JP2021047189A - グラフェン系マルチモーダルセンサー - Google Patents

グラフェン系マルチモーダルセンサー Download PDF

Info

Publication number
JP2021047189A
JP2021047189A JP2020191065A JP2020191065A JP2021047189A JP 2021047189 A JP2021047189 A JP 2021047189A JP 2020191065 A JP2020191065 A JP 2020191065A JP 2020191065 A JP2020191065 A JP 2020191065A JP 2021047189 A JP2021047189 A JP 2021047189A
Authority
JP
Japan
Prior art keywords
graphene
metal
substrate
layer
nanoislands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020191065A
Other languages
English (en)
Other versions
JP7291112B2 (ja
Inventor
ザレツキ,アリァクサンダー
Zaretski Aliaksandr
ジェィ. リポミ,ダーレン
J Lipomi Darren
ジェィ. リポミ,ダーレン
サヴチェンコ,アレックス
Savtchenko Alex
モロカノヴァ,エレナ
Molokanova Elena
マーコーラ,マーク
Mercola Mark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of JP2021047189A publication Critical patent/JP2021047189A/ja
Application granted granted Critical
Publication of JP7291112B2 publication Critical patent/JP7291112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/028Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measurement Of Force In General (AREA)

Abstract

【課題】グラフェン系マルチモーダルセンサーを提供する。【解決手段】複合膜構造物を製造するための方法は、複合膜構造物の金属層にとって所望の形態を決定するステップ、決定に基づいて、第1の金属基板を選択するステップ、第1の金属基板上にグラフェン層を転写するステップ、グラフェン層上に金属層を堆積させて所望の形態を得るステップ、ならびに、グラフェンおよび堆積させた金属層から第1の金属基板を除去して、複合膜構造物を形成するステップを含む。第1の金属基板と堆積させた金属層の間の表面エネルギーの相違が、金属層の所望の形態をもたらす。【選択図】なし

