WO2015119211A1 - 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法 - Google Patents

圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法 Download PDF

Info

Publication number
WO2015119211A1
WO2015119211A1 PCT/JP2015/053287 JP2015053287W WO2015119211A1 WO 2015119211 A1 WO2015119211 A1 WO 2015119211A1 JP 2015053287 W JP2015053287 W JP 2015053287W WO 2015119211 A1 WO2015119211 A1 WO 2015119211A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensor
sheet
conductive
electrode sheet
Prior art date
Application number
PCT/JP2015/053287
Other languages
English (en)
French (fr)
Inventor
誠遠 李
隆夫 染谷
毅 関谷
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to KR1020167019596A priority Critical patent/KR102254942B1/ko
Priority to EP15746322.5A priority patent/EP3104150B1/en
Priority to CN201580007199.3A priority patent/CN105960581B/zh
Priority to US15/116,003 priority patent/US10401240B2/en
Priority to JP2015561033A priority patent/JP6424408B2/ja
Publication of WO2015119211A1 publication Critical patent/WO2015119211A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • D01D5/0084Coating by electro-spinning, i.e. the electro-spun fibres are not removed from the collecting device but remain integral with it, e.g. coating of prostheses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges

Definitions

  • the present invention relates to a pressure sensor sheet, a pressure sensor, and a method for manufacturing a pressure sensor sheet.
  • Flexible electronics made of organic semiconductors fits on the surface of the human body and the body due to the softness of the material. Therefore, in recent years, attention has been focused on the use of flexible electronics as a means for obtaining biological information directly from cells and tissues.
  • the pressure sensor is attracting attention as one of its applications.
  • the pressure sensor outputs the applied pressure as an electrical signal.
  • the pressure sensor is widely used in, for example, artificial skin and robot operation (Patent Document 1). These technologies are improving day and night, and more accurate data is required. In order to obtain more precise data, it is necessary for the pressure sensor to fit the shape of the object to be measured and to follow movements such as bending and stretching. Therefore, there is a need for a more flexible and thinner pressure sensor.
  • Patent Document 2 as a simple matrix pressure-sensitive sensor, a cylindrical elastic body, a conductor layer formed in a layer on the outer peripheral surface of the cylindrical elastic body, and a dielectric formed on the conductor layer A pressure-sensitive sheet is disclosed in which a pressure-sensitive wire made of layers is knitted in the vertical and horizontal directions.
  • Patent Document 3 discloses an active matrix pressure-sensitive sensor using an electrode, a pressure-sensitive conductive sheet, and a transistor, and discloses a pressure-sensitive conductive sheet in which graphite is added to silicon rubber.
  • Patent Document 4 discloses a flexible pressure-sensitive sensor having two or more layers by forming a resin coating film containing a conductive material on the surface of a rubber base material as a pressure-sensitive conductive sheet. By using two or more layers, the hysteresis of pressure-resistance change can be improved.
  • the pressure sensor sheets disclosed in Patent Documents 1 to 4 have a thickness of several hundred ⁇ m to several mm. Therefore, in these pressure sensor sheets, sufficient followability cannot be obtained with respect to an object having a complicated shape or a moving object, and precise data cannot be obtained.
  • the outer diameter of the cylindrical elastic body that is the base material of the pressure-sensitive wire of the pressure sensor sheet described in Patent Document 2 is 250 ⁇ m ⁇ . It is described that in order to operate as a pressure sensor sheet, the thickness of the entire pressure sensor needs to be greater than the outer diameter.
  • Patent Document 3 describes that a thickness on the order of mm is required only by the thickness of the rubber substrate that is a part of the pressure sensor sheet.
  • FIG. 3 of Patent Document 2 describes that the change in the resistance value with respect to the applied pressure is only a few hundred k ⁇ .
  • the pressure sensor sheet When using a pressure sensor sheet that contains a conductive material in a rubber substrate or resin coating, the pressure sensor sheet can be used in addition to the change in resistance due to a pressure change in the vertical direction with respect to the pressure sensor sheet.
  • the resistance value also changes when extending in the parallel direction.
  • the resistance value change to be originally measured is accompanied by the pressure change in the direction perpendicular to the pressure sensor sheet.
  • the change in resistance value accompanying the extension in the parallel direction is noise. For this reason, when a conventional pressure sensor sheet is used, a difference occurs in the measurement result between the bent state and the extended state of the pressure sensor sheet. That is, these pressure sensor sheets cannot measure pressure applied to objects having more complicated shapes or moving objects with high sensitivity.
  • an active matrix pressure sensor requires a pressure-sensitive conductive layer and an electrode sheet to be disposed on the transistor.
  • the pressure-sensitive conductive layer is made of black rubber, the attached surface could not be visually observed after mounting.
  • the pressure-sensitive conductive layer made of non-breathable rubber is impermeable to moisture and air. Heat is not dissipated by advection. For this reason, there are cases where discomfort due to stuffiness of the wearing part and inflammation of the skin or the like may be generated.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a highly flexible and highly sensitive ultrathin pressure sensor sheet, a pressure sensor, and a method for manufacturing the pressure sensor sheet.
  • the present invention employs the following means.
  • (1) The first electrode sheet, the second electrode sheet, and the conductive fibers that are arranged between the first electrode sheet and the second electrode sheet and change the resistance value when crushed are entangled.
  • a pressure sensor sheet comprising a gap between the conductive fibers constituting the pressure conductive layer.
  • the conductive material is composed of a first conductive material and a second conductive material, the first conductive material is a linear conductive material, and the second conductive material is The pressure sensor sheet according to (2), which is a particulate (including scale-like) conductive material.
  • the pressure sensor sheet according to (3) wherein the first conductive material is a carbon nanotube or a carbon nanohorn, and the second conductive material is graphene or carbon black. .
  • the mass ratio of the first conductive material in the conductive fiber is smaller than the mass ratio of the second conductive material.
  • the conductive fibers constituting the pressure-sensitive conductive layer at least a part of a portion in contact with the first electrode sheet or the second electrode sheet is the first electrode sheet or the first electrode.
  • the pressure sensor sheet according to any one of (1) to (5), wherein the pressure sensor sheet is bound to the electrode sheet of No. 2.
  • the first electrode of the conductive fiber further includes a second pressure-sensitive conductive layer in which a second conductive fiber is entangled between the pressure-sensitive conductive layer and the second electrode. At least a part of a part that contacts the sheet is bound to the first electrode sheet, and at least a part of a part of the second conductive fiber that contacts the second electrode sheet is the second electrode sheet.
  • the pressure sensor sheet according to any one of (1) to (6), wherein the pressure sensor sheet is bonded to the sheet.
  • (23) Second pressure-sensitive conductivity obtained by injecting a dispersion liquid containing the polymer material and the conductive material onto the second electrode sheet by an electrospinning deposition method so that conductive fibers are entangled with each other.
  • the first electrode sheet, the second electrode sheet, and the conductive fibers that are disposed between the electrode sheets and change the resistance value when crushed are entangled. And a cotton-like pressure-sensitive conductive layer.
  • the conductive fibers are oriented and extended in a direction parallel to the electrode sheet, and are further laminated in a vertical direction. There are gaps between the conductive fibers constituting the pressure-sensitive conductive layer.
  • the conductive fiber has anisotropy in a direction parallel to the two electrode sheets and a direction perpendicular to the two electrode sheets. Therefore, the resistance value change in the stacking direction is extremely large with respect to the external force in the vertical thickness direction, and the resistance value change with respect to strain in the parallel direction is extremely small.
  • the pressure sensor sheet undergoes bending deformation, since the strain due to the bending deformation is parallel to the electrode sheet, the resistance value change due to the bending deformation is small. That is, measurement noise is small and high-precision measurement is possible.
  • the conductive fiber may be a polymer material in which a conductive material is dispersed. Further, the conductive fiber is made of a polymer material in which the first conductive material and the second conductive material are dispersed.
  • the first conductive material is a linear conductive material
  • the second conductive material The material may be a particulate (including scale-like) conductive material.
  • the linear first conductive material electrically connects the particulate second conductive materials to each other in the polymer material.
  • the linear first conductive material also has a secondary effect of improving the dispersion stability of the particulate second conductive material in the fiber production process. Furthermore, by making the mass ratio of the first conductive material in the conductive fiber smaller than the mass ratio of the second conductive material, the dynamic range of the resistance value change due to pressure can be made extremely large. This is because by dispersing the second conductive material at a high mass ratio, a large decrease in resistance value can be obtained when a high pressure is applied.
  • the first conductive material may be carbon nanotubes or carbon nanohorns
  • the second conductive material may be graphene or carbon black.
  • a conductive material made of carbon is most suitable for a pressure-sensitive conductive layer composed of fibers having high durability against oxygen and moisture and having a high specific surface area.
  • the first electrode sheet In the pressure sensor sheet according to one embodiment of the present invention, at least a part of a portion of the conductive fiber constituting the pressure-sensitive conductive layer that contacts the first electrode sheet or the second electrode sheet is the first electrode sheet. Alternatively, it may be bound to the second electrode sheet. If the connection state between the conductive fiber and the electrode sheet is unstable, a large noise is generated in measurement under a weak pressure. Since at least a part of the conductive fibers is bonded to the electrode sheet, the electrical connection state is extremely stable, and thus measurement with less noise is possible.
  • the pressure sensor sheet according to an aspect of the present invention further includes a second pressure-sensitive conductive layer in which a second conductive fiber is entangled between the pressure-sensitive conductive layer and the second electrode, At least a part of the portion of the fiber that contacts the first electrode sheet is bound to the first electrode sheet, and at least a portion of the portion of the second conductive fiber that contacts the second electrode sheet is the second electrode sheet. It may be bound to the electrode sheet. Since each of these two pressure-sensitive conductive layers is bonded to each electrode sheet, the connection state between the pressure-sensitive conductive layer and the electrode is stable, and measurement with less noise is possible. Furthermore, by bonding these two pressure-sensitive conductive layers, the structural and electrical state of the pressure-sensitive conductive layer between the two electrode sheets is highly stable. Therefore, measurement with less noise is possible.
  • the pressure sensor sheet according to one embodiment of the present invention may use an elastomer as a polymer material of conductive fibers. Elastomers are soft and undergo little change in mechanical properties even when large strains repeatedly act. When pressure acts, a large strain is generated in the overlapping portion of the fibers, but by using an elastomer as a base material, both high flexibility and high durability of the pressure sensor sheet can be achieved.
  • the first electrode sheet and the second electrode sheet may be transparent electrodes. Since the cotton-like pressure-sensitive conductive layer has light permeability, a sheet for a pressure sensor that transmits light can be realized by making the two electrode sheets transparent. Thereby, a pressure measurement location can be observed through the pressure sensor sheet. In addition, it is possible to develop various measurement methods such as pressure measurement and optical measurement from the pressure sensor sheet at the same time. Furthermore, in order to improve the light transmittance of the pressure sensor sheet, it is preferable to have a gap between the conductive fibers constituting the pressure-sensitive conductive layer when viewed from the direction perpendicular to the electrode sheet. By having the void portion, light transmittance is high and light scattering is small, so observation and measurement are easier.
  • the diameter of the conductive fiber may be smaller than the thickness of the first electrode sheet and the second electrode sheet. If the diameter of the conductive fiber is larger than the electrode sheet, local deformation of the electrode sheet is likely to occur along the surface of the conductive fiber. If the electrode sheet is likely to be locally deformed, the contact state between the conductive fiber and the electrode sheet becomes irregular when pressure is applied. When the diameter of the conductive fiber is smaller than the thicknesses of the first electrode sheet and the second electrode sheet, it is possible to suppress the variation in the resistance value change with respect to the pressure due to the irregularity of the contact state.
  • the pressure sensor sheet according to one embodiment of the present invention may have a conductive fiber diameter of 100 nm to 10 ⁇ m.
  • a thin conductive fiber is highly sensitive because the contact state greatly changes depending on pressure. Conversely, thick conductive fibers are less sensitive to changes in resistance to pressure.
  • An extremely thin conductive fiber has low strength, and an extremely thick conductive fiber has high rigidity. Therefore, when the diameter of the conductive fiber is within the range, both sensitivity and flexibility can be achieved.
  • the thickness of the pressure-sensitive conductive layer may be smaller than the total thickness of the first electrode sheet and the second electrode sheet, The thickness is preferably smaller than the thickness of the second electrode sheet.
  • the sheet rigidity becomes extremely high as the pressure-sensitive conductive layer becomes thicker.
  • the stress at the interface between the pressure-sensitive conductive layer and the electrode sheet is increased, the stable connection between the conductive fiber and the electrode is broken.
  • the thickness of the pressure-sensitive conductive layer By making the thickness of the pressure-sensitive conductive layer smaller than the thickness of the two electrode sheets, it is possible to reduce unexpected failures and changes in accuracy when the electrode sheets are bent. This is because the strain at the interface between the conductive fiber and the electrode sheet is approximately half of the strain on the outer surface of the electrode sheet. Furthermore, when the thickness of the pressure-sensitive conductive layer is smaller than the thicknesses of the first electrode sheet and the second electrode sheet, the strain at the connecting portion between the conductive fiber and the electrode can be made as low as possible. When the thicknesses of the first electrode sheet and the second electrode sheet are substantially equal, the strain acting on the pressure-sensitive conductive layer when bending acts can be reduced as much as possible. It is possible to suppress the occurrence of errors.
  • the first electrode sheet or the second electrode sheet may have air permeability.
  • air is included in the sealed space.
  • the sealed air contracts or expands when the temperature changes, generating pressure inside.
  • This internal pressure changes the resistance value of the pressure-sensitive conductive layer, resulting in a measurement error.
  • the internal air is compressed and causes measurement errors. Since the electrode sheet has air permeability, these internal pressures are released, and it is possible to prevent measurement errors.
  • Both of the first electrode sheet and the second electrode sheet may have air permeability.
  • the entire pressure sensor sheet has air permeability by providing both electrode sheets with air permeability.
  • the thickness of the pressure-sensitive conductive layer may be 2 to 100 times the diameter of the conductive fiber.
  • a decrease in resistance value occurs due to an increase in contact between conductive fibers due to pressure. This contact between the conductive fibers is one of the principles by which pressure can be measured as a resistance value. Therefore, the thickness of the pressure-sensitive conductive layer needs to be a thickness corresponding to two or three layers or more of conductive fibers. That is, the thickness of the pressure-sensitive conductive layer needs to be twice or more the diameter of the conductive fiber.
  • the number of layers in which conductive fibers overlap By increasing the number of layers in which conductive fibers overlap, the number of contacts between the conductive fibers increases, and local resistance value variations of the electrode sheet are suppressed. On the other hand, when the number of stacked layers increases, the bending rigidity and the resistance value of the pressure sensor sheet increase. By suppressing the number of layers to 100 times or less, the resistance value, the measurement accuracy of the resistance value, and the mechanical rigidity become appropriate. By setting the thickness of the pressure-sensitive conductive layer to 100 ⁇ m or less, a flexible pressure sensor sheet can be configured.
  • non-conductive fibers may be mixed in the pressure-sensitive conductive layer.
  • a method of reducing the mass ratio of the conductive material and a method of increasing the rigidity by increasing the thickness of the conductive fiber.
  • the mass ratio is decreased, a constant resistance value cannot be obtained.
  • the fiber is thickened, the flexibility of the pressure sensor sheet is impaired. Therefore, the relationship between the pressure and the resistance value can be controlled with high accuracy by mixing non-conductive fibers.
  • the pressure sensor sheet according to one embodiment of the present invention, at least one electrode of the first electrode sheet or the second electrode sheet is connected to the transistor.
  • the pressure sensor sheet having high flexibility is suitable for measurement on a surface having fine irregularities. Therefore, in order to measure the pressure distribution with high spatial resolution, the electrode is divided into a number of segments, and a plurality of measurement points are arranged on one pressure sensor sheet. In order to arrange a large number of electrode segments in a matrix, it is effective to switch each electrode segment with a transistor. Thereby, a highly functional pressure sensor can be realized.
  • a dispersion liquid containing a polymer material and a conductive material is sprayed onto an electrode sheet by an electrospinning deposition method, and conductive fibers are entangled.
  • a pressure-sensitive conductive layer is formed.
  • the electrospinning method can bind the conductive fibers on the electrode sheet without performing any special adhesive or treatment. Therefore, the electrospinning method is suitable for forming a pressure-sensitive conductive layer made of ultrafine fibers.
  • a first conductive material and an ionic liquid are mixed in a solvent to obtain a first dispersion system in which the first conductive material is dispersed in the solvent.
  • the first conductive material and the second conductive material can be more uniformly dispersed.
  • the polymer material is added to make the conductive material more uniform in the conductive fiber. Can be dispersed.
  • the first conductive material or the second conductive material is added after the polymer material is first dissolved in the solvent, the viscosity of the solution is increased and the polymer material is uniformly dispersed at the stage where the polymer material is dissolved. I can't.
  • the fourth dispersion system is pulled with a strong voltage, so that the first conductive material and the second conductive material are more uniformly dispersed in the conductive fiber. be able to.
  • the method of laminating conductive fibers on an electrode sheet by an electrospinning method can be bound without using a special bonding step, and thus is an extremely stable and high-speed manufacturing method.
  • TEM image high-resolution cross-sectional transmission electron microscope image (TEM image) of the cross section of the conductive fiber which comprises the sheet
  • TEM image high-resolution cross-sectional transmission electron microscope image
  • FIG. 1 It is the schematic diagram shown about the electrospinning deposition method in the 5th process of the manufacturing method of the sheet
  • the structure of the pressure sensor sheet, the pressure sensor, and the pressure sensor sheet manufacturing method to which the present invention is applied will be described with reference to the drawings.
