CN103620792A - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
CN103620792A
CN103620792A CN201280031463.3A CN201280031463A CN103620792A CN 103620792 A CN103620792 A CN 103620792A CN 201280031463 A CN201280031463 A CN 201280031463A CN 103620792 A CN103620792 A CN 103620792A
Authority
CN
China
Prior art keywords
resilient coating
zns
solar cell
light absorbing
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280031463.3A
Other languages
English (en)
Other versions
CN103620792B (zh
Inventor
崔撤焕
崔寅焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Chung Ang University
LG Innotek Co Ltd
Original Assignee
Industry Academic Cooperation Foundation of Chung Ang University
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Chung Ang University, LG Innotek Co Ltd filed Critical Industry Academic Cooperation Foundation of Chung Ang University
Publication of CN103620792A publication Critical patent/CN103620792A/zh
Application granted granted Critical
Publication of CN103620792B publication Critical patent/CN103620792B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

根据实施例的一种太阳能电池包括:基板;在所述基板上的背电极层;在所述背电极层上的光吸收层;在所述光吸收层上的包括ZnS的缓冲层;以及,在所述缓冲层上的窗口层。

Description

太阳能电池及其制备方法
技术领域
实施例涉及太阳能电池及其制备方法。
背景技术
近来,随着能耗增大,已经开发了太阳能电池以将太阳能转换为电能。
具体地说,已经广泛使用了基于CIGS的太阳能电池,这是一种PN异质结装置,具有包括玻璃基板的基板结构、金属背电极层、P型的基于CIGS的光吸收层、缓冲层以及N型窗口层。
已经进行了各种研究来改善太阳能电池的电特性,诸如低电阻和高透光率。
发明内容
技术问题
实施例提供了一种太阳能电池及其制备方法,可以通过形成包括ZnS的缓冲层经由环境友好方案来制备所述太阳能电池,并且所述太阳能电池可以改善生产率和光电转换效率。
解决方案
根据所述实施例的一种太阳能电池包括:基板;在所述基板上的背电极层;在所述背电极层上的光吸收层;在所述光吸收层上的包括ZnS的缓冲层;以及,在所述缓冲层上的窗口层。