Description

関連出願の相互参照
本出願は、「Graphene−based Multi−Modal Sensor
s」の名称で2015年10月7日に出願された米国仮特許出願第62/238,489
号明細書および「Graphene−based Multi−Modal Senso
rs」の名称で2015年10月7日に出願された米国仮特許出願第62/238,49
5号明細書の優先日の利益を主張する。これらの仮出願の全内容は、本明細書に、参照に
より組み込まれる。
本発明は、センサーに関する。
グラフェンは、いくつかの魅力的な特徴を有する。これは、金属膜と比較して可撓性か
つ伸張可能であり、導電性かつ透明であり、大面積での成長および多くの基板への転写に
適しており、その結晶粒は、1cmに達する寸法におよび得る。
開示するマルチモーダルセンサーは、機械的刺激(引張ひずみ、圧縮ひずみ)に対して
電気的な応答を発生することができるだけでなく、ラマン分光法による局所的な化学的環
境を評価する表面増強ラマン散乱(SERS)の基板としての役割を果たすことができる
本明細書に開示するセンサーおよび方法は、前例のない高感度(1%のひずみでのゲー
ジ率が約700)、0.001%のひずみ〜10%を上回るひずみの有効範囲、および良
好なサイクル性を有する、ひずみセンサーに関する。
開示するセンサーおよび方法は、リモートラマンセンシングへの適用が可能な、光ファ
イバーの先端上に堆積したグラフェン支持SERS基板も含む。
本明細書に開示するシステムおよび方法は、力学的ひずみセンサーを使用して、心筋細
胞の収縮を測定する、最初の実証を提供する。センサー基板上に心筋細胞を培養すること
により、本明細書に開示するセンサーおよび方法を使用して、自発的および刺激による心
筋細胞の収縮を、記録および分析することが可能である。本明細書に開示するひずみセン
サーは、構造ヘルスモニタリング(土木工学、航空学)、バイオメトリクスの取得(心拍
数、動き検出)、地下水汚染の試験、インビボの生化学分析(光ファイバーカテーテル法
)および創薬(新規薬物のスクリーニング、心臓毒性の研究)のために使用することもで
きる。
1つの態様において、複合膜構造物を製造するための方法は、複合膜構造物の金属層に
とって所望の形態を決定するステップ、決定に基づいて、第1の金属基板を選択するステ
ップ、第1の金属基板上にグラフェン層を転写するステップ、グラフェン層上に金属層を
堆積させて所望の形態を得るステップ、ならびに、グラフェンおよび堆積させた金属層か
ら第1の金属基板を除去して、複合膜構造物を形成するステップを含む。第1の金属基板
と堆積させた金属層の間の表面エネルギーの相違が、金属層の所望の形態をもたらす。
実施は、以下の特徴のうち1つまたは複数を含むことができる。所望の形態は、ナノア
イランドを含むことができる。金属層中のナノアイランドの縁部の間の間隔は、分子寸法
のオーダーであり得る。金属層を堆積させるステップは、金属原子の蒸着フラックスの堆
積を含むことができる。金属原子の蒸着フラックスは自己集合して、所望の形態を得るこ
とができる。金属原子の蒸着フラックスは、電子ビーム蒸着、熱蒸着またはスパッタリン
グにより生成することができる。第1の金属基板上にグラフェン層を転写するステップは
、第2の金属基板上に成長させたグラフェンを剥離すること、および第1の金属基板上に
グラフェン層を配置することを含むことができる。グラフェンは、単層のグラフェンを含
むことができる。グラフェンは、化学蒸着を使用して第2の金属基板上に成長させること
ができる。第1の金属基板は、遷移金属を含むことができる。遷移金属は、金、銀または
ニッケルを含むことができる。
実施は、以下の特徴のうち1つまたは複数を含むことができる。表面増強ラマン散乱の
ための基板を形成する方法は、第1の金属基板上にグラフェン層を堆積させるステップ、
グラフェン層上に複数の金属ナノアイランドを堆積させるステップ、グラフェンおよび堆
積させた複数の金属ナノアイランドから、第1の金属基板を除去して、表面増強ラマン散
乱のための基板を形成するステップを含むことができる。被験物質の表面増強ラマン散乱
を行う方法は、表面増強ラマン散乱のための基板を形成するステップ、光ファイバー上に
、基板を転写するステップ、基板上の被験物質を被覆するステップ、および被験物質から
の表面増強ラマン散乱のシグナルを記録するステップを含むことができる。複数の金属ナ
ノアイランドは、プラズモン的に活性な金属を含むことができる。プラズモン的に活性な
金属は、銅、銀、パラジウム、金または白金のナノアイランドを含むことができる。
別の態様において、薄膜ひずみセンサーを製造する方法は、第1の金属基板上にグラフ
ェン層を堆積させるステップ、グラフェン層上に金属層を堆積させるステップ、グラフェ
ン層および金属層上にポリマーを適用するステップ、および第1の金属基板をエッチング
して、4桁にわたるひずみを検出することができるひずみセンサーを形成するステップを
含む。
実施は、以下の特徴のうち1つまたは複数を含むことができる。金属層は、パラジウム
を含むことができ、第1の金属基板は、銅を含み、ポリマーは、ポリジメチルシロキサン
を含む。
別の態様において、試料における力学的運動を検出する方法は、試料を複合膜構造物と
接触させること、および複合膜構造物を使用して、力学的運動により引き起こされる電気
的シグナルを測定することを含む。複合膜構造物は、グラフェン層上に堆積させた金属層
、ならびにグラフェン層および金属層上のポリマー層を含む。
実施は、以下の特徴のうち1つまたは複数を含むことができる。試料は、航空機の構成
要素を含むことができ、力学的運動は、航空機の構成要素の屈曲を含むことができる。力
学的運動の検出は、構造物中の亀裂の検出を含むことができる。試料は、生体試料を含む
ことができ、複合膜構造物は、身体の外側で使用される。生体試料は、器官を含むことが
でき、器官は、周囲空気との接触面を有する。力学的運動は、生理学的情報を伝達するこ
とができる。生理学的情報は、心拍数、脈圧、筋肉の動き、呼吸のうち1つまたは複数を
含むことができる。身体は、ヒトの身体の一部であり、ヒトの身体の一部は、周囲空気と
の接触面を有する。力学的運動は、生理学的情報を伝達することができる。生理学的情報
は、心拍数、脈圧、筋肉の動きおよび呼吸のうち1つまたは複数を含むことができる。複
合膜構造物は、皮膚または衣服へのウェアラブルセンサーの一部であり得る。ウェアラブ
ルセンサーは、触覚への適用のために使用することができる。ウェアラブルセンサーは、
機器を備えたプロテーゼにおいて使用することができる。
複合膜構造物は、ヒトの身体の外側での適用において使用することができる。複合膜構
造物は、ヘルスケア適用において使用することができる。
グラフェン層は、金属層がグラフェン層上に堆積する前に、第1の金属基板上に堆積さ
せることができ、ポリマーは、グラフェン層および金属層上に適用することができる。
本方法は、試料を複合膜構造物と接触させる前に、第1の金属基板をエッチングするこ
とをさらに含むことができる。
試料を複合膜構造物と接触させることは、複合膜構造物を試料上に転写することによっ
て試料を複合膜構造物で被覆することを含むことができる。
試料は、生体細胞を含む。生体細胞は、心筋細胞、ニューロン、筋細胞および上皮細胞
のうち1つまたは複数を含む。金属層は、金ナノアイランドを含み、ポリマーは、ポリメ
チルメタクリレートを含む。
別の態様において、基板は、グラフェン層、グラフェン層上の複数の金属ナノアイラン
ドを含み、複数のナノアイランド中のナノアイランドの縁部の間の間隔は、分子寸法のオ
ーダーである。基板は、表面増強ラマン散乱のために構成することができる。
実施は、以下の特徴のうち1つまたは複数を含むことができる。グラフェンは、単層の
グラフェンを含み、複数の金属ナノアイランドは、金ナノアイランドを含む。
別の態様において、ひずみセンサーは、グラフェン層、グラフェン層上の金属層、なら
びにグラフェン層および金属層上のポリマーを含む。ひずみセンサーのピエゾ抵抗は、4
桁にわたるひずみを検出することを可能にし得る。
実施は、以下の特徴のうち1つまたは複数を含むことができる。金属層は、パラジウム
を含むことができ、第1の金属基板は、銅を含むことができ、ポリマーは、ポリジメチル
シロキサンを含むことができる。グラフェン層は、金属層を通じた亀裂伝搬を抑制するよ
うに構成することができる。ひずみセンサーの1%のひずみでのゲージ率は、少なくとも
1300であり得る。
別の態様において、生体試料における力学的運動を検出する方法は、複合膜構造物を生
体試料上に転写することにより、生体試料を複合膜構造物で被覆することを含む。本方法
は、複合膜構造物を使用して、力学的運動により引き起こされる電気的シグナルを測定す
ることを含む。複合膜構造物は、グラフェン層上に堆積させた金属層、ならびにグラフェ
ン層および金属層上のポリマー層を含み、生体試料は、設計され、培養され、もしくは採
取された、細胞または組織、および/あるいは内部器官を含む。
実施は、以下の特徴のうち1つまたは複数を含むことができる。生体試料は、培養細胞
を含み、培養細胞は、心筋細胞、ニューロン、筋細胞および上皮細胞のうち1つまたは複
数を含む。生体試料は、培養組織を含む。培養組織は、筋細胞を含む。生体試料は、内部
器官を含む。内部器官は、心臓を含む。グラフェン層は、金属層が、グラフェン層上に堆
積する前に、第1の金属基板上に堆積させる。ポリマーは、グラフェン層および金属層上
に適用される。本方法は、生体試料を複合膜構造物で被覆する前に、第1の金属基板をエ
ッチングすることを含む。第1の金属基板は、遷移金属を含む。金属層は、金ナノアイラ
ンドを含み、ポリマーは、ポリメチルメタクリレートを含む。
別の態様において、生体試料における力学的運動を測定するためのシステムは、チャン
バー、生体試料が上に配置された複合膜構造物を含み、複合膜構造物は、グラフェン層と
接触している金属層、金属層またはグラフェン層のいずれかと接触しているポリマー層を
有する。システムは、複合膜構造物に電気的にアクセスするための電気的接続を含む。シ
ステムは、チャンバー内の中央開口部を含み、中央開口部は、複合膜構造物上に配置され
た生体試料を受け取るように構成される。生体試料は、培養細胞または組織を含む。金属
層は、複数の金属ナノアイランドを含む。
実施は、以下の特徴のうち1つまたは複数を含むことができる。ポリマー層は、金属層
と接触しており、生体試料は、グラフェン層上に直接成長する。ポリマー層は、グラフェ
ン層と接触しており、生体試料は、金属層上に直接成長する。ポリマー層は、透明なポリ
マーを含む。透明なポリマーは、ポリジメチルシロキサン(PDMS)、ポリメチルメタ
クリレート(PMMA)およびパリレンのうち1つまたは複数を含む。グラフェン層は、
単層グラフェンを含み、培養細胞は、基板上に培養された心筋細胞を含む。複数の金属ナ
ノアイランドは、プラズモン的に活性な金属を含む。プラズモン的に活性な金属は、金ナ
ノアイランドを含み、電気的接続は、電極を含む。複合膜構造物は、培養細胞の収縮活動
に起因するひずみに基づく電気的シグナルを発生させるように構成される。システムは、
培養細胞を有する複合膜構造物を挟み込むように構成された基板の第2のペアを含む。複
合膜構造物は、40を超えるシグナル対ノイズ比を有するシグナルを発生させるように構
成される。複合膜構造物は、サブミリ秒の応答時間を示す。システムは、培養細胞の力学
的運動の振幅および時間的プロファイルを提供するように構成される。システムは、培養
細胞の活動に関連する電気インピーダンスプロファイルを提供するように構成される。シ
ステムは、複数の電極を含み、第1の電極は、培養細胞の片側に位置し、第2の電極は、
培養細胞の逆側に位置する。システムは、時間分解法で、高速の電流−電圧シグナルを記
録することができる増幅器をさらに含む。システムは、培養細胞の活動に起因する細胞膜
電位プロファイルを提供するように構成される。システムは、複数の金属ナノアイランド
中の金属ナノアイランドの間の間隔の変化の光学的観測により、細胞の収縮性のプロファ
イルを提供するように構成される。金属ナノアイランドの間の間隔の変化は、光学的観測
のように使用される可視光の波長を変化させるように構成される。システムは、暗視野顕
微鏡データを提供するように構成される。システムは、培養細胞からラマン散乱データを
提供するように構成される。
1つまたは複数の本発明の実施形態の詳細を、添付の図面および以下の明細書において
説明する。本発明の他の特徴、目的および利点は、明細書および図面、ならびに特許請求
の範囲から明らかになるであろう。
ナノアイランド(NI)を生成させるために使用するプロセスの模式図(上側)、およびグラフェン/金属基板(x軸)上の蒸着物(y軸)の電子ビーム蒸着により得られた様々な基板上の金属ナノアイランドの走査型電子顕微鏡写真(下側)である。(左から右に)銅箔上のグラフェン(成長させたまま)、ニッケル上にMAE転写されたグラフェン、金上にMAE転写されたグラフェン、銀上にMAE転写されたグラフェンの上に蒸着された、10nmの金(1行目)および10nmの銀(2行目)。それぞれの蒸着物は、同じチャンバー内で同時に基板上に堆積させた。スケールバー:200nm。挿入図におけるスケールバー:50nm。 分子力学シミュレーションにより予測されるナノアイランドの微細構造の発達を示す図である。a:銅上のグラフェン上への1.5nmの金のシミュレーションした蒸着。b:500Kでの20ナノ秒の真空アニーリング中の金ナノアイランドの全表面積の変化のプロット。ナノアイランドの融合は、結晶整列およびネッキング(表面積の増加)に先行する。c:銅上のグラフェン上に蒸着させた1nmの金の走査型電子顕微鏡写真。スケールバー:50nm。 ナノアイランドの適用を示す図である。a:光ファイバーの先端上への浮遊性金ナノアイランド/グラフェンSERS基板の堆積の模式図。b:光ファイバーの先端上のグラフェン/AuNI SERS基板の走査型電子顕微鏡写真(金は、疑似色である)。スケールバー:150μm、左挿入図では2μm、右挿入図では500nm。c:グラフェン/AuNI被覆光ファイバー(灰色)および100nm厚さの非構造化金膜(黒色)からの1−ブタンチオレートのラマンスペクトル。d:パルスの検出のために橈骨動脈の上に置かれたPDMS/グラフェン/PdNIひずみセンサーの写真(図中に重ねた)。e:1、2、3、・・・9%のひずみまで周期的(それぞれのひずみについて20サイクル)に伸ばされたPDMS/グラフェン/PdNIひずみセンサーの正規化された抵抗プロット。f:130μm厚さのガラスカバースリップの表面上で0.001%の引張ひずみを感知するために使用されるグラフェン/PdNIひずみセンサーの模式図(13μmに等しい振幅の偏位を有するカンチレバーとして使用した)。カンチレバー表面上のひずみの有限要素解析(FEA)モデル(左挿入図)。0.001%の周期的な引張ひずみ下でのグラフェン/PdNIひずみセンサーの正規化された抵抗プロット(右挿入図)。g:約0.001%の引張ひずみ下でのガラス/グラフェン/PdNIひずみセンサーの走査型電子顕微鏡写真。スケールバー:100nm。挿入図におけるスケールバー:25nm。h:約3%の引張ひずみ下でのPDMS/グラフェン/PdNIひずみセンサーの走査型電子顕微鏡写真。スケールバー:100nm。挿入図におけるスケールバー:25nm。 細胞電気生理学のための基板としてのグラフェン上のナノアイランドを示す図である。aおよびb:PMMA/AuNI/グラフェン基板上の固定細胞培養の走査型顕微鏡画像(細胞は、緑の疑似色であり、金は、黄色の疑似色である)。スケールバー:それぞれ、5μmおよび200nm。c:心筋細胞の収縮を記録するために使用される電気生理学チャンバーの模式図。d:細胞の自発収縮中の、PMMA/AuNI/グラフェン上の細胞培養から得られたシグナルの変調。シグナルの増加段階のプロファイル(左挿入図)。シグナルの減少段階のプロファイル(右挿入図)。 単層グラフェンを示す図である。90nmの熱酸化物でシリコンウエハーにウェット転写された単層CVDグラフェンの光学顕微鏡写真(上側)。スケールバー:100μm。90nmの熱酸化物でシリコンウエハーにウェット転写された単層CVDグラフェンのラマンスペクトル(下側)。突出したグラフェンのピークの比は、高品質で、大部分が単層グラフェンであることを示す(D/G比:0.019、2D/G比:3.1)。 異なる粒子配向基板上のNIを示す図である。銅上のグラフェン上のAgNI(10nm堆積)の走査型電子顕微鏡写真。スケールバー:1μm。銅の粒子境界は、画像の対角線方向(左下から右上)にあること、およびそれぞれの銅粒子上のAgNIの形態の相違(パーコレーション、異方性のレベル)が分かる。 多層グラフェン上のNIを示す図である。パリレン−C上に転写された、グラフェン上のAuNI(銅上のグラフェン上に10nm堆積)の走査型電子顕微鏡写真(パリレンCの1μm厚さの膜の堆積後の銅のエッチング(グラフェンは、この画像の上側であり、金アイランドで覆われている))。銅上の1、2および3層のグラフェン上に堆積した金アイランドにおけるパーコレーションの量の変化が分かる。スケールバー:2μm。 高蒸着速度でのNI堆積を示す図である。2Å/秒の速度で堆積させた、銅上のグラフェン上のAuNI(10nm堆積)の走査型電子顕微鏡写真。低速での堆積(0.1Å/秒、図1、下側)と比較すると、金アイランドの構造は、顕著に高い粒状性、完全なパーコレーション、および顕著に高い被覆面積を実証する。スケールバー:200nm。 高温で堆積させたNIを示す図である。0.1Å/秒の速度および基板の温度が約500K(図1におけるSDCより100K高い)で堆積させた、銅上のグラフェン上のAuNI(8nm堆積)の走査型電子顕微鏡写真。 AuNIの熱アニーリングを示す図である。600Kで1時間の真空アニーリング後の、銅箔上のグラフェン上のAuNI(10nm堆積)の走査型電子顕微鏡写真。非アニール試料(図2、左上)との比較において、アイランドの融合および拡張が分かる。スケールバー:200nm。挿入図におけるスケールバー:50nm。 ウェット転写がAuNIを変形させることを示す図である。銅箔上のグラフェン上に合成され、およびガラススライド上に転写された、AuNI(10nm堆積)の走査型電子顕微鏡写真。スケールバー:200nm。挿入図におけるスケールバー:50nm。非転写試料(図1、左下)との比較において、完全にパーコレーションされたネットワークへのアイランドの融合および結晶面の平滑化が分かる。変質は、ウェット転写プロセス中に、水(表面エネルギー72mJ/m)の表面上に離れて浮遊しているAuアイランド/グラフェン膜の銅基板(表面エネルギー1650mJ/m)のエッチングに潜在的に起因する。スケールバー:200nm。挿入図におけるスケールバー:50nm。 薄膜成長モデルを示す図である。蒸着物/基板の表面エネルギーのミスマッチ(縦軸)対蒸着物/基板(グラフェン)の格子ミスマッチ(横)のプロット。膜成長の3つの主要な様式の安定領域をプロット上に示す:層ごと(網状)、層/アイランド(灰色)、アイランド(淡灰色)。グラフェンの湿潤透明性に起因して、基板の表面エネルギーが、基板金属の表面エネルギーの2%未満として計算されたことが分かる(したがって、同じ蒸着物/同じ金属基板(Au/Gr上のAuおよびAg/Gr上のAg)の垂直位置が−0.02であることが分かる)。基板の格子定数は、グラフェンの格子定数(2.46Å)とした(下にある基板によるグラフェンにおけるひずみ(およそ0.5%)の効果は、無視でき、主要因ではない)。このモデルは、ナノアイランドの形態に影響を及ぼす可能性があり得る、モアレパターン(一次:基板/グラフェン、および二次:基板/グラフェン/蒸着物)を考慮していない。モデルと実験結果の良好な一致が分かる(図1、下側):高度のナノアイランドのパーコレーションおよびグラフェンの被覆面積は、Stranski−Krastanov様式(Cu/Gr、Ni/Gr基板)を示唆しているが、Volmer−Weber安定域(Ag/Gr上のAg、Ag/Gr上のAuおよびAu/Gr上のAu)に位置した系は、明確に、純粋なナノアイランドの形態を有する。 グラフェン/金の接触面の事象のモニタリングを示す図である。銅上のグラフェン上の金ナノアイランドの熱アニーリング(500°K)のLAMMPSシミュレーション。アニーリング中、5ナノ秒の時間にわたる、下層の金(グラフェンと接触している)の再構築を示す。融合したアイランドの間の粒子境界の再構築および点欠陥の移動が分かる。 堆積中のAuNIの高さ分布のモニタリングを示す図である。2層の単分子層の金の堆積中の、AuNI(グラフェンおよび金)の高さのシミュレーションした分布。 小さなひずみ下でのガラスのFEAを示す図である。カンチレバーの端部に0.1Nの力をかけた後、グラフェン/PdNIひずみセンサーを有するガラスカンチレバーにおける、同等のひずみの有限要素解析シミュレーション。カンチレバーのフォップ(fop)表面は、0.001%の最大引張ひずみを受ける。 グラフェン/PdNIセンサーの3つのセンシング様式を示す図である。グラフェン/PdNIひずみセンサーについてのゲージ率対ひずみ%のプロットは、3つの主要なセンシング様式を示す:粒子間トンネル抵抗の調節(<<1%のひずみ)、PdNI膜の亀裂(<6%のひずみ)、グラフェンの亀裂(>6%のひずみ)。0.001%のひずみに対する最低値は、グラフェン/PdNI膜を有する130μm厚さのガラススライドを曲げることにより得られたが(図22a)、残りの値は、PDMSストリップに転写されたセンサーを用いて得られた(図22b)ことが分かる。 ひずみセンサーとしてのグラフェンを示す図である。1、2、3、・・・9%のひずみまで周期的(それぞれのひずみについて20サイクル)に伸ばされたPDMS上のグラフェンの正規化された抵抗プロット。20回のひずみサイクルのセット内のベースラインは、6%のひずみに達するまで(グラフェンの亀裂の開始)、安定であることが分かる。異なるサイクルのセット間の段階的なベースラインのシフトは、PDMS基板の粘弾性応答に起因する。 5%のひずみ下でのグラフェン/PdNIセンサーを示す図である。約5%(h)の引張ひずみ下でのPDMS/グラフェン/PdNIひずみセンサーの走査型電子顕微鏡写真。スケールバー:200nm。 固体Pd薄膜センサー対グラフェン/PdNIセンサーを示す図である。0.003%の周期的な引張ひずみ下でのガラスカバースリップ上の固体(100nm)膜Pdひずみセンサー(a)および0.003%の周期的な引張ひずみ下でのガラスカバースリップ上のグラフェン/PdNIひずみセンサー(b)の正規化された抵抗プロット。0.003%で同様のゲージ率(約17)では、PdNIセンサーは、安定な挙動を実証するが(1秒のひずみサイクル中、抵抗値を持続する)、固体Pd膜センサーは、適用されたひずみを記録するが、抵抗値は持続せず、ベースラインに戻る(非ひずみ位置にセンサーが戻ると、抵抗値は低下し、その後、1秒の非ひずみサイクル中に、ベースラインに戻る)。この観測は、非常に小さなひずみ(<<1%)では、固体Pd膜における粒子境界が再構築されて、粒子間の分離が最小化し、これが、このようなセンサーによる静的ひずみの記録を不可能にすることを示唆している。逆に、PdNIセンサーは、静的ひずみの測定のための良好な安定性を実証する。 浮遊性のグラフェン/NI膜。銅のエッチングおよび、DI水浴へ転写させた後の浮遊性のグラフェン/PdNI/PMMA膜の写真を示す図である。 グラフェン/NI転写。最終的な受け取り基板上への浮遊性のグラフェン/NI/ポリマー支持体(または非ポリマー)の堆積を表示する概略図である。 固い基板、可撓性の基板、および伸張可能な基板の、グラフェン/PdNIセンサーを示す図である。ガラスカバースリップ上に転写され、EGaINおよび銅線で電気アドレスされたグラフェン/PdNI膜(a)、引張ひずみの周期的な負荷の下、PDMSのストリップ上に転写されたグラフェン/PdNI膜(b)、非ひずみPET/PdNI/グラフェンひずみセンサー(c)、ならびに約1%の引張ひずみ下でのトゥースピック周辺の耐久力(d)の光学写真。 金アイランドを堆積させるにつれての配位数の確率分布の進化を示す図である。 センサーのベースライン安定性を示す図である。PDMS上のPdNIセンサー(黒三角)およびPDMS上のグラフェン(四角)についての、1%のひずみの増加後(増加あたり20サイクル)のベースラインシフトのプロット(正規化された抵抗)。PdNIセンサーの安定性が分かる(ベースラインの正規化された抵抗は、3〜4%のひずみに達するまで、Pd粒子の再パッキングに潜在的に起因して、0.11まで減少し;その後、9%のひずみサイクル後、1.18まで、最小限上昇する)。グラフェン対照のベースラインは、5〜6%に達するまで、徐々に上昇し(グラフェンの亀裂の開始)、その後、ベースラインは、急激に上昇して、9%のひずみサイクル後、6.80に達した。これは、PdNI膜における亀裂が、効果的に再び閉じ得、したがって、高いひずみでのセンサーの安定性を保証することを示す。 シミュレーションボックスを示す図である。グラフェン/銅基板の配置を示す概略図。
別々の図面における同様の参照符号は、同様の要素を示す。
金属薄膜の物理的蒸着(PVD)は、製造および研究において使用することができる。
これは、物理的な自己集合のプロセスとして理解することができる。すなわち、PVDに
おける堆積チャンバー内で生成された金属原子の蒸着フラックスは、基板上に堆積した薄
膜になることができ、薄膜の構造は、圧力、温度および堆積の速度と連動した、金属およ
び基板の複合関数である。ガラス、ポリマーフィルムなどの典型的な基板、ケイ素、窒化
ホウ素および炭化ケイ素などの単結晶基板などにおける低い呼び厚さ(例えば、<50n
m)で、最も頻繁に生成される形態は、分離したアイランドである。一般に、アイランド
は、単離された膜の領域に存在する。この形態は、一般に、薄膜の電子機器に適合すると
は見なされない。しかしながら、アイランドが、再現可能に、任意の他の表面に容易に転
写することを可能にする支持体上に生成させることができるならば、これらのアイランド
の様々な特徴を活用することができる用途がある。
グラフェンの湿潤透明性(すなわち、グラフェンによる、その下の基板の表面エネルギ
ーの取り込み)は、蒸着によりグラフェン上に堆積した金属薄膜(例えば、≦20nm、
≦10nm)の形態を、グラフェンを支持する基板の同一性に基づいて、変更することを
可能にする。例えば、形態は、グラフェンを支持する基板に強く依存し得る。
この方法では、グラフェンは、ある範囲の幾何形状の形成の制御を可能にする:隙間な