  • the portions that become the features may be shown in an enlarged manner for the sake of convenience, and the dimensional ratios and the like of the respective components are not always the same as the actual ones.
  • the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.
  • the sheet for pressure sensor and the pressure sensor of the present invention may include components such as layers not described below as long as the effects of the present invention are not impaired.
  • FIG. 1 is a view schematically showing a cross section of a pressure sensor sheet according to an embodiment of the present invention.
  • FIG. 2 is a photograph of the pressure-sensitive conductive layer according to one embodiment of the present invention observed in plan view using an optical microscope.
  • the pressure sensor sheet 10 is disposed between the first electrode sheet 1a and the second electrode sheet 1b, and between the first electrode sheet 1a and the second electrode sheet 1b, and changes its resistance value when crushed.
  • a cotton-like pressure-sensitive conductive layer 3 in which conductive fibers 2 are entangled with each other.
  • the conductive fibers 2 are oriented and extended in a direction parallel to the two electrode sheets, and are laminated in a vertical direction.
  • the pressure-sensitive conductive layer 3 has a gap between the conductive fibers 2 constituting the pressure-sensitive conductive layer 3.
  • the conductive fiber may be a polymer material in which a conductive material is dispersed.
  • the conductive material is made of fine particles, and may be one kind or plural kinds.
  • the fine particles refer to, for example, nano-sized nanomaterials or pico-sized picomaterials, and mean those having a millimeter size or less.
  • the cotton-like pressure-sensitive conductive layer 3 formed by the entanglement of the conductive fibers 2 is crushed, so that the conductive fibers 2 overlap closely. Further, along with this, the contact area between the first electrode sheet 1a and the second electrode sheet 1b and the conductive fiber 2 also increases. Furthermore, the shape of the conductive fiber 2 itself is also deformed. On the other hand, when the pressure is weakened, the overlapping of the conductive fibers 2 becomes sparse, the contact area between the first electrode sheet 1a and the second electrode sheet 1b and the conductive fibers 2 decreases, and the conductive fibers The shape of 2 itself is also restored.
  • the amount of change in pressure is measured by the change in resistance value between the first electrode sheet 1a and the second electrode sheet 1b accompanying these changes. That is, the pressure sensor sheet 10 has many factors that contribute to a change in resistance value, and can respond sensitively to a very slight pressure change.
  • FIG. 3 is a graph showing a change in resistance value with respect to the pressure applied to the pressure sensor sheet 10.
  • the pressure sensor sheet 10 In a state where no pressure is applied, since the overlapping of the conductive fibers 2 is weak, the pressure sensor sheet 10 hardly conducts, and the order of 10 10 ⁇ between the first electrode sheet 1a and the second electrode sheet 1b. Indicates the resistance value.
  • the overlapping of the conductive fibers 2 becomes stronger, and the pressure sensor sheet 10 exhibits a resistance value on the order of 10 2 ⁇ between the first electrode sheet 1a and the second electrode sheet 1b. . This is because the contact surfaces of the first electrode sheet 1a and the second electrode sheet 1b and the conductive fibers 2 increase.
  • this pressure sensor sheet 10 exhibits a wide range of resistance value change from the order of 10 2 ⁇ to the order of 10 10 ⁇ .
  • a change in resistance value is very remarkable when a weak pressure of 0 to 200 Pa is applied. That is, the pressure sensor sheet 10 functions as a highly sensitive sensor even for a slight pressure change.
  • the conductive fibers 2 are oriented and extended mainly along a direction perpendicular to the direction in which pressure is applied. That is, in FIG. 1 in which the pressure sensor sheet 10 is viewed in cross section, the conductive fibers 2 are oriented so as to be mainly parallel to the two electrode sheets. Therefore, even if the pressure sensor sheet 10 is laterally pulled to some extent in the direction parallel to the electrode sheet, the resistance value does not change greatly. Therefore, the pressure sensor sheet 10 can measure a pressure change with high sensitivity. The pressure sensor sheet 10 does not change greatly in response to expansion and contraction in the direction parallel to the two electrode sheets.
  • the pressure sensor sheet 10 can perform high-accuracy measurement with small measurement noise even for pressure changes in a dynamic portion.
  • Such high-accuracy measurement cannot be measured with high sensitivity, for example, with a conventional pressure sensor sheet in which conductive particles are dispersed in rubber.
  • FIG. 4 is a photograph showing a state in which the pressure sensor sheet is bent and a weight is placed thereon.
  • FIG. 5 is a graph showing a change in resistance value when the weight of FIG. 4 is removed.
  • a voltage of 2 V is applied between the two electrode sheets.
  • a weight of 0.4 g was placed on the pressure sensor sheet 3 seconds after the start of measurement, and a weight of 0.4 g was removed from the pressure sensor sheet 8 seconds after the start of measurement. Further, a weight of 1.6 g was placed on the pressure sensor sheet 14 seconds after the start of measurement, and 1. A 6 g weight was removed from the pressure sensor sheet. As shown in FIG.
  • the pressure sensor sheet 10 is changed in resistance value by applying pressure even in a folded state. Further, when a weight of 0.4 g and a weight of 1.6 g are placed, there is a difference in the amount of current flowing, and the pressure sensor sheet 10 can detect a slight pressure difference.
  • the conductive fibers 2 are entangled with a gap (gap) when viewed from the direction perpendicular to each electrode sheet. Therefore, light can be transmitted through this gap. Observation of the surface state with pressure applied, measurement using light, and application of stimulation by light can be performed simultaneously with the application of pressure.
  • FIG. 6A and FIG. 6B show the results of repeatedly applying pressures of 2 kPa, 300 Pa, and 80 Pa on the pressure sensor sheet 10 1000 times.
  • FIG. 6A shows the first 10 results
  • FIG. 6B shows the last 10 results. From the results of FIGS. 6A and B, the signal intensity does not change greatly between the first 10 times and the last 10 times. That is, the pressure sensor sheet 10 has repeatability.
  • the first electrode sheet 1a and the second electrode sheet 1b are not particularly limited.
  • a sheet obtained by stretching a metal by a method such as rolling may be used, or a sheet in which a metal, a transparent electrode, or the like is formed on a thin film substrate by vapor deposition, sputtering, or the like may be used.
  • the transparent electrode generally used ITO, IZO, AZO or the like can be used. It is good also as a transparent electrode by carrying out vapor deposition, sputtering, etc. of the very thin metal.
  • the first electrode sheet 1a and the second electrode sheet 1b are preferably transparent electrodes.
  • the conductive fiber 2 has a gap and transmits light.
  • the pressure sensor sheet that transmits light can be realized by making the electrodes transparent. Thereby, a pressure measurement location can be observed through the pressure sensor sheet.
  • various measurement methods such as pressure measurement and optical measurement from the pressure sensor sheet at the same time.
  • the thickness of the film substrate is preferably 1 ⁇ m or more and 15 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less. If this film base material is 1 ⁇ m or more, the film base material can be stably produced, and sufficient film strength can be obtained. On the other hand, when the thickness is 15 ⁇ m or less, the pressure sensor sheet 10 exhibits substantially the same resistance value at the same bending radius when the metal sheet is bent and when the metal sheet is bent. Therefore, it is possible to obtain the pressure sensor sheet 10 that can be sufficiently adapted to operations such as bending and stretching.
  • polyethylene terephthalate (PET), polyimide (PI), vinyl chloride (PVC), polycarbonate (PC), polyethylene naphthalate (PEN), polyether ether ketone (PEEK), or the like can be used as the film substrate.
  • Au, Ag, Cu, Cr, Ti, Al, In, Sn, or a laminate of these metals, ITO, PEDOT / PSS, or the like can be used as the metal to be deposited, sputtered, or the like.
  • the first electrode sheet 1a or the second electrode sheet 1b preferably has air permeability. “Breathable” means not completely blocking the passage of gas.
  • the air permeability of the first electrode sheet 1a or the second electrode sheet 1b may be obtained by forming minute holes in the first electrode sheet 1a or the second electrode sheet 1b, or has air permeability.
  • the first electrode sheet 1a or the second electrode sheet 1b may be formed on the film.
  • the pressure-sensitive conductive layer 3 encloses air in a sealed space when both sides are sealed with two electrode sheets that do not have air permeability. Therefore, when the temperature changes, the sealed air contracts or expands, generating pressure inside. This internal pressure changes the resistance value of the pressure-sensitive conductive layer 3 and generates a measurement error.
  • the internal pressure causes a measurement error. Since each electrode sheet has air permeability, it is possible to release these internal pressures and prevent measurement errors.
  • the first electrode sheet 1a and the second electrode sheet 1b have air permeability.
  • the entire pressure sensor sheet 10 can have air permeability.
  • the thicknesses of the first electrode sheet 1a and the second electrode sheet 1b are substantially equal. If the thicknesses of the first electrode sheet 1a and the second electrode sheet 1b are substantially equal, the strain acting on the pressure-sensitive conductive layer 3 when bending acts can be minimized. Therefore, it is possible to suppress an error in the pressure measurement value by bending the pressure sensor sheet 10.
  • the conductive fibers 2 constituting the pressure-sensitive conductive layer 3 at least a part of the portion in contact with the first electrode sheet 1 a or the second electrode sheet 1 b is the first electrode sheet 1 a or the second electrode. It is preferable to bind to the sheet 1b.
  • the binding means that the conductive fibers 2 that are in contact with the first electrode sheet 1a or the second electrode sheet 1b among the conductive fibers 2 are not subjected to external energy, and the first It means that it naturally adheres to the electrode sheet 1a or the second electrode sheet 1b.
  • the shape of the conductive fiber 2 changes by slightly evaporating the solvent remaining in the conductive fiber 2 formed on the first electrode sheet 1a or the second electrode sheet 1b.
  • the first electrode sheet 1a or the second electrode sheet 1b When the connection state between the conductive fiber 2 and each electrode sheet is unstable, a large noise is generated in measurement under a weak pressure.
  • the conductive fibers 2 constituting the pressure-sensitive conductive layer 3 At least a part of the portion in contact with the first electrode sheet 1a or the second electrode sheet 1b is the first electrode sheet 1a or the second electrode sheet.
  • the connection state is extremely stable. Therefore, measurement with little noise is possible using the pressure sensor sheet 10.
  • the conductive fibers 2 constituting the pressure-sensitive conductive layer 3 are preferably bound at least partially with both the first electrode sheet 1a and the second electrode sheet 1b.
  • FIG. 7 is a high-resolution transmission electron microscope image (TEM image) in which the conductive fibers 2 and the substrate are bound when the conductive fibers 2 are sprayed on the substrate by the electrospinning deposition method.
  • TEM image transmission electron microscope image
  • the same thing as the conductive fiber mentioned later can be used for the 2nd conductive fiber which constitutes the 2nd pressure sensitive conductive layer. Moreover, it is not always necessary to use the same one, and the conductive fiber and the second conductive fiber may be different. Furthermore, it is preferable that the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer are bonded. More preferably, the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer are bound. By bonding the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer, the pressure sensor sheet 10 is structurally stable. Along with this, the electrical state becomes higher and stable, and measurement with less noise becomes possible.
  • the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer are bonded, there is no electrical obstruction between the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer, and the electrical state is higher and stable. In addition, measurement with less noise becomes possible.
  • the “adhesion” referred to here may be self-organized joining described as “binding” in this specification, or may be joining using other adhesives or the like.
  • the pressure-sensitive conductive layer 3 may be mixed with not only the conductive fibers 2 but also non-conductive fibers not shown.
  • the sensitivity of the pressure sensor sheet 10 can be easily adjusted by adjusting the mixing ratio of the conductive fibers 2 and the non-conductive fibers in the pressure-sensitive conductive layer 3.
  • a constant resistance value cannot be obtained.
  • the conductive fibers are thickened, the flexibility of the pressure sensor sheet 10 is impaired.
  • the relationship between pressure and resistance value can be controlled with high accuracy. That is, the pressure sensor sheet 10 can be produced in accordance with the pressure change value to be measured, and can be applied in various applications.
  • the thickness of the pressure-sensitive conductive layer 3 is preferably smaller than the sum of the thicknesses of the first electrode sheet 1a and the second electrode sheet 1b, and each of the first electrode sheet 1a and the second electrode sheet 1b. More preferably, it is smaller than the thickness.
  • it is necessary to suppress the rigidity of the sheet against bending and to suppress the stress at the electrode to be low.
  • the sheet rigidity becomes extremely high as the pressure-sensitive conductive layer 3 becomes thick.
  • the stress at the interface between the conductive fiber 2 and each electrode sheet is increased, and the stable connection between the conductive fiber 2 and the electrode sheet is broken.
  • the thickness of the pressure-sensitive conductive layer 3 When the thickness of the pressure-sensitive conductive layer 3 is smaller than the thickness of the two electrode sheets, the strain at the interface between the conductive fiber 2 and each electrode sheet is approximately halved with respect to the strain on the outer surface of the electrode sheet. Unexpected failures and accuracy changes during bending can be reduced. Further, when the thickness of the pressure-sensitive conductive layer 3 is smaller than the thickness of each of the first electrode sheet 1a and the second electrode sheet 1b, the distortion of the connection portion between the conductive fiber 2 and each electrode sheet is as much as possible. Can be lowered.
  • the thickness of the pressure-sensitive conductive layer 3 is preferably 2 to 100 times the diameter of the conductive fiber 2.
  • the pressure-sensitive conductive layer 3 has a decrease in resistance value due to an increase in contact between the conductive fibers 2 due to pressure. This contact between the conductive fibers 2 is one of the principles by which pressure can be measured as a resistance value. Therefore, the thickness of the pressure-sensitive conductive layer 3 is preferably a thickness corresponding to two or three layers or more of the conductive fibers 2. That is, the thickness of the pressure-sensitive conductive layer 3 is preferably twice or more the diameter of the conductive fiber 2.
  • the number of layers in which the conductive fibers 2 are overlapped By increasing the number of layers in which the conductive fibers 2 are overlapped, the number of contacts between the conductive fibers 2 is increased, and local resistance value variation of the electrode sheet is suppressed.
  • the number of layers increases, the bending rigidity and the resistance value of the pressure sensor sheet 10 increase.
  • the resistance value, the measurement accuracy of the resistance value, and the mechanical rigidity become appropriate.
  • it is preferably 100 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the thickness of the pressure-sensitive conductive layer 3 is 100 ⁇ m or less, it is highly flexible and can follow an object having a complicated shape or a moving object, and functions as a highly sensitive and flexible pressure sensor sheet. be able to. If the thickness is 10 ⁇ m or less, sufficient transparency can be maintained.
  • FIG. 8A is a schematic cross-sectional view of the conductive fiber 2 constituting the pressure sensor sheet 10 according to one embodiment of the present invention
  • FIG. 8B constitutes the pressure sensor sheet 10 according to one embodiment of the present invention
  • 2 is a high-resolution cross-sectional transmission electron microscope image (TEM image) of the conductive fiber 2.
  • the conductive fiber 2 preferably has at least a first conductive material 2a, a second conductive material 2b, and a polymer material 2c.
  • the first conductive material 2 a and the second conductive material 2 b are uniformly dispersed in the conductive fiber 2. If it is not uniformly dispersed, the conductive fibers 2 cannot exhibit good conductivity.
  • the conductive material of the present invention refers to a material having a fine particle size conductive material as a constituent element.
  • the first conductive material 2a is preferably a linear conductive material
  • the second conductive material 2b is preferably a particulate (including scale-like) conductive material.
  • “Linear” means that the length is 10 times or more the diameter of the conductive material.
  • the linear first conductive material 2a electrically connects the particulate second conductive material 2b in the polymer material 2c.
  • the secondary effect that the linear 1st electroconductive material 2a improves the dispersion stability of the particulate 2nd electroconductive material 2b in the preparation process of the electroconductive fiber 2 is also acquired. Furthermore, by making the mass ratio of the first conductive material 2a in the conductive fiber smaller than the mass ratio of the second conductive material 2b, the dynamic range of the resistance value change due to pressure can be made extremely large. This is because by dispersing the second conductive material at a high mass ratio, a large decrease in resistance value can be obtained when a high pressure is applied.
  • the first conductive material 2a is not particularly limited.
  • carbon nanotubes, carbon nanohorns, gold nanowires, silver nanowires, and the like can be used.
  • the first conductive material 2a is preferably a carbon nanotube or a carbon nanohorn. Since the carbon nanotube and the carbon nanohorn have a certain length, they help the conduction between the dispersed second conductive materials 2b, and the shape of the second conductive material 2b can help the dispersion uniformly. it is conceivable that.
  • the carbon nanotube has a structure in which a graphene sheet in which carbon atoms are arranged in a hexagonal network is rounded in a single-layer or multi-layered cylindrical shape.
  • Either single-walled nanotubes (SWNT), double-walled nanotubes (DWNT), or multi-walled nanotubes (MWNT) can be used, and single-walled nanotubes (SWNT) are preferred. This is because a uniform and quality-stable material can be obtained and dispersion stability can be easily obtained.
  • Carbon nanotubes can be generally produced by a laser ablation method, arc discharge, thermal CVD method, plasma CVD method, gas phase method, combustion method, etc., but carbon nanotubes produced by any method may be used.
  • the second conductive material 2b graphene, gold nanoflakes, silver nanoflakes, aluminum flakes, carbon black, gold nanoparticles, silver nanoparticles, copper nanoparticles, or the like can be used.
  • the second conductive material 2b is preferably graphene or carbon black. This is because graphene and carbon black are highly conductive and stable.
  • the first conductive material 2a is carbon nanotube and carbon nanohorn
  • the second conductive material 2b is graphene and carbon black. It is preferable.
  • the conductive material made of carbon is most suitable for the pressure-sensitive conductive layer 3 composed of fibers having high durability against oxygen and moisture and having a high specific surface area.
  • the mass ratio of the first conductive material 2a is preferably smaller than the mass ratio of the second conductive material 2b.
  • the mass ratio of the second conductive material 2b: first conductive material 2a is preferably in the range of 3: 1 to 25: 1. Within this range, the first conductive material 2a and the second conductive material 2b can be uniformly dispersed in the polymer material 2c, and sufficient conductivity of the conductive fiber 2 is ensured. can do.
  • the mass ratio of the first conductive material 2a is preferably 0.5 wt% to 5 wt%
  • the mass ratio of the second conductive material 2b is preferably 5 wt% to 50 wt%.
  • the mass ratio of the second conductive material 2b is larger than the mass ratio of the first conductive material 2a, so that the pressure sensor sheet 10 can be increased, and the sensitivity of the pressure sensor sheet 10 can be increased.
  • the mass ratio of the first conductive material 2a is 1 wt% to 5 wt% and the mass ratio of the second conductive material 2b is 15 wt% to 50 wt%, the sheet 10 functions as a more sensitive pressure sensor. can do.
  • the mass ratio of the first conductive material 2a and the second conductive material 2b in the conductive fiber 2 is preferably 20 wt% to 50 wt%, and more preferably 30 wt% to 40 wt%.
  • the resistance value that the pressure sensor sheet 10 can change can be controlled. If the combined ratio of the first conductive material 2a and the second conductive material 2b is lower than 20 wt%, the conductivity when pressure is applied to the conductive fibers 2 deteriorates, and the sensitivity of the pressure sensor sheet 10 is reduced. It will decline.
