CN103811567A - 双面薄膜光伏电池及其制备方法 - Google Patents

双面薄膜光伏电池及其制备方法 Download PDF

Info

Publication number
CN103811567A
CN103811567A CN201410083895.XA CN201410083895A CN103811567A CN 103811567 A CN103811567 A CN 103811567A CN 201410083895 A CN201410083895 A CN 201410083895A CN 103811567 A CN103811567 A CN 103811567A
Authority
CN
China
Prior art keywords
film
photovoltaic cell
substrate
nesa coating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410083895.XA
Other languages
English (en)
Inventor
来霸
王奇
于化丛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING HANERGY PV Co Ltd
Original Assignee
NANJING HANERGY PV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING HANERGY PV Co Ltd filed Critical NANJING HANERGY PV Co Ltd
Priority to CN201410083895.XA priority Critical patent/CN103811567A/zh
Publication of CN103811567A publication Critical patent/CN103811567A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种双面薄膜光伏电池及其生产工艺,其中双面薄膜光伏电池,包括自下而上依次设置的基底、第一透明导电膜、P型光伏吸收层薄膜、N型硫化镉膜层和第二透明导电膜;所述基底为高分子薄膜材料;所述第一透明导电膜和第二透明导电膜均为通过物理化学吸附法处理的石墨烯薄膜。本发明采用改性的石墨烯薄膜新材料替代常规CIGS薄膜光伏电池中的透明导电膜和金属电极层,通过双面高透光性、高导电性的石墨烯薄膜,有效提升薄膜光伏电池的光电转换效率。

