの製造方法
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
JP7336413B2 (ja) * 2020-04-30 2023-08-31 信越化学工業株式会社 複合基板の製造方法および複合基板
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
CN111834519B (zh) * 2020-06-29 2021-12-03 中国科学院上海微系统与信息技术研究所 一种提高单晶压电薄膜厚度均匀性的方法
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
CN111864054B (zh) * 2020-07-07 2021-12-24 中国科学院上海微系统与信息技术研究所 一种异质集成压电单晶薄膜衬底的表面优化方法
US11482981B2 (en) 2020-07-09 2022-10-25 Resonanat Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11463066B2 (en) 2020-10-14 2022-10-04 Resonant Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
KR20230128098A (ko) * 2021-02-19 2023-09-01 신에쓰 가가꾸 고교 가부시끼가이샤 복합 웨이퍼 및 그 제조 방법
CN113872557B (zh) * 2021-09-29 2022-07-12 北京超材信息科技有限公司 用于声表面波器件的复合衬底及制造方法、声表面波器件
CN114214732B (zh) * 2022-02-22 2022-04-29 济南晶正电子科技有限公司 一种改善复合薄膜表面极化反转现象的方法及复合薄膜
FR3138596A1 (fr) * 2022-07-29 2024-02-02 Soitec Procédé de préparation d’une couche mince monodomaine en matériau ferroélectrique comprenant du lithium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516817B2 (ja) * 1989-09-14 1996-07-24 清水 郁子 分極反転層を有するLiTaO▲下3▼基板及びこれを用いたデバイス
JPH1155070A (ja) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd 弾性表面波素子とその製造方法
JP2002534886A (ja) * 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
JP2004343359A (ja) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk 弾性表面波素子の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502598A (en) * 1966-08-11 1970-03-24 Matsushita Electric Ind Co Ltd Piezoelectric ceramics
US4056304A (en) * 1975-03-06 1977-11-01 Rca Corporation Light modulation employing single crystal optical waveguides of niobium-doped lithium tantalate
US4551647A (en) * 1983-03-08 1985-11-05 General Electric Company Temperature compensated piezoelectric transducer and lens assembly and method of making the assembly
US4577132A (en) * 1983-07-05 1986-03-18 Toray Industries, Inc. Ultrasonic transducer employing piezoelectric polymeric material
JPH0590893A (ja) * 1991-09-26 1993-04-09 Sumitomo Electric Ind Ltd 表面弾性波素子
US6072263A (en) * 1996-08-09 2000-06-06 Toda; Kohji Surface acoustic wave transducing device
US6002515A (en) * 1997-01-14 1999-12-14 Matsushita Electric Industrial Co., Ltd. Method for producing polarization inversion part, optical wavelength conversion element using the same, and optical waveguide
JP2002016468A (ja) 2000-06-30 2002-01-18 Kyocera Corp 弾性表面波装置
US6710682B2 (en) * 2000-10-04 2004-03-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, method for producing the same, and circuit module using the same
JP2002261582A (ja) * 2000-10-04 2002-09-13 Matsushita Electric Ind Co Ltd 弾性表面波デバイスおよびその製造方法ならびにそれを用いた回路モジュール
JP4931302B2 (ja) * 2001-08-29 2012-05-16 京セラ株式会社 圧電素子用部材
JP2004328712A (ja) 2003-01-16 2004-11-18 Sumitomo Metal Mining Co Ltd タンタル酸リチウム基板およびその製造方法
JP3938147B2 (ja) * 2003-04-08 2007-06-27 住友金属鉱山株式会社 タンタル酸リチウム基板およびその製造方法
JP2004336503A (ja) 2003-05-09 2004-11-25 Fujitsu Media Device Kk 弾性表面波素子及びその製造方法
JP4063190B2 (ja) * 2003-10-16 2008-03-19 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法
JP4281549B2 (ja) 2003-12-19 2009-06-17 宇部興産株式会社 誘電体磁器組成物およびこれを用いた積層セラミック部品
JP2006228866A (ja) * 2005-02-16 2006-08-31 Seiko Epson Corp 圧電アクチュエータの製造方法、圧電アクチュエータ、液体噴射ヘッド及び液体噴射装置
JP2006245141A (ja) 2005-03-01 2006-09-14 Seiko Epson Corp アクチュエータ装置及び液体噴射ヘッド並びに液体噴射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516817B2 (ja) * 1989-09-14 1996-07-24 清水 郁子 分極反転層を有するLiTaO▲下3▼基板及びこれを用いたデバイス
JPH1155070A (ja) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd 弾性表面波素子とその製造方法
JP2002534886A (ja) * 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
JP2004343359A (ja) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk 弾性表面波素子の製造方法

Also Published As

Publication number Publication date
KR20100024952A (ko) 2010-03-08
KR20120025633A (ko) 2012-03-15
EP2226934A4 (en) 2013-03-27
CN101689841A (zh) 2010-03-31
US20100088868A1 (en) 2010-04-15
CN102569640A (zh) 2012-07-11
EP2226934B1 (en) 2016-11-30
CN102569640B (zh) 2014-11-05
KR101196990B1 (ko) 2012-11-05
EP2226934A1 (en) 2010-09-08
US8973229B2 (en) 2015-03-10
JP5408312B2 (ja) 2014-02-05
JPWO2009081651A1 (ja) 2011-05-06
JP2012213244A (ja) 2012-11-01
US9385301B2 (en) 2016-07-05
WO2009081651A1 (ja) 2009-07-02
US20140173862A1 (en) 2014-06-26
KR101148587B1 (ko) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5110092B2 (ja) 複合圧電基板の製造方法
JP4821834B2 (ja) 圧電性複合基板の製造方法
JP5923545B2 (ja) 圧電デバイス
US9240543B2 (en) Method for manufacturing piezoelectric device
US20170098754A1 (en) Piezoelectric device and method for producing piezoelectric device
JP6043717B2 (ja) 圧電材料の埋め込み方法
JP5353897B2 (ja) 圧電性複合基板の製造方法、および圧電素子の製造方法
WO2019244461A1 (ja) 接合体および弾性波素子
JP5359615B2 (ja) 複合基板の製造方法
JP5277975B2 (ja) 複合基板の製造方法
CN111492577B (zh) 压电性材料基板与支撑基板的接合体及其制造方法
JP6621574B1 (ja) 接合体および弾性波素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150