  • the abundance ratio of the first conductive material 2a and the second conductive material 2b is larger than 50 wt%, the first conductive material 2a and the second conductive material 2b are uniformly distributed in the conductive fiber 2. It cannot be dispersed.
  • the polymer material 2c a generally used elastomer such as fluorine rubber, urethane rubber, or silicon rubber, or a polymer material other than an elastomer such as acrylic, nylon, or polyester can be used.
  • an elastomer as the polymer material 2 c of the conductive fiber 2.
  • Elastomers are soft and have very little change in mechanical properties even when large strains repeatedly act. When pressure is applied, a large strain is generated in the overlapping portion of the conductive fibers 2, but by using an elastomer as a base material, both high flexibility and high durability of the pressure sensor sheet can be achieved.
  • the polymer material 2c When a hard substance is selected for the polymer material 2c, the overlapping of the conductive fibers 2 when pressure is applied to the pressure sensor sheet 10 is reduced, and the sensitivity of the pressure sensor sheet 10 is reduced. On the other hand, when a soft substance is selected, the overlap between the conductive fibers 2 increases, and the sensitivity of the pressure sensor sheet 10 can be increased. Therefore, the polymer material 2 c can be changed depending on the purpose of use of the pressure sensor sheet 10.
  • the diameter of the conductive fiber 2 is preferably smaller than the thickness of the first electrode sheet 1a and the second electrode sheet 1b.
  • each electrode sheet is likely to be locally deformed along the surface of the conductive fiber 2.
  • the contact state between the conductive fiber 2 and the electrode sheet becomes irregular when pressure is applied.
  • the diameter of the conductive fiber 2 is smaller than the thickness of the first electrode sheet 1a and the second electrode sheet 1b, the variation in the resistance value change with respect to the pressure due to the irregularity of the contact state is suppressed. Can do.
  • the diameter of the conductive fiber 2 is preferably 100 nm to 10 ⁇ m, and more preferably 200 nm to 2000 nm.
  • the diameter of the conductive fiber 2 changes, the rigidity of the conductive fiber, the specific surface area, and the contact area between the conductive fibers change, so the sensitivity of the pressure sensor sheet 10 changes.
  • the diameter is 200 nm to 2000 nm, it can function as a pressure sensor sheet with sufficiently high sensitivity.
  • the extremely thin conductive fiber 2 has low strength, and the extremely thick conductive fiber 2 has high rigidity, which impairs the flexibility of the sensor sheet. Therefore, when the diameter of the conductive fiber 2 is within the range, both sensitivity and flexibility can be achieved.
  • FIG. 9 is a schematic cross-sectional view of a pressure sensor 100 according to an embodiment of the present invention.
  • the pressure sensor sheet 10 having high flexibility is suitable for measurement on a surface having fine irregularities. Therefore, in order to measure the pressure distribution with high spatial resolution, the electrode is divided into a number of segments, and a plurality of measurement points are arranged on one pressure sensor sheet 10. In order to arrange a large number of electrode segments in a matrix, it is effective to switch each electrode segment with a transistor. Thereby, a highly functional pressure sensor can be realized.
  • the pressure sensor 100 functions as the pressure sensor 100 by changing the resistance value of the pressure sensor sheet 10 to change the amount of current flowing through the transistor 20 and outputting a signal corresponding to the current value to the outside.
  • the resistance value of the pressure sensor sheet 10 decreases due to application of pressure, so that the potential difference between the source electrode 21 and the drain electrode 22 increases and flows.
  • the amount of current increases. If the relationship between the pressure applied to the pressure sensor sheet 10 and the amount of current is acquired in advance, the amount of pressure applied to the pressure sensor 100 can be detected by reading the change in the signal output corresponding to the amount of current. it can.
  • the total thickness of the pressure sensor 100 is preferably 100 ⁇ m or less. If it is thinner than 100 ⁇ m, it can follow a complicated shape as a very flexible pressure sensor.
  • the transistor 20 is preferably an organic transistor in order to make the pressure sensor 100 flexible.
  • the structure is not particularly limited, for example, a field effect transistor as shown in FIG. 9 can be used.
  • the on-resistance of the organic transistor is as high as M ⁇ order.
  • the resistance change of the pressure sensor sheet 10 during pressing is on the order of several M ⁇ to 100 k ⁇ . It is considered desirable to fluctuate.
  • the pressure sensor sheet 10 according to the present embodiment can be suitably used because it exhibits a wide change in resistance value from the order of 10 2 ⁇ to the order of 10 10 ⁇ .
  • a dispersion liquid containing a polymer material and a conductive material is sprayed onto an electrode sheet by an electrospinning deposition method, and conductive fibers are entangled.
  • a pressure-sensitive conductive layer is formed.
  • the electrospinning method is suitable for forming a pressure-sensitive conductive layer made of ultrafine fibers because the conductive fibers can be bound on the first electrode sheet without performing any special adhesive or treatment. is there.
  • the pressure sensor sheet manufacturing method includes a first step of mixing a first conductive material and an ionic liquid in a solvent to obtain a first dispersion system in which the first conductive material is dispersed in the solvent; A second step of mixing the second conductive material to obtain a second dispersion system in which the second conductive material is dispersed in a solvent, and mixing the first dispersion system and the second dispersion system; A third step of obtaining a third dispersion; a fourth step of adding an elastomer to the third dispersion and stirring to obtain a fourth dispersion; and an electrospinning deposition method for the fourth dispersion.
  • a fifth step of forming a pressure-sensitive conductive layer in which conductive fibers are entangled with each other on the first electrode sheet a fifth step of forming a pressure-sensitive conductive layer in which conductive fibers are entangled with each other on the first electrode sheet.
  • a method for manufacturing a pressure sensor sheet will be described based on preferable manufacturing conditions including the first to fifth steps.
  • a first conductive material and an ionic liquid are mixed in a solvent to obtain a first dispersion system in which the first conductive material is dispersed in the first solvent.
  • the solvent 4-methyl-2-pentanone is preferable.
  • the first conductive material carbon nanotubes, carbon nanohorns, metal nanowires, and the like can be used.
  • the ionic liquid EMIBF 4 , DEMEBF 4 or the like can be used.
  • the ionic liquid has a role of preventing the first conductive materials from aggregating with each other.
  • a shearing force in order to efficiently disperse the first conductive materials without aggregating them.
  • a method for applying the shearing force is not particularly limited, and a ball mill, a roller mill, a vibration mill, a jet mill, or the like can be used.
  • the first conductive material in the range of 0.2 wt% to 20 wt% with respect to the first solvent.
  • the ratio of the first conductive material is less than 0.2 wt%, it is difficult to obtain good conductivity.
  • the ratio of the first material is more than 20 wt%, it is difficult to uniformly disperse.
  • the ionic liquid in the range of 1 wt% to 20 wt% with respect to the first solvent.
  • the proportion of the ionic liquid is less than 1 wt%, the aggregation of the first conductive materials cannot be sufficiently suppressed.
  • the proportion of the ionic liquid is more than 20 wt%, it is necessary to remove the excess ionic liquid.
  • the second conductive material is mixed with the solvent to obtain a second dispersion system in which the second conductive material is dispersed in the solvent.
  • the solvent the same solvent as that used in the first step can be used.
  • the second conductive material graphene, gold nanoflakes, silver nanoflakes, aluminum flakes, carbon black, gold nanoparticles, silver nanoparticles, copper nanoparticles, or the like can be used. It is preferable to apply a shearing force also in the second step, and the same one as in the first step can be used. Also in the second step, the ionic liquid may be further mixed in the same manner as in the first step.
  • the second conductive material is preferably added to the second solvent in the range of 10 wt% to 80 wt%, and more preferably in the range of 6 wt% to 8 wt%.
  • the ratio of the second conductive material is less than 10 wt%, good conductivity cannot be obtained.
  • the ratio of the second material is more than 80 wt%, it cannot be uniformly dispersed.
  • the first dispersion and the second dispersion are mixed to obtain a third dispersion. Since the solvent used in the first step and the second step is the same, it is conceivable that the first conductive material and the second conductive material are added to the solvent at a time. However, when the first conductive material and the second conductive material are added at once, it becomes difficult to uniformly disperse them in the solvent. Therefore, it is important to prepare a first dispersion system and a second dispersion system, and then mix them to obtain a third dispersion system.
  • the third step it is preferable to stir in order to sufficiently mix the first dispersion system and the second dispersion system. At this time, mechanical stirring is sufficient, and it is not necessary to apply heat or the like.
  • an elastomer is added to the third dispersion and stirred to obtain a fourth dispersion.
  • the elastomer commonly used ones such as fluorine rubber, urethane rubber, silicon rubber and the like can be used.
  • polymer materials such as acrylic, nylon, and polyester can also be used.
  • the mass ratio of the elastomer in the fourth dispersion is preferably 10 wt% to 50 wt%.
  • the mass ratio of the first conductive material in the fourth dispersion system is preferably 0.1 wt% to 5 wt%, and the mass ratio of the second conductive material is 0.5 wt% to 25 wt%. preferable.
  • the mass ratio of the elastomer When the mass ratio of the elastomer is less than 10 wt%, it takes time to evaporate the solvent in the electrospinning process, and it becomes difficult to form fibers well. On the other hand, when the mass ratio of the elastomer is larger than 50 wt%, the viscosity increases, and it becomes difficult to uniformly disperse the first conductive material and the second conductive material.
  • the resistance value range and sensitivity of the pressure sensor sheet can be adjusted.
  • the stirring in the fourth step is preferably performed for 4 hours or more. This is because the viscosity of the solution increases by adding the elastomer, and thus it is necessary to sufficiently stir.
  • a pressure-sensitive conductive layer having conductive fibers is formed by electrospinning deposition using the fourth dispersion system.
  • electrospinning deposition method will be described with reference to FIG.
  • the fourth dispersion system 4 in the syringe 5 is pushed out while applying a high voltage between the needle 5a of the syringe 5 and the first electrode sheet 1a. At this time, due to the potential difference between the needle 5a and the first electrode sheet 1a, the fourth dispersion system 4 is abruptly drawn out of the syringe 5 and sprayed toward the first electrode sheet 1a. The sprayed fourth dispersion system 4 is deposited in the form of cotton as the conductive fibers 2 on the first electrode sheet 1a.
  • the solvent in the conductive fibers 2 deposited on the first electrode sheet 1a is not completely evaporated. Since the solvent slightly remains in the conductive fibers 2 deposited on the first electrode sheet 1a, the solvent in the conductive fibers 2 evaporates on the first electrode sheet 1a. At that time, the shape of the conductive fiber 2 changes to a kamaboko shape as shown in FIG. 7, and the first electrode sheet 1a and the conductive fiber 2 are bound. Thereby, the 1st electrode sheet 1a and the electroconductive fiber 2 can be bound, without using an extra adhesive agent etc., and a more sensitive pressure sensor can be produced. Therefore, the distance between the needle 5a and the first electrode sheet 1a is preferably 10 cm to 50 cm.
  • a sheet for a pressure sensor that is structurally and electrically stable by binding a pressure-sensitive conductive layer and a second pressure-sensitive conductive layer after securely bonding each electrode sheet to the conductive fiber. Can be manufactured. The binding at this time may be performed by evaporation of the solvent as described above.
  • the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer are each made of entangled conductive fibers, even if the pressure-sensitive conductive layer and the second pressure-sensitive conductive layer are brought into contact with each other, the conductive fibers are tangled with each other. And show sufficient structural stability.
  • the fourth dispersion system 4 is quickly pulled out by the potential difference in the pores of the needle 5a. At this time, since a shearing force is generated in the fourth dispersion system 4, aggregation of the first conductive material and the second conductive material that cannot be dispersed and aggregated in the fourth dispersion system 4 is eliminated. Therefore, the pores of the needle 5a are preferably in the range of 0.2 mm to 2 mm.
  • the electrospinning deposition method When mixing non-conductive fibers in the pressure-sensitive conductive layer formed on the electrode sheet, it is preferable to inject each raw material into two syringes and simultaneously form the pressure-sensitive conductive layer by the electrospinning deposition method. .
  • the conductive fiber 2 and the non-conductive fiber are sequentially deposited by the electrospinning deposition method, a conductive region and a non-conductive region are formed in the pressure-sensitive conductive layer, and the conductivity is not uniform. It will occur.
  • the fifth step it is preferable to perform the fifth step within 24 hours after the fourth step. More preferably, it is performed within 12 hours. If the fourth dispersion is left for longer than 24 hours, the dispersed first conductive material and second conductive material reaggregate. If the fourth dispersion is left for longer than 12 hours, the first conductive material and the second conductive material cannot be redispersed even if shear force is used when passing through the pores of the needle 5a. .
  • Example 1 As a first step, carbon nanotubes were mixed at a ratio of 0.6 wt% and ionic liquid at a ratio of 2 wt% in a solvent composed of 4-methyl-2-pentanone.
  • a first dispersion system in which carbon nanotubes are uniformly dispersed in a solvent composed of 4-methyl-2-pentanone by applying a shearing force to the mixed liquid using a high-pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh). Got.
  • graphene was mixed in a solvent of 4-methyl-2-pentanone at a ratio of 6 wt%.
  • a shearing force to this mixed solution with a high-pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh)
  • a second dispersion system in which graphene is uniformly dispersed in a solvent composed of 4-methyl-2-pentanone is obtained. Obtained.
  • the first dispersion and the second dispersion were stirred with a stirrer for 2 hours to obtain a third dispersion.
  • G-912 (trade name, manufactured by Daikin Industries, Ltd.), which is a fluorine-based rubber, is mixed in a proportion of 25 wt% with respect to the third dispersion, stirred with a stirrer for 4 hours, 4 dispersions were obtained.
  • the ratios of the elastomer, the carbon nanotube, and the graphene in the fourth dispersion system were 0.3 wt%, 3 wt%, and 25 wt%, respectively.
  • the obtained fourth dispersion was injected into a syringe having a needle pore of 20 nm, and an electrode sheet was placed at a position 25 cm from the tip of the needle. Then, a voltage of 25 kV is applied between the needle and the electrode sheet, and the conductive fiber is intertwined on the electrode sheet by the electrospinning deposition method while sending the fourth dispersion system from the syringe at a speed of 10 ⁇ l / min.
  • the piezoelectric conductive layer was produced with a size of 20 cm ⁇ 20 cm square.
  • the film thickness of the obtained pressure-sensitive conductive layer was 4 ⁇ m.
  • the electrode sheet was prepared by laminating 50 nm of Au on a 1.4 ⁇ m PET film.
  • the diameter of the conductive fiber was 300 nm to 400 nm
  • the mass ratio of the first conductive material in the conductive fiber was 1 wt%
  • the mass ratio of the second conductive material was 12 wt%.
  • FIG. 11 is a photograph of the pressure sensor sheet of Example 1.
  • the total thickness of the pressure sensor sheet was 7 ⁇ m.
  • Example 2 a pressure sensor was produced using the same manufacturing method as in Example 1 except for the fifth step.
  • Example 2 in the fifth step, a syringe into which a solution different from the fourth dispersion only in containing no conductive material was prepared together with the syringe into which the fourth dispersion was injected.
  • a 20 cm ⁇ 20 cm square pressure-sensitive conductive layer was produced on the electrode sheet by the electrospinning deposition method while simultaneously sending out the fourth dispersion and the solution containing no conductive material from these two syringes.
  • the needle diameter of the syringe used at this time, the distance between the needle and the electrode sheet, and the voltage applied between the needle and the electrode sheet were the same as in Example 1.
  • the film thickness of the obtained pressure-sensitive conductive layer was 4 ⁇ m, and non-conductive fibers were mixed in the pressure-sensitive conductive layer at a ratio of 1: 1 of conductive fibers: non-conductive fibers.
  • the electrode sheet was prepared by laminating 50 nm of Au on a 1.4 ⁇ m PET film.
  • the diameter of the conductive fiber was 300 nm to 400 nm, the mass ratio of the first conductive material in the conductive fiber was 1 wt%, and the mass ratio of the second conductive material was 12 wt%.
  • the total thickness of the obtained pressure sensor was 7 ⁇ m.
  • FIG. 12 is a graph showing a change in resistance value with respect to the pressure applied to the pressure sensor sheet of Example 1 and Example 2.
  • the pressure sensor sheet of Example 1 shows a change in resistance value from the order of 10 2 ⁇ to the order of 10 10 ⁇
  • the pressure sensor sheet of Example 2 has a resistance value from the order of 10 4 ⁇ to the order of 10 10 ⁇ .
  • the change shows a very large resistance change with respect to the pressure applied together.
  • the pressure sensor sheet of Example 2 has a small change in resistance value and a different sensitivity. This is because the pressure sensor sheet of Example 2 is a mixture of conductive fibers and non-conductive fibers, and is less sensitive than the pressure sensor sheet made of conductive fibers of Example 1. . That is, the sensitivity of the pressure sensor sheet can be easily adjusted by changing the mixing ratio of the conductive fiber and the non-conductive fiber of the pressure sensor sheet.
  • Example 3 In Example 3, a pressure sensor was produced using the same production method as in Example 1 except that the organic field effect transistor was formed on a 12.5 ⁇ m thick PI film. The layer thickness of the obtained pressure sensor was 29 ⁇ m.
  • Example 4 a pressure sensor was produced using the same production method as in Example 1 except that the organic field effect transistor was formed on a 75 ⁇ m-thick PI film.
  • the layer thickness of the obtained pressure sensor was 154 ⁇ m.
  • FIG. 13 is a graph showing a change in resistance value with respect to a bending radius when the pressure sensor sheets of Examples 1, 3 and 4 are bent.
  • Examples 1 and 2 show the same resistance value at the same bending radius even when bending and stretching, and are also adapted to bending and stretching, and it can be seen that they function as flexible temperature sensor sheets.
  • the pressure sensor sheet of Example 1 has the same resistance value as that of the stretched sheet even when the bending radius is close to 0 (the pressure sensor sheet is almost folded in two). That is, it can be seen that the pressure in the direction parallel to the pressure sensor sheet hardly reacts. In other words, it is possible to accurately measure only the pressure applied perpendicularly to the pressure sensor sheet, which is more suitable as a pressure sensor sheet for an object having a complicated shape or a movement such as bending and stretching.
  • FIG. 14A is a photograph of the pressure sensor sheet of Example 1 placed on an artificial blood vessel made of a silicon tube
  • FIG. 14B shows the measurement results when the artificial blood vessel is pulsated.
  • the pulsation of the blood vessel was simulated by sending liquid alternately into the artificial blood vessel at a pressure of 80 mmHg and 120 mmHg.
  • FIG. 14B it can be seen that the obtained current value changes according to the pulsation. That is, it can be seen that the pressure applied to the moving object can be measured with high sensitivity by appropriately following the moving object.
  • Example 6 is different in that the first step of Example 1 is not performed. That is, the pressure sensor sheet of Example 6 differs from the pressure sensor sheet of Example 1 in that only graphene is used as the conductive material in the conductive fiber.
  • FIG. 15 is a graph showing a change in resistance value with respect to pressure applied to the pressure sensor sheet according to Example 1 and Example 6. Although the pressure sensor sheet of Example 6 is inferior to the pressure sensor sheet of Example 1 in sensitivity to changes in resistance value with respect to pressure, it shows that it can function as a sufficient pressure sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

