CN108344532A - 压力传感器及其制造方法 - Google Patents

压力传感器及其制造方法 Download PDF

Info

Publication number
CN108344532A
CN108344532A CN201710058129.1A CN201710058129A CN108344532A CN 108344532 A CN108344532 A CN 108344532A CN 201710058129 A CN201710058129 A CN 201710058129A CN 108344532 A CN108344532 A CN 108344532A
Authority
CN
China
Prior art keywords
oxide
pressure sensor
pressure
dimensional material
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710058129.1A
Other languages
English (en)
Inventor
何羽轩
蔡明志
谢明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to CN201710058129.1A priority Critical patent/CN108344532A/zh
Priority to US15/669,972 priority patent/US10323996B2/en
Publication of CN108344532A publication Critical patent/CN108344532A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/10Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in inductance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/10ROM devices comprising bipolar components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供压力传感器及其制造方法。压力传感器包括一薄膜晶体管阵列以及覆盖所述薄膜晶体管阵列的一感压层。所述感压层包括在相同平面排列的一维材料或二维材料以及数层绝缘层,所述绝缘层与一维或二维材料交替堆叠,因此能够有效提高压力解析度。

Description

压力传感器及其制造方法
技术领域
本发明涉及一种压力感测技术,且特别涉及一种压力传感器及其制造方法。
背景技术
在现有技术中,压力传感器中的感压层大多是在树脂中混合导电粒子的方式形成,其是通过在受压时,厚度变薄,输出电阻降低,而可以作为感压层使用。但由于导电粒子的导电特性没有方向性,所以除了受压的区域会产生电阻变化之外,未受压的区域也容易受到影响,导致压力解析度变差。因此,如何改善压力传感器的前述问题,使其能提供优异解析度乃当前重要研发的课题。
发明内容
本发明提供一种压力传感器,能够有效提高压力解析度。
本发明另提供一种压力传感器,也能够有效提高压力解析度。
本发明又提供一种压力传感器的制造方法,能制作出压力解析度高的压力传感器。
本发明的一种压力传感器包括一薄膜晶体管阵列以及覆盖所述薄膜晶体管阵列的一感压层。其中,所述感压层包括在相同平面排列的数个一维材料以及数层绝缘层,所述一维材料和所述绝缘层交替堆叠。
本发明的另一种压力传感器包括一薄膜晶体管阵列以及覆盖所述薄膜晶体管阵列的一感压层。其中,所述感压层包括数个二维材料以及数层绝缘层,所述二维材料和所述绝缘层交替堆叠。
在本发明的上述实施例中,所述感压层可为感应电阻式。
在本发明的一实施例中,所述一维材料的直径可为5nm-100nm。
在本发明的一实施例中,所述一维材料的长径比可大于100。
在本发明的一实施例中,所述一维材料可包括金属纳米线、纳米碳管或金属氧化物半导体。
在本发明的一实施例中,所述金属纳米线的金属可包括金、银或铜。
在本发明的一实施例中,所述金属氧化物半导体可包括氧化锌、氧化钛、氧化钨、氧化钼、氧化钒、氧化铜、氧化镍、氧化钴、氧化铁或氧化锡。
在本发明的另一实施例中,所述二维材料可包括石墨烯氧化物或二硫化钼。
本发明的压力传感器的制造方法,包括形成一薄膜晶体管阵列以及在所述薄膜晶体管阵列上利用3D打印形成一感压层。所述感压层包括交替堆叠的数层绝缘层以及于相同平面排列的数个一维材料或数个二维材料。
基于上述,本发明的压力传感器通过在感压层中设置交替堆叠的绝缘层以及于相同平面排列的一维材料或二维材料,使得感压层内的导电结构成为具有方向性的导电层,来提高压力传感器的压力解析度。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所示附图作详细说明如下。