根据所述实施例的一种制备太阳能电池的方法包括步骤:在基板上形成背电极层;在所述背电极层上形成光吸收层;通过向所述光吸收层上注入Zn前体和S前体来经由MOCVD方案在所述光吸收层上形成包括ZnS的缓冲层;以及,在所述缓冲层上形成窗口层。
有益效果
根据所述实施例,可以通过所述MOCVD(金属有机化学气相沉积)来形成包括ZnS的所述缓冲层,因此,所述太阳能电池可以解决由Cd引起的环境污染的问题,Cd是在所述缓冲层中包括的有害重金属。
另外,可以与所述窗口层联动地形成包括ZnS的所述缓冲层,因此可以改善生产率。
而且,向包括ZnS的所述缓冲层的表面施加蒸气(H2O),因此,太阳能电池可以具有改善的光电转换效率。
附图说明
图1是示出根据实施例的太阳能电池的截面图;
图2是示出量子效率随着入射到CIGS太阳能电池内的光的波长的变化的图形,该CIGS太阳能电池是通过经由CBD(化学浴沉积)方案生长CdS和ZnS缓冲层来制备;
图3是通过CBD方案生长的ZnS缓冲层的SEM(扫描电子显微镜)照片视图;
图4是通过MOCVD方案制备的ZnS缓冲层的SEM照片视图;
图5是示出当太阳能电池分别使用通过CBD制备的CdS缓冲层和通过MOCVD制备的ZnS缓冲层时的CIGS太阳能电池的I-V特性曲线和功率特性曲线的图形;以及
图6至图9是示出用于制造根据所述实施例的太阳能电池板的过程的截面图。
具体实施方式
在实施例的描述中,应理解,当基板、层、膜或电极被称为在另一个基板、另一层、另一个膜或另一个电极之上或之下时,它可以直接地或间接地在该另一个基板、另一层、另一个膜或另一个电极之上,或者也可以存在一个或多个中间层。此类层位置会参考附图来描述。在附图中所示的元件的大小可能为了说明的目的被夸大,并且可能不完全反映实际大小。
图1是示出根据实施例的太阳能电池的截面图。参见图1,根据实施例的太阳能电池包括支撑基板100、背电极层200、光吸收层300、缓冲层400、高电阻窗口层500和低电阻窗口层600。
支撑基板100包括绝缘体。例如,支撑基板100可以包括玻璃基板、诸如聚合物的塑料基板,或金属基板。更详细地,支撑基板100可以包括包括氧化铝的陶瓷基板、不锈钢(SUS)或具有柔性性质的聚合物。支撑基板100可以是透明的,或者可以是刚性的或柔性的。
如果将钠钙玻璃用于支撑基板,则在钠钙玻璃中包含的钠(Na)在制备太阳能电池的过程期间可能扩散到CIGS光吸收层300。在该情况下,可以增大光吸收层300的电荷浓度,因此可以提高太阳能电池的光电转换效率。
在支撑基板100上提供背电极层200。背电极层200是导电层。背电极层200可以允许从光吸收层300产生的电荷的移动,因此电流可以流出太阳能电池。为此,背电极层200可以具有高导电率和低电阻率。
另外,背电极层200在进行硫(S)氛围或硒(Se)氛围中的热处理时必须具有承受高温的稳定性,在形成CIGS化合物时就是这种情况。另外,背电极层200必须具有相对于支撑基板100的优越粘结性质,使得背电极层200不会因为在热膨胀系数上的差别导致从支撑基板200脱层。
背电极层200可以包括选自由下述部分构成的组中之一者:钼(Mo)、金(Au)、铝(Al)、铬(Cr)、钨(W)和铜(Cu)。在上面的材料中,Mo具有与支撑基板100的热膨胀系数类似的热膨胀系数,因此Mo可以改善粘结性质并且在满足背电极层200所需特性的同时防止背电极层200从基板100脱层。
背电极层200可以包括至少两层。在该情况下,可以通过使用相同的金属或不同的金属来形成这些层。
在背电极层200上设置了光吸收层300。光吸收层300可以包括P型半导体化合物。详细而言,光吸收层300可以包括I-III-VI2族化合物。例如,光吸收层300可以具有包括CuINSe2、CuGaSe2或Cu(In,Ga)Se2)的黄铜矿晶体结构,Cu(In,Ga)Se2)是CuINSe2和CuGaSe2的固溶体。光吸收层300的能带间隙在正常温度下为1.04eV至1.6eV。
缓冲层400被设置在光吸收层300上。使用CIGS化合物作为光吸收层300的太阳能电池可以形成PN异质结,其中的半导体具有比光吸收层300的能带间隙高的能带间隙。此时,考虑到在吸收层和窗口层之间在晶体结构和能带间隙上的差别,缓冲层是必需的。
缓冲层400可以包括在太阳能电池的效率上优选的CdS。然而,Cd是引起环境问题的有害重金属。
另外,因为通过印刷方法或真空方法(共蒸镀、溅镀和硒化或MOCVD)来形成光吸收层300并且通过真空方法(溅镀或MOCVD)来形成低电阻窗口层600,所以必须在相同的氛围下执行用于形成CdS或ZnS的过程,以改善经济效率,简化工艺并且降低制造成本。然而,根据现有技术,通过CBD(化学浴沉积)方案来形成CdS,因此联动工艺是困难的。
为了解决上面的问题,已经有人建议将ZnS、ZnSe、ZnO、(Zn,Mg)O、In(OH)3、In2S3、InZnSex、SnO2或SnS2作为CdS的替代品。可以通过化学浴沉积(CBD)、原子层沉积(ALD)、金属有机化学气相沉积(MOCVD)、离子层气相反应(ILGAR)、溅镀、热蒸镀或电沉积(ED)来沉积上面的材料。
已经积极地进行研究来将CdS替换为ZnS。虽然包括通过CBD沉积的ZnS缓冲层的CIGS太阳能电池表现出比使用CdS作为缓冲层的太阳能电池的效率低的效率,但是包括ZnS缓冲层的CIGS太阳能电池适合于环境友好的要求,因此,已经越来越多地使用包括ZnS缓冲层的CIGS太阳能电池。
在用于沉积ZnS的方案中,CBD方案具有最高的能量转换效率。CBD方案可以获得最高的能量转换效率,因为CBD方案在低温条件下执行,Zn-O键或O-H键以及ZnS化合物都可以存在。实际上,参考通过CBD方案生长的ZnS层的IR(红外线)吸收谱,除了由Zn和S原子的耦合振动模式引起的吸收带之外,已经观察到由Zn-O或O-H的耦合振动模式引起的吸收带。
根据实施例,通过MOCVD方案来形成ZnS缓冲层400,并且向缓冲层400上施加H2O前体,以改善生产率和光电转换效率。ZnS缓冲层400可以具有六方晶系,具有在约3.5eV至约3.6eV的范围中的能带间隙。
在缓冲层400上设置高电阻缓冲层500。高电阻缓冲层500包括未掺杂杂质的i-ZnO。
在高电阻缓冲层500上形成低电阻缓冲层600。低电阻缓冲层600是透明导电层。另外,低电阻缓冲层600具有比背电极层200的电阻高的电阻。
低电阻缓冲层600可以包括氧化物。例如,低电阻缓冲层600包括氧化锌(ZnO)、铟锡氧化物(ITO)和铟锌氧化物(IZO)中之一者。
另外,低电阻缓冲层600可以包括IIIB族元素,诸如掺杂了B(硼)或Al(铝)的氧化锌(BZO或AZO)。
图2是示出量子效率随着入射到CIGS太阳能电池内的光的波长的变化的图形,该CIGS太阳能电池是通过经由CBD(化学浴沉积)方案生长CdS和ZnS缓冲层来制备。
可以从在图2中所示的图形看出,使用ZnS作为缓冲层的太阳能电池意味着与使用CdS作为缓冲层的太阳能电池作比较时在UV和IR带上的优越的量子效率。
图3是通过CBD方案生长的ZnS缓冲层的SEM(扫描电子显微镜)照片视图。通常,用于通过CBD方案来生长ZnS层所用的试剂可包括:作为锌前体的硫酸锌(ZnSO4)或水合物、硫脲;作为S前体的(NH2)2CS,和作为催化剂的NH4OH水溶液(约
Figure BDA0000446289550000051
)。将基板浸入到上面的混合溶液中,并且将温度增大到60℃至90℃的范围中以沉积ZnS层。
在较低的沉积温度下执行CBD方案,因此,可以防止作为沉积材料的ZnS或CdS的II族金属原子扩散到作为基板的CIGS吸收层。