フレキシブル性が高く、より高感度な極薄の圧力センサー用シート及び圧力センサー並びに圧力センサー用シートの製造方法を提供するために、本発明の圧力センサー用シート(10)は、第1の電極シート(1a)と、第2の電極シート(1b)と、前記第1の電極シート(1a)と前記第2の電極シート(1b)の間に配置され、押しつぶされることで抵抗値が変化する導電性繊維(2)が絡み合ってなる綿状の感圧導電層(3)と、を備え、前記導電性繊維(2)は二つの電極シートに平行な方向に配向して延在し、さらに垂直な方向に積層して配設され、さらに前記感圧導電層を構成する前記導電性繊維同士の間に、空隙部を有することを特徴とする。

Description

圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法
 本発明は、圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法に関する。
本願は、2014年2月6日に、日本に出願された特願2014-021488号に基づき優先権を主張し、その内容をここに援用する。
有機半導体でつくるフレキシブルエレクトロニクスは、素材の軟らかさから、人体の表面や体内にフィットする。そのため、細胞や組織から直接生体情報を得る手段として、フレキシブルエレクトロニクスを利用することに、近年注目が集まっている。
 圧力センサーは、その応用の一つとして注目されている。圧力センサーは、加えられた圧力を電気的な信号として出力するものである。圧力センサーは、例えば、人工皮膚やロボットの操作等において広く利用されている(特許文献1)。これらの技術は日夜進歩しており、より精密なデータを得ることが求められている。より精密なデータを得る為には、圧力センサーが、被測定物の形状によりフィットすることや、曲げ伸ばし等の動きにも追従することが必要である。したがって、よりフレキシブルでかつ薄い圧力センサーが求められている。
 このような圧力センサーを実現するために、以下のような検討が進められている。
特許文献2には、単純マトリクスの感圧センサーとして、円筒状弾性体と、その円筒状弾性体の外周面に層状に形成された導電体層と、その導電体層上に形成された誘電体層とからなる感圧用線材を縦横に編み込んだ感圧シートが開示されている。
特許文献3には、電極と感圧導電シートとトランジスタを利用したアクティブマトリクスの感圧センサーが開示されており、シリコンゴムにグラファイトが添加された感圧導電シートが開示されている。
 特許文献4には、感圧導電シートとして、ゴム基材の表面に導電材を含有する樹脂塗膜を形成して、二層以上の構成としたフレキシブルな感圧センサーが開示されている。二層以上の構成とすることで、圧力-抵抗変化のヒステリシスを改善することができる。
特開2013-136141号公報 特開2008-170425号公報 特開2013-068562号公報 特開2012-145447号公報
 しかしながら、特許文献1~4に開示された圧力センサー用シートは、厚さが数百μm~数mmの厚さを有している。そのため、これらの圧力センサー用シートでは、複雑な形状を有する物体や動く物体に対して十分な追従性を得ることができず、精密なデータを得ることができなかった。例えば、特許文献2に記載された圧力センサー用シートの感圧用線材の基材である円筒状弾性体の外径は、250μmφである。圧力センサー用シートとして動作させるためには、圧力センサー全体の厚みが、この外径の以上の厚みを有する必要があることが記載されている。また特許文献3には、圧力センサー用シートの一部であるゴム基材の厚さだけで、mmオーダーの厚さを要することが記載されている。
 またこれらの圧力センサー用シートは、印加圧力に対する抵抗値の変化が十分ではないため、わずかな圧力変化を出力信号として十分に反映することができなかった。すなわち、これらの圧力センサー用シートでは、高感度なデータを得ることができなかった。例えば、特許文献2の図3には、印加圧力に対する抵抗値の変化が、数百kΩに過ぎないことが記載されている。
 ゴム基材や樹脂塗膜に導電性の材料を含有させた圧力センサー用シートを用いると、圧力センサー用シートに対して垂直方向の圧力変化による抵抗値の変化以外にも、圧力センサー用シートが平行方向に伸びた場合にも抵抗値が変化してしまう。本来測定したい抵抗値変化は、圧力センサー用シートに対して垂直方向の圧力変化に伴うものである。これに対し、平行方向に延びたことに伴う抵抗値変化はノイズである。そのため、従来の圧力センサー用シートを用いると、圧力センサー用シートを曲げた状態と伸ばした状態で測定結果に差異が生じてしまう。つまり、これらの圧力センサー用シートは、より複雑な形状を持つ物体や動く物体に加わる圧力を、高感度に測定することができなかった。
 さらにアクティブマトリクスの圧力センサーは、トランジスタの上に感圧導電層と電極シートをそれぞれ配置する必要がある。しかしながら、感圧導電層は、黒色のゴムからなるため、装着後に貼り付け表面を目視することができなかった。また、生体にこのような圧力センサー用シートを装着した場合(例えば皮膚の表面に装着した場合)、通気性の無いゴムからなる感圧導電層は、水分や空気が透過せず、また空気の移流による熱の放散がなされない。そのため、装着箇所が蒸れることによる不快感や皮膚等の炎症を生み出す場合があった。
 本発明は、上記事情に鑑みなされたものであり、フレキシブル性が高く、より高感度な極薄の圧力センサー用シート及び圧力センサー並びに圧力センサー用シートの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の手段を採用した。
(1)第1の電極シートと、第2の電極シートと、前記第1の電極シートと前記第2の電極シートの間に配置され、押しつぶされることで抵抗値が変化する導電性繊維が絡み合ってなる綿状の感圧導電層と、を備え、前記導電性繊維は二つの電極シートに平行な方向に配向して延在し、かつ垂直な方向に積層して配設され、さらに前記感圧導電層を構成する前記導電性繊維同士の間に、空隙部を有することを特徴とする圧力センサー用シート。
(2)前記導電性繊維が、高分子材料に導電性材料が分散されたものであることを特徴とする(1)に記載の圧力センサー用シート。
(3)前記導電性材料が、第1の導電性材料及び第2の導電性材料からなり、前記第1の導電性材料は線状の導電性材料であり、前記第2の導電性材料は粒子状(鱗片状を含む)の導電性材料であることを特徴とする(2)に記載の圧力センサー用シート。
(4)前記第1の導電性材料が、カーボンナノチューブまたはカーボンナノホーンであり、前記第2の導電性材料が、グラフェンまたはカーボンブラックであることを特徴とする(3)に記載の圧力センサー用シート。
(5)前記導電性繊維における、前記第1の導電性材料の質量比は、前記第2の導電性材料の質量比より小さいことを特徴とする(3)または(4)のいずれかに記載の圧力センサー用シート。
(6)前記感圧導電層を構成する前記導電性繊維のうち、前記第1の電極シートまたは前記第2の電極シートに接触する部分の少なくとも一部が、前記第1の電極シートまたは前記第2の電極シートに結着していることを特徴とする(1)~(5)のいずれか一項に記載の圧力センサー用シート。
(7)前記感圧導電層と前記第2電極との間に、第2の導電性繊維が絡み合ってなる第2の感圧導電層をさらに有し、前記導電性繊維の前記第1の電極シートに接触する部分の少なくとも一部が前記第1の電極シートに結着し、前記第2の導電性繊維の前記第2の電極シートに接触する部分の少なくとも一部が前記第2の電極シートに結着していることを特徴とする(1)~(6)のいずれか一項に記載の圧力センサー用シート。
(8)前記感圧導電層と前記第2の感圧導電層とが接着されていることを特徴とする(7)に記載の圧力センサー用シート。
(9)前記高分子材料が、エラストマーであることを特徴とする(2)~(7)のいずれか一項に記載の圧力センサー用シート。
(10)前記第1の電極シートと前記第2の電極シートが、透明電極であることを特徴とする(1)~(9)のいずれか一項に記載の圧力センサー用シート。
(11)前記感圧導電層は、前記電極シートに垂直な方向から見て、前記導電性繊維がない空隙部を有していることを特徴とする(1)~(10)のいずれか一項に記載の圧力センサー用シート。
(12)前記導電性繊維の直径は、前記第1の電極シートおよび前記第2の電極シートの厚さより小さいことを特徴とする(1)~(11)のいずれか一項に記載の圧力センサー用シート。
(13)前記導電性繊維の直径が100nm~10μmであることを特徴とする(1)~(12)のいずれか一項に記載の圧力センサー用シート。
(14)前記感圧導電層の厚さは、前記第1の電極シートと前記第2の電極シートの厚さの合計より小さいことを特徴とする(1)~(13)のいずれか一項に記載の圧力センサー用シート。
(15)前記第1の電極シートおよび前記第2の電極シートの厚さは、略同等であることを特徴とする(1)~(14)のいずれか一項に記載の圧力センサー用シート。
(16)前記第1の電極シートまたは前記第2の電極シートは通気性を有することを特徴とする(1)~(15)のいずれか一項に記載の圧力センサー用シート。
(17)前記感圧導電層の厚さが、前記導電性繊維の直径の2倍以上、100倍以下であることを特徴とする(1)~(16)のいずれか一項に記載の圧力センサー用シート。
(18)前記感圧導電層の厚さが、0.5μm~100μm以下であることを特徴とする(1)~(17)のいずれか一項に記載の圧力センサー用シート。
(19)前記感圧導電層中に、非導電性繊維が混在していることを特徴とする(1)~(18)のいずれか一項に記載の圧力センサー用シート。
(20)(1)~(19)のいずれか一項に記載の圧力センサー用シートの、前記第1の電極シートまたは前記第2の電極シートの少なくとも一方の電極が、トランジスタに接続されていることを特徴とする圧力センサー。
(21)(1)~(19)のいずれか一項に記載の圧力センサー用シートの製造方法であって、高分子材料と導電性材料とを含む分散系液体をエレクトロスピニングデポジション法で第1の電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成することを特徴とする圧力センサー用シートの製造方法。
(22)溶媒に、第1の導電材料とイオン液体とを混合し、溶媒中に第1の導電材料が分散した第1の分散系を得る第1の工程と、溶媒に、第2の導電材料を混合し、溶媒中に第2の導電材料が分散した第2の分散系を得る第2の工程と、第1の分散系と第2の分散系を混合し、第3の分散系を得る第3の工程と、第3の分散系に高分子材料を加え、撹拌し、第4の分散系を得る第4の工程と、第4の分散系をエレクトロスピニングデポジション法で第1の電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成する第5の工程と、を有することを特徴とする圧力センサー用シートの製造方法。
(23)前記高分子材料と前記導電性材料とを含む分散系液体を、エレクトロスピニングデポジション法で第2の電極シート上に噴射して、導電性繊維が絡み合ってなる第2の感圧導電層を形成する工程と、前記感圧導電層と、前記第2の感圧導電層を結着させる工程と、をさらに有することを特徴とする(21)または(22)のいずれかに記載の圧力センサー用シートの製造方法。
 本発明の一態様に係る圧力センサー用シートは、第1の電極シートと第2の電極シートと、これら電極シートの間に配置された、押しつぶされることで抵抗値が変化する導電性繊維が絡み合ってなる綿状の感圧導電層とを備える。導電性繊維は電極シートに平行な方向に配向して延在し、さらに垂直な方向に積層して配設される。感圧導電層を構成する導電性繊維同士の間には、空隙部を有する。圧力センサー用シートに加わる圧力に変化が生じると、綿状に絡み合った導電性繊維同士の粗密が変わり、導電性繊維同士の積層具合に変化が生じる。この積層具合が変化すると、第1の電極シートと第2の電極シート間の抵抗値が変化する。導電性繊維は、二つの電極シートに平行な方向と垂直な方向とで異方性を有する。そのため、垂直な厚さ方向の外力に対して、積層方向の抵抗値変化が極めて大きく、平行な方向への歪に対する抵抗値変化が極めて小さい。圧力センサー用シートが曲げ変形を受ける場合、曲げ変形による歪は電極シートと並行方向であるため、曲げ変形による抵抗値変化が小さい。つまり、測定のノイズが小さく精度の高い計測が可能となる。
 本発明の一態様に係る圧力センサー用シートは、導電性繊維が、高分子材料に導電性材料が分散されたものであってもよい。また導電性繊維が第1の導電性材料と第2の導電性材料が分散された高分子材料からなり、この第1の導電性材料は線状の導電性材料であり、第2の導電性材料は粒子状(鱗片状を含む)の導電性材料であってもよい。線状の第1の導電性材料は、粒子状の第2の導電性材料同士を、高分子材料中で電気的に接続する。圧力センサー用シートに弱い圧力が作用した場合に、線状の第1の導電性材料を介した導電性が変化し、導電性繊維の抵抗値が低下する。この作用により、低い圧力でのセンサー感度と、センサー感度の安定性を向上させることができる。線状の第1の導電性材料は、繊維の作成工程における粒子状の第2の導電性材料の分散安定性を向上させるという副次的効果も有する。
更に、導電性繊維における、第1の導電性材料の質量比を、第2の導電性材料の質量比より小さくすることで、圧力による抵抗値変化のダイナミックレンジが極めて大きく取れる。第2の導電性材料を高質量比で分散させることで、高い圧力が作用したときに大きな抵抗値低下が得られるためである。
 本発明の一態様に係る圧力センサー用シートは、第1の導電性材料がカーボンナノチューブ、カーボンナノホーンであり、第2の導電性材料がグラフェン、カーボンブラックであってもよい。カーボンからなる導電性材料は、酸素や水分に対する耐久性が高く、比表面積の高い繊維で構成される感圧導電層には最も適している。
 本発明の一態様に係る圧力センサー用シートは、感圧導電層を構成する導電性繊維の第1の電極シートまたは第2の電極シートに接触する部分の少なくとも一部が、第1の電極シートまたは第2の電極シートに結着されていてもよい。導電性繊維と電極シート間の接続状態が不安定であると、弱い圧力下での測定に大きなノイズが発生する。少なくとも導電性繊維の一部が電極シートに結着されることで、電気的な接続状態が極めて安定するため、ノイズの少ない計測が可能となる。
 本発明の一態様に係る圧力センサー用シートは、感圧導電層と第2電極との間に、第2の導電性繊維が絡み合ってなる第2の感圧導電層をさらに有し、導電性繊維の第1の電極シートに接触する部分の少なくとも一部が第1の電極シートに結着し、第2の導電性繊維の第2の電極シートに接触する部分の少なくとも一部が第2の電極シートに結着していてもよい。これらの二つの感圧導電層は、それぞれが各電極シートに結着しているため、感圧導電層と電極との間の接続状態が安定であり、ノイズの少ない計測が可能となる。更に、これらの二つの感圧導電層を接着することで、二つの電極シート間での感圧導電層の構造的、電気的状態が高く安定する。そのため、更にノイズの少ない計測が可能となる。
本発明の一態様に係る圧力センサー用シートは、導電性繊維の高分子材料としエラストマーを用いてもよい。エラストマーは、柔らかく大きな歪が繰り返し作用しても、機械的特性の変化が極めて小さい。圧力が作用すると、繊維同士の重なり部に大きな歪が生じるが、エラストマーを母材として使用することで、圧力センサー用シートの高い柔軟性と、高い耐久性が両立できる。
本発明の一態様に係る圧力センサー用シートは、第1の電極シートと第2の電極シートが、透明電極でもよい。綿状の感圧導電層は光の透過性を有するため、二つの電極シートを透明にすることで、光を透過する圧力センサー用シートが実現できる。これにより、圧力計測箇所を、圧力センサー用シートを透過して観察することができる。また、圧力計測と圧力センサー用シート上からの光計測を同時に行えるなど、多様な計測への展開が可能となる。更に、圧力センサー用シートの光透過性を向上させるため、電極シートに垂直な方向から見て、感圧導電層を構成する導電性繊維の間に空隙部を有することが好ましい。空隙部を有することにより光透過性が高く、かつ光散乱が小さくなるため、観察や計測がよりやり易くなる。
本発明の一態様に係る圧力センサー用シートは、導電性繊維の直径が、第1の電極シートおよび第2の電極シートの厚さより小さくてもよい。導電性繊維の直径が電極シートより大きいと、導電性繊維の表面に沿って、電極シートの局所的な変形が生じ易くなる。電極シートが局所的に変形しやすくなると、圧力印加時に導電性繊維と電極シートの接触状態が不規則になる。導電性繊維の直径が、第1の電極シートおよび第2の電極シートの厚さより小さいと、このような接触状態の不規則性に伴う、圧力に対する抵抗値変化のばらつきを抑制することができる。
 本発明の一態様に係る圧力センサー用シートは、導電性繊維の直径が100nm~10μmであってもよい。細い導電性繊維は圧力によって接触状態が大きく変化するため、高感度である。逆に、太い導電性繊維は圧力に対する抵抗変化が低感度である。極度に細い導電性繊維は強度が低く、極度に太い導電性繊維は剛性が高い。そのため、導電性繊維の直径が当該範囲であることで、感度と柔軟性を両立することができる。
本発明の一態様に係る圧力センサー用シートは、感圧導電層の厚さが、第1の電極シートと第2の電極シートの厚さの合計より小さくてもよく、第1の電極シートおよび第2の電極シートの厚さより小さいことが好ましい。極めてしなやかで、曲げ変形が生じても低ノイズで正確な圧力を計測するには、曲げに対してシートの剛性を低く抑えるとともに、電極における応力を低く抑えなければならない。感圧導電層を挟んで二枚の電極シートからなる圧力センサー用シートでは、感圧導電層が厚くなると、極度にシート剛性が高くなる。また、感圧導電層と電極シートとの界面での応力が大きくなるため、導電性繊維と電極の安定した接続が破壊されてしまう。感圧導電層の厚さを二枚の電極シートの厚さより小さくすることで、電極シートの屈曲時に不測の故障や精度変化を低くすることができる。これは、電極シート外面の歪に対して、導電性繊維と電極シートとの界面の歪が概略半分になるためである。更に、感圧導電層の厚さが、第1の電極シートおよび第2の電極シートの厚さより小さくなると、導電性繊維と電極の接続部の歪を可及的に低くすることができる。第1の電極シートと第2の電極シートの厚さが略同等であると、曲げが作用した時に感圧導電層に作用する歪を可及的に小さくすることができ、曲げによって圧力測定値に誤差が生じることが抑えられる。
本発明の一態様に係る圧力センサー用シートは、第1の電極シートまたは第2の電極シートが通気性を有してもよい。通気性を持たない電極シートで、感圧導電層の両側を封止すると、密閉された空間に空気を内包することになる。密封された空気は、温度が変化すると収縮または膨張し、内部に圧力を発生させる。この内部圧力は、感圧導電層の抵抗値を変化させ、計測の誤差となる。また、電極シートを圧着積層する工程でも、内部の空気が圧縮を受け、計測の誤差を生む。電極シートが通気性を有することで、これらの内部圧力が解放され、計測誤差を生じないようにすることが可能となる。
第1の電極シートおよび第2の電極シートの両方の電極シートは、通気性を有していてもよい。通気性を有する感圧導電層に加えて、両方の電極シートに通気性を持たせることで、圧力センサー用シート全体が通気性を有する。これにより、発汗する皮膚等の表面にセンサーシートを貼りつけた時に、皮膚等からの水分の放散できる。そのため、皮膚等からの水分による、体表に作用する圧力誤差を抑制し、精密な計測を行うことができる。このような構成は、長期間装着における、不快感や障害を生じさせない計測システムを可能にする。
本発明の一態様に係る圧力センサー用シートは、感圧導電層の厚さが、導電性繊維の直径の2倍以上、100倍以下であってもよい。感圧導電層は、導電性繊維同士の接触が圧力によって増加することにより抵抗値低下が生じる。この導電性繊維同士の接触が、圧力を抵抗値として測定できる原理の一つである。そのため、感圧導電層の厚みは、導電性繊維の2層または3層分以上に相当する厚さである必要がある。すなわち、感圧導電層の厚みは、導電性繊維の直径の2倍以上の厚さが必要である。導電性繊維の重なる層数を増やすことで、導電性繊維間の接触数が増加し、電極シートの局所的な抵抗値ばらつきを抑制する。これに対し、積層数が増えると圧力センサー用シートの曲げ剛性の増加と抵抗値の増加も引き起こす。層数を100倍以下に抑えることで、抵抗値の大きさ、抵抗値の測定精度及び機械的剛性が適切な状態になる。感圧導電層の厚さを100μm以下にすることで、柔軟な圧力センサー用シートを構成できる。
 本発明の一態様に係る圧力センサー用シートは、感圧導電層中に、非導電性繊維が混在していてもよい。圧力センサー用シートの感度を低くし、高い圧力まで計測を可能にするには、導電性材料の質量比を低くする方法や、導電性繊維を太くして剛性を高める方法がある。しかしながら、質量比を少なくすると一定した抵抗値が得られない。これに対し、繊維を太くすると圧力センサー用シートの柔軟性が損なわれる。そのため、非導電性繊維を混ぜることで、高精度に圧力と抵抗値の関係を制御することができる。非導電性繊維を混在させることで、測定したい圧力変化値に合せて、圧力センサー用シートを作製することができ、様々な用途での応用が可能となる。
 本発明の一態様に係る圧力センサー用シートは、第1の電極シートまたは第2の電極シートの少なくとも一方の電極が、トランジスタに接続されている。高い柔軟性を持つ圧力センサー用シートは、細かい凹凸を有する表面での計測に適している。そのため、圧力分布を高い空間分解能で計測するために、電極を多数のセグメントに分割して、複数の測定点を一つの圧力センサー用シートに配設する。電極セグメントをマトリックス状に多数配設するには、それぞれの電極セグメントをトランジスタでスイッチングすることが有効である。これにより、高機能な圧力センサーを実現できる。
 本発明の一態様に係る圧力センサー用シートの製造方法では、高分子材料と導電性材料とを含む分散系液体をエレクトロスピニングデポジション法で電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成する。エレクトロスピニング法は電極シート上において、導電性繊維を、特別な接着剤や処理を行うことなく結着させることができる。そのため、エレクトロスピニング法は、極細の繊維からなる感圧導電層を形成するのに好適である。
 本発明の一態様に係る圧力センサー用シートの製造方法では、溶媒に、第1の導電材料とイオン液体とを混合し、溶媒中に第1の導電材料が分散した第1の分散系を得る第1の工程と、溶媒に、第2の導電材料を混合し、溶媒中に第2の導電材料が分散した第2の分散系を得る第2の工程と、第1の分散系と第2の分散系を混合し、第3の分散系を得る第3の工程と、第3の分散系に高分子材料を加え、撹拌し、第4の分散系を得る第4の工程と、第4の分散系をエレクトロスピニングデポジション法で、第1の電極シート上に導電性繊維が絡み合ってなる感圧導電層を形成する第5の工程とを有する。そのため、導電性繊維中に第1の導電材料および第2の導電材料を均一に分散することができる。