附图说明
图1是依照本发明的一实施例的一种压力传感器的立体示意图;
图2A是图1的压力传感器,在未受压情况下的剖面示意图;
图2B是图2A的压力传感器,在受压情况下的剖面示意图;
图3是依照本发明的另一实施例的一种压力传感器的制造流程步骤图。
附图标记说明:
100:压力传感器;
102:薄膜晶体管阵列;
104:感压层;
206:一维材料;
208:绝缘层;
210:第一薄膜晶体管元件;
212:第二薄膜晶体管元件;
214:压力;
216:区域;
300、302:步骤。
具体实施方式
图1是依照本发明的一实施例的一种压力传感器的立体示意图。
请参照图1。本实施例的一种压力传感器100包括薄膜晶体管阵列102以及覆盖所述薄膜晶体管阵列102的感压层104。感压层104例如是感应电阻式。
以下,配合图2A和图2B示例性地说明图1的压力传感器的详细结构及其实施方式。
请先参照图2A。本实施例的压力传感器100包括薄膜晶体管阵列102以及覆盖所述薄膜晶体管阵列102的感压层104。所述感压层104包括在相同平面排列的数个一维材料206以及数层绝缘层208,所述一维材料206和所述绝缘层208交替堆叠,使得层与层之间的一维材料206不会互相接触。
在本实施例中,所述一维材料的直径通常为5nm-100nm,较佳为20nm-80nm,更佳为40nm-60nm。此外,就良好导电性质而言,只要所述一维材料的长径比(aspect ratio)大于100,所述一维材料的长度没有特别限制。举例来说,所述一维材料可包括金属纳米线、纳米碳管或金属氧化物半导体。金属纳米线的金属可包括金、银或铜,但不限于此。所述金属氧化物半导体可包括氧化锌、氧化钛、氧化钨、氧化钼、氧化钒、氧化铜、氧化镍、氧化钴、氧化铁或氧化锡,但不限于此。
在图2A和图2B中,为方便说明仅示出相邻的两个薄膜晶体管元件(第一薄膜晶体管元件210、第二薄膜晶体管元件212),但应理解,薄膜晶体管阵列可包含更多的薄膜晶体管元件,而非仅限于图2A或图2B中所显示的数量。
在未施加压力时,如图2A所示,第一薄膜晶体管元件210上的和第二薄膜晶体管元件212上的一维材料206之间因为有绝缘层208隔开,电流难以在其间传递,所以呈现高电阻的状态。当在第一薄膜晶体管元件210的区域施加压力214时,如图2B所示,第一薄膜晶体管元件210上的感压层104因受压而形变,使得一维材料206之间的距离缩短,电流容易在一维材料206之间传递,感压层104的电阻下降。而第二薄膜晶体管元件212上的感压层104虽然也因为压力214而产生形变,但因为不是直接位于施力点上,故即使产生形变,但是具有方向性的一维材料206之间并不容易接触,所以在远离施力点的区域216的感压层104仍维持高电阻。因此,相较于以导电粒子形成感压层的现有技术,本发明能提供较佳的压力解析度,可应用于指纹识别、足压感测之类的压力图像感测技术范畴,但不限于此。但凡需要应用压力感测的场合,均可使用本发明。
此外,上述一维材料206也可改以二维材料(未显示)取代,使二维材料和绝缘层208交替堆叠而成感应层。所述二维材料可列举包括石墨烯氧化物(graphene oxide)或二硫化钼(MoS2)等,但不限于此。由于二维材料的结构也能通过和绝缘层208交替堆叠,使得层与层之间的二维材料不会互相接触,所以其实施方式与一维材料相似,故不再赘述。
以下,将说明依照本发明的另一实施例的压力传感器的制造方法,请参照图3。
首先,进行步骤300,形成一薄膜晶体管阵列(TFT array),且形成薄膜晶体管阵列的方式可采用任何已知的制造方法。
然后,进行步骤302,在所述薄膜晶体管阵列上利用3D打印形成一感压层,所述感压层包括交替堆叠的数层绝缘层以及于相同平面排列的一维材料或二维材料,且所述一维材料与所述二维材料可参照上述各实施例所记载,故不再赘述。在感压层为一维材料的情况下,是在薄膜晶体管阵列上交替形成绝缘层与一维材料,所以层与层的一维材料之间均未受压的情况下是不会接触的,并在感压层受到一定程度的压力后,才能让电流在一维材料之间传递,而改变(降低)压力传感器的电阻。
而在感压层包括二维材料的情况下,同样是在薄膜晶体管阵列上交替形成绝缘层与二维材料,其结果也与一维材料所构成的感压层一样。
另外,形成感压层的方法除3D打印之外,也可采用网版印刷、凹版(gravure)印刷等适用于卷对卷(roll to roll)的制造方法。
综上所述,本发明的压力传感器通过在感压层中将在相同平面排列的数个一维材料与绝缘层交替堆叠,或者将数个二维材料与绝缘层交替堆叠,能够提高压力传感器的压力解析度。这是因为一维材料之间或二维材料之间的电流传递具有方向性,所以相较于以导电粒子形成感压层的现有技术,本发明能提供较佳的压力解析度。
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,但这些更改与润饰均应落入本发明的保护范围内。