另外,参考通过CBD方案生长的ZnS缓冲层400的IR(红外线)吸收谱,除了由Zn和S原子的耦合振动模式引起的吸收带之外,已经观察到由Zn-O或O-H的耦合振动模式引起的吸收带。
这是因为除了ZnS化合物之外,从作为催化剂的NH4OH释放出的OH-离子和从ZnS解离的Zn2+离子会结合出诸如ZnO或Zn(OH)2的化合物,因而会形成Zn(OH)2。因为这个原因,通过CBD方案生长的ZnS层被表达为ZnS。
即,因为O和OH,包括通过CBD方案生长的ZnS缓冲层的CIGS太阳能电池在能量转换效率上优于包括通过真空沉积方案沉积的ZnS缓冲层的太阳能电池。
然而,如图3中所示,缓冲层未均匀地生长,并且以小颗粒的形式分布。另外,因为与CdS相似,是以液相生长缓冲层,所以可能难以简化CIGS太阳能电池的制造工艺。
图4是通过MOCVD方案制备的ZnS缓冲层的SEM照片视图。可以从图4看出,与如图3中所示的通过CBD方案生长的ZnS缓冲层作比较,该ZnS缓冲层均匀地生长。
根据实施例,通过MOCVD方案来制备ZnS缓冲层,因此,ZnS缓冲层的表面可以是均匀的。另外,临时性地向ZnS缓冲层的顶表面施加H2O以形成ZnS层,由此改善能量转换效率。
图5是示出当太阳能电池分别使用通过CBD制备的CdS缓冲层和通过MOCVD制备的ZnS缓冲层时的CIGS太阳能电池的I-V特性曲线和功率特性曲线的图形。此时,CIGS吸收层具有相同的构成比例,并且在相同的条件下被制备。
在该图形中,红线表示CdS缓冲层,蓝线表示ZnS缓冲层。两个缓冲层的I-V特性曲线彼此几乎类似。详细而言,ZnS缓冲层的I-V特性曲线比CdS缓冲层的特性曲线略好。在该图形中示出的两个样本表现出优越的反向特性。当在统计上考虑几个太阳能电池的I-V特性时,ZnS缓冲层的反向特性比CdS缓冲层的反向特性更好。该图形中所示的I-V特性是在室内在荧光灯下测量的。因此,在电流密度上表现出负值。在荧光灯下测量的I-V特性中,光源不是标准光源,因此曲线表现出随机值。
因为能量转换效率与吸收层的特性非常相关,所以使用相同的吸收层来在两个缓冲层之间比较在特性上的差别,并且在进行比较的两个样本之间的相对效率比绝对效率更重要。
图6至图9是示出用于制造根据所述实施例的太阳能电池板的过程的截面图。会以引用的方式并入关于太阳能电池的上述描述。
参看图6和图7,在支撑基板100上形成背电极层200。可以通过使用钼(M)来沉积背电极层200。可以通过PVD(物理气相沉积)方案或电镀方案来形成背电极层200。
可以在支撑基板100和背电极层200之间布置诸如扩散阻挡层的中间层。
然后,在背电极层200上形成光吸收层300。例如,可以通过诸如下述方案的各种方案来形成光吸收层300:通过同时或分别蒸发Cu、In、Ga和Se来形成基于Cu(In,Ga)Se2(CIGS)的光吸收层300的方案;以及,在先形成金属前体层后执行硒化处理的方案。
关于在形成金属前体层后的硒化处理的细节,通过使用Cu靶、In靶、Ga靶或合金靶的溅镀工艺来在背电极层200上形成金属前体层。
然后,将金属前体层进行硒化处理,使得形成基于Cu(In,Ga)Se2(CIGS)的光吸收层300。
另外,可以同时执行使用Cu靶、In靶和Ga靶的溅镀工艺与硒化处理。
而且,可以通过仅使用Cu和In靶或仅使用Cu和Ga靶的溅镀工艺与硒化处理来形成基于CIS或CIG的光吸收层300。
参看图8和图9,在光吸收层300上形成缓冲层400。可以在150℃至250℃的温度中形成缓冲层400。该缓冲层包括ZnS,可以使用TEZn(三乙基锌)作为Zn前体,并且可以使用t-BuSH(叔丁基硫醇)作为S前体。当通过MOCVD方案来生长化合物缓冲层时,前体的选择与缓冲层的生长条件和物理性质非常相关。
如上所述的前体并不是用于制备ZnS缓冲层400的排他性示例。例如,Zn前体可以包括R2Zn和R2ZnNEt3等(其中,R是C1~C6的烷基,Me是甲醇,Et是乙醇)。另外,S前体可以包括R2S、RSH、H2S气体等。
缓冲层400可以具有在10nm至50nm,优选地25nm至35nm的范围中的厚度。因为缓冲层400具有薄的厚度,所以ZnS缓冲层400的生长速率并不是很关键,并且即使在通过MOCVD方案生长ZnS缓冲层400时基板温度相对较低,ZnS缓冲层400也可以在相对短的时间内达到所需厚度。因此,可以采用相对较低的生长温度,使得可以防止Zn原子扩散到CIGS吸收层。
通常,Zn原子的离子半径是大约7.4x10-10m,并且,Cd原子的离子半径是大约9.7x10-10m。当与Cu原子的离子半径(大约7.2x10-10m)作比较时,Zn原子的离子半径更接近Cu原子的离子半径。
因为这个原因,在CIGS吸收层中的Zn原子的扩散率比Cd原子的扩散率显著地大,并且可以在较低的温度下容易地扩散Zn原子,因此Zn原子可以替代VCu,使得形成ZnCu。从上面的反应获得的缺陷可以作为施主,并且该施主改变了P型CIGS吸收层的导电特性,由此降低能量转换效率或引起短路。
如上所述,即使在较低的基板温度下制备ZnS缓冲层,Zn原子也可能扩散到CIGS吸收层内,使得可能改变CIGS吸收层的电特性。
根据实施例,为了防止Zn原子扩散到CIGS吸收层内,首先向光吸收层300施加S前体,以确保S氛围,然后,施加Z前体以通过在Zn原子和S原子之间的反应来形成ZnS化合物,由此防止Zn原子扩散到光吸收层300内。
因为首先施加S前体,所以S密度可能在缓冲层400的下部具有最大值。
参见样本的I-V特性曲线,这些曲线是通过改变S前体和Zn前体的开启时间而制得,当首先施加的不是S前体或首先施加的是Zn前体时,所有的样本中均出现短路,在首先施加S前体之后再施加Zn前体时,可以获得卓越的I-V特性。
短路意味着在P型CIGS吸收层中形成的VCu的受主水平因为Zn原子的扩散而改变为ZnCu施主水平,使得电特性改变为N型CIGS吸收层的电特性。
在通过MOCVD方案形成ZnS缓冲层400后,在形成ZnO高电阻窗口层500以将ZnS缓冲层400改变为ZnS(O,OH)之前,通过使用H2O前体来向ZnS缓冲层400的表面施加预定时间的H2O,并且然后,施加Zn前体以形成i-ZnO高电阻窗口层500。
通过向在腔室内装载的基板100上首先施加预定时间的H2O前体的蒸气并且然后施加Zn前体的蒸气来制备的太阳能电池表现出优越的I-V特性。这是因为在ZnS缓冲层400中部分地产生ZnO或Zn(OH)2,因此,ZnS缓冲层400与通过CBD方案生长的缓冲层类似,使得可以改善I-V特性。
然后,在高电阻窗口层500上形成低电阻窗口层600。通常,通过使用用于高电阻窗口层500的材料来沉积低电阻窗口层600。此时,也沉积掺杂剂,以向低电阻窗口层600赋予导电特性。
在说明书中对于一个实施例、实施例、示例实施例等的任何引用意味着与该实施例相关地描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在说明书中的不同位置中的这样的短语的出现并不必然全部指的是同一实施例。而且,当结合任何实施例描述特定特征、结构或特性时,本领域的技术人员可以结合其他实施例来实现此类特征、结构或特性。
虽然已经参考多个说明性实施例而描述了本发明,但是应当明白,本领域内的技术人员可以设计落在本公开的原理的精神和范围内的多种其他修改和实施例。更具体地,在本公开、附图和所附的权利要求的范围内的主体组合布置的构件部分和/或布置上的各种改变和修改是可能的。除在构件部分和/或布置上的改变和修改之外,替代使用也对于本领域内的技术人员是显然的。

Claims (11)

1.一种太阳能电池,包括:
基板;
在所述基板上的背电极层;
在所述背电极层上的光吸收层;
在所述光吸收层上的包括ZnS的缓冲层;以及
在所述缓冲层上的窗口层。
2.根据权利要求1所述的太阳能电池,其中,所述缓冲层的厚度在25nm至35nm的范围内。
3.根据权利要求1所述的太阳能电池,其中,在所述缓冲层中的硫(S)的密度从所述缓冲层的下部向上部逐渐减小。
4.根据权利要求1所述的太阳能电池,其中,所述缓冲层具有六方晶系。
5.根据权利要求1所述的太阳能电池,其中,所述缓冲层的上部被表示为化学式ZnS(O,OH)。
6.一种制备太阳能电池的方法,所述方法包括:
在基板上形成背电极层;
在所述背电极层上形成光吸收层;
通过向所述光吸收层上注入Zn前体和S前体,来经由MOCVD方案在所述光吸收层上形成包括ZnS的缓冲层;以及
在所述缓冲层上形成窗口层。
7.根据权利要求6所述的方法,其中,所述Zn前体包括TEZn、R2Zn和R2ZnNEt3中的至少一种,并且所述S前体包括叔丁基硫醇(t-BuSH)、R2S、RSH和H2S气体中的至少一种(其中,R是C1~C6的烷基族,Me是甲醇,Et是乙醇)。
8.根据权利要求6所述的方法,其中,在150℃至250℃的范围内的温度下形成所述缓冲层。
9.根据权利要求6所述的方法,其中,通过下述方式来将所述缓冲层制备为ZnS缓冲层:在向所述光吸收层上首先注入所述S前体后,在所述光吸收层上注入所述Zn前体。
10.根据权利要求6所述的方法,其中,在形成所述缓冲层后,向所述缓冲层上施加H2O,以将ZnS转换为ZnS(O,OH)。
11.根据权利要求10所述的方法,其中,形成所述窗口层包括通过向所述缓冲层上注入所述Zn前体来形成i-ZnO层。
CN201280031463.3A 2011-04-26 2012-04-26 太阳能电池及其制备方法 Expired - Fee Related CN103620792B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110039051A KR101210171B1 (ko) 2011-04-26 2011-04-26 태양전지 및 이의 제조방법
KR10-2011-0039051 2011-04-26
PCT/KR2012/003270 WO2012148208A2 (en) 2011-04-26 2012-04-26 Solar cell and method of preparing the same

Publications (2)

Publication Number Publication Date
CN103620792A true CN103620792A (zh) 2014-03-05
CN103620792B CN103620792B (zh) 2017-02-08

Family

ID=47072931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280031463.3A Expired - Fee Related CN103620792B (zh) 2011-04-26 2012-04-26 太阳能电池及其制备方法

Country Status (5)

Country Link
US (1) US20140048132A1 (zh)
EP (1) EP2702615B1 (zh)
KR (1) KR101210171B1 (zh)
CN (1) CN103620792B (zh)
WO (1) WO2012148208A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379259B2 (en) * 2012-11-05 2016-06-28 International Business Machines Corporation Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices
US9574135B2 (en) * 2013-08-22 2017-02-21 Nanoco Technologies Ltd. Gas phase enhancement of emission color quality in solid state LEDs
KR101765987B1 (ko) * 2014-01-22 2017-08-08 한양대학교 산학협력단 태양 전지 및 그 제조 방법
CN109545869A (zh) * 2018-10-24 2019-03-29 四川大学 一种双面三端子的柔性碲化镉太阳电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233841A1 (en) * 2003-05-08 2010-09-16 Solibro Research Ab Thin-film solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285129C (zh) * 2003-12-09 2006-11-15 南开大学 无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法
JP4841173B2 (ja) * 2005-05-27 2011-12-21 昭和シェル石油株式会社 Cis系薄膜太陽電池の高抵抗バッファ層・窓層連続製膜方法及び製膜装置
US7977139B2 (en) * 2007-03-28 2011-07-12 Showa Shell Sekiyu K.K. Method for manufacturing CIS based thin film solar cell device
JP4384237B2 (ja) * 2008-05-19 2009-12-16 昭和シェル石油株式会社 Cis系薄膜太陽電池の製造方法
KR101012847B1 (ko) * 2008-08-27 2011-02-08 부산대학교 산학협력단 ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이에 의한 화합물 태양전지
KR20110012314A (ko) * 2009-07-30 2011-02-09 엘지전자 주식회사 박막 태양전지 및 그의 제조방법
KR20110013009A (ko) * 2009-07-31 2011-02-09 엘지전자 주식회사 복수의 배면전극층을 가지는 박막 태양전지 및 그의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233841A1 (en) * 2003-05-08 2010-09-16 Solibro Research Ab Thin-film solar cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C.PLATZER-BJORKMAN等: "Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells:Band alignment and sulfur gradient", 《JOURNAL OF APPLIED PHYSICS》 *
KOOK WON SEO等: "Preparation of ZnS thin film using Zn(dithiocarbamate)2 precursors by MOCVD method", 《BULL.KOREAN CHEM.SOC》 *
TOKIO NAKADA等: "18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
TOKIO NAKADA等: "18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers", 《JAPANESE JOURNAL OF APPLIED PHYSICS》, vol. 41, 15 February 2002 (2002-02-15), XP001191964, DOI: doi:10.1143/JJAP.41.L165 *

Also Published As

Publication number Publication date
EP2702615B1 (en) 2020-03-11
CN103620792B (zh) 2017-02-08
KR20120121210A (ko) 2012-11-05
WO2012148208A3 (en) 2013-03-21
KR101210171B1 (ko) 2012-12-07
WO2012148208A2 (en) 2012-11-01
EP2702615A2 (en) 2014-03-05
EP2702615A4 (en) 2014-09-03
US20140048132A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
de Souza Lucas et al. Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility
Chawla et al. Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets
US9178097B2 (en) Absorbers for high efficiency thin-film PV
KR101369166B1 (ko) 태양전지용 cigs 광흡수층 형성 방법 및 cigs 태양전지
CN104025309B (zh) 太阳能电池及其制造方法
US20140182665A1 (en) Optical Absorbers
WO2011074685A1 (ja) Cis系薄膜太陽電池の製造方法
CN103718308A (zh) 太阳能电池设备及其制造方法
Pawar et al. Solution-Processed Zn x Cd1–x S Buffer Layers for Vapor Transport-Deposited SnS Thin-Film Solar Cells: Achieving High Open-Circuit Voltage
WO2014035865A1 (en) Absorbers for high efficiency thin-film pv
CN103620794A (zh) 太阳能电池及其制造方法
CN103620792A (zh) 太阳能电池及其制备方法
CN103378215A (zh) Cigs太阳能电池结构及其制造方法
CN104025310A (zh) 太阳能电池及其制造方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods
CN103999240A (zh) 太阳能电池模块及其制备方法
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN105474371B (zh) 用于具有钠铟硫化物缓冲层的薄层太阳能电池的层系统
WO2010150864A1 (ja) Cis系薄膜太陽電池
CN103999236A (zh) 太阳能电池及其制造方法
CN103765604A (zh) Cigs膜的制法和使用其的cigs太阳能电池的制法
Deepa et al. Sub-micrometer thick CuInSe2 films for solar cells using sequential elemental evaporation
Li et al. Study on the performance of oxygen-rich Zn (O, S) buffers fabricated by sputtering deposition and Zn (O, S)/Cu (In, Ga)(S, Se) 2 interfaces
CN101807620A (zh) 用于薄膜光伏的吸收层及由其制成的太阳能电池
Ho et al. Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170208

Termination date: 20180426