Description

双面薄膜光伏电池及其制备方法
技术领域
本发明涉及双面薄膜光伏电池及其制备方法。
背景技术
太阳能是一种取之不尽,用之不竭的能源。进入21世纪以来,光伏太阳能行业取得了较快的发展。铜铟镓硒(以下简称CIGS)薄膜光伏电池较传统的晶硅光伏电池,具有半导体材料消耗少、产品环境适应性强及可轻柔化等优势,成为未来光伏太阳能行业的发展趋势。尽管CIGS薄膜光伏电池效率已接近传统多晶硅光伏电池,但依然还有继续提高其光电转换效率的潜力。
石墨烯薄膜材料具有超薄、强度超大、高比表面积、高热传导性、高透明、超载流子迁移率、可柔性等特点,有广泛的应用前景与潜力。尽管现在普遍制备出来的石墨烯薄膜因缺陷等因素,致使其方块电阻较大。但通过对其掺杂进行改性,可以获得高质量透明导电膜。
发明内容
本发明的第一个目的是提供一种采用了双面高透光性、高导电性石墨烯薄膜的双面薄膜光伏电池,有效提升转光电换效率。
实现本发明第一个目的的技术方案是:双面薄膜光伏电池,包括自下而上依次设置的基底、第一透明导电膜、P型光伏吸收层薄膜、N型硫化镉膜层和第二透明导电膜;所述基底为高分子薄膜材料;所述第一透明导电膜和第二透明导电膜均为通过物理化学吸附法处理的石墨烯薄膜。
所述基底为玻璃或聚酰亚胺。
所述第一透明导电膜和第二透明导电膜的厚度均为0.34~3nm。
所述P型光伏吸收层薄膜的材料为铜铟镓锡,厚度为1.0~2.5μm;所述N型硫化镉膜层的厚度为40~60nm。
本发明的第二个目的是提供前述双面薄膜光伏电池的制备方法。
实现本发明第二个目的的技术方案是:双面薄膜光伏电池的制备方法,包括以下步骤:
①在衬底上采用化学气相沉积法沉积第一石墨烯薄膜层;
②采用剥离技术将衬底上的第一石墨烯薄膜层剥离,转移、贴合至基底上,然后采用物理化学吸附法对第一石墨烯薄膜层进行改性处理得到第一透明导电膜;接着采用物理气相沉积法沉积P型光伏吸收层薄膜;然后采用化学水浴法或物理气相沉积法沉积N型硫化镉膜层;
③重复步骤①得到第二石墨烯薄膜层,采用剥离技术将衬底上的第二石墨烯薄膜层剥离,转移、贴合至在N型硫化镉膜层上,然后采用物理化学吸附法对第二石墨烯薄膜层进行改性处理得到第二透明导电膜,形成本实施例的双面薄膜光伏电池。
优选的技术方案:所述步骤①中的衬底为镍或铜。
优选的技术方案:所述步骤①中的化学气相沉积法具体为:首先采用热分解CVD法,在真空腔室内通入甲烷,然后经由高温分解并借助辅助气体处理,在衬底的催化作用下沉积薄膜。
所述步骤②和步骤③中的物理化学吸附法具体为:在配有HNO3溶液的设备中,通过控优选的技术方案:制HNO3的浓度、温度以及石墨烯薄膜在溶液中的浸泡时间,一定量的HNO3分子将吸附在石墨烯薄膜表面。
优选的技术方案:所述步骤②中的物理气相沉积法采用多元共蒸发技术,具体为:第一步,在基底温度较低的情况下蒸发In、Ga、Se形成一层In-Ga-Se预置层,其中控制原子比例In/Ga=0.7/0.3,In+Ga/Se=2/3;第二步,升高基底温度到一定温度,蒸发Cu、Se;第三步,保持第二步的基底的温度,蒸发In、Ga、Se,使多余的Cu2-xSe转化成等化学计量比的CIGS,继续蒸发少量的In、Ga、Se,可得到稍微贫铜的CIGSp型黄铜矿结构的样品,并控制Cu/In+Ga的比例在0.88~0.92的范围内,样品随后在蒸发Se的同时冷却到一定温度,关闭Se再冷却到室温,形成CIGS薄膜。
另一种优选的技术方案:所述步骤②中的物理气相沉积法采用磁控溅射后硒化法,具体为:先溅射沉积CIG预制层,然后在硒蒸气中对预制层进行硒化处理,形成CIGS薄膜。
采用了上述技术方案,本发明具有以下的有益效果:(1)本发明采用改性的石墨烯薄膜新材料替代常规CIGS薄膜光伏电池中的透明导电膜和金属电极层,通过双面高透光性、高导电性的石墨烯薄膜,有效提升薄膜光伏电池的光电转换效率。
(2)本发明的石墨烯薄膜兼具有可柔性,因此本发明也能满足轻柔化薄膜光伏电池的需要。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明的结构示意图。
附图中的标号为:
基底101、第一透明导电膜102、P型光伏吸收层薄膜103、N型硫化镉膜层104、第二透明导电膜105。
具体实施方式
(实施例1)
见图1,本实施例的双面薄膜光伏电池,包括自下而上依次设置的基底101、第一透明导电膜102、P型光伏吸收层薄膜103、N型硫化镉膜层104和第二透明导电膜105。基底101为高分子薄膜材料。第一透明导电膜102和第二透明导电膜105均为通过物理化学吸附法处理的石墨烯薄膜。基底101为玻璃或聚酰亚胺。
第一透明导电膜102和第二透明导电膜105的厚度均为0.34~3nm。P型光伏吸收层薄膜103的材料为铜铟镓锡,厚度为1.0~2.5μm。N型硫化镉膜层104的厚度为40~60nm。
本实施例的双面薄膜光伏电池的制备方法为:
①衬底上采用化学气相沉积法沉积第一石墨烯薄膜层。
其中,衬底为镍或铜;化学气相沉积法具体为:首先采用热分解CVD法,在真空腔室内通入甲烷,然后经由高温分解并借助辅助气体处理,在衬底的催化作用下沉积薄膜。
②采用剥离技术将衬底上的第一石墨烯薄膜层剥离,转移、贴合至基底101上,然后采用物理化学吸附法对第一石墨烯薄膜层进行改性处理得到第一透明导电膜102;接着采用物理气相沉积法沉积P型光伏吸收层薄膜103;然后采用化学水浴法或物理气相沉积法沉积N型硫化镉膜层104。
其中,物理化学吸附法具体为:在配有HNO3溶液的设备中,通过控制HNO3的浓度、温度以及石墨烯薄膜在溶液中的浸泡时间,一定量的HNO3分子将吸附在石墨烯薄膜表面。