Claims (15)

1.一种压力传感器,其特征在于,包括:
薄膜晶体管阵列;以及
感压层,覆盖所述薄膜晶体管阵列,其中所述感压层包括在相同平面排列的多个一维材料以及多层绝缘层,所述多个一维材料和所述多层绝缘层交替堆叠。
2.根据权利要求1所述的压力传感器,其特征在于,所述感压层为感应电阻式。
3.根据权利要求1所述的压力传感器,其特征在于,所述一维材料的直径为5nm-100nm。
4.根据权利要求1所述的压力传感器,其特征在于,所述一维材料的长径比大于100。
5.根据权利要求1所述的压力传感器,其特征在于,所述一维材料包括金属纳米线、纳米碳管或金属氧化物半导体。
6.根据权利要求5所述的压力传感器,其特征在于,所述金属纳米线的金属包括金、银或铜。
7.根据权利要求5所述的压力传感器,其特征在于,所述金属氧化物半导体包括氧化锌、氧化钛、氧化钨、氧化钼、氧化钒、氧化铜、氧化镍、氧化钴、氧化铁或氧化锡。
8.一种压力传感器,其特征在于,包括:
薄膜晶体管阵列;以及
感压层,覆盖所述薄膜晶体管阵列,其中所述感压层包括多个二维材料以及多层绝缘层,所述多个二维材料和所述多层绝缘层交替堆叠。
9.根据权利要求8所述的压力传感器,其特征在于,所述二维材料包括石墨烯氧化物或二硫化钼。
10.根据权利要求8所述的压力传感器,其特征在于,所述感压层为感应电阻式。
11.一种压力传感器的制造方法,其特征在于,包括:
形成一薄膜晶体管阵列;以及
在所述薄膜晶体管阵列上利用3D打印形成一感压层,所述感压层包括交替堆叠的多层绝缘层以及于相同平面排列的多个一维材料或多个二维材料。
12.根据权利要求11所述的压力传感器的制造方法,其特征在于,所述一维材料的直径为5nm-100nm。
13.根据权利要求11所述的压力传感器的制造方法,其特征在于,所述一维材料的长径比大于100。
14.根据权利要求11所述的压力传感器的制造方法,其特征在于,所述一维材料包括金属纳米线、纳米碳管或金属氧化物半导体,所述二维材料包括石墨烯氧化物或二硫化钼。
15.根据权利要求14所述的压力传感器的制造方法,其特征在于,所述金属纳米线的金属包括金、银或铜,所述金属氧化物半导体包括氧化锌、氧化钛、氧化钨、氧化钼、氧化钒、氧化铜、氧化镍、氧化钴、氧化铁或氧化锡。
CN201710058129.1A 2017-01-23 2017-01-23 压力传感器及其制造方法 Pending CN108344532A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710058129.1A CN108344532A (zh) 2017-01-23 2017-01-23 压力传感器及其制造方法
US15/669,972 US10323996B2 (en) 2017-01-23 2017-08-07 Pressure sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710058129.1A CN108344532A (zh) 2017-01-23 2017-01-23 压力传感器及其制造方法

Publications (1)

Publication Number Publication Date
CN108344532A true CN108344532A (zh) 2018-07-31

Family

ID=62906997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710058129.1A Pending CN108344532A (zh) 2017-01-23 2017-01-23 压力传感器及其制造方法

Country Status (2)

Country Link
US (1) US10323996B2 (zh)
CN (1) CN108344532A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387307A (zh) * 2018-12-12 2019-02-26 深圳大学 一种柔性应力传感器及其制备方法
CN112539859A (zh) * 2020-11-26 2021-03-23 西安交通大学 非晶态二硫化钼柔性压力传感器及其制备方法
CN112985651A (zh) * 2021-01-18 2021-06-18 西安交通大学 一种齿轮动态啮合力检测薄膜传感器及其应用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671160A1 (de) * 2018-12-21 2020-06-24 Exentis Knowledge GmbH Formkörper sowie verfahren zur herstellung eines formkörpers
GB2580660A (en) * 2019-01-21 2020-07-29 Equinor Energy As Pressure sensor
CN111750975B (zh) * 2020-06-19 2022-03-15 电子科技大学 一种具有压阻效应的柔性振动传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214499A (zh) * 2011-03-21 2011-10-12 明基材料有限公司 含纳米银线的软性透明导电膜及其制造方法
CN103576960A (zh) * 2012-08-02 2014-02-12 深圳纽迪瑞科技开发有限公司 触摸屏压力、位置感应方法及感应元件和电子触摸设备
CN105021329A (zh) * 2015-07-22 2015-11-04 上海交通大学 一种电阻式压力传感器及其制备方法
CN105094441A (zh) * 2015-08-20 2015-11-25 宸鸿科技(厦门)有限公司 一种压力感测装置
CN105389055A (zh) * 2015-11-19 2016-03-09 业成光电(深圳)有限公司 应用于压力触控感测器之变阻式结构
CN105738013A (zh) * 2016-02-02 2016-07-06 上海交通大学 一种高灵敏度压力式传感器及其制作方法
CN105960581A (zh) * 2014-02-06 2016-09-21 国立研究开发法人科学技术振兴机构 压力传感器用片、压力传感器及压力传感器用片的制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279916B2 (en) 2004-10-05 2007-10-09 Nanoconduction, Inc. Apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
CN101397121B (zh) 2008-07-15 2011-01-12 北方工业大学 硅纳米线压力传感器及悬臂梁及制作方法及其测量压力的方法
US8399314B2 (en) 2010-03-25 2013-03-19 International Business Machines Corporation p-FET with a strained nanowire channel and embedded SiGe source and drain stressors
EP2601688B1 (en) 2010-08-07 2020-01-22 Tpk Holding Co., Ltd Device components with surface-embedded additives and related manufacturing methods
US9297831B2 (en) 2010-12-24 2016-03-29 Graphene Square, Inc. Touch sensor using graphene for simultaneously detecting a pressure and a position
US8692646B2 (en) 2011-04-05 2014-04-08 Kang Won LEE Piezoresistive type touch panel; manufacturing method thereof; and display device, touch pad, pressure sensor, touch sensor, game console and keyboard having the panel
KR101624430B1 (ko) * 2011-10-28 2016-05-25 시안 지아오통 유니버시티 나노-압전 센서들의 어레이에 동작가능하게 커플링된 플렉서블 마이크로 범프들
CN105136378B (zh) * 2015-09-24 2018-04-20 京东方科技集团股份有限公司 一种显示基板及显示装置
CN105607790B (zh) 2016-02-02 2018-10-19 上海交通大学 一种电阻电容混合式压力传感器及其使用方法
JP6834547B2 (ja) * 2017-02-06 2021-02-24 大日本印刷株式会社 センサシートおよびセンサシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214499A (zh) * 2011-03-21 2011-10-12 明基材料有限公司 含纳米银线的软性透明导电膜及其制造方法
CN103576960A (zh) * 2012-08-02 2014-02-12 深圳纽迪瑞科技开发有限公司 触摸屏压力、位置感应方法及感应元件和电子触摸设备
CN105960581A (zh) * 2014-02-06 2016-09-21 国立研究开发法人科学技术振兴机构 压力传感器用片、压力传感器及压力传感器用片的制造方法
CN105021329A (zh) * 2015-07-22 2015-11-04 上海交通大学 一种电阻式压力传感器及其制备方法
CN105094441A (zh) * 2015-08-20 2015-11-25 宸鸿科技(厦门)有限公司 一种压力感测装置
CN105389055A (zh) * 2015-11-19 2016-03-09 业成光电(深圳)有限公司 应用于压力触控感测器之变阻式结构
CN105738013A (zh) * 2016-02-02 2016-07-06 上海交通大学 一种高灵敏度压力式传感器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘林森: "电子新材料迈向软时代", 《发明与创新(综合科技)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387307A (zh) * 2018-12-12 2019-02-26 深圳大学 一种柔性应力传感器及其制备方法
CN109387307B (zh) * 2018-12-12 2020-08-11 深圳大学 一种柔性应力传感器及其制备方法
CN112539859A (zh) * 2020-11-26 2021-03-23 西安交通大学 非晶态二硫化钼柔性压力传感器及其制备方法
CN112985651A (zh) * 2021-01-18 2021-06-18 西安交通大学 一种齿轮动态啮合力检测薄膜传感器及其应用方法
CN112985651B (zh) * 2021-01-18 2022-04-22 西安交通大学 一种齿轮动态啮合力检测薄膜传感器及其应用方法

Also Published As

Publication number Publication date
US20180209864A1 (en) 2018-07-26
US10323996B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN108344532A (zh) 压力传感器及其制造方法
Lee et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution
Yu et al. Highly sensitive strain sensors based on piezotronic tunneling junction
An et al. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature
Wu et al. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
EP2290345B1 (en) Thin-film transistor based piezoelectric strain sensor and manufacturing method
Park et al. Research on flexible display at Ulsan National Institute of Science and Technology
US9696223B2 (en) Single layer force sensor
KR101573645B1 (ko) 변형을 감지하는 전계 효과 트랜지스터 장치, 기기 및 방법
US20160148033A1 (en) Fingerprint identification unit and device
KR20140129135A (ko) 패턴화된 전기적으로 격리된 영역을 갖는 터치 센서 전극
US11112318B2 (en) Pressure sensor, and pressure sensor matrix array including same and manufacturing method therefor
CN107003190A (zh) 高分辨率压力感测
Jung et al. Transparent and flexible mayan-pyramid-based pressure sensor using facile-transferred indium tin oxide for bimodal sensor applications
CN108351196A (zh) 形变传感器
Yu et al. Soft human–machine interface sensing displays: materials and devices
EP3206212B1 (en) An apparatus and method of forming an apparatus comprising two dimensional material
US9953202B2 (en) Nanostructure based super-capacitor for pressure and fingerprint sensor
CN102420254B (zh) 薄膜带电体传感器及显示设备
TWM605319U (zh) 三維感測模組及電子裝置
US10788371B2 (en) Pyroelectric sensor with an electromagnetic shielding including a composite material
Li et al. Electrohydrodynamic (EHD) inkjet printing flexible pressure sensors with a multilayer structure and periodically patterned Ag nanoparticles
CN106019676B (zh) 显示基板、显示面板
KR20130116583A (ko) 터치 패널 및 그 제조 방법
TWI645173B (zh) 壓力感測器及其製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180731

RJ01 Rejection of invention patent application after publication