く充填されたナノスフェア、十分な面を持つナノ結晶、および3nmまで、または約2Å
〜数ナノメートルの間のような分子寸法のオーダーで制御可能な間隙を有するアイランド
様の形成。隙間のない充填は、最大数のすぐそばの隣接物を有するナノ粒子の単分子層を
指し得る。ナノスフェアは、球状の形状をとる、ナノアイランドの1種である。
これらのグラフェン支持構造物は、任意の表面に転写することができ、表面増強ラマン
散乱(SERS)のための基板として(例えば、光ファイバーの先端上を含む)、ならび
に構造ヘルスモニタリング、電子皮膚、および細胞、例えば、心筋細胞における収縮の測
定における適用のために広い有効範囲(例えば、少なくとも4桁のひずみ)の超高感度の
機械的シグナル変換器として、機能し得る。したがって、これらの金属およびグラフェン
の複合膜構造物は、マルチモーダルセンシングのためのプラットフォーム技術として、扱
うことができる。
構造ヘルスモニタリングは、ひずみの測定、ならびに橋、建築基礎、航空機翼およびタ
ービン翼などでの亀裂伝搬のモニタリングを含むことができる。電子皮膚は、皮膚に装着
可能で、皮膚の機械的性質に類似の機械的性質を有する、表皮センサーを指す。これらの
センサーは、例えば、接触、温度および近接を感知することができる。
さらに、これらは、薄型、例えば、20nm以下の厚さで、機械的ロバスト性があって
半透明であり、広い面積にわたって再現可能な製造のための可能性を有する。また、半透
明であるので、これらのセンサーは戦闘機のヘッドアップディスプレイ(HUD)の窓ガ
ラス上に設置することができる。半透明性は、顕微鏡下、センサーにより、細胞(または
他の試料)の画像化も可能にする。
グラフェンは、機能性ナノ複合薄膜構造物に組み込まれた場合に、いくつかの魅力的な
特徴を有する。これは、可撓性で(かつ、金属膜と比較して、5〜6%のひずみへと伸張
可能である)、導電性かつ透明であり、大面積での成長および多くの基板への転写に適し
ており、その結晶粒は、1cmに達する寸法におよび得る。
グラフェンは、湿潤透明性を生じさせることができる、最も薄い入手可能な2D材料で
ある。湿潤透明性は、主に、液体に関して、以前に検討されており、接触角などの大きさ
は、グラフェンを支持する層または基板の表面エネルギーに強く依存し得る。
本明細書に開示するシステムおよび方法は、この概念が、蒸着フラックスの原子に拡張
されることを実証する。金属/グラフェンの2層構造物または金属/グラフェンの複合膜
構造物は、電子ビーム(eビーム)蒸着による、多様で制御可能な形態のナノ粒子である
、ナノスフェア、ナノ結晶およびパーコレーションされたネットワークの自己集合のため
の鋳型として働くことができる。図1は、この概念、ならびに、他の全てのパラメーター
を一定に維持しながら、蒸着させた金属(金および銀)および基板のみを変更した場合に
(銅、ニッケル、金および銀)、得られる形態の範囲を説明する。これらのグラフェン/
ナノアイランド(NI)膜は、ほぼあらゆる表面に転写するために十分なロバスト性を示
した。膜は、それらを化学的、光学的および機械的刺激のセンシングに適するようにする
、分子寸法に近い、鋭い先端および間隙(すなわち、ナノアイランドの縁部の間の間隔)
によっても特徴付けられる。
ナノアイランドは、図5に示すように、化学蒸着(CVD)により銅箔上に合成された
単層グラフェン上に、自己集合することができる。他の金属(金、銀およびニッケル)上
に銅からグラフェンを転写するために、金属補助剥離(metal-assisted exfoliation、M
AE)を使用することができる。
様々な基板(例えば、銅、ニッケル、金および銀)上のグラフェン上への薄い(例えば
、10nm)金属膜(例えば、金、銀またはパラジウム)の単独での同時堆積において、
見かけの結晶化度、得られたナノアイランドの形状およびサイズ分布、パーコレーション
の程度、ならびにアイランド間の間隙のサイズは、それぞれの基板について異なり得る。
パーコレーションの程度は、アイランド間の連結性の量である。
例えば、得られた形態は、図6に示すように、基板材料の性質、例えば、その表面エネ
ルギーおよび結晶方位に直接依存し得る。得られた形態は、蒸着させた金属の特徴、例え
ば、その表面エネルギーおよびグラフェンとの格子ミスマッチ(図1の下側に示す)、グ
ラフェン層の数(図S3に示す)、ならびに堆積の速度(図S4に示す)および量、基板
の温度(図S5に示す)などの処理パラメーター、堆積後の熱アニーリング(図S6に示
す)および最終的な受け取り基板への転写(図S7に示す)にも依存し得る。
グラフェンを支持する金属の同一性に対するアイランドの最終的形態の強い依存は、エ
ピタキシャル成長のために発達するものと類似の規則に従い得る成長を示唆する。一般に
、膜成長のための3つの主要な様式は、2つの要素(例えば、蒸着物および金属基板)の
系中に存在し得る:層ごと(Frank−Van der Merve)、層/アイラン
ド(Stranski−Krastanov)および厳密なアイランド(Volmer−
Weber)。
これらの様式は、格子寸法のミスマッチ、ならびに蒸着物および基板の間の表面エネル
ギーにより、主に決定される。より大きな格子ミスマッチは、アイランドの成長に有利で
あるが、正の表面エネルギーの相違である、(γ基板−γ)/γ基板は、層ごとの成長
に有利である。したがって、蒸着物および基板の間にグラフェンを挿入することにより、
基板金属の変更による表面エネルギーの調節が可能になり、ある程度のグラフェンの湿潤
透明性が推測された。蒸着物およびグラフェンの間の格子ミスマッチは、実質的に固定す
ることができる(グラフェンにおける基板が誘導するひずみに起因する、ミスマッチ値の
±0.5%)。格子ミスマッチは、2つの材料の1つ(例えば、基板)の周期的な原子間
距離で割った、それらの材料の(結晶質の材料における)周期的な原子間距離の間の算術
差である。
拡散障壁(E)は、吸着した原子が、1つの格子サイトから隣接する格子サイトに移
動するために、克服しなければならないエネルギーの量である。金のEは、0.05±
0.01eVである。グラフェン上の金および銀の非常に低い拡散障壁および低速での堆
積を考慮すると(速度論的とは対照的に、熱力学的な制御と一致する)、グラフェンを有
する系は、アイランドの成長様式に偏向しているが、依然として、モデルと非常に良く相
関する(図S8に示す)。第1の生成物(例えば、生成物A)が、第2の生成物(例えば
、生成物B)より早く形成する場合、生成物Aの活性化エネルギーは、生成物Bがより安
定であったとしても、生成物Bの活性化エネルギーより低いので、したがって、生成物A
は、速度論的制御の下で有利な生成物であり、生成物Bは、熱力学的生成物であって、熱
力学的制御の下で有利である。
堆積の超並列原子論的シミュレーションおよびグラフェン被覆銅(111)表面上の金
原子のアニーリングは、ナノアイランド形成のメカニズムを明らかにするために行うこと
ができる。正確な原子間ポテンシャルは、銅/グラフェン/金に対して可能であり、その
ような構造の実験的な製造は、最小限のステップ数で達成することができる。
400Kでの150ナノ秒の過程にわたる、3×3の銅/グラフェンのモアレスーパー
セル(約240,000原子)上への5層の金の単分子層(約30,000原子)の堆積
を、検討した。シミュレーションされた堆積速度は、実験の速度(1層あたり30秒)よ
り約9桁速く、図2aに示すように、速度論的に制御された、シミュレーションされた堆
積において、最初の形態を生成した。
500Kでの20ナノ秒間の銅上のグラフェン上の金ナノアイランド(堆積した3層の
金の単分子層)の熱アニーリングのシミュレーションを、実験と比較するために、熱力学
的に制御された形態を発生させるために行った。図2bは、アニーリング中の金の全表面
積の減少を示す。最初の15ナノ秒中、アイランドの融合が生じ、金の正味の表面積の減
少により分かるように、その後、アイランド形態の変化の速度は減少した。この観測は、
シミュレーションされた堆積プロセスが、実際に、短い(ナノ秒)時間スケールにわたっ
て凝集した、速度論的に捕捉されたクラスターを発生させることを示唆した。図2aおよ
び2bにおけるシミュレーションにより予測される形態は、図2cにおける1nmの金の
堆積について、実験的に検証された。実験がシミュレーション後に行われたこと、および
シミュレーションに使用されたパラメーターを、実験に適合するように調整しなかったこ
とを考慮すると、シミュレーションされた形態および実験の形態の間の類似点は著しい。
形態を予測するための能力およびグラフェンに支持されたナノアイランドの可操作性は
、化学的および機械的センシングにおける適用を可能にし得る。
例えば、貴金属の膜は、表面増強ラマン散乱(SERS)のための基板として幅広く使
用される。プラズモン周波数ωの周波数と共鳴する周波数を有する放射線の照射の際の
金属ナノ構造体間の間隙における電界の大きな増加は、ラマン散乱を増強し、ナノ構造の
周辺の分子の無標識での同定を可能にする。プラズモン周波数は、フィルムを構成する材
料に加えて、粒子の幾何形状の関数でもあり得る。ナノ構造は、例えば、基板上へのスパ
ッタリングにより、貴金属の膜中に提供され、溶液/空気の界面から膜へ自己集合し、例
えば、固体膜の外側でパターン形成された、Langmuir−Blodgett膜とし
て調製される。
光ファイバー上へSERS活性な基板を配置することにより、リモートセンシングを可
能にし得る。リモートセンシングは、分析装置から物理的に取り除かれた化学的環境のセ
ンシングを含むことができる。例えば、分析のために試料を抽出する必要なく、リアルタ
イムで、地下100フィートの深さの水圧破砕に起因する水の汚染を感知するために、1
00フィートの光ファイバーを使用する。
いくつかの実施形態において、グラフェン/AuNI膜は、1−ブタンチオレート(B
T)の単分子層が、グラフェン/AuNI膜中のAuNIにより形成される表面構造上に
堆積する前に、光ファイバーの先端上に転写することができる(図3aおよび3bに示す
)。大きなラマンシグナルが、改良した光ファイバー上に堆積した単分子層のBTから観
察された。対照的に、シリコン層により支持された非構造化金膜上に堆積したBTは、シ
グナルを生じなかった(図3cに示す)。固い基板、可撓性の基板または伸張可能な基板
により支持されたグラフェン上の複合金属ナノアイランドのピエゾ抵抗は、ひずみセンサ
ーとしての使用のために、非常に適切である。固い基板の例は、ガラスを含み、可撓性の
基板の例は、ポリマーのポリ(メチルメタクリレート)(PMMA)を含み、伸張可能な
ポリマーの例は、ポリジメチルシロキサン(PDMS)を含む。
いくつかの実施形態において、ヒトの心拍数を表皮で測定する能力がある高感度のひず
みセンサーは、金属(例えば、パラジウム)の薄層(例えば、8〜10nm)を、金属基
板(例えば、銅基板)上のグラフェン上に堆積させ、ポリマーのスピンコーティングによ
る薄い(例えば、約8μm)ポリマー(例えば、ポリジメチルシロキサン(PDMS))
上に複合膜構造物を転写することにより、製造することができる。次いで、銅基板をエッ
チングして、高感度ひずみセンサーを得ることができる(図3dに示す)。例えば、1%
のひずみでのゲージ率は、少なくとも1335であり得る。ゲージ率GFは、
Figure 2021047189
(式中、εはひずみである)であり、
Figure 2021047189
は、正規化された抵抗である。GFは、数回の伸張/解放サイクル後に、減少し得る(例
えば、図3eに示すように、19回の伸張/解放サイクル後、743)。
0.001%程度の小さなひずみは、130μm厚さのガラスカバースリップ上に堆積
したグラフェン/PdNIセンサーを用いて測定することができる。このような小さなひ
ずみは、固い基板上にセンサーを配置することにより、正確かつ繰り返し誘導することが
できる。固い基板は、図3fに示すように、特定の厚さ(例えば、13μm厚さ)を有す
る接着テープ(例えば、ポリイミドテープ)を有することができ、テープは、カバースリ
ップの半分を支持する(他の半分は、カンチレバーを形成する)。カンチレバーへ小さな
力(例えば、約0.1N)をかけること、および遠端を基板と接触させることにより、ガ
ラス表面における0.001%の引張ひずみ(図15に示す)を得て、センサーで繰り返
し測定することができる。
グラフェン/PdNIひずみセンサーは、少なくとも4桁にわたるひずみを検出するこ
とができる。センサーは、図16に示すように、少なくとも2つの変曲点とともに、抵抗
対ひずみ(すなわち、ゲージ率)の非線形の変化率を示すことができ、これは、異なるセ
ンシング様式の存在を示し得る。
最も低いひずみの方式(約0.001%〜約0.1%)におけるピエゾ抵抗の効果は、
おそらく、図3gに示すように、PdNIが、分離中に小さな変化を受ける場合、トンネ
ル電流の変化に起因する。この方式におけるゲージ率10は、例えば、(0.02%〜0
.27%の間で)<<1%のひずみでのトンネル抵抗における変化についての文献値と類
似している。本明細書に開示するグラフェン/PdNI膜は、(例えば、固い基板上に)
支持され、したがって、界面での自己集合により調製される非支持センサーと比較して、
より高い機械的ロバスト性であり得る。
より低い1桁のひずみで、亀裂は、PdNI膜中に出現し得る(図3hに示す)。Pd
NIは、球状で、別々の球状ナノ粒子の連続的な単分子層を含むフィルムを形成する、ナ
ノアイランドである。
サイクル負荷への応答におけるこれらの亀裂の開閉は、例えば、0.1%〜5%の間の
ひずみの最も感度が高い方式において観測されたピエゾ抵抗の主要因であってもよい。サ
イクル負荷は、繰り返し変形を生じるセンサーへ力を繰り返しかけることである。
任意の特定の理論に縛られることなく、PdNI膜での亀裂伝搬は、下にあるグラフェ
ンの剛性により抑制されてもよく、これは、735〜316のゲージ率(それぞれ、1%
および5%のひずみ)の減少を示し得る。5〜6%周辺のひずみで、感度は再び増加し得
、これは、下にあるグラフェンの亀裂の開始(図17、18、24に示す)、したがって
PdNI膜での亀裂伝搬の増加により、説明することができる。
グラフェン/金属ナノアイランド複合膜構造物は、幅広い試料をモニターするために使
用することができる。例えば、航空機翼などの航空機の部品の曲げ、橋などの構造物の亀
裂のモニタリングである。
グラフェン/金属ナノアイランド複合膜構造物は、生物学的環境に展開することもでき
る。例えば、生物学的環境におけるグラフェン/AuNIセンサーの性能は、複合ポリメ
チルメタクリレート(PMMA)/AuNI/グラフェン膜構造物で被覆されたカバース
リップ上の新生仔ラットの心筋細胞(CM)を培養することにより、試験される。
図4aおよび4bに示すように、光学顕微鏡法および走査型電子顕微鏡法は、追加の接
着プロモーターの必要なく、生CMを有する基板の優れた生体適合性を示す。図4cおよ
び以下で詳細に示す特殊チャンバーを使用すると、図4dに示すように、心筋細胞の自発
活動と関連するセンサーのシグナルの可逆変化を、検出することができる。
電気的活動ではなく、ミオシン循環を阻害して細胞の収縮を停止する、ブレビスタチン
などの興奮収縮脱共役剤は、ひずみセンサーにより検出されたシグナルが、細胞の収縮活
動または電気的活動に関連していたか否かを識別するために使用することができる。シグ
ナルの目に見える調節は、細胞の周囲の溶液中の10μMのブレビスタチンの存在中では
見出されず、センサーが、細胞の電気的活動ではなく収縮に応答したという仮説を支持し
ている。
ひずみセンサーは、サブミリ秒(ms)の応答時間(ton=0.8±0.2ミリ秒、
n=173)を示し、図4dの左上部分に示すように、非常に高いシグナル対ノイズ比(
異なる強さのCM収縮について、42および100の間)を示した。指数関数的減衰プロ
ファイルは、全ての収縮について類似し、図4dの右上部分に示すように、単一指数関数
(toff=68.6±1.5ミリ秒、n=173)と一致した。ひずみセンサーにより
検出されたCM収縮の振幅および時間的プロファイルは、CM応答の詳細な特徴付けを可
能にし得、創薬への適用のために様々な薬理的化合物を試験することを可能にし得る。
グラフェンの表面上に堆積した金属ナノアイランドの形態は、グラフェンを支持する基
板の同一性により制御することができ、マルチモーダルセンシングのための有望なプラッ
トフォームシステムを提供するコンピューターの使用により予測することができる。他の
手順により形成された金属ナノ粒子の膜とは対照的に、グラフェン支持ナノアイランドは
、ほとんどの任意の表面への操作性および容易な転写の能力を有する。グラフェン支持ナ
ノアイランドの操作は、転写を含み、例えば、ピックアップ、浮遊、整列、パターニング
および配置も含む。この性質は、SERSによるリモートセンシングのための光ファイバ
ーの先端上に、直接、構造物を取り付け、地下水または血流などのこれらの系への光ファ
イバーの挿入を可能にし得る。
相対的に固い基板(ガラス)、可撓性の基板(PMMA)または伸張可能な基板(PD
MS)上へのこれらの構造物の堆積は、実証された感度が、少なくとも4桁にわたり得、
いまだに報告されていない任意の薄膜ひずみセンサーの最も高いゲージ率を有し得る、ヒ
トおよび構造ヘルスモニタリングにおける適用を可能にする。これらの構造物の感度およ
び生体適合性は、非侵襲的な心筋細胞の収縮の測定を可能にし、幹細胞由来の心筋細胞の
機能的な特徴付け、ならびに心臓毒性および心臓血管薬の創薬のための新規薬物候補剤の
マルチモーダルスクリーニングのための非常に貴重なツールであり得る。
グラフェンを、10cm×11cmの寸法を有する、25μm厚さの銅箔(Alpha
Aesar、13382、99.8%)上に合成した(18cm×20cmの大きさの
グラフェンシートを合成し、下記に記載する金属補助剥離(MAE)により転写した)。
グラフェンの成長の前に、銅箔を、浅いアセトン浴中に浸漬し、それを、(アセトン中で
)Kimwipeティッシュでふき取ることにより、洗浄した。箔をアセトンですすぎ、
イソプロピルアルコール(IPA)で満たした同様の浴中に移した後、この溶媒中で、機
械的洗浄を繰り返した。機械的洗浄は、アセトンおよびIPA中での超音波処理により洗
浄された箔と比較して、より汚れていないグラフェンをもたらすことができる。この方法
は、(大面積の銅箔を超音波処理するために使用される大容積を考慮すると)多量の両方
の溶媒を節約することもできる。IPA中での機械的洗浄後、箔をIPAですすぎ、圧縮
空気流中で乾燥した。
銅箔の電解研磨。グラフェン合成の前の銅箔の電解研磨は、ほぼ単層のグラフェンを生
じさせるのに役立ち得る。洗浄な、乾燥した銅箔を、ビーカーの側壁の外形に従って、2
50mLのビーカー内に置き、アノードとして使用した。銅管(d=2.54cm、l=
15cm)を、円柱軸に沿って、ビーカー内に挿入し、カソードとして使用した。カソー
ドの円筒状の形状およびアノードの湾曲した表面が、電解研磨中に、均一な電界を発生し
た。濃リン酸(HPO、15M)を、電解質として使用し、カソードおよびアノード
を、それぞれクランプとワニ口クリップで固定した後、ビーカー内に注いだ。20WのD
C電源を、電流および電圧を発生させるために使用することができる。電圧を1.6Vに
設定し、電流が初期値から50%低下してプラトーになるまで、電解研磨を進めた(通常
、5〜10分の間)。電解研磨の後、カソードおよび電解質を、ビーカーから取り除き、
銅箔を、DI水で十分にすすいだ(3分)。次いで、銅箔を、IPAですすぎ、圧縮空気
流下、風乾し、すぐに、化学蒸着(CVD)反応器の石英管の中央に入れた。
グラフェンの合成。大気圧のCVDグラフェン合成を、以下の管寸法:d=7.6cm
、l=100cmを有する石英管炉(MTI OTF−1200X−HVC−UL)中で
行った。CVDチャンバーおよび反応器ガス供給ラインを、ダイアフラム真空ポンプで、
チャンバーを真空に吸引しながら、全ての合成ガス(水素、メタンおよびアルゴン)の混
合物をそれらの最大流速で流すことにより、5分間、空気をパージした。5分後、ガス流
を停止し、チャンバーを、ターボ分子真空ポンプで、約10−4トールまで真空にして、
ガス混合および反応器チャンバーからメタンおよび水素を除去し、同時に、銅箔の表面か
ら、可能性がある有機汚染物質を脱着させ、次いで、炉を730℃超に加熱した。次いで
、チャンバーを、超高純度アルゴン(700SCCM)で、大気圧まで再加圧して、これ
を、グラフェン合成の全手順中にわたって、常に流した。銅箔を、アルゴン流中、105
0℃に加熱した(30分)。この温度に達したら、追加の水素(60SCCM)を、60
分間流して、銅基板を、アニーリングおよび活性化した。60分のアニーリング後、水素
の流速を、5SCCMに低下させた。30分後、0.3SCCMのメタンを、グラフェン
の合成のために、40分間流した(総ガス流速:700SCCMアルゴン+5SCCM水
素+0.3SCCMメタン=705.7SCCM)。40分後、メタンの流速を、0.7
SCCMまで増加させた。60分の(メタン流による)総グラフェン成長時間の後、炉を
止め、5cm開けた(同じガス流を継続する)。炉が700℃に冷えた時点で(約5分)
、炉を10cm開けた。350℃で(約30分)、炉を完全に開けた。200℃で、水素
およびメタン流を切断し、反応器チャンバーを、アルゴン流中で、室温まで放冷した(総
冷却時間は約1時間であった)。合成されたグラフェンを、図5に示すように、光学顕微
鏡法およびラマン分光顕微鏡により分析した。グラフェンは、高品質で、わずかな付加層
を有する単層を含む。付加層は、層の数が1を超えるグラフェンのエリアである。グラフ
ェン合成が完了したら、グラフェンを有する銅箔を、(周囲空気からの外来性の吸着剤に
よるグラフェンの汚染を避けるために)酸素プラズマ処理パイレックス皿に移し、クリー
ンルーム環境で金属の蒸着をすぐに行った。
金属補助剥離(MAE)。金属補助剥離(MAE)を使用して、他の金属(金、銀およ
びニッケル)上に銅からグラフェンを転写した。簡潔には、グラフェンを、銅基板上に成
長させ、次いで、他の金属(例えば、金、銀および/またはニッケル)のシートを用いて
、上に積層される。グラフェンは、銅よりも金に良く付着するので、グラフェン単層の全
体を容易に取り外すことができ、大面積にわたって、損傷を受けずに残る。MAE中の高
真空環境におけるコンフォーマルなグラフェン/受け取り金属の接触面の形成は、接触面
を、酸化物および他の汚染物質がない状態にするのを助けることができる。コンフォーマ
ルは、100%のグラフェンの表面原子と接触する蒸着させた金属を含むことができる。
例えば、銅上のグラフェンは顕著な表面粗さを有し得るので、適合性は、転写にとって重
要であり得る。
したがって、次のナノアイランドの堆積後に生じる形態は、関連する材料(例えば、蒸
着物および金属基板)および処理パラメーターの関数のみであり得る。
金属の堆積およびNIの自己集合。下にある基板の選択からもたらされるNIの形態を
比較するために、Temescal BJD−1800 e−ビーム蒸着機を使用して、
10nmの蒸着物(金または銀)を、銅、ニッケル、金および銀により支持されたグラフ
ェン上に堆積させた。グラフェンを有する基板を、試料ステージに固定し、蒸着物源の下
に直接、配置した(40cmの距離)。金属の蒸着速度を低く保ち(0.1Ås−1、水
晶振動子微量天秤によりモニターした)、チャンバーの圧力を、蒸着中、7×10−7
ールに保った。蒸着の最後の時点での基板の温度は、400Kであった(標準的な堆積条
件−SDCとも言う)。蒸着速度および基板の温度は、得られたNIの形態を決定する重
要なパラメーターであり得る。
銅により支持されたグラフェン上の10nmの金の対照の蒸着を、2Å/秒、400K
、および0.1Å/秒、500Kで実施した。グラフェンが、金および銀原子について非
常に低い拡散障壁を示すとしても、より速い速度での蒸着(0.1Å/秒に対して、2Å
/秒)は、図S4に示すように、プロセスを、より速度論的制御に偏らせ、構造化がより
少ない形態をもたらす。反対に、より高いプロセス温度(400Kに対して、500K)
は、図S5に示すように、より高い結晶度の形態およびより低い被覆面積をもたらすこと
ができる。
全ての試料を、XL30 FEI SFEG UHR走査型電子顕微鏡(SEM)を使
用して、分析した。SEM画像は、NIの形態が、下にある基板の結晶方位に依存するこ
とを示す。図6は、2つの隣接する銅粒の異なる方位との、銅基板上のグラフェン上への
10nmの銀の(SDCでの)堆積から得られるAgNIの形態の相違を実証する。SD
Cでの10nmの金を、より大きな密度の付加層を伴うグラフェンを有する銅基板上に堆
積させて、基板および蒸着物の間のグラフェン層の数が、NIの自己集合に影響を与える
かを決定した。さらに、銅/グラフェン/AuNIを、PDS 2010パリレン塗工機
を使用して、1μmのパリレンCで被覆した。下にある銅のエッチングにおいて、パリレ
ン/AuNI/グラフェンを、SEMを使用して画像化した(AuNIを、下にあるグラ
フェンを通して画像化した)。図S3において、AuNIにおけるパーコレーションの量
は、漸次多くの層を有するグラフェンで減少したことが分かる。これは、追加のグラフェ
ン層が、銅の表面エネルギーを連続的に低下させるので、薄膜成長のモデルと良く相関し
た。
グラフェン/NIの転写。多くの適用のために、NIは、その上にNIが生成した基板
から、最終的な受け取り基板(光ファイバー、ガラススライド、PDMS、PET,ヒト
の皮膚など)上に、転写することができる。ガラスカバースリップ、シリコンウエハーお
よびPDMSのストリップへの転写は、グラフェンを転写するための標準的な方法論を使
用して行った。最初に、PMMAの支持層(例えば、100ナノメートル厚さ)を、銅/
グラフェン/NI上にスピンコートし、続いて、1Mの塩化鉄(III)(FeCl
中で、1時間、銅基板をエッチングした。この後、グラフェン/NI/PMMA膜を、エ
ッチング液の表面に浮遊させ、脱イオン水を含有するビーカー内に、すくい集めて、移し
て(3回、それぞれのビーカーで5分)、銅のエッチングで残った汚染物質を除去した。
次いで、グラフェン/NI/PMMAを、SEM分析のためのシリコンウエハーの一片で
すくい集めた(図S7)。
際だったことに、シリコンウエハーに転写されたグラフェン/AuNIの形態は、図1
に示す転写前のものと非常に相違していた。AuNIは、完全にパーコレーションされた