物理气相沉积法采用多元共蒸发技术,具体为:第一步,在基底101温度较低的情况下蒸发In、Ga、Se形成一层In-Ga-Se预置层,其中控制原子比例In/Ga=0.7/0.3,In+Ga/Se=2/3;第二步,升高基底101温度到一定温度,蒸发Cu、Se;第三步,保持第二步的基底101的温度,蒸发In、Ga、Se,使多余的Cu2-xSe转化成等化学计量比的CIGS,继续蒸发少量的In、Ga、Se,可得到稍微贫铜的CIGSp型黄铜矿结构的样品,并控制Cu/In+Ga的比例在0.88~0.92的范围内,样品随后在蒸发Se的同时冷却到一定温度,关闭Se再冷却到室温,形成CIGS薄膜。
③重复步骤①得到第二石墨烯薄膜层,采用剥离技术将衬底上的第二石墨烯薄膜层剥离,转移、贴合至在N型硫化镉膜层104上,然后采用物理化学吸附法(与步骤②中的物理化学吸附法相同)对第二石墨烯薄膜层进行改性处理得到第二透明导电膜105,形成本实施例的双面薄膜光伏电池。
(实施例2)
本实施例与实施例1基本相同,不同之处在于:双面薄膜光伏电池的制备方法的步骤②中的物理气相沉积法采用磁控溅射后硒化法,具体为:先溅射沉积CIG预制层,然后在硒蒸气中对预制层进行硒化处理,形成CIGS薄膜。
本实施例的双面薄膜光伏电池采用改性的石墨烯薄膜新材料替代常规CIGS薄膜光伏电池中的透明导电膜和金属电极层,通过双面高透光性、高导电性的石墨烯薄膜,有效提升薄膜光伏电池的光电转换效率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.双面薄膜光伏电池,其特征在于:包括自下而上依次设置的基底(101)、第一透明导电膜(102)、P型光伏吸收层薄膜(103)、N型硫化镉膜层(104)和第二透明导电膜(105);所述基底(101)为高分子薄膜材料;所述第一透明导电膜(102)和第二透明导电膜(105)均为通过物理化学吸附法处理的石墨烯薄膜。
2.根据权利要求1所述的双面薄膜光伏电池,其特征在于:所述基底(101)为玻璃或聚酰亚胺。
3.根据权利要求1所述的双面薄膜光伏电池,其特征在于:所述第一透明导电膜(102)和第二透明导电膜(105)的厚度均为0.34~3nm。
4.根据权利要求1所述的双面薄膜光伏电池,其特征在于:所述P型光伏吸收层薄膜(103)的材料为铜铟镓锡,厚度为1.0~2.5μm;所述N型硫化镉膜层(104)的厚度为40~60nm。
5.双面薄膜光伏电池的制备方法,其特征在于:包括以下步骤:
①在衬底上采用化学气相沉积法沉积第一石墨烯薄膜层;
②采用剥离技术将衬底上的第一石墨烯薄膜层剥离,转移、贴合至基底(101)上,然后采用物理化学吸附法对第一石墨烯薄膜层进行改性处理得到第一透明导电膜(102);接着采用物理气相沉积法沉积P型光伏吸收层薄膜(103);然后采用化学水浴法或物理气相沉积法沉积N型硫化镉膜层(104);
③重复步骤①得到第二石墨烯薄膜层,采用剥离技术将衬底上的第二石墨烯薄膜层剥离,转移、贴合至在N型硫化镉膜层(104)上,然后采用物理化学吸附法对第二石墨烯薄膜层进行改性处理得到第二透明导电膜(105),形成本实施例的双面薄膜光伏电池。
6.根据权利要求5所述的一种双面薄膜光伏电池,其特征在于:所述步骤①中的衬底为镍或铜。
7.根据权利要求5所述的一种双面薄膜光伏电池,其特征在于:所述步骤①中的化学气相沉积法具体为:首先采用热分解CVD法,在真空腔室内通入甲烷,然后经由高温分解并借助辅助气体处理,在衬底的催化作用下沉积薄膜。
8.根据权利要求5所述的一种双面薄膜光伏电池,其特征在于:所述步骤②和步骤③中的物理化学吸附法具体为:在配有HNO3溶液的设备中,通过控制HNO3的浓度、温度以及石墨烯薄膜在溶液中的浸泡时间,一定量的HNO3分子将吸附在石墨烯薄膜表面。
9.根据权利要求5所述的一种双面薄膜光伏电池,其特征在于:所述步骤②中的物理气相沉积法采用多元共蒸发技术,具体为:第一步,在基底(101)温度较低的情况下蒸发In、Ga、Se形成一层In-Ga-Se预置层,其中控制原子比例In/Ga=0.7/0.3,In+Ga/Se=2/3;第二步,升高基底(101)温度到一定温度,蒸发Cu、Se;第三步,保持第二步的基底(101)的温度,蒸发In、Ga、Se,使多余的Cu2-xSe转化成等化学计量比的CIGS,继续蒸发少量的In、Ga、Se,可得到稍微贫铜的CIGSp型黄铜矿结构的样品,并控制Cu/In+Ga的比例在0.88~0.92的范围内,样品随后在蒸发Se的同时冷却到一定温度,关闭Se再冷却到室温,形成CIGS薄膜。
10.根据权利要求5所述的一种双面薄膜光伏电池,其特征在于:所述步骤②中的物理气相沉积法采用磁控溅射后硒化法,具体为:先溅射沉积CIG预制层,然后在硒蒸气中对预制层进行硒化处理,形成CIGS薄膜。
CN201410083895.XA 2014-03-07 2014-03-07 双面薄膜光伏电池及其制备方法 Pending CN103811567A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410083895.XA CN103811567A (zh) 2014-03-07 2014-03-07 双面薄膜光伏电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410083895.XA CN103811567A (zh) 2014-03-07 2014-03-07 双面薄膜光伏电池及其制备方法