特に、第1の分散系と第2の分散系をそれぞれ別に作製することで、第1の導電材料および第2の導電材料をより均一に分散させることができる。第4の工程で、第1の導電材料および第2の導電材料が均一に分散した第3の分散系を合成した後に、高分子材料を加えることで、導電性繊維中に導電材料をより均一に分散することができる。これに対し、先に高分子材料を溶媒に溶かした後に、第1の導電材料や第2の導電材料を加えると、高分子材料を溶かした段階で溶液の粘度が上がり、均一に分散させることができない。さらに第5の工程でエレクトロスピニングデポジション法を用いることで、強い電圧で第4の分散系を引っ張るため、より導電性繊維中に第1の導電材料および第2の導電材料を均一に分散させることができる。
本発明の一態様に係る圧力センサー用シートの製造方法では、第1の電極シート上に、第1の導電性繊維が絡み合ってなる綿状の感圧導電層を形成する工程と、第2の電極シート上に、第2の導電性繊維が絡み合ってなる綿状の第2の感圧導電層を形成する工程と、前記感圧導電層と、前記第2の感圧導電層を結着する工程と、を備えてもよい。各電極シートと導電性繊維の結着を確実に行った後に、第1の感圧導電層と第2の感圧導電層を結着することで、構造的にも電気的にも安定した圧力センサー用シートを製造できる。特に、電極シート上にエレクトロスピニング法で導電性繊維を積層する方法は、特別な接着工程を用いることなく結着することができるので、極めて安定で高速な製造方法となる。
本発明の一実施形態に係る圧力センサー用シートの断面を模式的に示した断面模式図である。 本発明の一実施形態に係る感圧導電層を平面視で光学顕微鏡を用いて観察した写真である。 本発明の一実施形態に係る圧力センサー用シートに対して印加された圧力に対する抵抗値の変化を示すグラフである。 本発明の一実施形態に係る圧力センサー用シートを二つに完全に折り曲げて、その上に重りを置いた状態の写真である。 本発明の一実施形態に係る圧力センサー用シートを折り曲げた状態で、圧力センサー用シートに加える圧力を変化させた際の、流れる電流量の変化を測定したグラフである。 本発明の一実施形態に係る圧力センサー用シート上に2kPa、300Pa、80Paの圧力それぞれを1000回繰り返し印加した際の最初の10回の測定結果である。 本発明の一実施形態に係る圧力センサー用シート上に2kPa、300Pa、80Paの圧力それぞれを1000回繰り返し印加した際の最後の10回の測定結果である。 本発明の一実施形態に係る圧力センサー用シートの断面模式図であって、電極シート上に導電性繊維をエレクトロスピニングデポジション法で形成した際に、導電性繊維と電極シートが接着している高分解断面透過電子顕微鏡画像(TEM画像)である。 本発明の一実施形態に係る圧力センサー用シートを構成する導電性繊維の断面を模式的に示した図である。 本発明の一実施形態に係る圧力センサー用シートを構成する導電性繊維の断面の高分解断面透過電子顕微鏡画像(TEM画像)である。 本発明の一実施形態に係る圧力センサーの断面模式図である。 本発明の一実施形態に係る圧力センサー用シートの製造方法の第5工程におけるエレクトロスピニングデポジション法について示した模式図である。 本発明の圧力センサー用シート(実施例1)の写真である 実施例1と実施例2に係る圧力センサー用シートに対して印加された圧力に対する抵抗値の変化を示すグラフである。 実施例1、実施例3および実施例4の圧力センサー用シートを曲げた際の、曲げ半径に対する抵抗値変化を示したグラフである。 実施例1の圧力センサー用シートを、シリコンチューブからなる人工血管に設置した写真である。 実施例1の圧力センサー用シートを設置した人工血管を脈動させた際の測定結果を示す。 実施例1と実施例6に係る圧力センサー用シートに対して印加された圧力に対する抵抗値の変化を示すグラフである。
 以下、本発明を適用した圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法について、図面を用いてその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。本発明の圧力センサー用シートおよび圧力センサーは本発明の効果を損ねない範囲で以下に記載していない層などの構成要素を備えてもよい。
(圧力センサー用シート)
 図1は、本発明の一実施形態に係る圧力センサー用シートの断面を模式的に示した図である。図2は、本発明の一実施形態に係る感圧導電層を平面視で光学顕微鏡を用いて観察した写真である。
 以下、図1および図2を用いて、本発明の一実施形態に係る感圧フィルムについて説明する。圧力センサー用シート10は、第1の電極シート1aと第2の電極シート1bと、第1の電極シート1aと第2の電極シート1bの間に配置され、押しつぶされることで抵抗値が変化する導電性繊維2が絡み合ってなる綿状の感圧導電層3とを、備える。導電性繊維2は、二つの電極シートに平行な方向に配向して延在し、かつ垂直な方向に積層して配設されている。感圧導電層3は、構成する導電性繊維2の間に、空隙部を有する。ここで、導電性繊維が、高分子材料に導電性材料が分散されたものであってもよい。導電性材料は、微粒子からなり、一種類でもよく複数種類でもよい。微粒子とは、例えばナノサイズのナノ材料や、ピコサイズのピコ材料を示し、ミリメートルサイズ以下のものを意味する。
圧力センサー用シート10に対し圧力を加えると、導電性繊維2が絡み合ってなる綿状の感圧導電層3がつぶされるため、導電性繊維2同士が密に重なり合う。またそれに伴い、第1の電極シート1aおよび第2の電極シート1bと、導電性繊維2との接触面積も増える。さらに導電性繊維2自体の形状も変形する。一方、圧力を弱めると、導電性繊維2同士の重なりが疎になり、第1の電極シート1aおよび第2の電極シート1bと、導電性繊維2との接触面積も少なくなり、かつ導電性繊維2自体の形状も元にもどる。圧力センサー用シート10では、これらの変化に伴う第1の電極シート1aと第2の電極シート1b間の抵抗値変化により、圧力変化量を測定する。すなわち、圧力センサー用シート10は、抵抗値の変化に寄与する要因が多く、非常にわずかな圧力変化に対しても敏感に応答することができる。
 図3は、圧力センサー用シート10に印加された圧力に対する抵抗値変化を示したグラフである。
 圧力を加えていない状態では、導電性繊維2同士の重なりが弱いため、圧力センサー用シート10はほとんど導通せず、第1の電極シート1aと第2の電極シート1b間で1010Ωオーダーの抵抗値を示す。一方で、圧力を印加すると導電性繊維2同士の重なりが強くなり、第1の電極シート1aと第2の電極シート1b間で、圧力センサー用シート10は、10Ωオーダーの抵抗値を示す。これは、第1の電極シート1aおよび第2の電極シート1bと導電性繊維2の接触面が多くなるためである。つまり、この圧力センサー用シート10は、10Ωオーダーから1010Ωオーダーまでの幅広い抵抗値変化を示す。
 この圧力センサー用シート10は、0~200Paの弱い圧力を加えた際の抵抗値変化が非常に顕著である。すなわち、圧力センサー用シート10は、わずかな圧力変化に対しても高感度なセンサーとして機能する。
 図2の光学顕微鏡写真で示すように、導電性繊維2は、主に圧力の印加方向に対して垂直な方向に沿って配向して延在している。つまり圧力センサー用シート10を断面視した図1においては、導電性繊維2は主に二つの電極シートに平行になるように配向している。そのため、電極シートに平行な方向に、圧力センサー用シート10をある程度横引っ張っても、抵抗値に大きな変化は生じない。そのため、圧力センサー用シート10は、高感度に圧力変化を測定することができる。
 圧力センサー用シート10は、二つの電極シートに平行な方向の伸縮に対して応答量が大きく変化しないため、曲げた状態で圧力を印加した場合と伸ばした状態で圧力を印加した場合とで、ほぼ同一の応答量を得ることができる。つまり、圧力センサー用シート10は、動的な部分における圧力変化も、測定のノイズの小さい高精度な測定を行うことができる。このような高精度な測定は、例えば、従来のゴム中に導電粒子を分散させた圧力センサー用シートでは高感度に測定することができなかった。
 図4は、圧力センサー用シートを折り曲げて、その上に重りを置いた状態を示す写真である。図5は、図4の重りを取外ししたときの、抵抗値変化を示したグラフである。
図5の測定時には、二つの電極シート間に2Vの電圧を印加している。図5の測定は、測定開始から3秒後に0.4gの重りを圧力センサー用シート上に置き、測定開始から8秒後に0.4gの重りを圧力センサー用シート上から除いた。さらに、測定開始から14秒後に1.6gの重りを圧力センサー用シート上に置き、測定開始から20秒後に1. 6gの重りを圧力センサー用シート上から除いた。
 図5に示すように、圧力センサー用シート10は折り曲げられた状態でも圧力が加わることで抵抗値に変化が生じている。また、0.4gの重りと1.6gの重りを置いたときでは、流れる電流量に差があり、圧力センサー用シート10は、わずかな圧力差も検出することができる。
 図2の光学顕微鏡写真で示すように、各電極シートに垂直な方向から見て、導電性繊維2は、隙間(空隙部)を有して絡まっている。そのため、この隙間を通して光を透過することができる。圧力を加えた状態での表面状態の観察や、光を用いた測定や光により刺激を加えることを圧力の印加と同時に行うことができる。
 図6A及び図6Bは、圧力センサー用シート10上に2kPa、300Pa、80Paの圧力それぞれを1000回繰り返し印加した結果である。図6Aは最初の10回の結果であり、図6Bは最後の10回の結果である。図6A及びBの結果から、信号強度は、最初の10回と最後の10回で大きな変化が生じていない。すなわち、圧力センサー用シート10は、繰り返し再現性を有する。
第1の電極シート1aおよび第2の電極シート1bは、特に限定されない。例えば、金属を圧延等の方法で引き延ばしたシートでもよいし、薄いフィルム基材上に金属や透明電極等を蒸着、スパッタ等で形成したシートでもよい。透明電極は、一般に用いられるITO,IZO,AZO等を用いることができる。非常に薄膜の金属を蒸着、スパッタ等することで、透明電極としてもよい。
第1の電極シート1aおよび第2の電極シート1bは、透明電極であることが好ましい。前述のように導電性繊維2は空隙部を有し、光を透過する。そのため、電極を透明にすることで、光を透過する圧力センサー用シートを実現することができる。これにより、圧力計測箇所を、圧力センサー用シートを透過して観察することができる。また、圧力計測と圧力センサー用シート上からの光計測を同時に行えるなど、多様な計測への展開が可能となる。
フィルム基材上に金属、透明電極等を蒸着、スパッタ等をする場合、そのフィルム基材の厚みは1μm以上15μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。このフィルム基材が1μm以上であれば、フィルム基材を安定的に生産することができ、かつ十分なフィルム強度を得ることができる。一方、15μm以下であれば、金属シートを折り曲げたときと、折り曲げた状態から伸ばしたときとで、同じ曲げ半径において、圧力センサー用シート10がほぼ同一の抵抗値を示す。そのため、曲げ伸ばし等の動作にも、十分適応することができる圧力センサー用シート10を得ることができる。さらに、5μm以下であれば、圧力センサー用シート10を曲げた状態と伸ばした状態での抵抗値変化がほとんどない。すなわち、圧力センサー用シート10に垂直な方向の圧力にのみ感度を有することができ、曲げ伸ばし等の動作する部分に用いた際のノイズが少なくなり、高い感度を維持することができる。
フィルム基材としては、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、塩化ビニル(PVC)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)等を用いることができる。
 蒸着、スパッタ等される金属等としては、Au、Ag、Cu、Cr、Ti、Al、In、Sn、またはこれら金属の積層、透明導電材料としてITO、PEDOT/PSS等を用いることができる。
 第1の電極シート1aまたは第2の電極シート1bは、通気性を有していることが好ましい。「通気性」とは、気体の通過を完全に遮断しないことを意味する。第1の電極シート1aまたは第2の電極シート1bの通気性は、第1の電極シート1aまたは第2の電極シート1bに微小な孔を形成することで得てもよいし、通気性を有するフィルム上に第1の電極シート1aまたは第2の電極シート1bを形成してもよい。
感圧導電層3は、通気性を持たない二つの電極シートで両側を封止された場合、密閉された空間に空気を内包することになる。そのため、温度が変化すると密封された空気が収縮または膨張し、内部に圧力を発生させる。この内部圧力は、感圧導電層3の抵抗値を変化させ、計測の誤差を生み出す。また、二つの電極シートを圧着積層する工程で、内部の空気が圧縮されると、その内部圧力が計測の誤差を生む。各電極シートが通気性を有することで、これらの内部圧力が解放され、計測誤差を生じないようにすることが可能となる。
通気性を有する感圧導電層3に加えて、第1の電極シート1aおよび第2の電極シート1bに通気性を有することがより好ましい。第1の電極シート1aおよび第2の電極シート1bが通気性を有することで、圧力センサー用シート10全体が通気性を有することができる。これにより、発汗する皮膚表面にセンサーシートを貼りつけた時に、圧力センサー用シート10が皮膚からの水分の放散を阻害することなく、体表に作用する圧力を計測することができる。これは、長期間装着における、不快感や障害を生じさせない計測システムを可能にする。
第1の電極シート1aと第2の電極シート1bの厚さが略同等であることが好ましい。
第1の電極シート1aと第2の電極シート1bの厚さが略同等であれば、曲げが作用した時に感圧導電層3に作用する歪を可及的に小さくすることができる。そのため、圧力センサー用シート10を曲げることによって圧力測定値に誤差が生じることが抑えられる。
 感圧導電層3を構成する導電性繊維2のうち、第1の電極シート1aまたは前記第2の電極シート1bに接触する部分の少なくとも一部が、第1の電極シート1aまたは第2の電極シート1bに結着していることが好ましい。ここで結着とは、導電性繊維2のうち、第1の電極シート1aまたは前記第2の電極シート1bに接触する導電性繊維2が、外的なエネルギーを加えられることなく、第1の電極シート1aまたは前記第2の電極シート1bに自然と接着することを意味する。具体的には、第1の電極シート1aまたは前記第2の電極シート1b上に形成された導電性繊維2中にわずかに残留した溶媒が蒸発することで、導電性繊維2の形状が変化すると共に、第1の電極シート1aまたは第2の電極シート1bに結着する。導電性繊維2と各電極シート間の接続状態が不安定であると、弱い圧力下での測定に大きなノイズが発生する。
感圧導電層3を構成する導電性繊維2のうち、第1の電極シート1aまたは第2の電極シート1bに接触する部分の少なくとも一部が、第1の電極シート1aまたは第2の電極シート1bに結着していることで、接続状態が極めて安定する。そのため、圧力センサーシート10を用いて、ノイズの少ない計測が可能となる。
 感圧導電層3を構成する導電性繊維2は、第1の電極シート1aおよび第2の電極シート1bの両方と少なくとも一部で結着していることが好ましい。これにより導電パスを形成する第1の電極シート1a/感圧導電層3/第2の電極シート1bが、構造的に安定につながる。また構造的な安定は、電気的状態もより高く安定させる。そのため、圧力センサーシート10を用いて、ノイズのさらに少ない計測が可能になる。
また、接着剤等を用いる必要もなく、非常に簡便に圧力センサー用シート10を形成することができる。
 図7は、基板上に導電性繊維2をエレクトロスピニングデポジション法でスプレーした際に、導電性繊維2と基板が結着している高分解断面透過電子顕微鏡画像(TEM画像)である。
 感圧導電層3と第2電極1bとの間に、第2の導電性繊維が絡み合ってなる第2の感圧導電層をさらに有し、導電性繊維2の第1の電極シート1aに接触する部分の少なくとも一部が第1の電極シート1aに結着し、第2の導電性繊維の第2の電極シート1bに接触する部分の少なくとも一部が第2の電極シート1bに結着していることが好ましい。
これらの二つの感圧導電層は、それぞれが各電極シートに結着しているため、感圧導電層と電極との間の接続状態が安定になり、ノイズの少ない計測が可能となる。第2の感圧導電層を構成する第2の導電性繊維は、後述する導電性繊維と同じものを用いることができる。また必ずしも同一のものを用いる必要は無く、導電性繊維と、第2の導電性繊維が異なるものでもよい。
さらに、感圧導電層と第2の感圧導電層とが接着されていることが好ましい。また感圧導電層と第2の感圧導電層とが結着されていることがより好ましい。感圧導電層と第2の感圧導電層とが接着されていることで圧力センサー用シート10が構造的に安定する。それに伴い、電気的状態もさらに高く安定し、更にノイズの少ない計測が可能となる。また感圧導電層と第2の感圧導電層が結着されていると、感圧導電層と第2の感圧導電層を電気的に阻害するものがなく、より電気的状態が高く安定し、さらにノイズの少ない計測が可能となる。
なお、ここで言う「接着」とは、本明細書において「結着」と記載する自己組織的な接合でもよく、その他の接着剤等を用いた接合でもよい。
 感圧導電層3は、導電性繊維2だけでなく、図示していない非導電性繊維を混合させてもよい。感圧導電層3中の、導電性繊維2と非導電性繊維の混合比を調整することで、容易に圧力センサー用シート10の感度を調整することができる。圧力センサー用シート10の感度を低くし、高い圧力まで計測を可能にするには、導電性材料の質量比を低くする方法や、導電性繊維2を太くして剛性を高める方法がある。しかしながら、導電性材料の質量比を少なくすると、一定した抵抗値が得られない。導電性繊維を太くすると圧力センサー用シート10の柔軟性が損なわれる。非導電性繊維を混ぜることで、高精度に圧力と抵抗値の関係を制御することができる。すなわち、測定したい圧力変化値に合せて、圧力センサー用シート10を作製することができ、様々な用途での応用が可能となる。
感圧導電層3の厚さは、第1の電極シート1aおよび第2の電極シート1bの厚さの合計より小さいことが好ましく、第1の電極シート1aおよび第2の電極シート1bのそれぞれの厚さより小さいことがより好ましい。極めてしなやかで、曲げ変形が生じても低ノイズで正確な圧力を計測するには、曲げに対してシートの剛性を低く抑えるとともに、電極における応力を低く抑えなければならない。感圧導電層3を挟んで二枚の電極シートからなる圧力センサー用シート10では、感圧導電層3が厚くなると、極度にシート剛性が高くなる。また、導電性繊維2と各電極シートとの界面の応力が大きくなり、導電性繊維2と電極シートの安定した接続が破壊されてしまう。感圧導電層3の厚さを二枚の電極シートの厚さより小さくすると、電極シート外面の歪に対して、導電性繊維2と各電極シートとの界面の歪が概略半分になり、電極シートの屈曲時に不測の故障や精度変化を低くすることができる。更に、感圧導電層3の厚さが、第1の電極シート1aおよび第2の電極シート1bのそれぞれの厚さより小さくなると、導電性繊維2と各電極シートの接続部の歪を可及的に低くすることができる。
感圧導電層3の厚さは、導電性繊維2の直径の2倍以上、100倍以下であることが好ましい。感圧導電層3は、導電性繊維2同士の接触が圧力によって増加することにより抵抗値低下が生じる。この導電性繊維2同士の接触が、圧力を抵抗値として測定できる原理の一つである。そのため、感圧導電層3の厚みは、導電性繊維2の2層または3層分以上に相当する厚さであることが好ましい。すなわち、感圧導電層3の厚みは、導電性繊維2の直径の2倍以上の厚さであることが好ましい。導電性繊維2の重なる層数を増やすことで、導電性繊維2間の接触数が増加し、電極シートの局所的な抵抗値ばらつきを抑制する。これに対し、積層数が増えると圧力センサー用シート10の曲げ剛性の増加と抵抗値の増加が起こる。層数を100倍以下に抑えることで、抵抗値の大きさ、抵抗値の測定精度及び機械的剛性が適切な状態になる。
また具体的には、100μm以下であることが好ましく、10μm以下であることがより好ましい。感圧導電層3の厚さが100μm以下であると、フレキシブル性が高く、複雑な形状を持つ物体や動く物体にも追従することができ、高感度でかつフレキシブルな圧力センサー用シートとして機能することができる。その厚さが10μm以下であると、十分な透明性を維持することができる。
図8A、本発明の一実施形態に係る圧力センサー用シート10を構成する導電性繊維2の断面模式図であり、図8Bは、本発明の一実施形態に係る圧力センサー用シート10を構成する導電性繊維2の高分解断面透過電子顕微鏡画像(TEM画像)である。
 導電性繊維2は、第1の導電性材料2aと、第2の導電性材料2bと高分子材料2cとを少なくとも有することが好ましい。第1の導電性材料2aと、第2の導電性材料2bは導電性繊維2中に均一に分散している。均一に分散していないと、導電性繊維2が良好な導電性を示すことができない。また本発明の導電性材料とは、微粒子サイズの導電性物質を構成要素とする材料をいう。
 第1の導電性材料2aは線状の導電性材料であり、第2の導電性材料2bは粒子状(鱗片状を含む)の導電性材料であることが好ましい。なお、「線状」とは、その導電性材料の直径に対して、その長さが10倍以上であることを意味する。
線状の第1の導電性材料2aは、粒子状の第2の導電性材料2bを高分子材料2c中で電気的に接続する。圧力センサー用シート10に弱い圧力が作用した場合に、線状の第1の導電性材料2aを経た導電性変化の寄与により、導電性繊維の抵抗値が低下する。この作用により、低い圧力でのセンサー感度とその安定性の向上が得られる。また、線状の第1の導電性材料2aが導電性繊維2の作成工程における粒子状の第2の導電性材料2bの分散安定性を向上させるという副次的効果も得られる。
更に、導電性繊維における、第1の導電性材料2aの質量比を、第2の導電性材料2bの質量比より小さくすることで、圧力による抵抗値変化のダイナミックレンジが極めて大きく取れる。第2の導電性材料を高質量比で分散させることで、高い圧力が作用したときに大きな抵抗値低下が得られるためである。
第1の導電性材料2aとしては特に限定されない。例えばカーボンナノチューブ、カーボンナノホーン、金ナノワイヤー、銀ナノワイヤー等を用いることができる。第1の導電性材料2aとしてはカーボンナノチューブ、カーボンナノホーンであることが好ましい。カーボンナノチューブ、カーボンナノホーンは、ある程度の長さを有するため、分散した第2の導電性材料2b同士の導電を助け、またその形状により第2の導電材料2bが均一に分散を補助することができると考えられる。
 カーボンナノチューブは、炭素原子が六角網目状に配列したグラフェンシートが単層または多層で円筒状に丸まった構造を有するものである。単層ナノチューブ(SWNT)、2層ナノチューブ(DWNT),多層ナノチューブ(MWNT)のいずれを用いることもでき、単層ナノチューブ(SWNT)であることが好ましい。これは、均一で品質的に安定した材料が得られることと、分散安定性が得られやすいためである。
カーボンナノチューブは一般にレーザーアブレーション法、アーク放電、熱CVD法、プラズマCVD法、気相法、燃焼法などで製造することができるが、どのような方法で製造したカーボンナノチューブを用いても構わない。
第2の導電性材料2bは、グラフェン、金ナノフレーク、銀ナノフレーク、アルミニウムフレーク、カーボンブラック、金ナノ粒子、銀ナノ粒子、銅ナノ粒子等を用いることができる。第2の導電性材料2bは、グラフェン、カーボンブラックであることが好ましい。グラフェン、カーボンブラックは導電性が非常に高く安定であるためである。