ネットワークを形成し、曲線的な特徴に有利に、鋭い結晶のエッジおよび角を失っていた
。この効果は、低い表面エネルギー(72mJ/m)を有する水のために、グラフェン
/AuNIの下から、高い表面積(銅、1650mJ/m)を有する基板と(断続的に
)置き換わることに起因し得る。安定化した基板の結晶化度も、銅のエッチングにより消
失する。この段階で、AuNIは、一見したところ、最も熱力学的に有利な構成に再構築
され、最終的な受け取り基板上に、それらが配置される際に維持される可能性がある。こ
の急激な再構築は、STP条件において起こり得る。グラフェン/NI/ポリマーを含む
浮遊性膜(図20)は、最終的な受け取り基板を、グラフェンと接触させること、または
逆に支持ポリマーと接触させることの2つの方法の1つで、基板上に堆積させることがで
きる。最初の場合において、基板は、最初に、DI水に沈められ、水の中からゆっくりと
持ち上げて、浮遊した複合膜構造物をLangmuir−Blodgettの方法で取り
出すことができる。光ファイバー、ガラスカバースリップおよびPDMSストリップは、
ラマンセンシングのために、この方法で被覆することができる。ひずみセンシングのため
の固い基板および可撓性の基板も、この方法で被覆することができる。
2番目の場合において、基板を、浮遊したグラフェン/NI/ポリマー膜に投入し、さ
らに、水中に沈める(図21)。心筋細胞の培養および収縮実験、ならびに心拍数のモニ
タリングのための基板は、この方法で被覆することができる。センサーが、転写中にPM
MAにより支持されている場合、この支持ポリマー膜は、アセトンで容易に除去すること
ができる。注目すべきことに、先端の面積(約0.03mm)は、非支持グラフェン/
NI膜の破損から生じるフラグメントよりも著しく小さいので(発生する場合)、グラフ
ェン/AuNI膜で光ファイバーの先端を被覆するのに支持ポリマーは使用しなかった。
上述の転写方法に加えて、ポリマー膜を、銅/グラフェン/NI膜の上に、(例えば、
市販のラミネーターで)ラミネートすることができ、したがって、銅のエッチングの際に
、支持および最終的な受け取り基板としての役割を果たす。このような転写は、125
μm厚さのポリエチレンテレフタレート(PET)により支持された可撓性のひずみセン
サーを生成することができる(図22c、d)。
原子論的物理的蒸着シミュレーション。全てのシミュレーションは、San Dieg
o Supercomputer CenterのComet supercomput
erで入手可能な、オープンソースのシミュレーションパッケージであるLAMMPS(
2014年12月9日)を使用して行った。シミュレーションは、全部で48個のIn
tel Xeonプロセッサーを含有する2つの計算ノードで分散されたメッセージパッ
シングインターフェイスを使用して、動的な負荷が分散されたドメイン分割で加速した。
約5ナノ秒/日の効率性に相当する、約20倍のパラレル形式のスピードアップを達成し
た。視覚化および処理後の分析を、オープンソースの視覚化ツールであるOVITOを、
カスタムpythonモジュールと併せて使用して行った。
グラフェン/銅(111)表面の最初の構成を、Suleらの手順に従って、生成およ
び平衡化した。具体的には、厚い銅の支持体(30層)を有する3×3のモアレスーパー
セルを、その最下層として使用して、効率的に、バルクの銅表面のモデルを作製した。4
mmの高さの真空層を、表面の上に挿入して、金原子を堆積させ、アイランドが成長する
ための空間を与えた。反射する境界条件を、水平方向に周期的境界を有する、垂直方向に
課した。最初のシミュレーションセルの概略図を、図25に示す。
シミュレーションされた金の堆積。堆積プロセスをシミュレーションするために、金原
子を、真空領域の挿入平面内のランダムな位置に、表面に対する速度がナノ秒あたり20
0粒子の速度で導入した。この堆積速度は、コンピューターによる制約に起因して選択し
た。これは、実験速度よりも数桁大きいが、選択した速度は、シミュレーションを現行の
コンピューターで妥当な時間内に行うことを可能にするものであり、あらゆる文献での標
準的な慣行である。粒子の速度は、実験の蒸着温度と同等の温度で、マクスウェル−ボル
ツマン分布からサンプリングした。システム全体の温度は、0.01ピコ秒の時定数を有
するNVTアンサンブルにおけるNose−Hoover型サーモスタットを使用して、
堆積プロセス中を通じて400Kで維持した。運動方程式は、時間可逆な測度保存Ver
letアルゴリズムで1フェムト秒の時間ステップを使用して積分し、数値的に安定なシ
ミュレーションが得られることを見出した。
熱アニーリングのシミュレーション。堆積プロセスに続いて、実験的な真空アニーリン
グプロセスを、温度を500Kまで上昇させ、金のアイランドが、拡散して、形態が安定
になるまで(約15ナノ秒)、凝集することを可能にすることにより、シミュレーション
した。アニーリング中、金クラスターの表面積は、2.5Åのプローブ球半径および20
の平滑レベルで、OVITOソフトウェアパッケージからの表面メッシュ修正を使用して
モニターした。
システムがハイブリッド性であるため、それぞれのペア−ワイズ相互作用は、適切な原
子間ポテンシャルを用いて独立して処理した。金属−金属相互作用は、金属系に対して文
献を通じて広く使用され検証されている原子挿入法を使用して、全てコンピューターで計
算した。炭素−炭素相互作用は、グラフェンのための良好なモデルとして示されている、
AIREBOポテンシャルを使用して、処理した。炭素−銅相互作用は、高レベルの密
度汎関数理論計算を使用して、このシステムのために具体的にパラメーター化された、角
度に依存したAbell−Tersoffポテンシャルを使用して、処理した。最後に、
炭素−金相互作用は、本明細書の場合のように、欠陥または粒子境界が存在しない限り、
グラフェン上の金の結合および拡散の正確な説明を与えることが示されている、Lenn
ard−Jonesポテンシャル(イプシロン=0.0341eV、シグマ=3.003
オングストローム)を使用して、処理した。使用した原子間ポテンシャルの概要は表S1
で分かる。
アイランドの成長の統計分析。物理的蒸着のシミュレーションから出力された軌道ファ
イルは、形態の進化およびナノアイランドの成長を定量的に特徴付けるために使用するこ
とができる大量の情報を提供する。これらの計量は、異なるシステムと比較するための基
準を提供し、実験単独では達成不可能なアイランドの成長に内在する物理的メカニズムへ
の洞察を与えることができる。非常に容易にモニターすることができる1つの量は、個々
の金原子の配位数である。軌道ファイルのスナップ写真を、完全に解析し、全ての最近接
の隣接物を、距離のカットオフとして結合距離を使用して、全ての金粒子について計算し
た。図23は、アイランドの成長として、金粒子の配位数の可能性のある分布の進化を示
す。これらの結果は、0.5nmのAuが堆積した後、金原子の大部分が、クラスターの
表面に相当する、配位数6を有することを示す。金原子の大部分は、1nm堆積した後に
、クラスターのバルクに相当する、配位数12を有する。
金アイランドの成長を特徴付けるために使用することができる別の定量的な計量は、金
粒子の高さの分布である。これらは、それらの鉛直高さに関する軌道のスナップ写真から
金粒子をビニングし、分布を正規化することにより、計算した。図14は、堆積プロセス
中のこの可能な分布の進化を示す。0.5nmの堆積したAuのみ、アイランドの最大高
さは、6層である(22Å)。この結果は、表面全体に拡散する代わりに、1カ所に集ま
る金クラスターの選択が、金/基板の相互作用に対してより好ましい金/金の相互作用に
起因する可能性があることを示す。上記の分析を使用して、将来のコンピューターによる
実験のアイランドの成長における、下にある基板および堆積した金属の効果を比較する。
光ファイバーラマンセンサー。非支持グラフェン/AuNIを、新たに切断した300
μm厚さの光ファイバー(コア:半径が50μm、50μm厚さのクラッディング、50
μm厚さのシース)の先端上に転写して、ラベルフリーセンシングのためのSERS基板
としてのグラフェン/NI複合膜構造物の使用の実現可能性を検討した。7.5nmの金
を、銅上のグラフェン上に蒸着させて、それらの間の最小間隙(例えば、3〜20nm)
を有する、パーコレーションされていないAuNIを得た(図3b、右挿入図)。7.5
〜8nmのAuの堆積を、AuNIのためのパーコレーションの閾値として定める。フィ
ルムの転写およびファイバーの周囲空気中での終夜乾燥後、これらを、10mMの1−ブ
タンチオール(BT)のエタノール性溶液を含有するビーカー内に、(対照の基板として
)蒸着させた100nm厚さの金の膜を有する1cmのシリコンウエハー片(対照の基
板として)と一緒に置いて、金の表面上にBTの自己集合単分子層(SAM)を形成した
。この厚さでは、金は透明ではないので、基板のSiOまたはSi/SiOの同一性
は重要ではない。
24時間後、試験基板を、DI水およびイソプロパノール(IPA)中で徹底的にすす
ぎ、周囲空気中で乾燥した。
ラマン分光法分析。試験基板からラマンスペクトルを得るために、逆位ステージ(inve
rted stage)および785nmの励起源を有するラマン顕微鏡(Renishaw in
Via)を使用した。試験試料および対照の両方について、レーザービームを、2μmの
ビームスポットに収束させ、露出を、0.5mWの出力で、60秒に設定した。はっきり
と異なるBTシグナルが、1秒程度の少ない露出でさえも、(低いシグナル対ノイズ比に
もかかわらず)被覆された光ファイバーの先端から得られたが、BTシグナルは、ビーム
出力を5mWに上げ、次いで、50mWに上げることによってさえ、60秒の露出で、得
られなかった。これは、グラフェン/AuNIが、適切なSERS基板であり、非構造化
金膜にはるかに勝っていることを示す。この実施形態は、複合グラフェン/NI膜構造物
の可操作性を実証する。これらは、光ファイバーの先端のような小さな物体上に転写する
ことができ、リモートセンシングにおいて非常に将来有望な適用を可能にする。
ひずみセンサーとしてのグラフェン/PdNI膜。SDC下で、銅上のグラフェン上へ
約10nmのPdを堆積させることで、球状粒子(直径4〜5nm)の均一な単分子層の
形成をもたらした。これらの球状粒子は、非常に異なる形状であっても、今もなお材料選
択の機能であり、本明細書に開示する他のナノアイランドと同じ方法で製造することがで
きる。したがって、これらのグラフェン/PdNIは、広い範囲のひずみにわたって、そ
れらのピエゾ抵抗性を試験するために、固い基板(ガラス)、可撓性の基板(PET)お
よび伸張可能な基板(PDMS)上に転写した(図22)。
固い基板上のPdNIセンサー。非常に低い<<1%のひずみの下、ひずみセンサーと
してのPdNIの性能を評価するために、3〜5×25mmのグラフェン/PdNI/P
MMAストリップを、130μm厚さの1インチ×1インチのガラスカバースリップ上に
転写した。PMMAを除去するために、スライドをアセトンですすいだ。センサーに電気
アドレスさせるために、銅線(36ゲージ)を、導電接着剤を有する銅テープを用いて、
PdNIおよびガラスカバースリップに接着し、EGaIn滴を、ほどいた銅線の末端上
に置いて、図22aの安定な電気的接触を確実にした。全ての場合において、電極の接続
後のPdNIセンサーのアスペクト比は、3〜10の間であり得、644〜2015オー
ムの間の緩和抵抗であり得る。
PdNIセンサーを用いて非常に小さなひずみ(0.001%〜0.003%)を誘発
および記録するために、13μm厚さのポリイミド(PI)テープ(0.001%ひずみ
については1層、および0.003%ひずみについては3層)を、2インチ×3インチの
ガラススライド上に置いた。PIテープを、制御可能な高さの段として使用して、テープ
上のPdNI被覆ガラスカバースリップの半分を置いて固定することにより、カバースリ
ップおよびカバースリップの他の半分の下のガラススライドの間に間隙を作りながら、カ
ンチレバーを作った(図3f)。カンチレバーの自由端に小さな力(約0.1N)をかけ
、それをガラススライドと接触させることにより、ガラススライドを曲げて、そのPdN
I被覆表面上に引張ひずみを誘発し、カスタム生成LabVIEWコードを使用して、K
eithley 2400ソース/メートルを有する抵抗の変化を記録した(図3f、右
挿入図)。固体PdNI膜の対照試料を、同様の方法で分析した(図19)。
伸張可能な基板上のPdNIセンサー。より高いひずみ(>1%)でPdNIセンサー
のピエゾ抵抗を測定するために、PdNIセンサーを、PDMSのストリップ(3mm×
10mm×100mm)上に転写し、それを銅線およびEGaIn(共晶ガリウムインジ
ウム)でアドレスし、PDMSを伸張するために高精度線形アクチュエータを使用した(
図22b)。グラフェン(PdNIなし)対照試料を、同様の方法で分析した。センサー
を、1%の間隔で、0%および9%のひずみの間でサイクルした(それぞれ1%の間隔あ
たり20サイクル)(図3e)。センサーは、安定なベースラインを維持しながら、非常
に高いゲージ率およびサイクル性を示した(図24)。
心拍数の測定。バイオメトリクスシグナルを得るために、8μm厚さのPDMS膜を、
銅/グラフェン/PdNI上にスピンコートし、PDMSを、100℃で10分間、ホッ
トプレート上に硬化させた。銅を、1Mの塩化鉄(III)中で、1時間エッチングした
。浮遊性のグラフェン/PdNI/PDMS膜を、DI水に転写し(3回)、DI水およ
びセンサーを有する容器内に手首を入れることにより、手首の皮膚上に(橈骨動脈上部に
)センサーを正確に置いた(図3d)。
PDMS表面は疎水性のため、皮膚との良好な接触面を形成した。センサーを置く前に
、接着テープのストリップを、テープがない橈骨動脈の上の皮膚の部分を残しながら、手
首の周囲に接着した。接着テープは2つの目的を果たす:それは、電気接触ワイヤの取り
付けおよび保持を助け、かつテープで覆われた皮膚を伸張できないようにすることによっ
て皮膚のテープがない部分にひずみを局在化させた。1つのセンサーは心拍数を測定する
ことができるが、転写プロセス中にPDMS中でしわを発生させた2つの他のセンサーは
、十分な感度ではなかった(3つのセンサーは全て手首および個々の指の動作を、高い忠
実性で記録することが可能であった)。
PdNIセンサーに対するインサイチュSEM。0.001%、3%および5%のひず
み下、PdNIセンサーの膜の形態を記録するために、センサーを、XL30 FEI
SFEG UHR走査型電子顕微鏡を用いて画像化した。固い基板上の小さなひずみ下で
センサーを画像化するために、PIテープ段方法を使用した。ここで、カンチレバー上に
断続的な力をかけることに代えて、カンチレバーの自由端を、導電性銅テープを用いてガ
ラススライドに、取り外せないようにテープで固定した。このテープはまた、試料を、S
EMステージに放電するための電気的な接地電極としての役割を果たした。
3%および5%のひずみ下でセンサー膜の画像を得るために、1mm厚さのPDMSス
トリップにより支持されたセンサーを、SEMステージへの試料の電気的な接地の役割も
果たす接着銅テープを使用することにより、それぞれ、15mmおよび10mmの曲率半
径を有する3Dプリントされた半円筒の曲面に接着した(特定の半径にPDMSストリッ
プを曲げることにより、3および5%の引張ひずみを表面に発生させた)。
電気生理学。新生仔ラット心室の心筋細胞を、新生仔ラット心筋細胞単離キット(Wo
rthington)を使用して単離し、37℃、5%COで培養した。つまり、心室
を、1日齢のHsd:SDラット(Sprague Dawley)から切断し、次いで
、トリプシンで、4℃で終夜、消化した。翌朝、消化を、コラゲナーゼで、37℃で約6
0分間、継続した。細胞を、90分間、予め蒔いて、線維芽細胞を除去し、高血清培地(
DMEM/F12[1:1]、0.2%のBSA、3mMのピルビン酸ナトリウム、0.
1mMのアスコルビン酸、4mg/リットルのトランスフェリン、2mMのL−グルタミ
ン、10%のウマ血清および5%のウシ胎仔血清を追加した100nMの甲状腺ホルモン
(T3))中、細胞2×10個/cmで、PMMA/AuNI/グラフェンで被覆さ
れた12mmのガラスカバースリップ上に蒔いた。24時間後、培地を、低血清培地(0
.25%のウシ胎仔血清のみを含む以外は上記と同じ)に交換した。3つの細胞培養物を
、それぞれの細胞培養物について、少なくとも8個の基板を有するPMMA/AuNI/
グラフェン上に蒔いた。いくつかのPMMA/AuNI/グラフェン基板は、それぞれの
細胞培養物の平板培養中に、Matrigelで被覆して、むき出しのPMMA/AuN
I/グラフェン基板と、Matrigelで被覆されたPMMA/AuNI/グラフェン
基板に対する細胞の接着を比較した。試料間の細胞の接着および生存率の相違は観察され
なかった。
走査型電子顕微鏡法。最初に、細胞を、0.1Mのリン酸緩衝液(pH7.4)で洗浄
し、次いで、4%のホルムアルデヒド溶液で、室温で2時間、固定し、同じ緩衝液で、3
回、それぞれ5分間、洗浄した。アルコールの一連の勾配(30%エタノールを10分、
50%エタノールを10分、70%エタノールを10分、80%エタノールを10分、9
5%エタノールを10分で2回交換、100%エタノールを15分で3回交換)による脱
水の後、全ての試料を、真空チャンバー中で凍結乾燥し、スパッタリングされたイリジウ
ムで被覆した。走査型電子顕微鏡法の画像を、XL30 FEI SFEG UHRで、
10kVのエネルギービームを使用しながら、5mmの作動距離で、得た。
電気生理学測定。PDMS(Sylgard 184)が硬化した型の3Dプリンティ
ングにより、カスタム電気生理学チャンバーを構築した。出来上がったチャンバーは、中
央開口部(細胞培養および培地のため)および側面開口部(共晶電極の配置のため)を有
し、AuNI基板の中央部分が中央開口物に位置し、かつAuNI基板の端部が側面開口
部を通して、EGaInを使用する電気アドレスのためにアクセス可能な方法で、PMM
A/AuNI/グラフェンおよびCM培養物を有するガラスカバースリップの上に配置さ
れた(図4a)。次いで、組み立て物を、1インチ×3インチの2枚のガラススライドの
間に挟み込み、良好な密封性を確実にするためにバインダクリップで固定した。ガラスス
ライドの上に予め5mmのアパーチャを開けて、培地およびブレビスタチンを、チャンバ
ーの中央開口部に添加することを可能にした。チャンバーの開口部の間のPDMS壁は、
細胞の培地(NaClが135mM;KClが2.5mM;CaClが2mM;NaH
COが1mM;NaHPOが0.34mM;KHPOが0.44mM;グルコ
ースが20mM;およびHEPESが10mM(pH7.4))から、EGaIn電極を
分離する役割を果たした。電気生理学の記録を、Digidata 1322インターフ
ェイス、Axopatch 200B増幅器およびpClampソフトウェア(Mole
cular Devices Corp.)を使用して、電流−クランプの構成において
行った。データを、50kHzで、デジタル処理でサンプリングし、2kHzでフィルタ
ー処理した。実験は室温で行った。ブレビスタチン(10uM、Tocris)およびK
Cl(30mM)を、CM収縮の速度に影響を与えるために、実験チャンバーに直接添加
した。個々の収縮を表す全ての痕跡を、Clampfit10.3およびOriginP
ro2015を使用して、指数関数に適合させた。
Figure 2021047189
本明細書に開示する方法およびシステムは、細胞(例えば、培養細胞)の活動の電気イ
ンピーダンスプロファイルを提供することもできる。インピーダンスのための一般方程式
は、Z=R+jX(式中、Rは、「通常の」抵抗であり、虚数部であるjXは、回路のリ
アクタンスの位相シフトに関する)である。インピーダンスは、AC電流測定のために関
連があり得る。DC電流測定に関しては、インピーダンスは、回路の抵抗に等しい。記録
された抵抗を超えるインピーダンスを使用すると、電極の位相シフトしたキャパシタンス
放電−再充電に関する、細胞の追加の構成要素の挙動により、追加情報を収集することを
可能にし得る。
一般に、インピーダンスは、電圧の変化と電流の変化の周波数−ドメインの比を加える
。収縮する細胞(例えば、収縮する培養細胞)のためのインピーダンスプロファイルを測
定するための方法は、細胞層の逆側上に2つの電極を含んでいてもよい。システムは、複
数の電極を有する記録回路を含むことができ、少なくとも1つの電極は、細胞層のそれぞ
れの側に位置する。
例えば、インピーダンス測定は、電気生理学様の増幅器で収集することができ、これは
、時間分解法で、電流−電圧シグナルを迅速に記録する能力がある。
細胞(例えば、培養細胞)が電極を覆うと、電極および溶液の間の電気インピーダンス
は、増加し得る。それらが収縮すると(すなわち、面積が縮小する)、露出した電極の面
積が増加し、インピーダンスは低下し、こうして、拍動(およびその振幅)を記録する。
本明細書に開示するシステムおよび方法は、細胞膜のキャパシタンスを超える電圧プロ
ファイルの第1の微分係数を含む、いくつかのパラメーターを測定することができる。細
胞膜電位は、細胞膜の内側(細胞質)の小葉および外側(細胞外)の部分の間の電圧の差
である。電極が細胞膜と接触すると、細胞膜電位プロファイルをモニターすることにより
、細胞(例えば、培養細胞)の活動(例えば、収縮活動)を追跡することができる。例え
ば、本明細書に開示するシステムおよび方法は、細胞活動に起因する電圧の動的変化のい
くつかの構成要素を測定することができる。
本明細書におけるシステムおよび方法は、例えば、暗視野顕微鏡法を使用する、ナノア
イランドの間の粒子間距離の変化の光学的観測により、細胞の収縮性のプロファイルを提
供することができる。暗視野顕微鏡法は、画像のコントラストを強くする照明技術を含む
ことができる。照明光は、非常に強くてよく、試料の照明後、直接照明の光ビームは、試
料を調査するために使用される対物レンズへの進入を阻止される。結果として、対物レン
ズに進入する唯一の光は、試料からの散乱光になる。この顕微鏡技術は、暗い背景に対し
て明るく光る画像とともにほぼ黒色の背景を生成する。
ナノアイランドのサイズは、光学顕微鏡法についての回折限界未満であり得る。しかし
ながら、より大きなサイズのアイランド(例えば、さらに大きい)および局在化した表面
プラズモン共鳴により引き起こされる効果により、暗視野像を検出することができる。
このようなシステムの利点は、金属ナノアイランドの追跡および分析の容易さであろう
。細胞、例えば、培養心筋細胞は、ナノアイランドに収縮力をかけることができ、それら
を周囲にシフトさせることができる。シフトおよび他のパラメーター(色の変化/光波長
の変化)の量を、検出のために使用することができる。
本明細書に開示する方法およびシステムは、カルシウムイオン濃度の光学的観測による
細胞収縮性のプロファイルを提供するように構成することができる。心筋細胞内のカルシ
ウムイオン濃度の動的変化は、心筋細胞の活動を検出するために使用することができる。
例えば、特別に配合された蛍光カルシウム指示染料の使用による。それぞれの染料分子は
、カルシウムイオンと結合すると、その蛍光を変化させることができる。この染料は、例
えば、従来の蛍光顕微鏡法により、記録する前に、培養細胞(例えば、心筋細胞または任
意の他の種類の細胞)内にロードしなければならない。細胞内のカルシウム濃度の上昇は
、細胞収縮をもたらすアクチン/ミオシンカップリングを惹起することができる。したが
って、(金属ナノアイランド付近のイオンとは対照的に)細胞内カルシウム濃度の動的変
化は、細胞の収縮活動の適切な「代替的測定値」であり得る。記録されたシグナルは、良
好なダイナミックレンジを伴って、高速かつ明るくあり得る。
本明細書に開示する方法およびシステムは、培養細胞からラマン散乱データを提供する
ように構成される。細胞からのラマンスペクトルデータは、主要なセンサーモダリティへ
の追加である。細胞表面上の生化学的に活性な構造物からのラマンシグナルは、収縮活動
中の膜化学の組成における変化を反映することが可能であってもよい。
細胞は、プラズモン的に活性なナノアイランド(例えば、金アイランド)と直接接触す
ることができるので、後者は、発現した膜タンパク質、細胞の被験物質、サイトカインな
ど、ならびに細胞体内の数十ナノメートルの化学構造からのラマンシグナルを増強するこ
とができる。本明細書に開示する方法およびシステムは、ミトコンドリアの運動を検出す
る非構造化金膜よりも、よりプラズモン的な活性が桁違いの大きさなので、開示するシス
テムの分解能およびシグナル対ノイズ比は、大きくなり得る。データ分析は、細胞生化学
から得られた複雑なシグナルの解析を含むことができる。
本明細書に開示するシステムおよび方法は、細胞活動を電気的に刺激するように構成す
ることができる。電気的に細胞を刺激する方法は、細胞層の両側の上で2個の別個の電極
を使用することを含み、これらの2個の電極間に電圧を加えることができる。本明細書に
開示する方法およびシステムは、1個の電極を細胞の上に、1個の電極を細胞の下に有す
る、不活性電極として使用することができる。
本明細書に開示する方法およびシステムは、細胞活動を光学的に刺激することができる
。例えば、金ナノアイランドは、プラズモン的に活性であり得、1つのバンドの光により
、光学的に細胞活動を読み取ることを可能にしながら、別のバンドの光を使用して、細胞
の収縮を刺激することができる。例えば、光を、ナノアイランド(例えば、金アイランド
)上に成長した細胞に照らすと、これらは、非常に迅速に収縮し得る。強い照明により、
これらは、強縮(連続的な収縮の状態)になる。光は、金ナノアイランド中で、プラズモ
ニクスモードを活性化してもよく、表面上および間隙における電界を変化させてもよい。
これは、細胞膜の脱分極および細胞活動を引き起こしてもよい。
本明細書に開示する方法およびシステムは、皮膚または衣服へのウェアラブルセンサー
を含むことができる。このようなシステムのための適用は、ヘルスケア、ウェルネス、触
覚技術、機器を備えたプロテーゼ、およびナノアイランドセンサーが身体の外部で使用さ
れる他の適用を含むことができる。
本発明の多数の実施形態を記載してきた。それにもかかわらず、本発明の精神および範
囲から逸脱することなく、様々な改変を行ってもよいことが理解されよう。したがって、
他の実施形態は、以下の特許請求の範囲の範囲内である。