Publications (1)

Publication Number Publication Date
CN103811567A true CN103811567A (zh) 2014-05-21

Family

ID=50708062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410083895.XA Pending CN103811567A (zh) 2014-03-07 2014-03-07 双面薄膜光伏电池及其制备方法

Country Status (1)

Country Link
CN (1) CN103811567A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377271A (zh) * 2014-10-22 2015-02-25 苏州瑞晟纳米科技有限公司 一种双面吸光硫族化物薄膜太阳能组件的生产方法
CN108368469A (zh) * 2015-10-07 2018-08-03 加利福尼亚大学校董会 石墨烯系多模态传感器
CN108717951A (zh) * 2018-08-15 2018-10-30 汉能新材料科技有限公司 一种太阳能电池和太阳能组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522434A (zh) * 2011-12-15 2012-06-27 香港中文大学 铜铟镓硒薄膜光伏电池装置及其制备方法
CN103151101A (zh) * 2013-04-02 2013-06-12 重庆绿色智能技术研究院 掺杂石墨烯柔性透明电极及其制备方法
US8513050B1 (en) * 2010-06-15 2013-08-20 U.S. Department Of Energy Bi-Se doped with Cu, p-type semiconductor
CN203721741U (zh) * 2014-03-07 2014-07-16 南京汉能光伏有限公司 一种双面薄膜光伏电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513050B1 (en) * 2010-06-15 2013-08-20 U.S. Department Of Energy Bi-Se doped with Cu, p-type semiconductor
CN102522434A (zh) * 2011-12-15 2012-06-27 香港中文大学 铜铟镓硒薄膜光伏电池装置及其制备方法
CN103151101A (zh) * 2013-04-02 2013-06-12 重庆绿色智能技术研究院 掺杂石墨烯柔性透明电极及其制备方法
CN203721741U (zh) * 2014-03-07 2014-07-16 南京汉能光伏有限公司 一种双面薄膜光伏电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377271A (zh) * 2014-10-22 2015-02-25 苏州瑞晟纳米科技有限公司 一种双面吸光硫族化物薄膜太阳能组件的生产方法
CN108368469A (zh) * 2015-10-07 2018-08-03 加利福尼亚大学校董会 石墨烯系多模态传感器
CN108717951A (zh) * 2018-08-15 2018-10-30 汉能新材料科技有限公司 一种太阳能电池和太阳能组件

Similar Documents

Publication Publication Date Title
Li et al. Cation substitution in earth‐abundant kesterite photovoltaic materials
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Steinmann et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation
Ogah et al. Annealing studies and electrical properties of SnS-based solar cells
JP4384237B2 (ja) Cis系薄膜太陽電池の製造方法
Sim et al. Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil
CN102779891A (zh) 铜铟镓硒薄膜型太阳能电池装置及其制备方法
US20140182665A1 (en) Optical Absorbers
WO2014035865A1 (en) Absorbers for high efficiency thin-film pv
CN103620794A (zh) 太阳能电池及其制造方法
US8916411B1 (en) Absorber layer for a thin film photovoltaic device with a double-graded band gap
US20140162397A1 (en) High-Efficiency Thin-Film Photovoltaics with Controlled Homogeneity and Defects
CN103811567A (zh) 双面薄膜光伏电池及其制备方法
Chu et al. Semi-transparent thin film solar cells by a solution process
US20170207362A1 (en) Method for forming thin film having sulfide single-crystal nanoparticles
CN108401469A (zh) 太阳能电池及其制造方法
CN102931249B (zh) 具有石墨烯的硒化镉透明薄膜太阳电池
US20140224312A1 (en) Deposition of a high surface energy thin film layer for improved adhesion of group i-iii-vi2 solar cells
KR20130040358A (ko) 태양전지
CN203721741U (zh) 一种双面薄膜光伏电池
CN105355681B (zh) 一种溅射靶材及用该溅射靶材制作的cigs基薄膜太阳能电池
CN105474371B (zh) 用于具有钠铟硫化物缓冲层的薄层太阳能电池的层系统
CN103339741A (zh) 太阳能电池设备及其制造方法
CN103620792A (zh) 太阳能电池及其制备方法
TW201306293A (zh) 形成光電轉換層之方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 210042 Jiangsu Province, Nanjing City Shugang Road Economic Development Zone No. 1 Longtan logistics base A-29

Applicant after: Nanjing Han Neng thin film solar Co., Ltd

Address before: 210042 Jiangsu Province, Nanjing City Shugang Road Economic Development Zone No. 1 Longtan logistics base A-29

Applicant before: NANJING HANERGY PV CO., LTD.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: NANJING HANERGY PV CO., LTD. TO: NANJING HANERGY THIN-FILM SOLAR CO., LTD.

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140521