第1の導電性材料2aと第2の導電性材料2bの組み合わせとしては、第1の導電性材料2aがカーボンナノチューブ、カーボンナノホーンであり、第2の導電性材料2bがグラフェン、カーボンブラックであることが好ましい。カーボンからなる導電性材料は、酸素や水分に対する耐久性が高く、比表面積の高い繊維で構成される感圧導電層3には最も適している。
 第2の導電性材料2bの質量比に対し、第1の導電性材料2aの質量比は少ないことが好ましい。その質量比は、第2の導電性材料2b:第1の導電性材料2aが3:1~25:1の範囲であることが好ましい。この範囲であれは、高分子材料2c中に、第1の導電性材料2aと第2の導電性材料2bとを均一に分散することができ、かつ十分な導電性繊維2の導電性を確保することができる。
特に導電性繊維における、第1の導電性材料2aの質量比が0.5wt%~5wt%であり、第2の導電性材料2bの質量比が5wt%~50wt%であることが好ましい。
 第2の導電性材料2bが、導電性の主要因であるため、第2の導電性材料2bの質量比が、第1の導電性材料2aの質量比よりも多いことで、圧力センサー用シート10の抵抗値変化量を大きくすることができ、圧力センサー用シート10の感度を高くすることができる。
 第1の導電性材料2aの質量比が1wt%~5wt%であり、第2の導電性材料2bの質量比が15wt%~50wt%であれば、より感度のよい圧力センサー用シート10として機能することができる。
 導電性繊維2における第1の導電性材料2aと第2の導電性材料2bとをあわせた質量比が20wt%~50wt%であることが好ましく、30wt%~40wt%であることがより好ましい。導電性繊維における第1の導電性材料2aと第2の導電性材料2bの合わせた存在比を変更すると、圧力センサー用シート10が変化できる抵抗値の値を制御することができる。第1の導電性材料2aおよび第2の導電性材料2bの合わせた存在比が20wt%より低いと、導電性繊維2に圧力印加時の導電性が劣化し、圧力センサー用シート10の感度が低下してしまう。また第1の導電性材料2aおよび第2の導電性材料2bの存在比が50wt%より大きいと、導電性繊維2中に第1の導電性材料2aおよび第2の導電性材料2bを均一に分散させることができなくなる。
高分子材料2cは、フッ素系ゴム、ウレタン系ゴム、シリコン系ゴム等の一般に使用されているエラストマーや、アクリル、ナイロン、ポリエステル等のエラストマー以外の高分子材料も用いることができる。中でも、導電性繊維2の高分子材料2cとして、エラストマーを用いることが好ましい。エラストマーは、柔らかく大きな歪が繰り返し作用しても機械的特性の変化が極めて小さい。圧力が作用した時に、導電性繊維2同士の重なり部に大きな歪が生じるが、エラストマーを母材として使用することで、圧力センサー用シートの高い柔軟性と、高い耐久性が両立できる。
高分子材料2cに硬い物質を選択すると、圧力センサー用シート10に圧力を加えた際の導電性繊維2同士の重なりが少なくなり、圧力センサー用シート10の感度が低下する。一方、軟らかい物質を選択すると、その逆で導電性繊維2同士の重なりが大きくなるため、圧力センサー用シート10の感度を上昇させることができる。そのため、圧力センサー用シート10の使用目的によって高分子材料2cは変更することができる。
導電性繊維2の直径は、第1の電極シート1aおよび第2の電極シート1bの厚さより小さいことが好ましい。導電性繊維2の直径が各電極シートより大きいと、導電性繊維2の表面に沿って各電極シートが局所的に変形し易くなる。その結果、圧力印加時に導電性繊維2と電極シートの接触状態が不規則になる。導電性繊維2の直径が、第1の電極シート1aおよび第2の電極シート1bの厚さより小さいと、このような接触状態の不規則性に伴う、圧力に対する抵抗値変化のばらつきを抑制することができる。
 導電性繊維2は、その直径が100nm~10μmであることが好ましく、200nm~2000nmであることがより好ましい。導電性繊維2の直径が変化すると、導電性繊維の剛性と比表面積と導電性繊維同士の接触面積が変化するため、圧力センサー用シート10の感度が変化する。その直径が200nm~2000nmであれば、十分感度の高い圧力センサー用シートとして機能することができる。極度に細い導電性繊維2は強度が低く、極度に太い導電性繊維2は剛性が高く、センサーシートの柔軟性を損なう。そのため、導電性繊維2の直径が当該範囲であることで、感度と柔軟性を両立することができる。
(圧力センサー)
図9は本発明の一実施形態に係る圧力センサー100の断面模式図である。図9に示すように圧力センサー用シート10と、圧力センサー用シート10の第1の電極シート1aまたは第2の電極シート1bの少なくとも一方がトランジスタ20と接続されている。
高い柔軟性を持つ圧力センサー用シート10では、細かい凹凸を有する表面での計測に適している。そのため、圧力分布を高い空間分解能で計測するために、電極を多数のセグメントに分割して、複数の測定点を一つの圧力センサー用シート10に配設する。電極セグメントをマトリックス状に多数配設するには、それぞれの電極セグメントをトランジスタでスイッチングすることが有効である。これにより、高機能な圧力センサーを実現できる。
圧力センサー100では、圧力センサー用シート10の抵抗値が変化することでトランジスタ20を流れる電流量が変化し、その電流値に応じた信号を外部に出力することで圧力センサー100として機能する。例えば、トランジスタ20として図9に示すような電界効果トランジスタを用いた場合、圧力印加によって圧力センサー用シート10の抵抗値が低下するため、ソース電極21とドレイン電極22間の電位差は大きくなり、流れる電流量が増加する。圧力センサー用シート10に印加する圧力と電流量との関係を予め取得しておけば、電流量に応じた信号出力の変化を読み取ることで圧力センサー100に印加された圧力量を検知することができる。
 圧力センサー100の総厚は、100μm以下であることが好ましい。100μmより薄ければ、非常にフレキシブルな圧力センサーとして複雑な形状にも追従することができる。
トランジスタ20は、圧力センサー100をフレキシブルにするために、有機トランジスタであることが好ましい。その構造は特に限定するものではないが、例えば図9に示すような電界効果トランジスタ等を用いることができる。
 一般に、有機トランジスタのオン抵抗はMΩオーダーと高く、ソース電極21とドレイン電極22間の電位差を変動させるためには、押圧時の圧力センサー用シート10の抵抗変化は、数MΩから100kΩのオーダーで変動することが望ましいと考えられている。本実施形態に係る圧力センサー用シート10は、前述のように10Ωオーダーから1010Ωオーダーまでの幅広い抵抗値変化を示すため好適に用いることができる。
(圧力センサー用シートの製造方法)
 本発明の一態様に係る圧力センサー用シートの製造方法は、高分子材料と導電性材料とを含む分散系液体をエレクトロスピニングデポジション法で電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成する。エレクトロスピニング法は第1の電極シート上において、導電性繊維が特別な接着剤や処理を行うことなく結着させることができるため、極細の繊維からなる感圧導電層を形成するのに好適である。
 圧力センサー用シートの製造方法は、溶媒に、第1の導電材料とイオン液体とを混合し、溶媒中に第1の導電材料が分散した第1の分散系を得る第1の工程と、溶媒に、第2の導電材料を混合し、溶媒中に第2の導電材料が分散した第2の分散系を得る第2の工程と、第1の分散系と第2の分散系を混合し、第3の分散系を得る第3の工程と、第3の分散系にエラストマーを加え、撹拌し、第4の分散系を得る第4の工程と、第4の分散系をエレクトロスピニングデポジション法で第1の電極シート上に導電性繊維が絡み合ってなる感圧導電層を形成する第5の工程と、を有することが好ましい。以下、第1~第5の工程を有する好ましい製造条件に基づいて圧力センサー用シートの製造方法について説明する。
〔第1の工程〕
 第1の工程は、溶媒に、第1の導電材料とイオン液体とを混合し、第1の溶媒中に第1の導電材料が分散した第1の分散系を得る。
溶媒としては、4-メチル2ペンタノン(4-methyl-2-pentanone)が好適である。第1の導電材料としては、カーボンナノチューブ、カーボンナノホーン、金属ナノワイヤー等を用いることができる。イオン液体としては、EMIBF、DEMEBF等を用いることができる。イオン液体は、第1の導電材料同士が凝集することを防ぐ役割がある。
 第1の工程において、第1の導電性材料同士を凝集させずに、効率的に分散させるためには、せん断力を加えることが好ましい。せん断力を加える方法は特に限定するものではないが、ボールミル、ローラーミル、振動ミル、ジェットミルなどを用いることができる。
 第1の工程において、第1の溶媒に対し第1の導電材料を0.2wt%~20wt%の範囲で加えることが好ましい。第1の導電材料の割合が、0.2wt%より少ないと良好な導電性を得にくい。一方、第1の材料の割合が、20wt%より多いと均一に分散させにくい。
 第1の工程において、第1の溶媒に対しイオン液体を1wt%~20wt%の範囲で加えることが好ましい。イオン液体の割合が、1wt%より少ないと第1の導電材料同士が凝集することを十分抑制することができない。一方、イオン液体の割合が、20wt%より多いと過剰なイオン液体を除去する必要がある。
〔第2の工程〕
第2の工程は、溶媒に、第2の導電材料を混合し、溶媒中に第2の導電材料が分散した第2の分散系を得る。
溶媒は、第1の工程の溶媒と同一のものを用いることができる。第2の導電材料としては、グラフェン、金ナノフレーク、銀ナノフレーク、アルミニウムフレーク、カーボンブラック、金ナノ粒子、銀ナノ粒子、銅ナノ粒子等を用いることができる。第2の工程においてもせん断力を加えることが好ましく、第1の工程と同一のものを用いることができる。
第2の工程においても、第1の工程と同様にイオン液体を更に、混合してもよい。
 第2の工程において、第2の溶媒に対し第2の導電材料を10wt%~80wt%の範囲で加えることが好ましく、6wt%~8wt%の範囲で加えることがより好ましい。第2の導電材料の割合が、10wt%より少ないと良好な導電性を得ることができない。一方、第2の材料の割合が、80wt%より多いと均一に分散させることができない。
〔第3の工程〕
 第3の工程は、第1の分散系と第2の分散系を混合し、第3の分散系を得る。第1の工程と第2の工程とで用いる溶媒は同一であるため、溶媒に第1の導電材料と第2の導電材料を一度に投入することも考えられる。しかしながら、一度に第1の導電材料と第2の導電材料を投入すると、それぞれが均一に溶媒中に分散しづらくなる。そのため、第1の分散系と第2の分散系をそれぞれ作製し、その後これらを混合し第3の分散系を得ることが重要である。
 第3の工程において、第1の分散系と第2の分散系を十分混ぜ合わせるために撹拌することが好ましい。この時の撹拌は機械的な撹拌で十分であり、熱等を印加する必要は無い。
〔第4の工程〕
 第4の工程は、第3の分散系にエラストマーを加え、撹拌し、第4の分散系を得る。
エラストマーとしては、フッ素系ゴム、ウレタン系ゴム、シリコン系ゴム等の一般に使用されるものを用いることができる。エラストマーの他に、アクリル、ナイロン、ポリエステル等の高分子材料も用いることができる。第3の分散系に追加するエラストマー材料を選択することで、第4の分散系の粘度が変化する。粘度が変化することで、最終的に形成される導電性繊維の直径及び硬度が変化する。これにより、圧力センサー用シートの感度が変化する。すなわち、エラストマーを変えることで圧力センサー用シートの感度を変化させることができる。
 第4の分散系におけるエラストマーの質量比は、10wt%~50wt%であることが好ましい。第4の分散系における第1の導電材料の質量比は、0.1wt%~5wt%であることが好ましく、第2の導電材料の質量比は、0.5wt%~25wt%であることが好ましい。
エラストマーの質量比が10wt%より小さいとエレクトロスピニングの工程で溶媒蒸発に時間がかかり、良好に繊維が形成するのが難しくなる。一方、エラストマーの質量比が50wt%より大きいと粘度が高くなり、第1の導電材料および第2の導電材料を均一に分散させることが難しくなる。
 エラストマー、第1の導電材料、第2の導電材料のそれぞれの比率を、この範囲内で調整することにより、圧力センサー用シートの抵抗値の範囲や感度を調整することができる。
 第4の工程における撹拌は4時間以上行うことが好ましい。エラストマーを追加することで、溶液の粘度が上がるため、十分に撹拌する必要があるためである。
〔第5の工程〕
第5の工程は、第4の分散系をエレクトロスピニングデポジション法で、導電性繊維を有する感圧導電層を形成する。ここで、エレクトロスピニングデポジション法について、図10を用いて説明する。
 本実施形態に係るエレクトロスピニングデポジション法では、シリンジ5のニードル5aと第1の電極シート1aの間に高電圧を印加しながら、シリンジ5中の第4の分散系4を押し出す。このときニードル5aと第1の電極シート1aの電位差によって、第4の分散系4がシリンジ5から急激に引き出され、第1の電極シート1aに向かってスプレーされる。スプレーされた第4の分散系4は、第1の電極シート1a上に導電性繊維2として綿状に堆積する。第4の分散系4の溶媒は、ニードル5aと第1の電極シート1aの間でほとんど蒸発するため、導電性繊維2中の溶媒の多くは、第1の電極シート1a上に綿状に堆積した時点でほとんど蒸発している。
第1の電極シート1a上に堆積した導電性繊維2中の溶媒は完全に蒸発していないことが好ましい。第1の電極シート1a上に堆積した導電性繊維2中にわずかに溶媒が残っていることにより、第1の電極シート1a上で導電性繊維2中の溶媒が蒸発する。その際に導電性繊維2の形状が図7に示すようにかまぼこ状に変化し、第1の電極シート1aと導電性繊維2が結着する。これにより、余計な接着剤等を用いずに、第1の電極シート1aと導電性繊維2を結着することができ、より高感度な圧力センサーを作製することができる。そのため、ニードル5aと第1の電極シート1a間の距離は、10cm~50cmであることが好ましい。
高分子材料と導電性材料とを含む分散系液体を、エレクトロスピニングデポジション法で第2の電極シート上に噴射して、導電性繊維が絡み合ってなる第2の感圧導電層を作製する工程と、第1の電極シート上に作製した感圧導電層と、第2の電極シート上に作製した第2の感圧導電層を結着する工程と、をさらに有してもよい。各電極シートと導電性繊維の結着を確実に行った後に、感圧導電層と第2の感圧導電層を結着することで、構造的にも電気的にも安定した圧力センサー用シートを製造できる。このときの結着は、前述と同様に溶媒の蒸発により結着してもよい。感圧導電層および第2の感圧導電層は、それぞれ絡み合った導電性繊維からなるため、感圧導電層と第2の感圧導電層とを接触させるだけでも、互いの導電性繊維が絡み合うことで結着し、十分な構造的安定性を示す。
 エレクトロスピニングデポジション法では、ニードル5aの細孔中を第4の分散系4が電位差によって素早く引き出される。このとき、第4の分散系4にせん断力が生じる為、第4の分散系4中で分散しきれず凝集している第1の導電材料および第2の導電材料の凝集を解消される。そのため、ニードル5aの細孔は、0.2mm~2mmの範囲であることが好ましい。
 電極シート上に形成する感圧導電層中に、非導電性繊維を混在させる場合、二つのシリンジにそれぞれの原料を注入し、同時にエレクトロスピニングデポジション法により感圧導電層を形成することが好ましい。エレクトロスピニングデポジション法により導電性繊維2と、非導電性繊維とを順に堆積させると、感圧導電層中に導電性を有する領域と有さない領域ができてしまい、導電性に不均一が生じてしまう。
 第4の工程後、24時間以内に第5の工程を行うことが好ましい。さらに好ましくは12時間以内に行うことが好ましい。24時間より長く、第4の分散系を放置すると、分散した第1の導電材料および第2の導電材料が再凝集する。12時間より長く第4の分散系を放置すると、ニードル5aの細孔中を通過する際のせん断力を用いても、第1の導電材料および第2の導電材料を再分散させることができなくなる。
以下、本発明の実施例について説明する。本発明は以下の実施例のみに限定されるものではない。
(実施例1)
 第1の工程として、4-メチル2ペンタノンからなる溶媒に、カーボンナノチューブを0.6wt%、イオン液体を2wt%の割合で混合した。この混合液を高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal,JN10,Jokoh)によってせん断力を加えることで、4-メチル2ペンタノンからなる溶媒にカーボンナノチューブが均一に分散された第1の分散系を得た。
 同様に、第2の工程として、4-メチル2ペンタノンからなる溶媒に、グラフェンを6wt%の割合で混合した。この混合液を高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal,JN10,Jokoh)によってせん断力を加えることで、4-メチル2ペンタノンからなる溶媒にグラフェンが均一に分散された第2の分散系を得た。
 次に第3の工程として、第1の分散系と第2の分散系をスターラーで2時間撹拌し、第3の分散系を得た。
 さらに第4の工程として、フッ素系ゴムであるG-912(商品名、ダイキン工業社製)を、第3の分散系に対し、25wt%の割合で混合し、スターラーで4時間撹拌し、第4の分散系を得た。このとき第4の分散系における、エラストマーとカーボンナノチューブとグラフェンの割合はそれぞれ、0.3wt%、3wt%、25wt%であった。
 最後に第5の工程として、得られた第4の分散系をニードル細孔が20nmのシリンジに注入し、ニードルの先端から25cmの位置に電極シートを設置した。そして、ニードルと電極シートの間に25kVの電圧をかけ、シリンジから第4の分散系を10μl/minの速度で送り出しながら、エレクトロスピニングデポジション法により電極シート上に導電性繊維が絡み合ってなる感圧導電層を、20cm×20cm角のサイズで作製した。
 得られた感圧導電層の膜厚は、4μmであった。このとき電極シートは1.4μmのPETフィルム上に、Auを50nm積層して作製した。
導電性繊維の直径は、300nm~400nmであり、導電性繊維中の第1の導電材料の質量比は、1wt%であり、第2の導電材料の質量比は、12wt%であった。
 図11は実施例1の圧力センサー用シートの写真である。この圧力センサー用シートの総厚は7μmであった。
(実施例2)
 実施例2は、第5の工程以外は、実施例1と同様の製造方法を用いて圧力センサーを作製した。実施例2では第5の工程において、第4の分散系を注入したシリンジと共に、第4の分散系とは導電性材料を含まないことだけが異なる溶液を注入したシリンジを用意した。これら二つのシリンジから第4の分散系と導電性材料を含まない溶液とを同時にそれぞれ送り出しながら、エレクトロスピニングデポジション法により電極シート上に20cm×20cm角の感圧導電層を作製した。このとき用いたシリンジのニードル径や、ニードルと電極シートとの距離や、ニードルと電極シート間に印加する電圧は、実施例1と同一とした。
得られた感圧導電層の膜厚は、4μmであり、感圧導電層中には、非導電性繊維を、導電性繊維:非導電繊維が1:1の割合で混合した。電極シートは1.4μmのPETフィルム上に、Auを50nm積層して作製した。導電性繊維の直径は、300nm~400nmであり、導電性繊維中の第1の導電材料の質量比は、1wt%であり、第2の導電材料の質量比は、12wt%であった。得られた圧力センサーの総厚は、7μmであった。
 図12は、実施例1および実施例2の圧力センサー用シートに対して印加された圧力に対する抵抗値の変化を示すグラフである。
 実施例1の圧力センサー用シートは、10Ωオーダーから1010Ωオーダーまでの抵抗値変化を示し、実施例2の圧力センサー用シートは、10Ωオーダーから1010Ωオーダーまでの抵抗値変化を示し、共に印加された圧力に対し、非常に大きな抵抗値変化を示している。
 実施例1の圧力センサー用シートに対し、実施例2の圧力センサー用シートは抵抗値変化が小さく感度が異なっている。これは、実施例2の圧力センサー用シートは、導電性繊維と非導電性繊維が混在しており、実施例1の導電性繊維からなる圧力センサー用シートと比較して感度が鈍くなっている。すなわち、圧力センサー用シートの導電性繊維と非導電性繊維との混在割合を変化させることで、容易に圧力センサー用シートの感度を調整することができる。
(実施例3)
 実施例3は、有機電界効果トランジスタが、12.5μm厚のPIフィルム上に形成されていること以外は、実施例1と同様の製造方法を用いて圧力センサーを作製した。得られた圧力センサーの層厚は29μmであった。
(実施例4)
 実施例4は、有機電界効果トランジスタが、75μm厚のPIフィルム上に形成されていること以外は、実施例1と同様の製造方法を用いて圧力センサーを作製した。得られた圧力センサーの層厚は154μmであった。
 図13は、実施例1、実施例3および実施例4の圧力センサー用シートを曲げた際の、曲げ半径に対する抵抗値変化を示したグラフである。
実施例1および2は、曲げ伸ばしを行っても、同じ曲げ半径において同じ抵抗値を示しており、曲げ伸ばし等にも適応しており、フレキシブルな温度センサー用シートとして機能していることが分かる。中でも、実施例1の圧力センサー用シートは、曲げ半径が0に近づいた状態(圧力センサー用シートがほぼ二つに折り重なった状態)でも、伸ばした状態と抵抗値の値が変わらない。すなわち、圧力センサー用シートに平行方向の圧力には、ほとんど反応していないことが分かる。言い換えると、圧力センサー用シートに垂直に印加された圧力のみを正確に測ることができ、複雑な形状や、曲げ伸ばし等の動きのある物体への圧力センサー用シートとしてより適している。
 図14Aは、実施例1の圧力センサー用シートを、シリコンチューブからなる人工血管に設置した写真であり、図14Bはその人工血管を脈動させた際の測定結果を示す。
 血管の脈動は、人工血管内に80mmHgと120mmHgの圧力で交互に液体を送ることで模擬した。図14Bで示すように、脈動に応じて、得られる電流値が変化していることがわかる。すなわち、動く物体にも適切に追従し、動く物体に加わる圧力を、高感度に測定できていることがわかる。
(実施例6)
実施例6では、実施例1の第1の工程を行っていない点が異なる。すなわち、実施例6の圧力センサー用シートは、導電性繊維内の導電材料としてグラフェンのみを用いている点が、実施例1の圧力センサー用シートと異なる。
図15は、実施例1と実施例6に係る圧力センサー用シートに対して印加された圧力に対する抵抗値の変化を示すグラフである。実施例6の圧力センサー用シートは、実施例1の圧力センサー用シートと比較して、圧力に対する抵抗値変化の感度は劣るが、十分圧力センサーとして機能できることを示している。
1a 第1の電極シート、1b 第2の電極シート、2 導電性繊維、2a 第1の導電材料、2b 第1の導電材料、2c 高分子材料、3 感圧導電層、4 第4の分散系、5 シリンジ、5a ニードル、10 圧力センサー用シート、20 トランジスタ、21 ソース電極、22 ドレイン電極、100 圧力センサー