Claims (30)

  1. 複合膜構造物を製造するための方法であって、
    前記複合膜構造物の金属層にとって所望の形態を決定するステップ、
    前記決定に基づいて、第1の金属基板を選択するステップ、
    前記第1の金属基板上にグラフェン層を転写するステップ、
    前記グラフェン層上に前記金属層を堆積させて前記所望の形態を得るステップ、ならびに
    前記グラフェンおよび堆積させた前記金属層から前記第1の金属基板を除去して、前記複
    合膜構造物を形成するステップ
    を含み、前記第1の金属基板と前記堆積させた金属層の間の表面エネルギーの相違が、前
    記金属層の前記所望の形態をもたらす、方法。
  2. 前記所望の形態が、ナノアイランドを含む、請求項1に記載の方法。
  3. 前記金属層中のナノアイランドの縁部の間の間隔が、分子寸法のオーダーである、請求
    項2に記載の方法。
  4. 前記金属層を堆積させるステップが、金属原子の蒸着フラックスの堆積を含む、請求項
    1に記載の方法。
  5. 前記金属原子の前記蒸着フラックスが自己集合して、前記所望の形態が得られる、請求
    項4に記載の方法。
  6. 前記金属原子の前記蒸着フラックスが、電子ビーム蒸着、熱蒸着またはスパッタリング
    により生成する、請求項4に記載の方法。
  7. 前記第1の金属基板上に前記グラフェン層を転写するステップが、第2の金属基板上に
    成長させた前記グラフェンを剥離すること、および前記第1の金属基板上に前記グラフェ
    ン層を配置することを含み、前記グラフェンが、単層のグラフェンを含む、請求項1に記
    載の方法。
  8. 前記グラフェンは、化学蒸着を使用して前記第2の金属基板上に成長させる、請求項7
    に記載の方法。
  9. 前記第1の金属基板が、遷移金属を含む、請求項1に記載の方法。
  10. 前記遷移金属が、金、銀またはニッケルを含む、請求項9に記載の方法。
  11. 表面増強ラマン散乱のための基板を形成する方法であって、
    第1の金属基板上に、グラフェン層を堆積させるステップ、
    前記グラフェン層上に、複数の金属ナノアイランドを堆積させるステップ、
    前記グラフェンおよび堆積させた前記複数の金属ナノアイランドから、前記第1の金属基
    板を除去して、前記表面増強ラマン散乱のための基板を形成するステップ
    を含む、方法。
  12. 被験物質の表面増強ラマン散乱を行う方法であって、
    請求項11に記載の方法に従って、表面増強ラマン散乱のための基板を形成するステップ

    光ファイバー上に、前記基板を転写するステップ、
    前記基板上の前記被験物質を被覆するステップ、および
    前記被験物質からの表面増強ラマン散乱のシグナルを記録するステップ
    を含む、方法。
  13. 被験物質の表面増強ラマン散乱を行う方法であって、
    請求項11に記載の方法に従って、表面増強ラマン散乱のための基板を形成するステップ

    光ファイバー上に、前記基板を転写するステップ、
    前記被験物質内に前記基板を配置するステップ、および
    前記被験物質からの表面増強ラマン散乱のシグナルを記録するステップ
    を含む、方法。
  14. 前記複数の金属ナノアイランドが、プラズモン的に活性な金属を含む、請求項12に記
    載の方法。
  15. プラズモン的に活性な金属が、銅、銀、パラジウム、金または白金のナノアイランドを
    含む、請求項14に記載の方法。
  16. グラフェン層、
    前記グラフェン層上の金属層、および
    前記グラフェン層および前記金属層上のポリマー
    を含むひずみセンサーであって、前記ひずみセンサーのピエゾ抵抗が、4桁にわたるひず
    みを検出することを可能にする、ひずみセンサー。
  17. 前記金属層が、パラジウムを含み、第1の金属基板が、銅を含み、前記ポリマーが、ポ
    リジメチルシロキサンを含む、請求項16に記載のひずみセンサー。
  18. 前記グラフェン層が、前記金属層を通じた亀裂伝搬を抑制するように構成される、請求
    項16に記載のひずみセンサー。
  19. 前記ひずみセンサーの1%のひずみでのゲージ率が、少なくとも1300である、請求
    項16に記載のひずみセンサー。
  20. 生体試料における力学的運動を測定するためのシステムであって、
    チャンバー、
    生体試料が上に配置された複合膜構造物であって、グラフェン層と接触している金属層、
    および前記金属層または前記グラフェン層のいずれかと接触しているポリマー層を含む、
    複合膜構造物、
    前記複合膜構造物に電気的にアクセスするための電気的接続、および
    前記チャンバー内の中央開口部であって、前記複合膜構造物上に配置された前記生体試料
    を受け取るように構成された中央開口部
    を含み、前記生体試料は、培養細胞または組織を含み、前記金属層は、複数の金属ナノア
    イランドを含む、システム。
  21. 前記ポリマー層が、前記金属層と接触しており、前記生体試料は、前記グラフェン層上
    に直接成長する、請求項20に記載のシステム。
  22. 前記ポリマー層が、前記グラフェン層と接触しており、前記生体試料は、前記金属層上
    に直接成長する、請求項20に記載のシステム。
  23. 前記培養細胞の前記力学的運動の振幅および時間的プロファイルを提供するように構成
    される、請求項20に記載のシステム。
  24. 前記培養細胞の活動に関連する電気インピーダンスプロファイルを提供するように構成
    される、請求項20に記載のシステム。
  25. 複数の電極をさらに含み、第1の電極が、前記培養細胞の片側に位置し、第2の電極が
    、前記培養細胞の逆側に位置する、請求項20に記載のシステム。
  26. 前記培養細胞を有する前記複合膜構造物で挟み込むように構成された基板の第2のペア
    をさらに含む、請求項20に記載のシステム。
  27. 前記複数の金属ナノアイランド中の金属ナノアイランドの間の間隔の変化の光学的観測
    により、細胞の収縮性のプロファイルを提供するように構成される、請求項20に記載の
    システム。
  28. 前記培養細胞の活動に起因する細胞膜電位プロファイルを提供するように構成される、
    請求項20に記載のシステム。
  29. 前記複数の金属ナノアイランド中の金属ナノアイランドの間の間隔の変化の光学的観測
    により、細胞の収縮性のプロファイルを提供するように構成される、請求項20に記載の
    システム。
  30. 前記培養細胞からラマン散乱データを提供するように構成される、請求項20に記載の
    システム。
JP2020191065A 2015-10-07 2020-11-17 グラフェン系マルチモーダルセンサー Active JP7291112B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562238489P 2015-10-07 2015-10-07
US201562238495P 2015-10-07 2015-10-07
US62/238,489 2015-10-07
US62/238,495 2015-10-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018517831A Division JP2019504290A (ja) 2015-10-07 2016-10-07 グラフェン系マルチモーダルセンサー

Publications (2)

Publication Number Publication Date
JP2021047189A true JP2021047189A (ja) 2021-03-25
JP7291112B2 JP7291112B2 (ja) 2023-06-14

Family

ID=58488553

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018517831A Pending JP2019504290A (ja) 2015-10-07 2016-10-07 グラフェン系マルチモーダルセンサー
JP2020191065A Active JP7291112B2 (ja) 2015-10-07 2020-11-17 グラフェン系マルチモーダルセンサー
JP2021077951A Pending JP2021121800A (ja) 2015-10-07 2021-04-30 グラフェン系マルチモーダルセンサー

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018517831A Pending JP2019504290A (ja) 2015-10-07 2016-10-07 グラフェン系マルチモーダルセンサー

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021077951A Pending JP2021121800A (ja) 2015-10-07 2021-04-30 グラフェン系マルチモーダルセンサー

Country Status (7)

Country Link
US (4) US9863885B2 (ja)
EP (1) EP3359639A4 (ja)
JP (3) JP2019504290A (ja)
KR (1) KR20180061344A (ja)
CN (2) CN108368469A (ja)
HK (1) HK1258239A1 (ja)
WO (1) WO2017062784A1 (ja)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109080735B (zh) 2014-05-16 2022-05-03 迪根特技术公司 用于载具底盘的模块化成形节点及其使用方法
EP3164260B1 (en) 2014-07-02 2021-07-28 Divergent Technologies, Inc. Vehicle chassis
WO2017062784A1 (en) 2015-10-07 2017-04-13 The Regents Of The University Of California Graphene-based multi-modal sensors
KR20190006593A (ko) 2016-06-09 2019-01-18 디버전트 테크놀로지스, 인크. 아크 및 노드 설계 및 제조용 시스템들 및 방법들
US10424407B2 (en) 2016-08-10 2019-09-24 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10013832B2 (en) * 2016-08-10 2018-07-03 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10019859B2 (en) 2016-08-10 2018-07-10 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10497191B2 (en) 2016-08-10 2019-12-03 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10032109B2 (en) 2016-08-10 2018-07-24 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10037641B2 (en) 2016-08-10 2018-07-31 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US10593137B2 (en) 2016-08-10 2020-03-17 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
CA3035733C (en) 2016-11-08 2021-08-10 Landmark Graphics Corporation Diffusion flux inclusion for a reservoir simulation for hydrocarbon recovery
FR3058521B1 (fr) * 2016-11-08 2021-01-08 Univ Montpellier Dispositif et procede de detection de presence de molecules determinees, biocapteur
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
CN106895931A (zh) * 2017-04-28 2017-06-27 北京航空航天大学 一种高灵敏度且大形变量的柔性应力传感器
EP3401670A1 (en) * 2017-05-10 2018-11-14 ETH Zurich Method, uses of and device for surface enhanced raman spectroscopy
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10620119B2 (en) * 2017-06-15 2020-04-14 King Fahd University Of Petroleum And Minerals Graphene foam based optical sensor for oil exploration and spills detection
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
CN107462565B (zh) * 2017-07-21 2021-05-11 山东师范大学 银脑回/石墨烯/金膜三维sers基底及制备方法
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
CN107990918B (zh) * 2017-10-20 2020-04-17 苏州大学 通过多级结构设计制备高敏感度压阻式传感器的方法
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
WO2019195618A1 (en) * 2018-04-04 2019-10-10 The Regents Of The University Of California Non-contact measurements of fluids, particles and bubbles
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
CN110857894B (zh) * 2018-08-24 2021-06-04 中山大学 基于有序石墨烯的可检测应力方向的柔性力学传感器及其制备方法
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
CN109358099B (zh) * 2018-10-01 2023-12-15 吉林大学 一种基于模态局部化的谐振式气体感测装置及检测方法
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
CN109443609B (zh) * 2018-10-29 2020-10-16 陕西科技大学 一种基于皮胶原的高精度压阻传感器材料及其制备方法
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
CN109596686B (zh) * 2018-12-06 2020-08-04 山西大学 一种同时检测鸟嘌呤和腺嘌呤的电化学传感器及其制备方法
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
CN109852945B (zh) * 2019-01-28 2021-06-25 深圳大学 一种基于二维材料的拉曼增强基底及其制备方法和应用
CN109900675B (zh) * 2019-03-18 2021-09-24 电子科技大学 一种基于石墨烯拉曼光谱偏移测量微小质量的装置及方法
CN111747372A (zh) * 2019-03-26 2020-10-09 北京清正泰科技术有限公司 一种无边缘凸起的金属盖石墨岛及其制备方法
JP7032348B2 (ja) * 2019-03-26 2022-03-08 矢崎総業株式会社 金属めっき炭素素材及びその製造方法
CN110006873B (zh) * 2019-04-08 2021-11-23 重庆市环卫集团有限公司 基于三维微纳结构增强拉曼光谱的环境污染物检测方法
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US10801885B1 (en) 2019-04-24 2020-10-13 United States Of America As Represented By The Secretary Of The Navy Reconfigurable liquid metal plasmonic arrays for carbon transducers
CN110286443B (zh) * 2019-07-01 2020-12-08 焦作市名泽磁业有限公司 一种氧化石墨烯光纤头
CN110375637A (zh) * 2019-08-13 2019-10-25 电子科技大学 一种复合导电弹性体自修复应变传感器及其制备方法
CN110487166B (zh) * 2019-08-23 2020-08-14 北京石墨烯技术研究院有限公司 薄膜应变传感器制备方法
CN110697650B (zh) * 2019-11-18 2022-11-11 长春理工大学 一种复合sers基底及其制备方法和应用
CN111081323A (zh) * 2019-12-19 2020-04-28 哈尔滨工业大学 一种基于Tersoff力场的石墨烯多级粗粒化方法
US20230022519A1 (en) * 2019-12-23 2023-01-26 Nippon Telegraph And Telephone Corporation Three-dimensional structure and method for manufacturing the same
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
CN111189787B (zh) * 2020-01-15 2022-05-03 电子科技大学 一种基于石墨烯d形光纤的超敏气体传感器
CN111283690B (zh) * 2020-01-16 2022-09-09 中国科学院重庆绿色智能技术研究院 一种用于人机交互安全的弹性仿生绒毛式电子皮肤
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US11761930B2 (en) * 2020-03-06 2023-09-19 Dalian University Of Technology Prediction method of part surface roughness and tool wear based on multi-task learning
CN111537116B (zh) * 2020-05-08 2021-01-29 西安交通大学 一种石墨烯压力传感器及其制备方法
WO2022015814A1 (en) 2020-07-14 2022-01-20 Grolltex, Inc. Hydrogel-based packaging of 2d materials-based biosensor devices for analyte detection and diagnostics
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
CN112097967A (zh) * 2020-09-15 2020-12-18 闽江学院 基于自供能的柔性可延展力学传感系统及制备方法
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
CN112768249B (zh) * 2020-12-30 2022-07-22 山东力诺光伏高科技有限公司 一种绿色环保的石墨烯太阳能电池及其制备方法
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
CN112857634B (zh) * 2021-01-21 2022-12-06 天津城建大学 一种石墨烯/碳纳米管(CNTs)柔性压力传感器及制作方法
CN116917129A (zh) 2021-03-09 2023-10-20 戴弗根特技术有限公司 旋转式增材制造系统和方法
JP2022152351A (ja) * 2021-03-29 2022-10-12 地方独立行政法人神奈川県立産業技術総合研究所 センサ基板の製造方法、センサ基板、センサシステム、及びラマン散乱光検出方法
CN113533300B (zh) * 2021-07-22 2022-06-21 岭南师范学院 一种石墨烯等离激元气体传感器及其制作方法
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
FR3131076B1 (fr) * 2021-12-22 2024-04-19 Grapheal Procede de formation d’un dispositif comprenant du graphene
WO2023136308A1 (ja) * 2022-01-17 2023-07-20 国立大学法人大阪大学 ラマン散乱を用いた心筋細胞の評価方法
CN114563036B (zh) * 2022-01-27 2023-12-05 深圳大学 一种3d打印岩土工程多参数监测的石墨烯传感器应用系统
CN115219079B (zh) * 2022-07-15 2023-07-11 齐鲁工业大学 一种裂纹传感器及制备方法与其在收缩力测量中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047702A (ja) * 2009-08-25 2011-03-10 National Institute Of Advanced Industrial Science & Technology カーボンナノチューブを用いた伸縮装置とその製造方法
US20110178224A1 (en) * 2009-11-12 2011-07-21 The Trustees Of Princeton University Multifunctional graphene-silicone elastomer nanocomposite, method of making the same, and uses thereof
JP2011525240A (ja) * 2008-06-17 2011-09-15 ルミムーブ,インコーポレーテッド,ディー/ビー/エイ・クロスリンク 複合構造体用の柔軟な無線の健全性監視センサー
JP2013533892A (ja) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ ナノ材料で強化された樹脂および関連材料
JP2014034503A (ja) * 2012-08-10 2014-02-24 Fuji Electric Co Ltd グラフェン膜の製造方法およびグラフェン膜
US20140377579A1 (en) * 2013-06-24 2014-12-25 University Of Houston System Metallic Nanomesh
US20150020610A1 (en) * 2013-07-18 2015-01-22 Kulite Semiconductor Products, Inc. Two dimensional material-based pressure sensor
WO2015083874A1 (ko) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 크랙 함유 전도성 박막을 구비하는 고감도 센서 및 그의 제조방법
WO2015119211A1 (ja) * 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569506A (en) * 1993-10-06 1996-10-29 International Business Machines Corporation Magnetic recording disk and disk drive with improved head-disk interface
US5581091A (en) * 1994-12-01 1996-12-03 Moskovits; Martin Nanoelectric devices
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
JP3439645B2 (ja) * 1998-02-20 2003-08-25 シャープ株式会社 フォトン走査トンネル顕微鏡用ピックアップ
EP0977030B1 (en) * 1998-07-29 2001-03-21 Hewlett-Packard Company Chip for performing an electrophoretic separation of molecules and method using same
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
JP3768908B2 (ja) * 2001-03-27 2006-04-19 キヤノン株式会社 電子放出素子、電子源、画像形成装置
US6778316B2 (en) * 2001-10-24 2004-08-17 William Marsh Rice University Nanoparticle-based all-optical sensors
US6972146B2 (en) * 2002-03-15 2005-12-06 Canon Kabushiki Kaisha Structure having holes and method for producing the same
GB2418017A (en) * 2004-09-10 2006-03-15 Univ Southampton Raman spectroscopy
US20080090739A1 (en) * 2004-09-30 2008-04-17 Van Beuningen Marinus G J Masked Solid Porous Supports Allowing Fast And Easy Reagent Exchange To Accelerate Electrode-Based Microarrays
WO2007081381A2 (en) * 2005-05-10 2007-07-19 The Regents Of The University Of California Spinodally patterned nanostructures
US10060904B1 (en) * 2005-10-17 2018-08-28 Stc.Unm Fabrication of enclosed nanochannels using silica nanoparticles
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
US7903338B1 (en) * 2006-07-08 2011-03-08 Cirrex Systems Llc Method and system for managing light at an optical interface
US7528948B2 (en) 2006-07-25 2009-05-05 Hewlett-Packard Development Company, L.P. Controllable surface enhanced Raman spectroscopy
US20090166560A1 (en) * 2006-10-26 2009-07-02 The Board Of Trustees Of The Leland Stanford Junior University Sensing of biological molecules using carbon nanotubes as optical labels
US11747279B2 (en) * 2006-12-06 2023-09-05 Mohammad A. Mazed Optical biomodule for detection of diseases at an early onset
EP2147298A4 (en) * 2007-04-27 2010-07-07 Univ Polytechnic PROOF OF CANCER MARKERS
JP5301793B2 (ja) * 2007-05-07 2013-09-25 国立大学法人北海道大学 再分散用微細炭素繊維集合塊およびその製造方法
JP2008286518A (ja) * 2007-05-15 2008-11-27 Hitachi Ltd 変位計測方法とその装置
US8958070B2 (en) * 2007-05-29 2015-02-17 OptoTrace (SuZhou) Technologies, Inc. Multi-layer variable micro structure for sensing substance
US8323580B2 (en) * 2007-05-29 2012-12-04 OptoTrace (SuZhou) Technologies, Inc. Multi-layer micro structure for sensing substance
US20120164073A1 (en) * 2007-11-30 2012-06-28 Old Dominion University Stable nanoparticles, nanoparticle-based imaging systems, nanoparticle-based assays, and in vivo assays for screening biocompatibility and toxicity of nanoparticles
EP2106820A1 (en) * 2008-03-31 2009-10-07 Torsten Heilmann Expansible biocompatible coats comprising a biologically active substance
US9028878B2 (en) * 2009-02-03 2015-05-12 Microbion Corporation Bismuth-thiols as antiseptics for biomedical uses, including treatment of bacterial biofilms and other uses
US9408393B2 (en) * 2010-02-03 2016-08-09 Microbion Corporation Bismuth-thiols as antiseptics for agricultural, industrial and other uses
EP2393871A1 (en) * 2009-02-04 2011-12-14 Yissum Research Development Company of the Hebrew University of Jerusalem, Ltd. Assemblies comprising block co-polymer films and nanorods
US20120161098A1 (en) * 2009-08-20 2012-06-28 Nec Corporation Substrate, manufacturing method of substrate, semiconductor element, and manufacturing method of semiconductor element
US8865402B2 (en) * 2009-08-26 2014-10-21 Clemson University Research Foundation Nanostructured substrates for surface enhanced raman spectroscopy (SERS) and detection of biological and chemical analytes by electrical double layer (EDL) capacitance
EP2499677B1 (en) * 2009-11-10 2022-03-30 Immunolight, LLC Up coversion system for production of light for treatment of a cell proliferation related disorder
KR101603766B1 (ko) * 2009-11-13 2016-03-15 삼성전자주식회사 그라펜 적층체 및 그의 제조방법
WO2011072213A2 (en) * 2009-12-10 2011-06-16 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using laser radiation
US20110200787A1 (en) * 2010-01-26 2011-08-18 The Regents Of The University Of California Suspended Thin Film Structures
US8836941B2 (en) * 2010-02-10 2014-09-16 Imra America, Inc. Method and apparatus to prepare a substrate for molecular detection
WO2011133144A1 (en) * 2010-04-20 2011-10-27 Hewlett-Packard Development Company, L.P. A self-arranging, luminescence-enhancement device for surface-enhanced luminescence
US8709881B2 (en) * 2010-04-30 2014-04-29 The Regents Of The University Of California Direct chemical vapor deposition of graphene on dielectric surfaces
GB201007669D0 (en) 2010-05-07 2010-06-23 Epigem Ltd Composite electrode for molecular electronic devices and method of manufacture thereof
KR101920721B1 (ko) * 2010-06-04 2018-11-22 삼성전자주식회사 그라펜 나노리본의 제조방법 및 상기 제조방법에 의해 얻어진 그라펜 나노리본
KR101237052B1 (ko) * 2010-06-09 2013-02-25 성균관대학교산학협력단 그라핀 세포 자극기 및 그것의 제조방법
US9281385B2 (en) * 2010-06-18 2016-03-08 Samsung Electronics Co., Ltd. Semiconducting graphene composition, and electrical device including the same
KR20120000338A (ko) * 2010-06-25 2012-01-02 삼성전자주식회사 그라펜 층수 제어방법
JP5705315B2 (ja) * 2010-07-15 2015-04-22 グラフェンスクェア インコーポレイテッド グラフェンの低温製造方法、及びこれを利用したグラフェンの直接転写方法
WO2012015443A1 (en) * 2010-07-30 2012-02-02 Hewlett-Packard Development Company, L.P. Optical fiber surface enhanced raman spectroscopy (sers) probe
JP5652817B2 (ja) * 2010-08-03 2015-01-14 国立大学法人東京工業大学 ナノドット形成方法
US20130345296A1 (en) * 2010-08-31 2013-12-26 Avidal Vascular Gmbh Compositions Comprising a Taxane for Coating Medical Devices
WO2012054027A1 (en) * 2010-10-20 2012-04-26 Hewlett-Packard Development Company, L.P. Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing
US9274058B2 (en) * 2010-10-20 2016-03-01 Hewlett-Packard Development Company, L.P. Metallic-nanofinger device for chemical sensing
US20120097521A1 (en) * 2010-10-25 2012-04-26 University Of Massachusetts Nanostructured apparatus and methods for producing carbon-containing molecules as a renewable energy resource
JP2012218967A (ja) * 2011-04-07 2012-11-12 Panasonic Corp グラフェン膜の形成方法
WO2012148439A1 (en) * 2011-04-25 2012-11-01 William Marsh Rice University Direct growth of graphene films on non-catalyst surfaces
CN103635187B (zh) 2011-04-27 2020-06-26 耶鲁大学 用于抑制化疗引起的副作用的药物治疗以及相关药物组合物、诊断试剂、筛选技术和试剂盒
US9802818B2 (en) * 2011-05-03 2017-10-31 Northwestern University Sorting process of nanoparticles and applications of same
CN102719877B (zh) * 2011-06-09 2014-09-03 中国科学院金属研究所 一种低成本无损转移石墨烯的方法
US8872159B2 (en) * 2011-09-29 2014-10-28 The United States Of America, As Represented By The Secretary Of The Navy Graphene on semiconductor detector
JP5856423B2 (ja) * 2011-09-30 2016-02-09 株式会社東芝 導電材料およびこれを用いた電気素子
WO2013049636A1 (en) * 2011-09-30 2013-04-04 The Regents Of The University Of Michigan System for detecting rare cells
WO2013052541A2 (en) * 2011-10-04 2013-04-11 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Quantum dots, rods, wires, sheets, and ribbons, and uses thereof
US8878157B2 (en) * 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth
US9776875B2 (en) * 2011-10-24 2017-10-03 Src Corporation Method of manufacturing graphene using metal catalyst
KR101437142B1 (ko) * 2011-10-28 2014-09-02 제일모직주식회사 그라핀 층을 함유하는 배리어 필름과 이를 포함하는 플렉시블 기판 및 그 제조방법
CN102506693A (zh) * 2011-11-04 2012-06-20 南京航空航天大学 一种石墨烯应变测量和运动传感装置及其制法
US20130340533A1 (en) * 2011-11-28 2013-12-26 Massachusetts Institute Of Technology Strain gauge using two-dimensional materials
EP2786644B1 (en) * 2011-12-01 2019-04-10 The Board of Trustees of the University of Illionis Transient devices designed to undergo programmable transformations
KR20130069035A (ko) 2011-12-16 2013-06-26 삼성전자주식회사 그래핀상의 하이브리드 나노구조체 형성 방법
US9823246B2 (en) * 2011-12-28 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Fluorescence enhancing plasmonic nanoscopic gold films and assays based thereon
ITMI20120191A1 (it) * 2012-02-10 2013-08-11 St Microelectronics Srl Metodo per trasferire uno strato di grafene
EP2631329A1 (en) * 2012-02-22 2013-08-28 Technion Research & Development Foundation Ltd. Vicinal surfaces of polycrystalline structures
WO2013140822A1 (ja) * 2012-03-23 2013-09-26 国立大学法人名古屋大学 細胞培養基材および細胞培養方法
CN105283122B (zh) * 2012-03-30 2020-02-18 伊利诺伊大学评议会 可共形于表面的可安装于附肢的电子器件
WO2013151755A1 (en) * 2012-04-04 2013-10-10 University Of Washington Through Its Center For Commercialization Systems and method for engineering muscle tissue
US9202606B2 (en) * 2012-04-13 2015-12-01 University Of Georgia Research Foundation, Inc. Functional nanostructured “jelly rolls” with nanosheet components
US9393590B2 (en) * 2012-04-16 2016-07-19 Temple University—Of the Commonwealth System of Higher Education Self-assembly of small structures
US9279759B2 (en) * 2012-05-01 2016-03-08 University Of Maryland, College Park Nanoparticle array with tunable nanoparticle size and separation
KR101460439B1 (ko) * 2012-05-14 2014-11-12 서울대학교산학협력단 나노프로브 및 이를 이용한 표적 물질 검출방법
US20150136737A1 (en) * 2012-05-17 2015-05-21 National University Of Singapore Methods of growing uniform, large-scale, multilayer graphene film
WO2013184072A1 (en) * 2012-06-06 2013-12-12 National University Of Singapore Gate-tunable graphene-ferroelectric hybrid structure for photonics and plasmonics
KR101356010B1 (ko) * 2012-06-11 2014-01-28 한국과학기술원 2차원 전사층 및 블록공중합체를 이용한 나노구조체 제조방법, 이에 의하여 제조된 나노구조체 및 그 응용소자
WO2014003843A1 (en) * 2012-06-29 2014-01-03 Regents Of The University Of Minnesota Method of forming individual metallic microstructures
KR101919423B1 (ko) * 2012-08-01 2018-11-19 삼성전자주식회사 그래핀 반도체 및 이를 포함하는 전기소자
KR20140032811A (ko) * 2012-09-07 2014-03-17 삼성전자주식회사 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
CN102914500B (zh) * 2012-11-20 2014-12-03 黑龙江大学 一种石墨烯/金表面增强拉曼光谱基片的制备方法
JPWO2014097943A1 (ja) * 2012-12-18 2017-01-12 東レ株式会社 金属ドット基板および金属ドット基板の製造方法
AU2014211862B2 (en) * 2013-01-29 2017-05-18 Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences Electronic skin, preparation method and use thereof
WO2014131043A1 (en) * 2013-02-25 2014-08-28 Solan, LLC Methods for fabricating graphite-based structures and devices made therefrom
US8871296B2 (en) * 2013-03-14 2014-10-28 Nanotek Instruments, Inc. Method for producing conducting and transparent films from combined graphene and conductive nano filaments
US9627485B2 (en) * 2013-03-15 2017-04-18 University Of Southern California Vapor-trapping growth of single-crystalline graphene flowers
US20140272308A1 (en) * 2013-03-15 2014-09-18 Solan, LLC Graphite-Based Devices Incorporating A Graphene Layer With A Bending Angle
US10431354B2 (en) * 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
WO2014139031A1 (en) * 2013-03-15 2014-09-18 Concordia University Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials
US9593019B2 (en) * 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
CN103172404A (zh) * 2013-04-05 2013-06-26 浙江理工大学 三维金属-石墨烯复合基底及其制备方法
US9366784B2 (en) * 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
FR3006237B1 (fr) * 2013-05-28 2015-06-26 Commissariat Energie Atomique Substrat conducteur electrique sur au moins une de ses faces muni d'un empilement de couches minces pour la croissance de nanotubes de carbone (ntc)
KR101589039B1 (ko) * 2013-05-30 2016-01-27 한국과학기술원 대면적 금속 나노 구조물 및 투명전극층을 포함하는 표면증강라만산란 기판, 이의 제조방법 및 이를 이용한 표면증강라만 분광방법
US10001442B2 (en) * 2013-06-13 2018-06-19 The Regents Of The University Of California Optical fiber-based hybrid SERS platform for in vivo detection of bio-molecules
CN103288077B (zh) * 2013-06-28 2015-04-29 重庆墨希科技有限公司 一种快速无损转移石墨烯的方法
US9837933B2 (en) * 2013-06-28 2017-12-05 Samsung Electronics Co., Ltd. Energy harvester using mass and mobile device including the energy harvester
US20150049332A1 (en) * 2013-07-30 2015-02-19 The Curators Of The University Of Missouri Gold nanoisland arrays
US9410243B2 (en) * 2013-08-06 2016-08-09 Brookhaven Science Associates, Llc Method for forming monolayer graphene-boron nitride heterostructures
CN104377114B (zh) * 2013-08-13 2017-04-05 国家纳米科学中心 一种锗量子点的生长方法、锗量子点复合材料及其应用
KR102081892B1 (ko) * 2013-09-05 2020-02-26 삼성전자주식회사 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
US20160216252A1 (en) * 2013-09-13 2016-07-28 The Board Of Trustees Of The Leland Stanford Junior University Plasmonic beads for multiplexed analysis by flow detection systems
EP2854204B1 (en) * 2013-09-30 2017-06-14 Samsung Electronics Co., Ltd Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
EP2857550A1 (en) * 2013-10-02 2015-04-08 Basf Se Amine precursors for depositing graphene
US9810687B2 (en) * 2013-10-15 2017-11-07 Board Of Trustees Of The University Of Arkansas Nanocomposites and methods of making same
JP6039534B2 (ja) * 2013-11-13 2016-12-07 東京エレクトロン株式会社 カーボンナノチューブの生成方法及び配線形成方法
US10124075B2 (en) * 2013-11-14 2018-11-13 The Royal Institution For The Advancement Of Learning/Mc Gill University Bionanofluid for use as a contrast, imaging, disinfecting and/or therapeutic agent
MX2016006598A (es) * 2013-11-22 2016-08-19 Schlumberger Technology Bv Nanocompuestos de cemento piezorresistivos.
US9558929B2 (en) * 2013-11-25 2017-01-31 Nutech Ventures Polymer on graphene
TWI514938B (zh) * 2013-12-26 2015-12-21 Ind Tech Res Inst 撓性電子模組
KR101572066B1 (ko) * 2013-12-30 2015-11-26 한국표준과학연구원 단결정 그래핀의 제조방법
CN103833030B (zh) * 2014-01-16 2016-01-06 中国科学院青岛生物能源与过程研究所 一种大面积转移cvd石墨烯膜的方法
JP2017507044A (ja) 2014-01-31 2017-03-16 ロッキード マーティン コーポレイションLockheed Martin Corporation 多孔性非犠牲支持層を用いた二次元材料とのコンポジット構造を形成するための方法
US9871350B2 (en) * 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
CN103779499A (zh) * 2014-02-10 2014-05-07 苏州新锐博纳米科技有限公司 一种Ag纳米粒子点缀石墨烯复合薄膜材料及制备
CN103811567A (zh) * 2014-03-07 2014-05-21 南京汉能光伏有限公司 双面薄膜光伏电池及其制备方法
JP6113908B2 (ja) * 2014-03-14 2017-04-12 株式会社東芝 分子検出装置および方法
US20170170381A1 (en) * 2014-04-14 2017-06-15 The Regents Of The University Of California Structures and fabrication methods of flexible thermoelectric devices
CN103901089B (zh) * 2014-04-16 2016-08-24 国家纳米科学中心 检测神经细胞电生理信号的传感器及制作方法和检测方法
CN103969241A (zh) * 2014-05-20 2014-08-06 中国科学技术大学 一种拉曼基底
US10518506B2 (en) * 2014-06-12 2019-12-31 Toray Industries, Inc. Layered product and process for producing same
EP3157867B1 (en) * 2014-06-20 2022-02-16 The Regents of the University of California Method for the fabrication and transfer of graphene
US9897542B2 (en) * 2014-07-21 2018-02-20 Ecole Polytechnique Dederale De Lausanne (Epfl) Infrared absorption spectroscopy
JP6039616B2 (ja) * 2014-08-11 2016-12-07 東京エレクトロン株式会社 グラフェンの下地膜の生成方法、グラフェンの生成方法及びグラフェンの下地膜生成装置
KR102360025B1 (ko) * 2014-10-16 2022-02-08 삼성전자주식회사 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자
CN104445164B (zh) * 2014-11-18 2016-09-14 扬州大学 一种在单层石墨烯膜上可控生长纳米结构的方法
EP3221870B1 (en) * 2014-11-19 2021-02-17 Yeda Research and Development Co., Ltd. Nanoscale electronic spin filter
US9861710B1 (en) * 2015-01-16 2018-01-09 Verily Life Sciences Llc Composite particles, methods, and in vivo diagnostic system
KR101685100B1 (ko) * 2015-03-27 2016-12-09 한국과학기술연구원 기재 위에 h-BN 후막을 형성하는 방법 및 그로부터 제조된 h-BN 후막 적층체
CN104777151A (zh) * 2015-04-23 2015-07-15 西北工业大学 一种超灵敏铜sers基底及其制备方法
WO2016176598A1 (en) * 2015-04-29 2016-11-03 The Administrators Of The Tulane Educational Fund Microfluidic devices and methods for pathogen detection in liquid samples
CN104880206B (zh) * 2015-06-09 2018-03-06 中国科学院深圳先进技术研究院 电阻应变片及电阻应变式传感器
US11447391B2 (en) * 2015-06-23 2022-09-20 Polyvalor, Limited Partnership Method of growing a graphene coating or carbon nanotubes on a catalytic substrate
US10145005B2 (en) * 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
CN105088342B (zh) * 2015-09-16 2017-09-29 云南大学 一种Ge量子点的制备方法及其应用
US20180250404A1 (en) * 2015-09-18 2018-09-06 Board Of Regents, The University Of Texas System High-z nanoparticles and the use thereof in radiation therapy
US10246795B2 (en) * 2015-09-22 2019-04-02 Kuk-II Graphene Co., Ltd. Transfer-free method for forming graphene layer
WO2017062784A1 (en) 2015-10-07 2017-04-13 The Regents Of The University Of California Graphene-based multi-modal sensors
US10590529B2 (en) * 2015-11-20 2020-03-17 Fourté International, Sdn. Bhd Metal foams and methods of manufacture
GB2544981A (en) * 2015-12-01 2017-06-07 Tallinn Univ Of Tech A composite shielding material and a process of making the same
US10457553B2 (en) * 2016-01-08 2019-10-29 Nanyang Technological University Boron nitride material and method of preparation thereof
US10759157B2 (en) 2016-06-15 2020-09-01 Nanomedical Diagnostics, Inc. Systems and methods for transferring graphene
US11125693B2 (en) * 2017-01-31 2021-09-21 Hewlett-Packard Development Company, L.P. Surface enhanced infrared absorption stage
TWI632354B (zh) * 2017-07-24 2018-08-11 國立成功大學 拉曼光譜載板及其製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525240A (ja) * 2008-06-17 2011-09-15 ルミムーブ,インコーポレーテッド,ディー/ビー/エイ・クロスリンク 複合構造体用の柔軟な無線の健全性監視センサー
JP2011047702A (ja) * 2009-08-25 2011-03-10 National Institute Of Advanced Industrial Science & Technology カーボンナノチューブを用いた伸縮装置とその製造方法
US20110178224A1 (en) * 2009-11-12 2011-07-21 The Trustees Of Princeton University Multifunctional graphene-silicone elastomer nanocomposite, method of making the same, and uses thereof
JP2013533892A (ja) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ ナノ材料で強化された樹脂および関連材料
JP2014034503A (ja) * 2012-08-10 2014-02-24 Fuji Electric Co Ltd グラフェン膜の製造方法およびグラフェン膜
US20140377579A1 (en) * 2013-06-24 2014-12-25 University Of Houston System Metallic Nanomesh
US20150020610A1 (en) * 2013-07-18 2015-01-22 Kulite Semiconductor Products, Inc. Two dimensional material-based pressure sensor
WO2015083874A1 (ko) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 크랙 함유 전도성 박막을 구비하는 고감도 센서 및 그의 제조방법
WO2015119211A1 (ja) * 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE TIAN, YI, SHU, YA-LONG CUI, WEN-TIAN MI, YI YANG, DAN XIE, AND TIAN-LING REN: "Scalable fabrication of high-performance and flexible graphene strain sensors", NANOSCALE, vol. Vol.6, issue 2, JPN6021043038, 23 October 2013 (2013-10-23), GB, pages 699 - 705, ISSN: 0004631982 *
SREENVASULU TADAKALURU, WIRADEJ THONGSUWAN, AND PISITH SINGJAI: "Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natur", SENSORS, vol. 14, no. 1, JPN6021043035, 6 January 2021 (2021-01-06), CH, pages 868 - 876, ISSN: 0004631983 *

Also Published As

Publication number Publication date
EP3359639A1 (en) 2018-08-15
CN108368469A (zh) 2018-08-03
JP2021121800A (ja) 2021-08-26
CN113176247A (zh) 2021-07-27
KR20180061344A (ko) 2018-06-07
US11879848B2 (en) 2024-01-23
US9863885B2 (en) 2018-01-09
US11193890B2 (en) 2021-12-07
HK1258239A1 (zh) 2019-11-08
JP7291112B2 (ja) 2023-06-14
US20200333254A1 (en) 2020-10-22
EP3359639A4 (en) 2018-11-14
US10641710B2 (en) 2020-05-05
US20180100802A1 (en) 2018-04-12
JP2019504290A (ja) 2019-02-14
US20220091042A1 (en) 2022-03-24
US20170102334A1 (en) 2017-04-13
WO2017062784A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP7291112B2 (ja) グラフェン系マルチモーダルセンサー
Zhou et al. Template‐directed growth of hierarchical MOF hybrid arrays for tactile sensor
Zaretski et al. Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals
Gilshteyn et al. Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics
Cui et al. Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection
Li et al. Mechanical properties of ZnS nanobelts
Kim et al. Highly reproducible Au-decorated ZnO nanorod array on a graphite sensor for classification of human aqueous humors
Lahiri et al. Carbon nanotubes: how strong is their bond with the substrate?
Jackson et al. Pulsed growth of vertically aligned nanotube arrays with variable density
Li et al. Three-dimensional ordered Ag/ZnO/Si hierarchical nanoflower arrays for spatially uniform and ultrasensitive SERS detection
TW201250243A (en) Apparatus for detecting tumor cells
Li et al. Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires
CN111896523A (zh) 表面增强拉曼散射基底及其制备方法和应用
Kalmykov et al. Bioelectrical interfaces with cortical spheroids in three-dimensions
Zhu et al. Sensitive, reusable, surface-enhanced Raman scattering sensors constructed with a 3D graphene/Si hybrid
Bakhshaee Babaroud et al. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces
Liu et al. Dealloying derived synthesis of W nanopetal films and their transformation into WO3
Su et al. In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy
Xiang et al. A biosensing system employing nanowell microelectrode arrays to record the intracellular potential of a single cardiomyocyte
US11119064B2 (en) Cell-on-chip stretchable platform for mammalian cells with integrated impedance spectroscpy technique
CN105572046B (zh) 荧光检测样品池及其制备方法
Liang et al. Flexible SERS Substrate with a Ag–SiO2 Cosputtered Film for the Rapid and Convenient Detection of Thiram
CN107782919A (zh) 一种采用导电纳米线的电学原子力显微镜探针
Granata et al. Synthesis of plasmonic gold nanoparticles on soft materials for biomedical applications
Kousar et al. Ni Drastically Modifies the Microstructure and Electrochemistry of Thin Ti and Cr Layers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230306

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20230322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230404

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7291112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150