Claims (23)

  1.  第1の電極シートと、第2の電極シートと、前記第1の電極シートと前記第2の電極シートの間に配置され、押しつぶされることで抵抗値が変化する導電性繊維が絡み合ってなる綿状の感圧導電層と、を備え、
    前記導電性繊維は二つの電極シートに平行な方向に配向して延在し、かつ垂直な方向に積層して配設され、
    さらに前記感圧導電層を構成する前記導電性繊維同士の間に、空隙部を有することを特徴とする圧力センサー用シート。
  2.  前記導電性繊維が、高分子材料に導電性材料が分散されたものであることを特徴とする請求項1に記載の圧力センサー用シート。
  3. 前記導電性材料が、第1の導電性材料及び第2の導電性材料からなり、
    前記第1の導電性材料は線状の導電性材料であり、
    前記第2の導電性材料は粒子状(鱗片状を含む)の導電性材料であることを特徴とする請求項2に記載の圧力センサー用シート。
  4.  前記第1の導電性材料が、カーボンナノチューブまたはカーボンナノホーンであり、
    前記第2の導電性材料が、グラフェンまたはカーボンブラックであることを特徴とする請求項3に記載の圧力センサー用シート。
  5. 前記導電性繊維における、前記第1の導電性材料の質量比は、前記第2の導電性材料の質量比より小さいことを特徴とする請求項3に記載の圧力センサー用シート。
  6. 前記感圧導電層を構成する前記導電性繊維のうち、前記第1の電極シートまたは前記第2の電極シートに接触する部分の少なくとも一部が、前記第1の電極シートまたは前記第2の電極シートに結着していることを特徴とする請求項1に記載の圧力センサー用シート。
  7. 前記感圧導電層と前記第2電極との間に、第2の導電性繊維が絡み合ってなる第2の感圧導電層をさらに有し、
    前記導電性繊維の前記第1の電極シートに接触する部分の少なくとも一部が前記第1の電極シートに結着し、
    前記第2の導電性繊維の前記第2の電極シートに接触する部分の少なくとも一部が前記第2の電極シートに結着していることを特徴とする請求項1に記載の圧力センサー用シート。
  8. 前記感圧導電層と前記第2の感圧導電層とが接着されていることを特徴とする請求項7に記載の圧力センサー用シート。
  9. 前記高分子材料が、エラストマーであることを特徴とする請求項2に記載の圧力センサー用シート。
  10. 前記第1の電極シートおよび前記第2の電極シートが、透明電極であることを特徴とする請求項1に記載の圧力センサー用シート。
  11.  前記感圧導電層は、前記電極シートに垂直な方向から見て、前記導電性繊維がない空隙部を有していることを特徴とする請求項1に記載の圧力センサー用シート。
  12. 前記導電性繊維の直径は、前記第1の電極シートおよび前記第2の電極シートの厚さより小さいことを特徴とする請求項1に記載の圧力センサー用シート。
  13.  前記導電性繊維の直径が100nm~10μmであることを特徴とする請求項1に記載の圧力センサー用シート。
  14. 前記感圧導電層の厚さは、前記第1の電極シートと前記第2の電極シートの厚さの合計より小さいことを特徴とする請求項1に記載の圧力センサー用シート。
  15. 前記第1の電極シートと前記第2の電極シートの厚さは、略同等であることを特徴とする請求項1に記載の圧力センサー用シート。
  16. 前記第1の電極シートまたは前記第2の電極シートは通気性を有することを特徴とする請求項1に記載の圧力センサー用シート。
  17. 前記感圧導電層の厚さが、前記導電性繊維の直径の2倍以上、100倍以下であることを特徴とする請求項1に記載の圧力センサー用シート。
  18.  前記感圧導電層の厚さが、0.5μm~100μm以下であることを特徴とする請求項1に記載の圧力センサー用シート。
  19.  前記感圧導電層中に、非導電性繊維が混在していることを特徴とする請求項1に記載の圧力センサー用シート。
  20.  請求項1に記載の圧力センサー用シートの、前記第1の電極シートまたは前記第2の電極シートの少なくとも一方の電極が、トランジスタに接続されていることを特徴とする圧力センサー。
  21.  請求項1に記載の圧力センサー用シートの製造方法であって、
     高分子材料と導電性材料とを含む分散系液体をエレクトロスピニングデポジション法で第1の電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成することを特徴とする圧力センサー用シートの製造方法。
  22.  溶媒に、第1の導電材料とイオン液体とを混合し、溶媒中に第1の導電材料が分散した第1の分散系を得る第1の工程と、
     溶媒に、第2の導電材料を混合し、溶媒中に第2の導電材料が分散した第2の分散系を得る第2の工程と、
     第1の分散系と第2の分散系を混合し、第3の分散系を得る第3の工程と、
     第3の分散系に高分子材料を加え、撹拌し、第4の分散系を得る第4の工程と、
     第4の分散系をエレクトロスピニングデポジション法で第1の電極シート上に噴射して、導電性繊維が絡み合ってなる感圧導電層を形成する第5の工程と、
    を有することを特徴とする圧力センサー用シートの製造方法。
  23.  前記高分子材料と前記導電性材料とを含む分散系液体を、エレクトロスピニングデポジション法で第2の電極シート上に噴射して、導電性繊維が絡み合ってなる第2の感圧導電層を形成する工程と、
    前記感圧導電層と、前記第2の感圧導電層を結着させる工程と、をさらに有することを特徴とする請求項21または22のいずれかに記載の圧力センサー用シートの製造方法。
PCT/JP2015/053287 2014-02-06 2015-02-05 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法 WO2015119211A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167019596A KR102254942B1 (ko) 2014-02-06 2015-02-05 압력 센서용 시트, 압력 센서 및 압력 센서용 시트의 제조 방법
EP15746322.5A EP3104150B1 (en) 2014-02-06 2015-02-05 Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
CN201580007199.3A CN105960581B (zh) 2014-02-06 2015-02-05 压力传感器用片、压力传感器及压力传感器用片的制造方法
US15/116,003 US10401240B2 (en) 2014-02-06 2015-02-05 Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
JP2015561033A JP6424408B2 (ja) 2014-02-06 2015-02-05 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014021488 2014-02-06
JP2014-021488 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015119211A1 true WO2015119211A1 (ja) 2015-08-13

Family

ID=53778012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053287 WO2015119211A1 (ja) 2014-02-06 2015-02-05 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法

Country Status (6)

Country Link
US (1) US10401240B2 (ja)
EP (1) EP3104150B1 (ja)
JP (1) JP6424408B2 (ja)
KR (1) KR102254942B1 (ja)
CN (1) CN105960581B (ja)
WO (1) WO2015119211A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092048A (ko) * 2016-02-02 2017-08-10 주식회사 아모센스 터치압력 감지 센서
WO2018037881A1 (ja) * 2016-08-25 2018-03-01 日本電気株式会社 フレキシブル電極及びセンサー素子
WO2018087874A1 (ja) * 2016-11-11 2018-05-17 株式会社フジクラ 荷重検知センサ及び荷重検知センサユニット
CN109100062A (zh) * 2018-07-10 2018-12-28 吉林大学 一种通过控制三维导电纱网结构制造压阻传感器的方法
CN110411626A (zh) * 2018-04-28 2019-11-05 五邑大学 一种基于交叉结构的测力计
JP2019200189A (ja) * 2018-05-18 2019-11-21 オムロン株式会社 圧力センサ、圧力センサモジュール、及びロボットハンド
JP2019203747A (ja) * 2018-05-22 2019-11-28 ニッタ株式会社 感圧センサー
CN111103074A (zh) * 2018-10-29 2020-05-05 精工爱普生株式会社 压敏传感器以及机械手
CN112161738A (zh) * 2020-09-17 2021-01-01 五邑大学 气压传感器及制作方法
JP2021047189A (ja) * 2015-10-07 2021-03-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California グラフェン系マルチモーダルセンサー
JP2021522623A (ja) * 2018-04-19 2021-08-30 ペイマン、セルバティーPeyman Servati 身体の少なくとも二つの部分のトポグラフィを推定する方法およびシステム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042757A1 (ja) * 2016-09-05 2018-03-08 日本電気株式会社 電磁波吸収材料
CN108344532A (zh) * 2017-01-23 2018-07-31 华邦电子股份有限公司 压力传感器及其制造方法
CN110411620B (zh) * 2018-04-28 2021-05-11 五邑大学 一种阈值可调的测力计
CN109029801B (zh) * 2018-05-25 2020-04-28 苏州大学 一种金属纳米线复合膜压力传感器及其制备方法
KR102154011B1 (ko) * 2018-08-27 2020-09-09 스피나 시스템즈 주식회사 압력 센서를 이용한 치아 교합 측정기 및 이의 제조 방법
CN109211443A (zh) * 2018-09-18 2019-01-15 常州大学 一种弯曲不敏感压力传感器
CN109781315B (zh) * 2019-02-02 2020-08-25 五邑大学 一种触觉传感器
EP3726191A1 (en) * 2019-04-17 2020-10-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Pressure sensor
WO2020247697A1 (en) * 2019-06-05 2020-12-10 Liquid Wire Inc. Deformable sensors with selective restraint
CN111256883B (zh) * 2019-08-06 2020-10-30 清华大学 基于碳黑无尘纸的柔性压力传感装置及其制造方法
CN110608825B (zh) * 2019-09-12 2021-08-20 复旦大学 基于聚酰亚胺基底微结构的柔性压力传感器及其制备方法
WO2021106227A1 (ja) * 2019-11-29 2021-06-03 村田機械株式会社 接圧センサ、それを備えたニット製品、および接圧センサの製造方法
US20230143439A1 (en) * 2020-04-27 2023-05-11 Virginia Tech Intellectual Properties, Inc. A stetchable strain-sensing polymer fiber, devices made therewith, method of making stetchable strain-sensing polymer fiber
KR102389249B1 (ko) * 2020-09-24 2022-04-22 한국과학기술연구원 정렬된 카본 나노튜브 시트를 포함하는 압력 센서 및 이를 제조하는 방법
CN113913952B (zh) * 2021-09-29 2023-04-14 北京航空航天大学 一种三明治结构的聚酰亚胺基电磁屏蔽薄膜及其制备方法
KR102604229B1 (ko) * 2021-12-23 2023-11-20 광운대학교 산학협력단 전기방사 기반 수소결합 하이브리드 나노 섬유 막 과 압력센서 및 그 제조방법
CN114993527B (zh) * 2022-05-31 2023-02-28 电子科技大学 基于碳化静电纺丝纤维的柔性电阻式压力传感器及制备
CN116913582B (zh) * 2023-08-03 2024-02-23 广州恒星传导科技股份有限公司 一种应用在刹车片磨损监控上的线缆
CN116835523B (zh) * 2023-08-31 2023-11-28 常州天策电子科技有限公司 基于纳米线阵列薄膜压力传感器的制备方法及压力传感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132033A (en) * 1981-02-09 1982-08-16 Sharp Corp Pressure sensor
JP2004125571A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology 透明圧電センサおよびそれを備えた入力装置
JP2006153471A (ja) * 2004-11-25 2006-06-15 Hitachi Cable Ltd 感圧センサ
JP2010101827A (ja) * 2008-10-27 2010-05-06 Kuraray Co Ltd 圧力検知装置
JP2010537438A (ja) * 2007-08-29 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト エレクトロスピニングによる導電性ナノ構造物を生成する装置及び方法
JP2011102457A (ja) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd 導電性織物及び導電性織物を使用したタッチセンサ装置
JP2012028051A (ja) * 2010-07-20 2012-02-09 Osaka Univ 導電性ワイヤ、導電性ワイヤの製造装置、導電性ワイヤの製造方法及び配線基板の製造方法
JP2013195331A (ja) * 2012-03-22 2013-09-30 Jsr Corp 異方導電性シートおよびその用途

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123216B1 (en) * 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US6809280B2 (en) 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
WO2004031711A1 (ja) 2002-10-01 2004-04-15 National Institute Of Advanced Industrial Science And Technology 圧電センサおよびそれを備えた入力装置
CN100389472C (zh) * 2003-01-23 2008-05-21 上海奥威科技开发有限公司 一种混合型超级电容器制造方法
US7367836B2 (en) * 2004-07-13 2008-05-06 Emerson Network Power-Embedded Computing, Inc. RTM alignment and keying mechanism
JP5135757B2 (ja) * 2006-01-13 2013-02-06 日産自動車株式会社 導電性高分子からなる布帛を用いたセンサ、アクチュエータ
JP5467322B2 (ja) 2006-12-11 2014-04-09 国立大学法人名古屋大学 感圧シート
JP2010519528A (ja) * 2007-02-23 2010-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 衣料用繊維製品内での剪断力及び圧力の測定
CN101303264B (zh) * 2007-05-09 2010-05-26 清华大学 电离规
US8108157B2 (en) * 2008-02-18 2012-01-31 The University Of Akron Electrospun fibrous nanocomposites as permeable, flexible strain sensors
JP2010014694A (ja) * 2008-06-04 2010-01-21 Nissan Motor Co Ltd 負荷検知繊維
CN102032964B (zh) * 2009-09-29 2012-05-02 张美超 感压膜及其使用方法
US9099224B2 (en) * 2009-10-01 2015-08-04 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Apparatus and method for nanocomposite sensors
CN102074648B (zh) * 2009-11-24 2015-04-15 清华大学 压电元件及其制备方法
CN102656007A (zh) * 2009-11-30 2012-09-05 南洋理工学院 有孔膜传感器
FR2953824B1 (fr) * 2009-12-11 2015-04-24 Univ Toulouse 3 Paul Sabatier Materiau solide composite piezoelectrique et/ou pyroelectrique, procede d'obtention et utilisation d'un tel materiau
CN102136836B (zh) * 2010-01-22 2013-02-13 清华大学 压控开关、其应用方法及使用该压控开关的报警系统
KR101225143B1 (ko) * 2010-02-24 2013-01-25 (주)씨아이제이 연성 전극소재 및 그 제조방법
KR101222028B1 (ko) 2010-07-20 2013-01-14 한국표준과학연구원 신축성 촉각센서의 제조방법
JP5636290B2 (ja) 2011-01-12 2014-12-03 キヤノン化成株式会社 感圧センサ
CN103429530B (zh) * 2011-02-28 2015-11-25 国立研究开发法人科学技术振兴机构 石墨烯的制造方法、基板上制造的石墨烯以及基板上的石墨烯
TWI442035B (zh) 2011-07-22 2014-06-21 Univ Nat Taiwan 壓力感測器及感測陣列
JP2013068562A (ja) 2011-09-26 2013-04-18 Fujikura Ltd 圧力センサ
CN103063332A (zh) * 2011-10-19 2013-04-24 郭松 柔软材料压力传感器用柔软感应材料的设计方法
JP5924725B2 (ja) * 2011-11-14 2016-05-25 ヤマハ株式会社 歪みセンサ及び歪みセンサの製造方法
JP2013136141A (ja) 2011-11-30 2013-07-11 Canon Inc 把持装置、ロボット装置及び把持装置の制御方法
US9400221B2 (en) * 2012-03-05 2016-07-26 Prysmian S.P.A. Method for detecting torsion in a cable, electric cable with torsion sensor and method for manufacturing said cable
CN102717536B (zh) * 2012-04-12 2014-10-15 东华大学 一种碳纳米管导电复合膜的制备方法
KR101412623B1 (ko) * 2012-05-10 2014-07-01 한국표준과학연구원 압저항 센싱감도가 향상된 탄소나노튜브 복합체 및 그 제조방법, 이 탄소나노튜브 복합체를 갖는 압력감응센서
CN102692288B (zh) 2012-06-15 2014-03-19 青岛大学 一种柔性力敏传感器的制备方法
CN103208618B (zh) * 2013-04-24 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 锂离子电池碳硫复合正极材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132033A (en) * 1981-02-09 1982-08-16 Sharp Corp Pressure sensor
JP2004125571A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology 透明圧電センサおよびそれを備えた入力装置
JP2006153471A (ja) * 2004-11-25 2006-06-15 Hitachi Cable Ltd 感圧センサ
JP2010537438A (ja) * 2007-08-29 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト エレクトロスピニングによる導電性ナノ構造物を生成する装置及び方法
JP2010101827A (ja) * 2008-10-27 2010-05-06 Kuraray Co Ltd 圧力検知装置
JP2011102457A (ja) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd 導電性織物及び導電性織物を使用したタッチセンサ装置
JP2012028051A (ja) * 2010-07-20 2012-02-09 Osaka Univ 導電性ワイヤ、導電性ワイヤの製造装置、導電性ワイヤの製造方法及び配線基板の製造方法
JP2013195331A (ja) * 2012-03-22 2013-09-30 Jsr Corp 異方導電性シートおよびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104150A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879848B2 (en) 2015-10-07 2024-01-23 The Regents Of The University Of California Graphene-based multi-modal sensors
JP7291112B2 (ja) 2015-10-07 2023-06-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア グラフェン系マルチモーダルセンサー
JP2021047189A (ja) * 2015-10-07 2021-03-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California グラフェン系マルチモーダルセンサー
KR20170092048A (ko) * 2016-02-02 2017-08-10 주식회사 아모센스 터치압력 감지 센서
KR102427788B1 (ko) * 2016-02-02 2022-08-02 주식회사 아모센스 터치압력 감지 센서
WO2018037881A1 (ja) * 2016-08-25 2018-03-01 日本電気株式会社 フレキシブル電極及びセンサー素子
US10937598B2 (en) 2016-08-25 2021-03-02 Nec Corporation Flexible electrode and sensor element
WO2018087874A1 (ja) * 2016-11-11 2018-05-17 株式会社フジクラ 荷重検知センサ及び荷重検知センサユニット
JP7462610B2 (ja) 2018-04-19 2024-04-05 ペイマン、セルバティー 身体の少なくとも二つの部分のトポグラフィを推定する方法およびシステム
JP2021522623A (ja) * 2018-04-19 2021-08-30 ペイマン、セルバティーPeyman Servati 身体の少なくとも二つの部分のトポグラフィを推定する方法およびシステム
CN110411626B (zh) * 2018-04-28 2021-05-11 五邑大学 一种基于交叉结构的测力计
CN110411626A (zh) * 2018-04-28 2019-11-05 五邑大学 一种基于交叉结构的测力计
JP2019200189A (ja) * 2018-05-18 2019-11-21 オムロン株式会社 圧力センサ、圧力センサモジュール、及びロボットハンド
JP7059795B2 (ja) 2018-05-18 2022-04-26 オムロン株式会社 圧力センサ、圧力センサモジュール、及びロボットハンド
JP2019203747A (ja) * 2018-05-22 2019-11-28 ニッタ株式会社 感圧センサー
CN109100062B (zh) * 2018-07-10 2020-11-24 吉林大学 一种通过控制三维导电纱网结构制造压阻传感器的方法
CN109100062A (zh) * 2018-07-10 2018-12-28 吉林大学 一种通过控制三维导电纱网结构制造压阻传感器的方法
CN111103074B (zh) * 2018-10-29 2021-09-28 精工爱普生株式会社 压敏传感器以及机械手
CN111103074A (zh) * 2018-10-29 2020-05-05 精工爱普生株式会社 压敏传感器以及机械手
CN112161738A (zh) * 2020-09-17 2021-01-01 五邑大学 气压传感器及制作方法
CN112161738B (zh) * 2020-09-17 2022-04-08 五邑大学 气压传感器及制作方法

Also Published As

Publication number Publication date
JP6424408B2 (ja) 2018-11-21
EP3104150A4 (en) 2017-10-11
KR20160117439A (ko) 2016-10-10
EP3104150B1 (en) 2020-03-11
JPWO2015119211A1 (ja) 2017-03-23
CN105960581B (zh) 2022-04-08
US10401240B2 (en) 2019-09-03
KR102254942B1 (ko) 2021-05-24
EP3104150A1 (en) 2016-12-14
US20170167928A1 (en) 2017-06-15
CN105960581A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2015119211A1 (ja) 圧力センサー用シート、圧力センサーおよび圧力センサー用シートの製造方法
Zhang et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer
Liu et al. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions
Yang et al. Graphene textile strain sensor with negative resistance variation for human motion detection
Zhao et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features
Wu et al. Highly flexible and sensitive wearable E-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available
Dang et al. Printable stretchable interconnects
Jiang et al. Heterogeneous strain distribution of elastomer substrates to enhance the sensitivity of stretchable strain sensors
Song et al. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks
Zhang et al. Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors
Wang et al. Nanofiber/nanowires-based flexible and stretchable sensors
Xiang et al. 3D printed high-performance flexible strain sensors based on carbon nanotube and graphene nanoplatelet filled polymer composites
Lu et al. Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending
Zhou et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors
Lin et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics
Pang et al. Multifunctional mechanical sensors for versatile physiological signal detection
Yi et al. Flexible piezoresistive strain sensor based on CNTs–polymer composites: a brief review
Wang et al. Strain sensor for full-scale motion monitoring based on self-assembled PDMS/MWCNTs layers
Pyo et al. Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators
Zhang et al. Silver nanowire/silver/poly (dimethylsiloxane) as strain sensors for motion monitoring
Raman et al. Intrinsically conducting polymers in flexible and stretchable resistive strain sensors: a review
Kim et al. M13 bacteriophage-assisted morphological engineering of crack-based sensors for highly sensitive and wide linear range strain sensing
Zhou et al. Crack engineering boosts the performance of flexible sensors
You et al. Novel graphene planar architecture with ultrahigh stretchability and sensitivity
Selvan T et al. Printable carbon nanotube-liquid elastomer-based multifunctional adhesive sensors for monitoring physiological parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561033

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019596

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015746322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15116003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE