JP2013152956A - 非水系電解液及び非水系電解液二次電池 - Google Patents

非水系電解液及び非水系電解液二次電池 Download PDF

Info

Publication number
JP2013152956A
JP2013152956A JP2013096366A JP2013096366A JP2013152956A JP 2013152956 A JP2013152956 A JP 2013152956A JP 2013096366 A JP2013096366 A JP 2013096366A JP 2013096366 A JP2013096366 A JP 2013096366A JP 2013152956 A JP2013152956 A JP 2013152956A
Authority
JP
Japan
Prior art keywords
mass
aqueous electrolyte
lithium
active material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013096366A
Other languages
English (en)
Other versions
JP5831493B2 (ja
Inventor
Hiroyuki Tokuda
浩之 徳田
Hiroaki Yoshida
博明 吉田
Atsushi Watarai
篤 渡會
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013096366A priority Critical patent/JP5831493B2/ja
Publication of JP2013152956A publication Critical patent/JP2013152956A/ja
Application granted granted Critical
Publication of JP5831493B2 publication Critical patent/JP5831493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

【課題】初期充電容量、入出力特性、インピーダンス特性が改善された非水系電解液二次電池をもたらすことができる非水系電解液を提供する。
【解決手段】非水溶媒、LiPF及び式(1): M(FSO)xで表されるフルオロスルホン酸塩を含有し、さらに、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、環状スルホン酸エステル、シアノ基を有する化合物、ジイソシアネート化合物、LiPF以外のフルオロリン酸リチウム塩、リチウムイミド塩類及びリチウムオキサラート塩類からなる群より選ばれる少なくとも1種を含有することを特徴とする非水系電解液、及びこの非水系電解液を含む非水系電解液二次電池である。
【選択図】なし

Description

本発明は、非水系電解液、及び非水系電解液二次電池に関し、詳しくは、電解質としてLiPFとM(FSOを特定の割合で併用した非水系電解液、及びこの非水系電解液を用いた非水系電解液二次電池に関する。
携帯電話、ノートパソコン等のいわゆる民生用の電源から自動車用等の駆動用車載電源や定置用大型電源等の広範な用途にリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の非水系電解液二次電池に対する高性能化の要求はますます高くなっており、電池特性、例えば高容量、高出力、高温保存特性、サイクル特性等を高い水準で達成することが求められている。
特に電気自動車用電源としてリチウム二次電池を使用する場合、電気自動車は発進、加速時に大きなエネルギーを要し、また、減速時に発生する大きなエネルギーを効率よく回生させなければならないため、リチウム二次電池には、高い出力特性、入力特性が要求される。また、電気自動車は屋外で使用されるため、寒冷時期においても電気自動車が速やかに発進、加速できるためには、リチウム二次電池には、特に、−30℃のような低温における高い入出力特性(電池内部インピーダンスが低いこと)が要求される。加えて、高温環境下で繰り返し充放電させた場合においてもその容量の劣化が少なく、電池内部インピーダンスの増加が少ない必要がある。
また、電気自動車用途のみならず、各種バックアップ用途や、電力供給の負荷平準化用途、自然エネルギー発電の出力安定化用途等の定置用大型電源としてリチウム二次電池を使用する際には、単電池が大型化されるだけでなく、多数の単電池が直並列接続される。このため、個々の単電池の放電特性のばらつきや、単電池間における温度のばらつき、個々の単電池の容量や充電状態のばらつきといった各種の非一様性に起因する信頼性や安全性の問題が生じやすい。電池設計や管理が不適切であると、上記のような組電池を構成する単電池の一部だけが高い充電状態のまま保持されたり、あるいは電池内部の温度が上昇して高温状態に陥るというような問題を生じる。
即ち、現在の非水電解液二次電池には、初期の容量と入出力特性が高く、電池内部インピーダンスが低いこと、高温保存試験やサイクル試験といった耐久試験後の容量維持率が高いこと、耐久試験後でも入出力性能とインピーダンス特性に優れること、といった項目が、極めて高いレベルで要求される。
これまで、非水電解液二次電池の入出力特性、インピーダンス特性、高温サイクル特性、高温保存特性を改善するための手段として、正極や負極の活物質や、非水系電解液を始めとする様々な電池の構成要素について、数多くの技術が検討されている。例えば特許文献1には、LiFSOを電解質とすると、60℃充放電サイクル評価時の放電容量が高い電池が得られることが記載されている。特許文献1によると、電解質にLiClOを用いた場合、正極活物質の貴な電位によりLiClOが分解し活性酸素が生成し、この活性酸素が溶媒を攻撃して溶媒の分解反応を促進させる。また、電解質にCFSOLi、LiBFおよびLiPFを用いた場合は、正極活物質の貴な電位により電解質の分解が進行してフッ素が生成し、このフッ素が溶媒を攻撃して溶媒の分解反応を促進させると記載されている。
日本国特開平7−296849号公報
引用文献1の開示によれば、電解質にLiFSOを用いると、それ自体が化学的および電気化学的に安定であり電解液の分解反応が起こりにくくなるために、保存特性に優れ、サイクル特性も良好な電池が得られると推定されている。
しかしながら、本発明者らの検証により、LiFSOを電解質として含む電解液を用いた電池は、初期充電容量が低く、かつ電池内部インピーダンスが大きく、入出力特性が低いことが見出された。
本発明の課題は、上記の問題を解消し、初期充電容量、入出力特性およびインピーダンス特性が改善されることで、初期の電池特性と耐久性のみならず、耐久後も高い入出力特性およびインピーダンス特性が維持される非水系電解液二次電池をもたらすことができる非水系電解液を提供することにあり、また、この非水系電解液を用いた非水系電解液二次電池を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、M(FSOで表されるフルオロスルホン酸塩を少なくとも1種以上含有する非水系電解液に、更にLiPFに加え、かつ上記フルオロスルホン酸塩とLiPFとの割合を特定範囲とすることにより、初期充電容量、及び入出力特性が改善された非水系電解液二次電池をもたらすことができる非水系電解液が実現できることを見出し、本発明を完成させるに至った。
即ち、本発明は、下記非水系電解液及び非水系電解液二次電池に関する。
〔1〕非水溶媒、LiPF及び式(1):
M(FSO)x
[式(1)中、
Mは、金属原子、N(R)又はP(R)(ここで、Rは、炭素数1〜12の有機基又は水素原子であり(ただし、4つのRの全部が水素原子であることはない)、複数のRは互いに同一であっても異なっていてもよく、4つのRの一部又は全部は、それらが結合している窒素原子又はリン原子と共に環を形成してもよい)であり、
Mが金属原子の場合、xは金属原子Mの価数であって1以上の整数であり、MがN(R)又はP(R)の場合、xは1である]
で表されるフルオロスルホン酸塩を含有し、
さらに、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、環状スルホン酸エステル、シアノ基を有する化合物、ジイソシアネート化合物、LiPF以外のフルオロリン酸リチウム塩、リチウムイミド塩類及びリチウムオキサラート塩類からなる群より選ばれる少なくとも1種を含有することを特徴とする非水系電解液。
〔2〕非水系電解液中のFSOのモル含有量が、0.0005mol/L〜0.5mol/Lである、上記〔1〕の非水系電解液。
〔3〕式(1)で表されるフルオロスルホン酸塩が、フルオロスルホン酸リチウムである、上記〔1〕又は〔2〕の非水系電解液。
〔4〕前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている上記〔1〕の非水系電解液。
〔5〕前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている上記〔1〕の非水系電解液。
〔6〕前記環状スルホン酸エステルが、非水電解液中に0.001質量%以上10質量%以下含有されている上記〔1〕の非水系電解液。
〔7〕前記シアノ基を有する化合物が、非水電解液中に0.001質量%以上10質量%以下含有されている上記〔1〕の非水系電解液。
〔8〕前記ジイソシアネート化合物が、非水電解液中に0.001質量%以上5質量%以下含有されている上記〔1〕の非水系電解液。
〔9〕前記LiPF以外のフルオロリン酸リチウム塩、リチウムイミド塩類及びリチウムオキサラート塩類からなる群より選ばれる少なくとも1種の非水系電解液中の濃度が、0.0005mol/L以上0.5mol/L以下である上記〔1〕の非水系電解液。
〔10〕リチウムイオンを吸蔵・放出可能な負極及び正極、並びに〔1〕〜〔9〕のいずれかの非水系電解液を含む非水系電解液二次電池。
〔11〕前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物からなる群より選ばれる少なくとも1種を含有する負極活物質を含む上記〔10〕の非水系電解液二次電池。
〔12〕前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む上記〔10〕の非水系電解液二次電池。
〔13〕前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む〔10〕の非水系電解液二次電池。
〔14〕前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物及びリチウム・ニッケル・コバルト・マンガン複合酸化物からなる群より選ばれる少なくとも1種を含有することを特徴とする上記〔10〕の非水系電解液二次電池。
〔15〕前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれる少なくとも1種の元素、xは0<x<1.2)を含有することを特徴とする上記〔10〕の非水系電解液二次電池。
LiPFは、リチウム系二次電池に用いられる非水系電解液のリチウム塩の中でも高い電気伝導率を与えることが知られており、例えば該非水系電解液を電池に搭載したときには、正極と負極の間の電解液抵抗を低減させる効果がある。一方、本発明者らが検証したように、LiFSOを電解質として単独で用いると、電池内部インピーダンスが増加してしまう。
ここで発明者らは、LiPFを電解質として用いた系に、第2の電解質成分としてM(FSOで表されるフルオロスルホン酸塩を加え、これらを非水系電解液中に特定の割合で含有させることにより、LiPFを単独で電解質として用いた系よりも電池内部インピーダンスが低下し、低温出力特性が向上するという優れた特徴が発現されることを見出した。驚くべきことに、LiPFを電解質として用いた系に、第2の電解質成分としてM(FSOで表されるフルオロスルホン酸塩を加えた非水系電解液を用いた電池は、LiPFを単独で電解質として用いた系よりも、電池内部インピーダンスが低下する。このように、LiPFとM(FSOで表されるフルオロスルホン酸塩の二つの電解質を組み合わせた非水系電解液を用いた電池は、それぞれの電解質を単独で用いるよりも優れた低温出力特性や電池内部インピーダンス特性を示す。加えて、高温耐久特性や高電圧特性が向上すること、更に耐久後にも初期の電池内部インピーダンス特性や高出力特性が持続するとの知見を得て、本発明を完成させた。
このように、本発明の非水系電解液を用いることで、初期充電容量、入出力特性、電池内部インピーダンス特性が改善された非水系電解液二次電池をもたらすことができる非水系電解液が提供される。また、本発明の非水系電解液によれば、高温保存試験やサイクル試験といった耐久試験後においても、容量維持率が高く、入出力性能に優れ、また、インピーダンス特性にも優れた非水系電解液電池が提供できることになる。すなわち産業上の観点では、上記の携帯機器用途や、電気自動車用途、定置用大型電源用途等、各方面に適用可能な優れた電池を供給することが可能となる。
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。
1.電解液
1−1.電解質
<M(FSO
本発明は、電解質として、式(1):M(FSOで表されるフルオロスルホン酸塩の1種以上を含む[式中、Mは、金属原子、N(R)又はP(R)(ここで、Rは、炭素数1〜12の有機基又は水素原子であり(ただし、4つのRの全部が水素原子であることはない)、複数のRは互いに同一であっても異なっていてもよく、4つのRの一部又は全部は、それらが結合している窒素原子又はリン原子と共に環を形成してもよい)であり、Mが金属原子の場合、xは金属原子Mの価数であって1以上の整数であり、MがN(R)又はP(R)の場合、xは1である。]。上記フルオロスルホン酸塩は、1種を単独で用いても、2種以上を併用してもよい。
式(1)において、Mは金属原子、N(R)で表される第4級アンモニウム、P(R)で表される第4級ホスホニウムのいずれかを表す。
式(1)において、Mが金属原子の場合、xは金属原子の価数であって、1以上の整数であり、具体的には1、2又は3が挙げられる。金属原子としては、リチウム、ナトリウム、カリウム、セシウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、鉄、銅等の遷移金属等が挙げられ、リチウムであることが特に好ましい。
好ましいフルオロスルホン酸塩としては、LiFSO、NaFSO、KFSO、CsFSO、Mg(FSO、Ca(FSO、Fe(FSO、Cu(FSO、Al(FSO等が挙げられる。中でも、LiFSO、NaFSO、KFSOが特に好ましく、LiFSOが電解液への溶解性の観点から最も好ましい。
式(1)において、MがN(R)で表される第4級アンモニウム又はP(R)で表される第4級ホスホニウムの場合、xは1である。
N(R)又はP(R)において、Rは、炭素数1〜12の有機基又は水素原子であり(ただし、4つのRの全部が水素原子であることはない)、互いに同一であっても異なっていてもよく、4つのRの一部又は全部は、それらが結合している窒素原子又はリン原子と一緒になって環を形成してもよい。
上記炭素数1〜12の有機基としては、直鎖又は分岐の鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。これらの基は、ハロゲン原子で置換されていてもよい。また、これらの基は、酸素、窒素、硫黄、リン、ケイ素等のヘテロ原子を含むこともでき、これらの原子による飽和若しくは不飽和結合で各基が結合していてもよい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、sec−ブチル基等の鎖状アルキル基;シクロヘキシル基、ノルボルナニル基等の環状アルキル基;ビニル基、1−プロペニル基、アリル基、ブテニル基、1,3−ブタジエニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基;アルキル基等の置換基を有していてもよいフェニル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;トリフルオロメチル基、トリフルオロエチル基、ヘキサフルオロプロピル基等のハロゲン化アルキル基;エトキシカルボニルエチル基等のカルボニル基含有アルキル基;メトキシエチル基、フェノキシメチル基、エトキシエチル基、アリロキシエチル基、メトキシエトキシエチル基、エトキシエトキシエチル基等のエーテル基含有アルキル基;スルホニルメチル基等のスルホニル基含有アルキル基等が挙げられる。また、トリメチルシリル基等のトリアルキルシリル基も挙げられる。好ましくは、メチル基、エチル基、n−プロピル基、n−ブチル基、トリフルオロメチル基、トリフルオロエチル基、メトキシエチル基、メトキシエトキシエチル基、トリメチルシリル基等である。
N(R)の好ましい分子構造としては、
テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等に代表される第4級アンモニウムカチオン;
ジメチルピロリジニウム、メチルエチルピロリジニウム、ジエチルピロリジニウム等に代表されるピロリジニウムカチオン;
ジメチルピペリジニウム、メチルエチルピペリジニウム、ジエチルピペリジニウム等に代表されるピペリジニウムカチオン;
ジメチルモルホリニウム、メチルエチルモルホリニウム、ジエチルモルホリニウム等に代表されるモルホリニウムカチオン;
1−メチルピリジニウム、1−エチルピリジニウム等に代表されるピリジニウムカチオン;
1−メチルピリダジニウム、1−エチルピリダジニウム等に代表されるピリダジニウムカチオン;
1−メチルピリミジニウム、1−エチルピリミジニウム等に代表されるピリミジニウムカチオン;
1−メチルピラジニウム、1−エチルピラジニウム等に代表されるピラジニウムカチオン;
1,3−ジメチルイミダゾリウム、1−エチルー3−メチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム等のイミダゾリウムカチオン;
1−メチルオキサゾリウム、1−エチルオキサゾリウム等のオキサゾリウムカチオン;
1−メチルチアゾリウム、1−エチルチアゾリウム等のチアゾリウムカチオン;
1−メチルピラゾリウム、1−エチルピラゾリウム等のピラゾリウムカチオン;
1−メチルトリアゾリウム、1−エチルトリアゾリウム等のトリアゾリウムカチオン等が挙げられる。
好ましいアンモニウムカチオン構造としては、テトラメチルアンモニウム、トリメチルエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメチルヘキシルアンモニウム、ジメチルジエチルアンモニウム、ジメチルエチルプロピルアンモニウム、ジメチルエチルブチルアンモニウム、ジメチルエチルペンチルアンモニウム、ジメチルエチルヘキシルアンモニウム、ジメチルジプロピルアンモニウム、ジメチルプロピルブチルアンモニウム、ジメチルプロピルペンチルアンモニウム、ジメチルプロピルヘキシルアンモニウム、ジメチルジブチルアンモニウム、ジメチルブチルペンチルアンモニウム、ジメチルブチルヘキシルアンモニウム、ジメチルジペンチルアンモニウム、ジメチルペンチルヘキシルアンモニウム、ジメチルジヘキシルアンモニウム、メチルジエチルプロピルアンモニウム、メチルジエチルブチルアンモニウム、メチルジエチルペンチルアンモニウム、メチルジエチルヘキシルアンモニウム、メチルエチルジプロピルアンモニウム、メチルエチルプロピルブチルアンモニウム、メチルエチルプロピルペンチルアンモニウム、メチルエチルプロピルヘキシルアンモニウム、メチルエチルジブチルアンモニウム、メチルエチルブチルペンチルアンモニウム、メチルエチルブチルヘキシルアンモニウム、メチルエチルジペンチルアンモニウム、メチルエチルペンチルヘキシルアンモニウム、メチルエチルジヘキシルアンモニウム、メチルトリプロピルアンモニウム、メチルジプロピルブチルアンモニウム、メチルジプロピルペンチルアンモニウム、メチルジプロピルヘキシルアンモニウム、メチルプロピルジブチルアンモニウム、メチルプロピルブチルペンチルアンモニウム、メチルプロピルブチルヘキシルアンモニウム、メチルプロピルジペンチルアンモニウム、メチルプロピルペンチルヘキシルアンモニウム、メチルプロピルジヘキシルアンモニウム、メチルトリブチルアンモニウム、メチルジブチルペンチルアンモニウム、メチルジブチルヘキシルアンモニウム、メチルブチルジペンチルアンモニウム、メチルブチルペンチルヘキシルアンモニウム、メチルブチルジヘキシルアンモニウム、メチルトリペンチルアンモニウム、メチルジペンチルヘキシルアンモニウム、メチルペンチルジヘキシルアンモニウム、メチルトリヘキシルアンモニウム、トリエチルプロピルアンモニウム、トリエチルブチルアンモニウム、トリエチルペンチルアンモニウム、トリエチルヘキシルアンモニウム等、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、トリメチルアリルアンモニウム、トリメチルブテニルアンモニウム、トリメチルメトキシメチルアンモニウム、トリメチルメトキシエチルアンモニウム、トリメチルメトキシエトキシエチルアンモニウム等が挙げられる。
好ましいピロリジニウムカチオン構造としては、ジメチルピロリジニウム、メチルエチルピロリジニウム、ジエチルピロリジニウム、メチルプロピルピロリジニウム、エチルプロピルピロリジニウム、ジプロピルピロリジニウム、メチルブチルピロリジニウム、エチルブチルピロリジニウム、プロピルブチルピロリジニウム、ジブチルピロリジニウム、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、メチルビニルピロリジニウム、エチルビニルピロリジニウム、プロピルビニルピロリジニウム、ブチルビニルピロリジニウム、メチルアリルピロリジニウム、エチルアリルピロリジニウム、プロピルアリルピロリジニウム、ブチルアリルピロリジニウム、ジアリルピロリジニウム、メチルブテニルピロリジニウム、エチルブテニルピロリジニウム、プロピルブテニルピロリジニウム、ブチルブテニルピロリジニウム、ジブテニルピロリジニウム、メチルメトキシメチルピロリジニウム、メチルメトキシエチルピロリジニウム、メチルエトキシエチルピロリジニウム、メチルメトキシエトキシエチルピロリジニウム、メチルエトキシエトキシエチルピロリジニウム、エチルメトキシメチルピロリジニウム、エチルメトキシエチルピロリジニウム、エチルエトキシエチルピロリジニウム、エチルメトキシエトキシエチルピロリジニウム、エチルエトキシエトキシエチルピロリジニウム、プロピルメトキシメチルピロリジニウム、プロピルメトキシエチルピロリジニウム、プロピルエトキシエチルピロリジニウム、プロピルメトキシエトキシエチルピロリジニウム、プロピルエトキシエトキシエチルピロリジニウム、ブチルメトキシメチルピロリジニウム、ブチルメトキシエチルピロリジニウム、ブチルエトキシエチルピロリジニウム、ブチルメトキシエトキシエチルピロリジニウム、ブチルエトキシエトキシエチルピロリジニウム等が挙げられる。
好ましいピペリジニウムカチオン構造としては、ジメチルピペリジニウム、メチルエチルピペリジニウム、ジエチルピペリジニウム、メチルプロピルピペリジニウム、エチルプロピルピペリジニウム、ジプロピルピペリジニウム、メチルブチルピペリジニウム、エチルブチルピペリジニウム、プロピルブチルピペリジニウム、ジブチルピペリジニウム、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、メチルビニルピペリジニウム、エチルビニルピペリジニウム、プロピルビニルピペリジニウム、ブチルビニルピペリジニウム、メチルアリルピペリジニウム、エチルアリルピペリジニウム、プロピルアリルピペリジニウム、ブチルアリルピペリジニウム、ジアリルピペリジニウム、メチルブテニルピペリジニウム、エチルブテニルピペリジニウム、プロピルブテニルピペリジニウム、ブチルブテニルピペリジニウム、ジブテニルピペリジニウム、メチルメトキシメチルピペリジニウム、メチルメトキシエチルピペリジニウム、メチルエトキシエチルピペリジニウム、メチルメトキシエトキシエチルピペリジニウム、メチルエトキシエトキシエチルピペリジニウム、エチルメトキシメチルピペリジニウム、エチルメトキシエチルピペリジニウム、エチルエトキシエチルピペリジニウム、エチルメトキシエトキシエチルピペリジニウム、エチルエトキシエトキシエチルピペリジニウム、プロピルメトキシメチルピペリジニウム、プロピルメトキシエチルピペリジニウム、プロピルエトキシエチルピペリジニウム、プロピルメトキシエトキシエチルピペリジニウム、プロピルエトキシエトキシエチルピペリジニウム、ブチルメトキシメチルピペリジニウム、ブチルメトキシエチルピペリジニウム、ブチルエトキシエチルピペリジニウム、ブチルメトキシエトキシエチルピペリジニウム、ブチルエトキシエトキシエチルピペリジニウム等が挙げられる。
好ましいモルホリニウムカチオン構造としては、ジメチルモルホリニウム、メチルエチルモルホリニウム、ジエチルモルホリニウム、メチルプロピルモルホリニウム、エチルプロピルモルホリニウム、ジプロピルモルホリニウム、メチルブチルモルホリニウム、エチルブチルモルホリニウム、プロピルブチルモルホリニウム、ジブチルモルホリニウム、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、メチルビニルモルホリニウム、エチルビニルモルホリニウム、プロピルビニルモルホリニウム、ブチルビニルモルホリニウム、メチルアリルモルホリニウム、エチルアリルモルホリニウム、プロピルアリルモルホリニウム、ブチルアリルモルホリニウム、ジアリルモルホリニウム、メチルブテニルモルホリニウム、エチルブテニルモルホリニウム、プロピルブテニルモルホリニウム、ブチルブテニルモルホリニウム、ジブテニルモルホリニウム、メチルメトキシメチルモルホリニウム、メチルメトキシエチルモルホリニウム、メチルエトキシエチルモルホリニウム、メチルメトキシエトキシエチルモルホリニウム、メチルエトキシエトキシエチルモルホリニウム、エチルメトキシメチルモルホリニウム、エチルメトキシエチルモルホリニウム、エチルエトキシエチルモルホリニウム、エチルメトキシエトキシエチルモルホリニウム、エチルエトキシエトキシエチルモルホリニウム、プロピルメトキシメチルモルホリニウム、プロピルメトキシエチルモルホリニウム、プロピルエトキシエチルモルホリニウム、プロピルメトキシエトキシエチルモルホリニウム、プロピルエトキシエトキシエチルモルホリニウム、ブチルメトキシメチルモルホリニウム、ブチルメトキシエチルモルホリニウム、ブチルエトキシエチルモルホリニウム、ブチルメトキシエトキシエチルモルホリニウム、ブチルエトキシエトキシエチルモルホリニウム等が挙げられる。
好ましいピリジニウムカチオン構造としては、1−エチルピリジニウム、1−プロピルピリジニウム、1−ブチルピリジニウム、1−ペンチルピリジニウム、1−ヘキシルピリジニウム、1−アリルピリジニウム、1−ブテニルピリジニウム、1−メトキシメチルピリジニウム、1−メトキシエチルピリジニウム等が挙げられる。
好ましいピリダジニウムカチオン構造としては、1−エチルピリダジニウム、1−プロピルピリダジニウム、1−ブチルピリダジニウム、1−ペンチルピリダジニウム、1−ヘキシルピリダジニウム、1−アリルピリダジニウム、1−ブテニルピリダジニウム、1−メトキシメチルピリダジニウム、1−メトキシエチルピリダジニウム等が挙げられる。
好ましいピリミジニウムカチオン構造としては、1−エチルピリミジニウム、1−プロピルピリミジニウム、1−ブチルピリミジニウム、1−ペンチルピリミジニウム、1−ヘキシルピリミジニウム、1−アリルピリミジニウム、1−ブテニルピリミジニウム、1−メトキシメチルピリミジニウム、1−メトキシエチルピリミジニウム等が挙げられる。
好ましいピラジニウムカチオン構造としては、1−エチルピラジニウム、1−プロピルピラジニウム、1−ブチルピラジニウム、1−ペンチルピラジニウム、1−ヘキシルピラジニウム、1−アリルピラジニウム、1−ブテニルピラジニウム、1−メトキシメチルピラジニウム、1−メトキシエチルピラジニウム等が挙げられる。
好ましいイミダゾリウムカチオン構造としては、1,3−ジメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−プロピル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−ペンチル−3−メチルイミダゾリウム、1−ヘキシル−3−メチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1−エチル−3−プロピルイミダゾリウム、1−エチル−3−ブチルイミダゾリウム、1−エチル−3−ペンチルイミダゾリウム、1−エチル−3−ヘキシルイミダゾリウム、1,3−ジプロピルイミダゾリウム、1−プロピル−3−ブチルイミダゾリウム、1−プロピル−3−ペンチルイミダゾリウム、1−ヘキシル−3−ブチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1−プロピル−2,3−ジメチルイミダゾリウム、1−ブチル−2,3−ジメチルイミダゾリウム、1−ペンチル−2,3−ジメチルイミダゾリウム、1−ヘキシル−2,3−ジメチルイミダゾリウム、1,3−ジエチル−2−メチルイミダゾリウム、1−プロピル−2−メチル−3−エチルイミダゾリウム、1−ブチル−2−メチル−3−エチルイミダゾリウム、1−ペンチル−2−メチル−3−エチルイミダゾリウム、1−ヘキシル−2−メチル−3−エチルイミダゾリウム、1,2,3,4,5−ヘキサメチルイミダゾリウム、1−エチル−2,3,4,5−テトラメチルイミダゾリウム、1−プロピル−2,3,4,5−テトラメチルイミダゾリウム、1−ブチル−2,3,4,5−テトラメチルイミダゾリウム、1−ペンチル−2,3,4,5−テトラメチルイミダゾリウム、1−ヘキシル−2,3,4,5−テトラメチルイミダゾリウム、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、1−アリル−3−メチルイミダゾリウム、1−アリル−3−エチルイミダゾリウム、1−アリル−3−プロピルイミダゾリウム、1−アリル−3−ブチルイミダゾリウム、1−アリル−2,3−ジメチルイミダゾリウム、1−アリル−2,3,4,5−テトラメチルイミダゾリウム、1−ブテニル−3−メチルイミダゾリウム、1−ブテニル−3−エチルイミダゾリウム、1−ブテニル−3−プロピルイミダゾリウム、1−ブテニル−3−ブチルイミダゾリウム、1−ブテニル−2,3−ジメチルイミダゾリウム、1−ブテニル−2,3,4,5−テトラメチルイミダゾリウム、1−メトキシメチル−3−メチルイミダゾリウム、1−メトキシメチル−3−エチルイミダゾリウム、1−メトキシメチル−3−プロピルイミダゾリウム、1−メトキシメチル−3−ブチルイミダゾリウム、1−メトキシメチル−2,3−ジメチルイミダゾリウム、1−メトキシメチル−2,3,4,5−テトラメチルイミダゾリウム、1−メトキシエチル−3−メチルイミダゾリウム、1−メトキシエチル−3−エチルイミダゾリウム、1−メトキシエチル−3−プロピルイミダゾリウム、1−メトキシエチル−3−ブチルイミダゾリウム、1−メトキシエチル−2,3−ジメチルイミダゾリウム、1−メトキシエチル−2,3,4,5−テトラメチルイミダゾリウム等が挙げられる。
好ましいオキサゾリウムカチオン構造としては、1−エチルオキサゾリウム、1−プロピルオキサゾリウム、1−ブチルオキサゾリウム、1−ペンチルオキサゾリウム、1−ヘキシルオキサゾリウム、1−アリルオキサゾリウム、1−ブテニルオキサゾリウム、1−メトキシメチルオキサゾリウム、1−メトキシエチルオキサゾリウム、1−エチル−2,4,5−トリメチルオキサゾリウム、1−プロピル−2,4,5−トリメチルオキサゾリウム、1−ブチル−2,4,5−トリメチルオキサゾリウム、1−ペンチル−2,4,5−トリメチルオキサゾリウム、1−ヘキシル−2,4,5−トリメチルオキサゾリウム、1−アリル−2,4,5−トリメチルオキサゾリウム、1−ブテニル−2,4,5−トリメチルオキサゾリウム、1−メトキシメチル−2,4,5−トリメチルオキサゾリウム、1−メトキシエチル−2,4,5−トリメチルオキサゾリウム等が挙げられる。
好ましいチアゾリウムカチオン構造としては、1−エチルチアゾリウム、1−プロピルチアゾリウム、1−ブチルチアゾリウム、1−ペンチルチアゾリウム、1−ヘキシルチアゾリウム、1−アリルチアゾリウム、1−ブテニルチアゾリウム、1−メトキシメチルチアゾリウム、1−メトキシエチルチアゾリウム、1−エチル−2,4,5−トリメチルチアゾリウム、1−プロピル−2,4,5−トリメチルチアゾリウム、1−ブチル−2,4,5−トリメチルチアゾリウム、1−ペンチル−2,4,5−トリメチルチアゾリウム、1−ヘキシル−2,4,5−トリメチルチアゾリウム、1−アリル−2,4,5−トリメチルチアゾリウム、1−ブテニル−2,4,5−トリメチルチアゾリウム、1−メトキシメチル−2,4,5−トリメチルチアゾリウム、1−メトキシエチル−2,4,5−トリメチルチアゾリウム等が挙げられる。
好ましいピラゾリウムカチオン構造としては、1−エチルピラゾリウム、1−プロピルピラゾリウム、1−ブチルピラゾリウム、1−ペンチルピラゾリウム、1−ヘキシルピラゾリウム、1−アリルピラゾリウム、1−ブテニルピラゾリウム、1−メトキシメチルピラゾリウム、1−メトキシエチルピラゾリウム、1−エチル−2,3,4,5−テトラメチルピラゾリウム、1−プロピル−2,3,4,5−テトラメチルピラゾリウム、1−ブチル−2,3,4,5−テトラメチルピラゾリウム、1−ペンチル−2,3,4,5−テトラメチルピラゾリウム、1−ヘキシル−2,3,4,5−テトラメチルピラゾリウム、1−アリル−2,3,4,5−テトラメチルピラゾリウム、1−ブテニル−2,3,4,5−テトラメチルピラゾリウム、1−メトキシメチル−2,3,4,5−テトラメチルピラゾリウム、1−メトキシエチル−2,3,4,5−テトラメチルピラゾリウム、等が挙げられる。
好ましいトリアゾリウムカチオン構造としては、1−エチルトリアゾリウム、1−プロピルトリアゾリウム、1−ブチルトリアゾリウム、1−ペンチルトリアゾリウム、1−ヘキシルトリアゾリウム、1−アリルトリアゾリウム、1−ブテニルトリアゾリウム、1−メトキシメチルトリアゾリウム、1−メトキシエチルトリアゾリウム、1−エチル−2,3,4,5−テトラメチルトリアゾリウム、1−プロピル−2,3,4,5−テトラメチトリアゾリウム、1−ブチル−2,3,4,5−テトラメチルトリアゾリウム、1−ペンチル−2,3,4,5−テトラメチルトリアゾリウム、1−ヘキシル−2,3,4,5−テトラメチルトリアゾリウム、1−アリル−2,3,4,5−テトラメチルトリアゾリウム、1−ブテニル−2,3,4,5−テトラメチルトリアゾリウム、1−メトキシメチル−2,3,4,5−テトラメチルトリアゾリウム、1−メトキシエチル−2,3,4,5−テトラメチルトリアゾリウム等が挙げられる。
これらのN(R)をカチオン構造とするフルオロスルホン酸塩の中でも、フルオロスルホン酸テトラメチルアンモニウム、フルオロスルホン酸テトラエチルアンモニウム、フルオロスルホン酸テトラブチルアンモニウム、フルオロスルホン酸ジメチルピロリジニウム、フルオロスルホン酸メチルエチルピロリジニウム、フルオロスルホン酸ジエチルピロリジニウム、フルオロスルホン酸ジメチルピペリジニウム、フルオロスルホン酸メチルエチルピペリジニウム、フルオロスルホン酸ジエチルピペリジニウム、フルオロスルホン酸ジメチルモルホリニウム、フルオロスルホン酸メチルエチルモルホリニウム、フルオロスルホン酸ジエチルモルホリニウムが、入手及び取り扱いのしやすさや、電池内部インピーダンス低下及び入出力特性向上の点から特に好ましい。
P(R)の好ましいカチオン構造としては、トリエチルブチルホスホニウム、トリエチルペンチルホスホニウム、トリエチルヘキシルホスホニウム、トリエチルヘプチルホスホニウム、トリエチルオクチルホスホニウム、ジエチルプロピルブチルホスホニウム、ジエチルプロピルペンチルホスホニウム、ジエチルプロピルヘキシルホスホニウム、ジエチルプロピルヘプチルホスホニウム、ジエチルプロピルオクチルホスホニウム、ジエチルブチルペンチルホスホニウム、ジエチルブチルヘキシルホスホニウム、ジエチルブチルヘプチルホスホニウム、ジエチルブチルオクチルホスホニウム、ジエチルペンチルヘキシルホスホニウム、ジエチルペンチルヘプチルホスホニウム、ジエチルペンチルオクチルホスホニウム、ジエチルヘキシルヘプチルホスホニウム、ジエチルヘキシルオクチルホスホニウム、ジエチルヘプチルオクチルホスホニウム、ジエチルジオクチルホスホニウム、エチルジプロピルブチルホスホニウム、エチルジプロピルペンチルホスホニウム、エチルジプロピルヘキシルホスホニウム、エチルジプロピルヘプチルホスホニウム、エチルジプロピルオクチルホスホニウム、エチルプロピルジブチルホスホニウム、エチルプロピルブチルペンチルホスホニウム、エチルプロピルブチルヘキシルホスホニウム、エチルプロピルブチルヘプチルホスホニウム、エチルプロピルブチルオクチルホスホニウム、エチルプロピルジペンチルホスホニウム、エチルプロピルペンチルヘキシルホスホニウム、エチルプロピルペンチルヘプチルホスホニウム、エチルプロピルペンチルオクチルホスホニウム、エチルプロピルジヘキシルホスホニウム、エチルプロピルヘキシルヘプチルホスホニウム、エチルプロピルヘキシルオクチルホスホニウム、エチルプロピルジヘプチルホスホニウム、エチルプロピルヘプチルオクチルホスホニウム、エチルプロピルジオクチルホスホニウム、エチルトリブチルホスホニウム、エチルジブチルペンチルホスホニウム、エチルジブチルヘキシルホスホニウム、エチルジブチルヘプチルホスホニウム、エチルジブチルオクチルホスホニウム、エチルブチルジペンチルホスホニウム、エチルブチルペンチルヘキシルホスホニウム、エチルブチルペンチルヘプチルホスホニウム、エチルブチルペンチルオクチルホスホニウム、エチルブチルジヘキシルホスホニウム、エチルブチルヘキシルヘプチルホスホニウム、エチルブチルヘキシルオクチルホスホニウム、エチルブチルヘプチルオクチルホスホニウム、エチルブチルジオクチルホスホニウム、エチルトリペンチルホスホニウム、エチルジペンチルヘキシルホスホニウム、エチルジペンチルヘプチルホスホニウム、エチルジペンチルオクチルホスホニウム、エチルペンチルジヘキシルホスホニウム、エチルペンチルヘキシルヘプチルホスホニウム、エチルペンチルヘキシルオクチルホスホニウム、エチルペンチルジヘプチルホスホニウム、エチルペンチルヘプチルオクチルホスホニウム、エチルペンチルジオクチルホスホニウム、エチルトリヘキシルホスホニウム、エチルジヘキシルヘプチルホスホニウム、エチルジヘキシルオクチルホスホニウム、エチルヘキシルジヘプチルホスホニウム、エチルヘキシルヘプチルオクチルホスホニウム、エチルヘキシルジオクチルホスホニウム、エチルトリヘプチルホスホニウム、エチルジヘプチルオクチルホスホニウム、エチルヘプチルジオクチルホスホニウム、エチルトリオクチルホスホニウム、トリプロピルブチルホスホニウム、トリプロピルペンチルホスホニウム、トリプロピルヘキシルホスホニウム、トリプロピルヘプチルホスホニウム、トリプロピルオクチルホスホニウム、ジプロピルジブチルホスホニウム、ジプロピルブチルペンチルホスホニウム、ジプロピルブチルヘキシルホスホニウム、ジプロピルブチルヘプチルホスホニウム、ジプロピルブチルオクチルホスホニウム、ジプロピルジペンチルホスホニウム、ジプロピルペンチルヘキシルホスホニウム、ジプロピルペンチルヘプチルホスホニウム、ジプロピルペンチルオクチルホスホニウム、ジプロピルジヘキシルホスホニウム、ジプロピルヘキシルヘプチルホスホニウム、ジプロピルヘキシルオクチルホスホニウム、ジプロピルジヘプチルホスホニウム、ジプロピルヘプチルオクチルホスホニウム、ジプロピルジオクチルホスホニウム、プロピルトリブチルホスホニウム、プロピルジブチルペンチルホスホニウム、プロピルジブチルヘキシルホスホニウム、プロピルジブチルヘプチルホスホニウム、プロピルジブチルオクチルホスホニウム、プロピルブチルジペンチルホスホニウム、プロピルブチルペンチルヘキシルホスホニウム、プロピルブチルペンチルヘプチルホスホニウム、プロピルブチルペンチルオクチルホスホニウム、プロピルブチルジヘプチルホスホニウム、プロピルブチルヘプチルオクチルホスホニウム、プロピルブチルジオクチルホスホニウム、プロピルトリペンチルホスホニウム、プロピルジペンチルヘキシルホスホニウム、プロピルジペンチルヘプチルホスホニウム、プロピルジペンチルヘオクチルホスホニウム、プロピルペンチルヘキシルヘプチルホスホニウム、プロピルペンチルヘキシルオクチルホスホニウム、プロピルペンチルジヘプチルホスホニウム、プロピルペンチルヘプチルオクチルホスホニウム、プロピルペンチルジオクチルホスホニウム、プロピルトリヘキシルホスホニウム、プロピルジヘキシルヘプチルホスホニウム、プロピルジヘキシルオクチルホスホニウム、プロピルヘキシルジヘプチルホスホニウム、プロピルヘキシルヘプチルオクチルホスホニウム、プロピルヘキシルジオクチルホスホニウム、プロピルトリヘプチルホスホニウム、プロピルジヘプチルオクチルホスホニウム、プロピルヘプチルジオクチルホスホニウム、プロピルトリオクチルホスホニウム、テトラブチルホスホニウム、トリブチルペンチルホスホニウム、トリブチルヘキシルホスホニウム、トリブチルヘプチルホスホニウム、トリブチルオクチルホスホニウム、テトラペンチルホスホニウム、トリペンチルヘキシルホスホニウム、トリペンチルヘプチルホスホニウム、トリペンチルオクチルホスホニウム、テトラヘキシルホスホニウム、トリヘキシルヘプチルホスホニウム、トリヘキシルオクチルホスホニウム、テトラヘプチルホスホニウム、トリヘプチルオクチルホスホニウム、テトラオクチルホスホニウム等、又はこれらのアルキル基中の水素原子の1つ以上がフッ素原子で置換された化合物のカチオン、トリエチルアリルホスホニウム、トリエチルブテニルホスホニウム、トリプロピルアリルホスホニウム、トリプロピルブテニルホスホニウム、トリブチルアリルホスホニウム、トリブチルブテニルホスホニウム、トリエチルメトキシエチルホスホニウム、トリエチルメトキシエトキシエチルホスホニウム、トリプロピルメトキシエチルホスホニウム、トリプロピルメトキシエトキシエチルホスホニウム、トリブチルメトキシエチルホスホニウム、トリブチルメトキシエトキシエチルホスホニウム等が挙げられる。
これらのP(R)をカチオン構造とするフルオロスルホン酸塩の中でも、フルオロスルホン酸テトラメチルホスホニウム、フルオロスルホン酸テトラエチルホスホニウム、フルオロスルホン酸テトラブチルホスホニウムが、入手及び取り扱いのしやすさの点から特に好ましい。
本発明に係る非水系電解液に用いられる式(1)で表されるフルオロスルホン酸塩の合成及び入手の方法は、特に制限されず、いかなる方法を用いて合成されたものであっても、又は入手されたものであっても使用することができる。
式(1)で表されるフルオロスルホン酸の金属塩の合成方法としては、例えば、金属フッ化物や金属フッ化ケイ素化合物とSOを反応させてフルオロスルホン酸の金属塩を得る方法や、フルオロスルホン酸と金属を反応させて、イオン交換によりフルオロスルホン酸の金属塩を得る方法、フルオロスルホン酸のアンモニウム塩と金属とを反応させてフルオロスルホン酸の金属塩を得る方法、フルオロスルホン酸と酢酸の金属塩とを反応させて、イオン交換することによりフルオロスルホン酸の金属塩を得る方法、フルオロスルホン酸と金属ハロゲン化物とを反応させてフルオロスルホン酸の金属塩を得る方法等が挙げられる。また、式(1)で表されるフルオロスルホン酸のアンモニウム塩やホスホニウム塩の合成方法としては、フルオロスルホン酸エステルと三級アミンやホスフィン等とを反応させて、三級アミンやホスフィンの四級化反応によりフルオロスルホン酸塩を得る方法、フルオロスルホン酸の金属塩と四級アンモニウムやホスホニウム塩のハロゲン化物とをイオン交換することによりフルオロスルホン酸のアンモニウムやホスホニウム塩を得る方法等が挙げられる。
本発明の非水系電解液において、式(1)で表されるフルオロスルホン酸塩は、少なくとも1種以上含まれていればよく、1種を単独で用いても、2種以上を併用してもよい。2種以上を用いる場合、そのうちの1種がLiFSOであることが好ましい。特に、LiFSOと、NaFSO、KFSO、フルオロスルホン酸テトラアルキルアンモニウム(例えば、メチルアンモニウム、フルオロスルホン酸テトラエチルアンモニウム、フルオロスルホン酸テトラブチルアンモニウム)、フルオロスルホン酸ジメチルピロリジニウム、フルオロスルホン酸メチルエチルピロリジニウム、フルオロスルホン酸ジエチルピロリジニウム、フルオロスルホン酸ジメチルピペリジニウム、フルオロスルホン酸メチルエチルピペリジニウム、フルオロスルホン酸ジエチルピペリジニウム、フルオロスルホン酸ジメチルモルホリニウム、フルオロスルホン酸メチルエチルモルホリニウム、フルオロスルホン酸ジエチルモルホリニウム、フルオロスルホン酸テトラメチルホスホニウム、フルオロスルホン酸テトラエチルホスホニウム及びフルオロスルホン酸テトラブチルホスホニウムから選ばれる1種以上との組み合わせであることが好ましい。
具体的には、LiFSOとNaFSO、LiFSOとKFSO、LiFSOとフルオロスルホン酸テトラメチルアンモニウム、LiFSOとフルオロスルホン酸テトラエチルアンモニウム、LiFSOとフルオロスルホン酸テトラブチルアンモニウム、LiFSOとフルオロスルホン酸ジメチルピロリジニウム、LiFSOとフルオロスルホン酸メチルエチルピロリジニウム、LiFSOとフルオロスルホン酸ジエチルピロリジニウム、LiFSOとフルオロスルホン酸ジメチルピペリジニウム、LiFSOとフルオロスルホン酸メチルエチルピペリジニウム、LiFSOとフルオロスルホン酸ジエチルピペリジニウム、LiFSOとフルオロスルホン酸ジメチルモルホリニウム、LiFSOとフルオロスルホン酸メチルエチルモルホリニウム、LiFSOとフルオロスルホン酸ジエチルモルホリニウム、LiFSOとフルオロスルホン酸テトラメチルホスホニウム、LiFSOとフルオロスルホン酸テトラエチルホスホニウム、LiFSOとフルオロスルホン酸テトラブチルホスホニウムの組み合わせが、非水系電解液中のリチウム濃度を増加させる点で好ましい。
<LiPF
本発明は、電解質として、LiPFを含有する。
<式(1)で表されるフルオロスルホン酸塩及びLiPF
本発明において、非水電解液中の、PFのモル含有量[PF]に対するFSOのモル含有量[FSO]の比([FSO]/[PF])は、0.001〜1.2である。
[FSO]/[PF]の比率が上記範囲を下回ると、フルオロスルホン酸塩の特徴である入出力特性や耐久性が発現しない場合がある。一方、フルオロスルホン酸塩の比率が上記範囲を上回ると、電池内部インピーダンスが高くなり、入出力特性が低下する場合がある。本発明の効果をより顕著に発揮するためには、[FSO]/[PF]は好ましくは0.01以上、より好ましくは0.02以上であり、また、好ましくは1.1以下、より好ましくは1.0以下、更に好ましくは0.7以下である。そして、[FSO]/[PF]の範囲としては、0.01以上1.1以下が好ましく、0.01以上1.0以下がより好ましく、0.01以上0.7以下が更に好ましい。
本発明の非水系電解液においては、非水系電解液中のFSOのモル含有量[FSO]が、下限値としては、0.0005mol/L以上であることが好ましく、0.01mol/L以上であることがより好ましく、0.02mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。[FSO]の濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。[FSO]の濃度の範囲としては、0.0005mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.45mol/L以下が更に好ましく、0.01mol/L以上0.40mol/L以下が特に好ましい。また、上記値は、添加量から算出してもよいが、電解液を分析して、電解液中に含まれる含有量から適宜算出してもよい。
なお、非水系電解液中の、FSOのモル含有量([FSO])は、例えば、非水系電解液を調製するにあたって使用したM(FSOの量によって決定することができる。式(1)においてxが1の場合、非水系電解液中のM(FSO)のモル含有量と[FSO]のモル含有量は等しく、xが2の場合、M(FSO)のモル含有量に対して、[FSO]のモル含有量は2倍であり、xが3の場合、M(FSO)のモル含有量に対して[FSO]のモル含有量は3倍である。
本発明の非水系電解液においては、非水系電解液中のPFのモル含有量([PF])が、下限値としては、0.5mol/L以上であることが好ましく、0.6mol/L以上であることがより好ましく、0.7mol/L以上であることが特に好ましい。また、上限値としては、3.0mol/L以下であることが好ましく、2.0mol/L以下であることがより好ましく、1.5mol/L以下であることが特に好ましい。[PF]の濃度範囲としては、0.5mol/L以上3.0mol/L以下であることが好ましく、0.5mol/L以上2.0mol/L以下であることがより好ましく、0.5mol/L以上1.5mol/L以下であることが更に好ましい。
[PF]の濃度が上記範囲内であると、非水電解液中の総イオン含有量が存在量と電解液の粘性が適度なバランスとなるため、イオン伝導度が低下することなく電池内部インピーダンスが低くなり、入出力特性の効果発言し易くなる。
<その他のリチウム塩>
本発明における非水系電解液は、電解質として、M(FSOと共にLiPFが用いられるが、更にその他のリチウム塩を1種以上含有することができる。その他のリチウム塩としては、LiPF及びフルオロスルホン酸リチウム(式(1)においてMがLiの場合)以外のリチウム塩であって、この用途に用いることが知られているものであれば、特に制限はなく、具体的には以下のものが挙げられる。
例えば、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のLiPF以外のフルオロリン酸リチウム塩類;
LiWOF等のタングステン酸リチウム塩類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;
等が挙げられる。
以上のなかでも、LiBF、LiSbF、LiTaF、LiPO、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が好ましい。
また、出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から、LiPF以外のフルオロリン酸リチウム塩類、リチウムイミド塩類、リチウムオキサラート塩類、の中から選ばれるものが好ましく、リチウム塩が好ましく、具体的には、LiPO、LiBF、LiN(CFSO、LiN(FSO、リチウムジフルオロオキサラトボレート、リチウムビスオキサラトボレート、リチウムジフルオロビスオキサラトフォスフェート、リチウムテトラフルオロビスオキサラートフォスフェートの中から選ばれるものが特に好ましい。
M(FSOとLiPF以外のその他のリチウム塩の含有量は、本発明の効果を著しく損なわない限り任意であるが、下限値としては、0.0005mol/L以上であることが好ましく、0.001mol/L以上であることがより好ましく、0.01mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。[FSO]の濃度が上記範囲内であると、出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果が更に発現しやすくなる。M(FSOとLiPF以外の非水系電解液中のリチウム塩の濃度の範囲としては、0.0005mol/L以上0.5mol/L以下が好ましく、0.001mol/L以上0.45mol/L以下が更に好ましく、0.001mol/L以上0.4mol/L以下が特に好ましい。
また、M(FSOとLiPFとその他のリチウム塩は、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度[Li]が、0.3mol/L以上、3mol/L以下となるように使用することが好ましい。リチウムの総モル濃度[Li]には、LiPF及び式(1)で表されるフルオロスルホン酸塩がリチウム塩の場合は、これらに由来するリチウムも含み、非水系電解液中のリチウムの総モル濃度[Li]を意味する。リチウムの総モル濃度[Li]は、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、より好ましくは2.0mol/L以下、更に好ましくは1.8mol/L以下、特に好ましくは1.7mol/L以下である。
ここで、LiPOを電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPOを、LiPFを含む電解液に添加する方法や後述する活物質や極板等の電池構成要素中に水を共存させておき、LiPFを含む電解液を用いて電池を組み立てる際に系中でLiPOを発生させる方法が挙げられ、本発明においてはいずれの手法を用いてもよい。
上記の非水系電解液、および非水系電解液電池中におけるLiPOの含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。
<1−2.非水溶媒>
<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。
具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100体積%中、3体積%以上、より好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、90体積%以下、より好ましくは85体積%以下、更に好ましくは80体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の負荷特性を良好な範囲としやすくなる。
また、飽和環状カーボネートを2種類以上の任意の組み合わせで用いることもできる。好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートに組み合わせである。この場合のエチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの量は、1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また上限は、通常20体積%以下、好ましくは8体積%以下、より好ましくは5体積%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートは、非水溶媒100体積%中、15体積%以上であることが好ましい。15体積%以上とすることにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下であることが好ましい。90体積%以下とすることにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。鎖状カーボネートの配合量は、より好ましくは20体積%以上、更に好ましくは25体積%以上であり、また、より好ましくは85体積%以下、更に好ましくは80体積%以下である。
更に、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの配合量が15体積%以上、40体積%以下、ジメチルカーボネートの配合量が20体積%以上、50体積%以下、エチルメチルカーボネートの配合量が20体積%以上、50体積%以下であることが好ましい。このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。特に好ましくは、エチレンカーボネートの配合量が25体積%以上、35体積%以下、ジメチルカーボネートの配合量が30体積%以上、40体積%以下、エチルメチルカーボネートの配合量が30体積%以上、40体積%以下である。
<フッ素原子を有する環状カーボネート>
フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と略記する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、また、好ましくは85質量%以下であり、より好ましくは80質量%以下、更に好ましくは75質量%以下である。そして、フッ素化環状カーボネートの濃度の範囲としては、0.001質量%以上85質量%以下が好ましく、0.01質量%以上80質量%以下がより好ましく、0.1質量%以上75質量%以下が更に好ましい。
尚、フッ素化環状カーボネートは、該非水系電解液の主たる溶媒として用いても、副たる溶媒として用いてもよい。主たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは8質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは12質量%以上であり、好ましくは85質量%以下であり、より好ましくは80質量%以下であり、更に好ましくは75質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、放電容量維持率が低下することを回避しやすい。また、副たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、更にこのましくは0.1質量%以上であり、好ましくは8質量%以下であり、より好ましくは6質量%以下であり、更に好ましくは5質量%以下である。この範囲であれば、非水系電解液二次電池が十分な出力特性を発現しやすい。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。
具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、非水溶媒100体積%中、5体積%以上であることが好ましい。5体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルは、非水溶媒100体積%中、60体積%以下であることが好ましい。80体積%以下とすることにより、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。鎖状カルボン酸エステルの配合量は、より好ましくは8体積%以上であり、また、より好ましくは70体積%以下である。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、非水溶媒100体積%中、好ましくは3体積%以上である。3体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルは、好ましくは60体積%以下である。60体積%以下とすることにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。環状カルボン酸エステルの配合量は、より好ましくは5体積%以上であり、また、より好ましくは50体積%以下である。
<エーテル系化合物>
エーテル系化合物としては、炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは3体積%以上、より好ましくは4体積%以上、更に好ましくは5体積%以上、また、好ましくは70体積%以下、より好ましくは65体積%以下、更に好ましくは60体積%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
スルホン系化合物は、非水溶媒100体積%中、好ましくは0.3体積%以上であり、また、80体積%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。スルホン系化合物の配合量は、より好ましくは0.5体積%以上、更に好ましくは1体積%以上であり、また、より好ましくは75体積%以下、更に好ましくは70体積%以下である。
1−3.助剤
<炭素−炭素不飽和結合を有する環状カーボネート>
本発明の非水系電解液において、非水系電解液電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)を用いることができる。
炭素−炭素不飽和結合を有する環状カーボネートとしては、炭素−炭素二重結合を有する環状カーボネートであれば、特に制限はなく、任意の炭素−炭素不飽和結合を有するカーボネートを用いることができる。なお、芳香環を有する置換基を有する環状カーボネートも、炭素−炭素不飽和結合を有する環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、アリルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート等が挙げられる。
中でも、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネートが好ましく、特に、ビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、特に好ましくは0.2質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは8質量%以下、更に好ましくは5質量%以下である。そして、不飽和環状カーボネートの濃度の範囲としては、0.001質量%以上10質量%以下が好ましく、0.001質量%以上8質量%以下がより好ましく、0.001質量%以上5質量%以下が更に好ましい。
上記範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フッ素化不飽和環状カーボネート>
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートは、特に制限されない。中でもフッ素原子が1個又は2個のものが好ましい。
フッ素化不飽和環状カーボネートとしては、ビニレンカーボネート誘導体、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体等が挙げられる。
ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4,5−ジフルオロエチレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。フッ素化不飽和環状カーボネートの配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは4質量%以下、更に好ましくは3質量%以下である。
<環状スルホン酸エステル化合物>
本発明の非水系電解液において、用いることができる環状スルホン酸エステル化合物としては、特にその種類は限定されないが、一般式(4)で表される化合物がより好ましい。
Figure 2013152956
(式中、RおよびRは各々独立して、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる原子で構成された有機基を表し、RとRは互いに−O−SO−とともに不飽和結合を含んでいてもよい)
およびRは、好ましくは炭素原子、水素原子、酸素原子、硫黄原子からなる原子で構成された有機基であることが好ましく、中でも炭素数1〜3の炭化水素基、−O−SO−を有する有機基であることが好ましい。
環状スルホン酸エステル化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、100以上であり、また、250以下である。この範囲であれば、非水系電解液に対する環状スルホン酸エステル化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。環状スルホン酸エステル化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
一般式(2)で表される化合物の具体例としては、例えば、
1,3−プロパンスルトン、
1−フルオロ−1,3−プロパンスルトン、
2−フルオロ−1,3−プロパンスルトン、
3−フルオロ−1,3−プロパンスルトン、
1−メチル−1,3−プロパンスルトン、
2−メチル−1,3−プロパンスルトン、
3−メチル−1,3−プロパンスルトン
1−プロペン−1,3−スルトン、
2−プロペン−1,3−スルトン、
1−フルオロ−1−プロペン−1,3−スルトン、
2−フルオロ−1−プロペン−1,3−スルトン、
3−フルオロ−1−プロペン−1,3−スルトン、
1−フルオロ−2−プロペン−1,3−スルトン、
2−フルオロ−2−プロペン−1,3−スルトン、
3−フルオロ−2−プロペン−1,3−スルトン、
1−メチル−1−プロペン−1,3−スルトン、
2−メチル−1−プロペン−1,3−スルトン、
3−メチル−1−プロペン−1,3−スルトン、
1−メチル−2−プロペン−1,3−スルトン、
2−メチル−2−プロペン−1,3−スルトン、
3−メチル−2−プロペン−1,3−スルトン、
1,4−ブタンスルトン、
1−フルオロ−1,4−ブタンスルトン、
2−フルオロ−1,4−ブタンスルトン、
3−フルオロ−1,4−ブタンスルトン、
4−フルオロ−1,4−ブタンスルトン、
1−メチル−1,4−ブタンスルトン、
2−メチル−1,4−ブタンスルトン、
3−メチル−1,4−ブタンスルトン、
4−メチル−1,4−ブタンスルトン、
1−ブテン−1,4−スルトン、
2−ブテン−1,4−スルトン、
3−ブテン−1,4−スルトン、
1−フルオロ−1−ブテン−1,4−スルトン、
2−フルオロ−1−ブテン−1,4−スルトン、
3−フルオロ−1−ブテン−1,4−スルトン、
4−フルオロ−1−ブテン−1,4−スルトン、
1−フルオロ−2−ブテン−1,4−スルトン、
2−フルオロ−2−ブテン−1,4−スルトン、
3−フルオロ−2−ブテン−1,4−スルトン、
4−フルオロ−2−ブテン−1,4−スルトン、
1−フルオロ−3−ブテン−1,4−スルトン、
2−フルオロ−3−ブテン−1,4−スルトン、
3−フルオロ−3−ブテン−1,4−スルトン、
4−フルオロ−3−ブテン−1,4−スルトン、
1−メチル−1−ブテン−1,4−スルトン、
2−メチル−1−ブテン−1,4−スルトン、
3−メチル−1−ブテン−1,4−スルトン、
4−メチル−1−ブテン−1,4−スルトン、
1−メチル−2−ブテン−1,4−スルトン、
2−メチル−2−ブテン−1,4−スルトン、
3−メチル−2−ブテン−1,4−スルトン、
4−メチル−2−ブテン−1,4−スルトン、
1−メチル−3−ブテン−1,4−スルトン、
2−メチル−3−ブテン−1,4−スルトン、
3−メチル−3−ブテン−1,4−スルトン、
4−メチル−3−ブテン−1,4−スルトン、
1,5−ペンタンスルトン、
1−フルオロ−1,5−ペンタンスルトン、
2−フルオロ−1,5−ペンタンスルトン、
3−フルオロ−1,5−ペンタンスルトン、
4−フルオロ−1,5−ペンタンスルトン、
5−フルオロ−1,5−ペンタンスルトン、
1−メチル−1,5−ペンタンスルトン、
2−メチル−1,5−ペンタンスルトン、
3−メチル−1,5−ペンタンスルトン、
4−メチル−1,5−ペンタンスルトン、
5−メチル−1,5−ペンタンスルトン、
1−ペンテン−1,5−スルトン、
2−ペンテン−1,5−スルトン、
3−ペンテン−1,5−スルトン、
4−ペンテン−1,5−スルトン、
1−フルオロ−1−ペンテン−1,5−スルトン、
2−フルオロ−1−ペンテン−1,5−スルトン、
3−フルオロ−1−ペンテン−1,5−スルトン、
4−フルオロ−1−ペンテン−1,5−スルトン、
5−フルオロ−1−ペンテン−1,5−スルトン、
1−フルオロ−2−ペンテン−1,5−スルトン、
2−フルオロ−2−ペンテン−1,5−スルトン、
3−フルオロ−2−ペンテン−1,5−スルトン、
4−フルオロ−2−ペンテン−1,5−スルトン、
5−フルオロ−2−ペンテン−1,5−スルトン、
1−フルオロ−3−ペンテン−1,5−スルトン、
2−フルオロ−3−ペンテン−1,5−スルトン、
3−フルオロ−3−ペンテン−1,5−スルトン、
4−フルオロ−3−ペンテン−1,5−スルトン、
5−フルオロ−3−ペンテン−1,5−スルトン、
1−フルオロ−4−ペンテン−1,5−スルトン、
2−フルオロ−4−ペンテン−1,5−スルトン、
3−フルオロ−4−ペンテン−1,5−スルトン、
4−フルオロ−4−ペンテン−1,5−スルトン、
5−フルオロ−4−ペンテン−1,5−スルトン、
1−メチル−1−ペンテン−1,5−スルトン、
2−メチル−1−ペンテン−1,5−スルトン、
3−メチル−1−ペンテン−1,5−スルトン、
4−メチル−1−ペンテン−1,5−スルトン、
5−メチル−1−ペンテン−1,5−スルトン、
1−メチル−2−ペンテン−1,5−スルトン、
2−メチル−2−ペンテン−1,5−スルトン、
3−メチル−2−ペンテン−1,5−スルトン、
4−メチル−2−ペンテン−1,5−スルトン、
5−メチル−2−ペンテン−1,5−スルトン、
1−メチル−3−ペンテン−1,5−スルトン、
2−メチル−3−ペンテン−1,5−スルトン、
3−メチル−3−ペンテン−1,5−スルトン、
4−メチル−3−ペンテン−1,5−スルトン、
5−メチル−3−ペンテン−1,5−スルトン、
1−メチル−4−ペンテン−1,5−スルトン、
2−メチル−4−ペンテン−1,5−スルトン、
3−メチル−4−ペンテン−1,5−スルトン、
4−メチル−4−ペンテン−1,5−スルトン、
5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、
エチレンスルフェート、
プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、
エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、
3H−1,2,3−オキサチアゾール−2,2−ジオキシド、
5H−1,2,3−オキサチアゾール−2,2−ジオキシド、
1,2,4−オキサチアゾリジン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、
3H−1,2,4−オキサチアゾール−2,2−ジオキシド、
5H−1,2,4−オキサチアゾール−2,2−ジオキシド、
1,2,5−オキサチアゾリジン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、
3H−1,2,5−オキサチアゾール−2,2−ジオキシド、
5H−1,2,5−オキサチアゾール−2,2−ジオキシド、
1,2,3−オキサチアジナン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、
1,2,4−オキサチアジナン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、
3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、
3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、
1,2,5−オキサチアジナン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、
3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、
3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、
1,2,6−オキサチアジナン−2,2−ジオキシド、
6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、
3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、
5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物;
1,2,3−オキサチアホスラン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、
3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、
1,2,4−オキサチアホスラン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアホスラン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、
4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、
1,2,5−オキサチアホスラン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、
5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、
1,2,3−オキサチアホスフィナン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアホスフィナン−2,2−ジオキシド、
3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、
3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、
1,2,4−オキサチアホスフィナン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、
4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、
4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、
4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、
3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、
1,2,5−オキサチアホスフィナン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、
5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、
5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、
1,2,6−オキサチアホスフィナン−2,2−ジオキシド、
6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、
6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、
6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシドなどの含リン化合物;
これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
環状スルホン酸エステル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<シアノ基を有する化合物>
本発明の非水系電解液において、用いることができるシアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されないが、一般式(3)で表される化合物がより好ましい。
Figure 2013152956
(式中、Tは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる原子で構成された有機基を表し、Uは置換基を有してもよい炭素数1から10のV価の有機基である。Vは1以上の整数であり、Vが2以上の場合は、Tは互いに同一であっても異なっていてもよい。)
シアノ基を有する化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、より好ましくは80以上、更に好ましくは100以上であり、また、200以下である。この範囲であれば、非水系電解液に対するシアノ基を有する化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。シアノ基を有する化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
一般式(3)で表される化合物の具体例としては、例えば、
アセトニトリル、
プロピオニトリル、
ブチロニトリル、
イソブチロニトリル、
バレロニトリル、
イソバレロニトリル、
ラウロニトリル
2−メチルブチロニトリル、
トリメチルアセトニトリル、
ヘキサンニトリル、
シクロペンタンカルボニトリル、
シクロヘキサンカルボニトリル、
アクリロニトリル、
メタクリロニトリル、
クロトノニトリル、
3−メチルクロトノニトリル、
2−メチル−2−ブテン二トリル、
2−ペンテンニトリル、
2−メチル−2−ペンテンニトリル、
3−メチル−2−ペンテンニトリル、
2−ヘキセンニトリル、
フルオロアセトニトリル、
ジフルオロアセトニトリル、
トリフルオロアセトニトリル、
2−フルオロプロピオニトリル、
3−フルオロプロピオニトリル、
2,2−ジフルオロプロピオニトリル、
2,3−ジフルオロプロピオニトリル、
3,3−ジフルオロプロピオニトリル、
2,2,3−トリフルオロプロピオニトリル、
3,3,3−トリフルオロプロピオニトリル、
3,3’−オキシジプロピオニトリル、
3,3’−チオジプロピオニトリル、
1,2,3−プロパントリカルボニトリル、
1,3,5−ペンタントリカルボニトリル、
ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;
マロノニトリル、
スクシノニトリル、
グルタロニトリル、
アジポニトリル、
ピメロニトリル、
スベロニトリル、
アゼラニトリル、
セバコニトリル、
ウンデカンジニトリル、
ドデカンジニトリル、
メチルマロノニトリル、
エチルマロノニトリル、
イソプロピルマロノニトリル、
tert−ブチルマロノニトリル、
メチルスクシノニトリル、
2,2−ジメチルスクシノニトリル、
2,3−ジメチルスクシノニトリル、
トリメチルスクシノニトリル、
テトラメチルスクシノニトリル
3,3’−(エチレンジオキシ)ジプロピオニトリル、
3,3’−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物;
1,2,3−トリス(2−シアノエトキシ)プロパン、
トリス(2−シアノエチル)アミン等等のシアノ基を3つ有する化合物;
メチルシアネート、
エチルシアネート、
プロピルシアネート、
ブチルシアネート、
ペンチルシアネート、
ヘキシルシアネート、
ヘプチルシアネートなどのシアネート化合物;
メチルチオシアネート、
エチルチオシアネート、
プロピルチオシアネート、
ブチルチオシアネート、
ペンチルチオシアネート、
ヘキシルチオシアネート、
ヘプチルチオシアネート、
メタンスルホニルシアニド、
エタンスルホニルシアニド、
プロパンスルホニルシアニド、
ブタンスルホニルシアニド、
ペンタンスルホニルシアニド、
ヘキサンスルホニルシアニド、
ヘプタンスルホニルシアニド、
メチルスルフロシアニダート
エチルスルフロシアニダート
プロピルスルフロシアニダート
ブチルスルフロシアニダート
ペンチルスルフロシアニダート
ヘキシルスルフロシアニダート
ヘプチルスルフロシアニダートなどの含硫黄化合物;
シアノジメチルホスフィン
シアノジメチルホスフィンオキシド
シアノメチルホスフィン酸メチル
シアノメチル亜ホスフィン酸メチル
ジメチルホスフィン酸シアニド
ジメチル亜ホスフィン酸シアニド
シアノホスホン酸ジメチル
シアノ亜ホスホン酸ジメチル
メチルホスホン酸シアノメチル
メチル亜ホスホン酸シアノメチル
リン酸シアノジメチル
亜リン酸シアノジメチルなどの含リン化合物;
等が挙げられる。
これらのうち、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、クロトノニトリル、3‐メチルクロトノニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリルが保存特性向上の点から好ましく、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を2つ有する化合物がより好ましい。
シアノ基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対するシアノ基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
<ジイソシアネート化合物>
本発明の非水系電解液において、用いることができるジイソシアネート化合物は、分子内にイソシアナト基を2つ有する化合物であれば特に制限はないが、下記一般式(4)で表されるものが好ましい。
Figure 2013152956
(式中、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である)
上記一般式(4)において、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である。Xの炭素数は好ましくは2以上、より好ましくは3以上、特に好ましくは4以上であり、また好ましくは14以下、より好ましくは12以下、特に好ましくは10以下、最も好ましくは8以下である。またXの種類については炭化水素基である限り特に限定されない。脂肪族鎖状アルキレン基、脂肪族環状アルキレン基及び芳香環含有炭化水素基のいずれであってもよいが、好ましくは脂肪族鎖状アルキレン基又は脂肪族環状アルキレン基である。
本発明におけるジイソシアネートの具体例を挙げると、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;メチルテトラメチレンジイソシアネート、ジメチルテトラメチレンジイソシアネート、トリメチルテトラメチレンジイソシアネート、メチルヘキサメチレンジイソシアネート、ジメチルヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、メチルオクタメチレンジイソシアネート、ジメチルオクタメチレンジイソシアネート、トリメチルオクタメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;1,4−ジイソシアナト−2−ブテン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−3−ペンテン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,8−ジイソシアナト−2−オクテン、1,8−ジイソシアナト−3−オクテン、1,8−ジイソシアナト−4−オクテン、等のジイソシアナトアルケン類;1,3−ジイソシアナト−2−フルオロプロパン、1,3−ジイソシアナト−2,2−ジフルオロプロパン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,2−ジフルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,6−ジイソシアナト−2−フルオロヘキサン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−2,2−ジフルオロヘキサン、1,6−ジイソシアナト−2,3−ジフルオロヘキサン、1,6−ジイソシアナト−2,4−ジフルオロヘキサン、1,6−ジイソシアナト−2,5−ジフルオロヘキサン、1,6−ジイソシアナト−3,3−ジフルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、1,8−ジイソシアナト−2−フルオロオクタン、1,8−ジイソシアナト−3−フルオロオクタン、1,8−ジイソシアナト−4−フルオロオクタン、1,8−ジイソシアナト−2,2−ジフルオロオクタン、1,8−ジイソシアナト−2,3−ジフルオロオクタン、1,8−ジイソシアナト−2,4−ジフルオロオクタン、1,8−ジイソシアナト−2,5−ジフルオロオクタン、1,8−ジイソシアナト−2,6−ジフルオロオクタン、1,8−ジイソシアナト−2,7−ジフルオロオクタン、等のフッ素置換ジイソシアナトアルカン類;1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレン−2,3−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,5−ジイソシアネート、トリレン−2,6−ジイソシアネート、トリレン−3,4−ジイソシアネート、トリレン−3,5−ジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニル、2,2’−ジイソシアナトビフェニル、3,3’−ジイソシアナトビフェニル、4,4’−ジイソシアナト−2−メチルビフェニル、4,4’−ジイソシアナト−3−メチルビフェニル、4,4’−ジイソシアナト−3,3’−ジメチルビフェニル、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト−2−メチルジフェニルメタン、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−3,3’−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,3−ジイソシアナトナフタレン、1,5−ビス(イソシアナトメチル)ナフタレン、1,8−ビス(イソシアナトメチル)ナフタレン、2,3−ビス(イソシアナトメチル)ナフタレン等の芳香環含有ジイソシアネート類;
などが挙げられる。
これらの中でも、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;メチルテトラメチレンジイソシアネート、ジメチルテトラメチレンジイソシアネート、トリメチルテトラメチレンジイソシアネート、メチルヘキサメチレンジイソシアネート、ジメチルヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、メチルオクタメチレンジイソシアネート、ジメチルオクタメチレンジイソシアネート、トリメチルオクタメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
が好ましい。
更には、
テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、から選ばれる直鎖ポリメチレンジイソシアネート類;1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、から選ばれるシクロアルカン環含有ジイソシアネート類;
が特に好ましい。
また上述した本発明におけるジイソシアネートは、1種類を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液において、用いることができるジイソシアネートの含有量は、該非水電解液の全体の質量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、また、通常5質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、更に好ましくは2質量%以下である。含有量が上記範囲内であると、サイクル、保存等の耐久性を向上でき、本発明の効果を十分に発揮できる。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、硫酸エチレン、硫酸ビニレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリメトキシシリル)、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)等のシラン化合物、が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
2.非水系電解液二次電池
本発明の非水系電解液二次電池は、イオンを吸蔵及び放出し得る負極及び正極と前記の本発明非水系電解液とを備えるものである。
<2−1.電池構成>
本発明の非水系電解液二次電池は、負極及び非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2−2.非水系電解液>
非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
<2−3.負極>
負極は、集電体上に負極活物質層を有するものであり、以下に負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<2−3−1.炭素質材料>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400から3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。また、(1)〜(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質の具体的な例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、あるいはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物、及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
<2−3−2.炭素質負極の構成、物性、調製方法>
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(13)の何れか1項又は複数項を同時に満たしていることが望ましい。
(1)X線パラメータ
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335〜0.340nmであり、特に0.335〜0.338nm、とりわけ0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
(2)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
(3)ラマンR値、ラマン半値幅
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上が更に好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下が更に好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下が更に好ましく、40cm−1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
(4)BET比表面積
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下が更に好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明における炭素質材料のBET比表面積と定義する。
(5)円形度
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上が更に好ましく、0.9以上が特に好ましい。
高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
(6)タップ密度
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上が更に好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下が更に好ましく、1.6g・cm−3以下が特に好ましい。
タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
(7)配向比
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上が更に好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット:
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(8)アスペクト比(粉)
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下が更に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明における炭素質材料のアスペクト比と定義する。
(9)電極作製
電極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上が更に好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下が更に好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
(10−1)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
(11)集電体と負極活物質層の厚さの比
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下が更に好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上が更に好ましく、1以上が特に好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
<2−3−3.金属化合物系材料、及び金属化合物系材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成する単体金属若しくは合金であることが好ましく、13族又は14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、更には、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「特定金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(特定金属元素)の化合物であることが好ましく、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物が特に好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、又は、その化合物の酸化物・炭化物・窒化物・珪化物・硫化物・燐化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も例として挙げることができる。より具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばスズでは、スズとケイ素以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
また、金属単体又は合金を用いるよりは単位質量当りの容量には劣るものの、サイクル特性に優れることから、ケイ素及び/又はスズを含有する以下の化合物も好ましい。
・ケイ素及び/又はスズと酸素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの酸化物」。
・ケイ素及び/又はスズと窒素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの窒化物」。
・ケイ素及び/又はスズと炭素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの炭化物」。
なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液二次電池における負極は、公知の何れの方法を用いて製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も白在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に結着剤等の含有量が不足することにより、得られる負極の強度が不足する傾向にあるためである。なお、2以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3質量%以上、特に5質量%以上、また、通常30質量%以下、特に25質量%以下であることが好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となるためである。なお、2以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。
負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム・イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、特に1質量部以上、また、通常10質量部以下、特に8質量部以下であることが好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となるためである。なお、2以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。
負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。
負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電材や結着剤、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常は水が用いられるが、エタノール等のアルコール類やN−メチルピロリドン等の環状アミド類等の水以外の溶媒を、水に対して30質量%以下程度の割合で併用することもできる。また、有機溶媒としては、通常、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に制限されない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて、適宜調製すればよい。
得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
<2−3−4.リチウム含有金属複合酸化物材料、及びリチウム含有金属複合酸化物材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(3)で表されるリチウムチタン複合酸化物であり、一般式(3)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
LixTiyMzO4 (3)
[一般式(3)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(3)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
本発明における負極活物質としてのリチウムチタン複合酸化物は、上記した要件に加えて、更に、下記の(1)〜(13)に示した物性及び形状等の特徴の内、少なくとも1種を満たしていることが好ましく、2種以上を同時に満たすことが特に好ましい。
(1)BET比表面積
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m・g−1以上が好ましく、0.7m・g−1以上がより好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、200m・g−1以下が好ましく、100m・g−1以下がより好ましく、50m・g−1以下が更に好ましく、25m・g−1以下が特に好ましい。
BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。
(2)体積基準平均粒径
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
リチウムチタン複合酸化物の体積基準平均粒径は、通常0.1μm以上であり、0.5μm以上が好ましく、0.7μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明における炭素質材料の体積基準平均粒径と定義する。
リチウムチタン複合酸化物の体積平均粒径が、上記範囲を下回ると、電極作製時に多量の結着剤が必要となり、結果的に電池容量が低下する場合がある。また、上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(3)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上が更に好ましく、0.2μm以上が特に好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下が更に好ましく、1μm以下が特に好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10000〜100000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(4)形状
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
(5)タップ密度
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上が更に好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下が好ましく、2.4g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。
(6)円形度
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物の円形度は、1に近いほど好ましく、通常0.10以上であり、0.80以上が好ましく、0.85以上が更に好ましく、0.90以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほどが向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行なう。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。
(7)アスペクト比
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下が更に好ましく、2以下が特に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
アスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行なう。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。
(8)負極活物質の製造法
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNO等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
特に球状又は楕円球状の活物質を作成するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
また、これらの工程中に、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在していることも可能である。これらの元素を含有することで、電池の作動電圧、容量を制御することが可能となる。
(9)電極作製
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下が望ましい。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは銅(Cu)及び/又はアルミニウム(Al)を含有する金属箔膜であり、より好ましくは銅箔、アルミニウム箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。またアルミニウム箔は、その比重が軽いことから、集電体として用いた場合に、電池の質量を減少させることが可能となり、好ましく用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
また、集電体基板には、更に次のような物性が望まれる。
(10−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上であり、0.03μm以上が好ましく、また、通常1.5μm以下であり、1.3μm以下が好ましく、1.0μm以下が更に好ましい。
集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上するためである。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
(10−2)引張強度
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
集電体基板の引張強度は、特に制限されないが、通常50N・mm−2以上であり、100N・mm−2以上が好ましく、150N・mm−2以上が更に好ましい。引張強度は、値が高いほど好ましいが、工業的入手可能性の観点から、通常1000N・mm−2以下が望ましい。
引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(10−3)0.2%耐力
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張強度と同様な装置及び方法で測定される。
集電体基板の0.2%耐力は、特に制限されないが、通常30N・mm−2以上、好ましくは100N・mm−2以上、特に好ましくは150N・mm−2以上である。0.2%耐力は、値が高いほど好ましいが、工業的入手可能性の観点から、通常900N・mm−2以下が望ましい。
0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができるためである。
(10−4)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。
金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。
なお、金属薄膜は、メッシュ状でもよい。
(11)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下が更に好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上が更に好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(12)電極密度
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上が更に好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための溶媒としては、負極活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常20質量%以下であり、15質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。
負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また、上記範囲を下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
<2−4正極>
正極は、集電体上に正極活物質層を有するものであり、以下に正極活物質について述べる。
<2−4−1正極活物質>
以下に正極に使用される正極活物質について説明する。
(1)組成
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Co0.45Mn0.1、Li1+aMn1.8Al0.2、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属)等が挙げられる(a=0<a≦3.0)。
リチウム含有遷移金属リン酸化合物は、LixMPO(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V、Ti、Cr、Mg、Zn、Ca、Cd、Sr、Ba、Co、Ni、Fe、MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co、Ni、FeおよびMnからなる群より選ばれる少なくとも一種の元素であることがより好ましい。例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。これらの中でも、特にLiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物や、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
なお、上述の「LixMPO4を基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。更に、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を行う場合は、0.1mol%以上5mol%以下が好ましく、更に好ましくは0.2mol%以上2.5mol%以下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
(2)表面被覆
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。
正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、通常0.1ppm以上であり、1ppm以上が好ましく、10ppm以上が更に好ましく、また、通常20%以下であり、10%以下が好ましく、5%以下が更に好ましい。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。しかし、付着量が上記範囲を下回ると、その効果は十分に発現せず、また上記範囲を上回ると、リチウムイオンの出入りを阻害するために抵抗が増加する場合があるため、上記範囲が好ましい。
(3)形状
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。従って、一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子よりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(4)タップ密度
正極活物質のタップ密度は、通常0.4g・cm−3以上であり、0.6g・cm−3以上が好ましく、0.8g・cm−3以上が更に好ましく、1.0g・cm−3以上が特に好ましく、また、通常4.0g・cm−3以下であり、3.8g・cm−3以下が好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。従って、正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく特に上限はないが、上記範囲を下回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。
(5)メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
メジアン径d50は、通常0.1μm以上であり、0.5μm以上が好ましく、1μm以上が更に好ましく、3μm以上が特に好ましく、また、通常20μm以下であり、18μm以下が好ましく、16μm以下が更に好ましく、15μm以下が特に好ましい。メジアン径d50が、上記範囲を下回ると、高嵩密度品が得られなくなる場合があり、上記範囲を上回ると粒子内のリチウムの拡散に時間がかかるため、電池特性の低下や、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等が生じる場合がある。
なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作成時の充填性を更に向上させることもできる。
メジアン径d50の測定は、0.1質量%ヘキサメタリン酸ナトリウム水溶液を分散媒にして、粒度分布計として堀場製作所社製LA−920用いて、5分間の超音波分散後に測定屈折率1.24に設定して測定する。
(6)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、通常0.03μm以上であり、0.05μm以上が好ましく、0.08μm以上がより好ましく、0.1μm以上が特に好ましく、また、通常5μm以下であり、4μm以下が好ましく、3μm以下がより好ましく、2μm以下が特に好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(7)BET比表面積
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.2m・g−1以上が好ましく、0.3m・g−1以上が更に好ましく、また、通常50m・g−1以下であり、40m・g−1以下が好ましく、30m・g−1以下が更に好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
BET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用いて測定する。試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定する。該測定で求められる比表面積を、本発明における陽極活物質のBET比表面積と定義する。
(8)正極活物質の製造法
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1つとして、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
<2−4−2電極構造と作製法>
以下に、本発明に使用される正極の構成及びその作製法について説明する。
(1)正極の作製法
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知の何れの方法で作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
正極活物質の正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。なお、本発明における正極活物質粉体は1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。
(2)導電材
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
(3)結着剤
正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着剤の割合は、通常0.1質量%以上であり、1質量%以上が好ましく、3質量%以上が更に好ましく、また、通常50質量%以下であり、30質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。結着剤の割合が、上記範囲を下回ると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。また、上記範囲を上回ると、電池容量や導電性の低下につながる場合がある。
(4)液体媒体
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系媒体の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(5)増粘剤
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に増粘剤を使用する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下が望ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する場合がある。
(6)圧密化
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上が更に好ましく、2g・cm−3以上が特に好ましく、また、4g・cm−3以下が好ましく、3.5g・cm−3以下が更に好ましく、3g・cm−3以下が特に好ましい。
正極活物質層の密度が、上記範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(7)集電体
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。薄膜が、上記範囲よりも薄いと、集電体として必要な強度が不足する場合がある。また、薄膜が上記範囲よりも厚いと、取り扱い性が損なわれる場合がある。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
<2−5.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、更に好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<2−6.電池設計>
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[外装ケース]
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[外装体]
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1
[負極の作製]
人造黒鉛粉末KS−44(ティムカル社製、商品名)98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、負極とした。
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)O(LNMC)90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して乾燥し、プレス機で厚さ80μmに圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、正極とした。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.01mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした。
[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記電解液を袋内に注入し、真空封止を行い、4.1Vで満充電状態となるシート状電池を作製した。電池設計を表1に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、5Cとはその5倍の電流値を、0.1Cとはその1/10の電流値を、また0.2Cとはその1/5の電流値を表す。評価結果を表2に示す。
[−30℃インピーダンスの評価]
初期容量評価が終了した電池を25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを−30℃において、10mVの交流電圧振幅を印加することで電池のインピーダンスを測定し、0.08Hzの実軸抵抗を求めた。評価結果を表2に示す。
実施例2
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを0.9mol/Lの割合となるように溶解して電解液とした。実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例3
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.3mol/Lと、LiPFを0.7mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例4
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.5mol/Lと、LiPFを0.5mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例5
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラエチルアンモニウム(TEAFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例6
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラブチルアンモニウム(TBAFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例7
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラエチルホスホニウム(TEPFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
実施例8
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラブチルホスホニウム(TBPFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
比較例1
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
比較例2
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.7mol/Lと、LiPFを0.3mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
比較例3
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.55mol/Lと、LiPFを0.45mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
比較例4
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表1に、評価結果を表2に示す。
Figure 2013152956
Figure 2013152956
実施例9
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を調製し、次いで十分に乾燥したLiFSOを0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。
[初期25℃出力の評価]
初期放電容量の評価が終了した電池を、25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において各々1C、2C、3C、5C、10C、15C、20Cで放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例5の25℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表4に示す。
[初期−30℃出力の評価]
初期放電容量の評価が終了した電池を、25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを−30℃において各々0.2C、0.4C、0.8C、1C、2Cで放電させ、その2秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例5の−30℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表4に示す。
実施例10
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を調製し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
実施例11
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を調製し、次いで十分に乾燥したLiFSOを0.2mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
実施例12
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を調製し、次いで十分に乾燥したLiFSOを0.3mol/Lと、LiPFを0.7mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
実施例13
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、モノフルオロエチレンカーボネート(MFEC)0.5質量部を調製し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
実施例14
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.8質量部、1−プロペンー1,3−スルトン(PRES)0.2質量部を調製し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
実施例15
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.8質量部、スクシノニトリル(SN)0.2質量部を調製し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
比較例5
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を調製し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
比較例6
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、1‐プロペン−1,3−スルトン(PRES)0.5質量部を調製し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表3に、評価結果を表4に示す。
Figure 2013152956
Figure 2013152956
実施例16
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)を調製し、次いで十分に乾燥したLiFSOを0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表5に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、5Cとはその5倍の電流値を、0.1Cとはその1/10の電流値を、また0.2Cとはその1/5の電流値を表す。電池評価結果を表6に示す。
[高温サイクル特性の評価]
初期容量評価が終了した電池を60℃において、2Cの定電流で4.1Vまで充電後、2Cの定電流で3.0Vまで放電する過程を1サイクルとして、500サイクル実施した。サイクル後の電池を25℃にて、4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電して、サイクル後容量を求めた。電池評価結果を表6に示す。
[高温サイクル後25℃出力の評価]
高温サイクル特性の評価が終了した電池を25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において各々1C、2C、3C、5C、10C、15C、20Cで放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例5の25℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表6に示す。
[高温サイクル後−30℃出力の評価]
高温サイクル特性の評価が終了した電池を25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを−30℃において各々0.2C、0.4C、0.8C、1C、2Cで放電させ、その2秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例7の−30℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表6に示す。
[高温保存特性の評価]
初期放電容量評価試験の終了した電池を、0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電した。これを60℃で20日間保存し、電池を室温まで冷却させた後、25℃において0.2Cの定電流で3Vまで放電させて残存容量を求めた。その後、0.2Cの定電流で4.1Vまで充電後、4.1Vの定電圧で電流値が0.05Cになるまで充電した後、0.2Cの定電流で3Vまで放電する試験を実施し、回復容量を求めた。最後に、(回復容量)÷(初期放電容量)×100から保存容量維持率(%)を求めた。電池評価結果を表6に示す。
実施例17
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)を調製し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、実施例16と同様の評価を行った。電池設計を表5に、評価結果を表6に示す。
実施例18
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)を調製し、次いで十分に乾燥したLiFSOを0.05mol/Lと、LiPOを0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、実施例16と同様の評価を行った。電池設計を表5に、評価結果を表6に示す。
実施例19
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.05mol/Lと、LiPOを0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、実施例16と同様の評価を行った。電池設計を表5に、評価結果を表6に示す。
比較例7
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)を調製し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例1と同様にしてシート状リチウム二次電池を作製し、実施例16と同様の評価を行った。電池設計を表5に、評価結果を表6に示す。
Figure 2013152956
Figure 2013152956
実施例20
[正極の作製]
正極活物質としてリン酸鉄リチウム(LiFePO,LFP)90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、正極とした。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした。
[リチウム二次電池の製造]
上記正極と上記電解液を使用した以外、実施例1と同様にしてシート状電池を作製した。電池設計を表7に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.0Vまで充電した後、0.1Cの定電流で2.5Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目から6サイクル目は、0.2Cの定電流で4.0Vまで充電後、4.0Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で2.5Vまで放電した。その後、7サイクル目に0.2Cの定電流で4.0Vまで充電後、4.0Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で2.5Vまで放電して、初期放電容量を求めた。
[−30℃出力の評価]
初期容量評価が終了した電池を25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを−30℃において各々0.2C、0.4C、0.8C、1C、2Cで10秒間放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例6の−30℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表8に示す。
[高温サイクル後−30℃出力の評価]
初期出力の評価が終了した電池を、60℃において、2Cの定電流で4.1Vまで充電後、2Cの定電流で3.0Vまで放電する過程を1サイクルとして、500サイクル実施した。サイクル後の電池を25℃にて、0.2Cの定電流で初期放電容量の半分の容量となるよう充電した。これを−30℃において各々0.2C、0.4C、0.8C、1C、2Cで放電させ、その2秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とし、比較例6の−30℃における出力値を100としたときの相対値(%)を算出した。電池評価結果を表8に示す。
比較例8
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いでLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例20と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表7に、評価結果を表8に示す。
比較例9
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したトリフルオロ酢酸リチウム(LiCFCO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例20と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表7に、評価結果を表8に示す。
比較例10
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したトリフルオロメタンスルホン酸リチウム(LiCFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例20と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表7に、評価結果を表8に示す。
比較例11
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したリチウムビスオキサラートボレート(LiB(C、LiBOB)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例20と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表7に、評価結果を表8に示す。
比較例12
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したリチウムビストリフルオロメチルスルホニルイミド(LiN(SOCF、LiTFSI)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例20と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表7に、評価結果を表8に示す。
Figure 2013152956
Figure 2013152956
実施例21
[正極の作製]
正極活物質としてマンガン酸リチウム(Li1.1Mn1.9Al0.1,LMO)80質量%と、Li1.15Ni0.45Mn0.45Co0.10(Co−less LNMC)20質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、正極とした。
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを混合(体積比30:30:40)し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした。
[リチウム二次電池の製造]
上記正極と上記電解液を使用した以外、実施例1と同様にしてシート状電池を作製した。電池設計を表9に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.1Cに相当する定電流で4.2Vまで充電した後、0.1Cの定電流で3.0Vまで放電した。2サイクル目と3サイクル目は0.33Cで4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.33Cの定電流で3.0Vまで放電し、3サイクル目の放電過程から初期放電容量を求めた。
[初期出力の評価]
初期容量評価が終了した電池を25℃にて、0.33Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において各々1C、2C、3C、5C、10C、15C、20Cで10秒間放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とした。
[高温保存特性の評価]
初期放電容量評価試験の終了した電池を、0.33Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した。これを75℃で24時間保存し、電池を室温まで冷却させた後、25℃において0.33Cの定電流で3.0Vまで放電させて残存容量を求めた。その後、0.33Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した後、0.33Cの定電流で3.0Vまで放電する試験を実施し、回復容量を求めた。最後に、(回復容量)÷(初期放電容量)×100から保存容量維持率(%)を求めた。電池評価結果を表10に示す。
[高温保存後出力の評価]
高温保存試験が終了した電池を、25℃にて、0.33Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において各々1C、2C、3C、5C、10C、15C、20Cで放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる三角形の面積を出力(W)とした。最後に、初期出力値を1としたときに対する高温保存試験後の出力の相対値を算出した。電池評価結果を表10に示す。
実施例22
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを混合(体積比30:30:40)し、次いで十分に乾燥したLiFSOを0.1mol/Lと、リチウムビスオキサラートボレート(LiB(C、LiBOB)を0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例21と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表9に、評価結果を表10に示す。
実施例23
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例21と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表9に、評価結果を表10に示す。
実施例24
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99質量部、ヘキサメチレンジイソシアネート(HMDI)1.0質量部を混合し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例21と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表9に、評価結果を表10に示す。
比較例13
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)を調製し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例21と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表9に、評価結果を表10に示す。
比較例14
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いでLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例21と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表9に、評価結果を表10に示す。
Figure 2013152956
Figure 2013152956
実施例25
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液として、4.4Vで満充電状態となる以外、実施例1と同様にしてシート状リチウム二次電池を作製した。電池設計を表11に示す。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.4Vまで充電後、4.4Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.4Vまで充電後、4.4Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。
[高温保存特性の評価]
初期放電容量評価試験の終了した電池を、0.2Cの定電流で4.4Vまで充電後、4.4Vの定電圧で電流値が0.05Cになるまで充電した。これを75℃で120時間保存し、電池を冷却させた後、25℃において0.2Cの定電流で3Vまで放電させて残存容量を求めた。その後、0.2Cの定電流で4.4Vまで充電後、4.4Vの定電圧で電流値が0.05Cになるまで充電した後、0.2Cの定電流で3Vまで放電する試験を実施し、回復容量を求めた。最後に、(回復容量)÷(初期放電容量)×100から保存容量維持率(%)を求めた。評価結果を表12に示す。
実施例26
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99質量部、ビニレンカーボネート(VC)0.5質量部、1,3−プロパンスルトン(PS)0.5質量部を混合し、次いで十分に乾燥したLiFSOを0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
実施例27
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラエチルアンモニウム(TEAFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
実施例28
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラエチルアンモニウム(TEAFSO)を0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
実施例29
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラブチルアンモニウム(TBAFSO)を0.05mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
実施例30
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したフルオロスルホン酸テトラブチルアンモニウム(TBAFSO)を0.1mol/Lと、LiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
比較例15
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99.5質量部、ビニレンカーボネート(VC)0.5質量部を混合し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
比較例16
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)99質量部、ビニレンカーボネート(VC)0.5質量部、1,3−プロパンスルトン(PS)0.5質量部を混合し、次いで十分に乾燥したLiPFを1mol/Lの割合となるように溶解して電解液とした以外、実施例25と同様にしてシート状リチウム二次電池を作製し、評価を行った。電池設計を表11に、評価結果を表12に示す。
Figure 2013152956
Figure 2013152956
以上の実施例および比較例から明らかなように、本発明に係る非水系電解液を用いた電池は、本発明に係る非水系電解液でないものを用いた電池に比べて、初期の放電容量、インピーダンス特性、出力特性に優れる。加えて、サイクルおよび保存耐久特性や、耐久後の出力特性も良好であり、電池特性全体に優れた効果を発揮することが分かる。即ち、フルオロスルホン酸塩に由来するFSOのモル含有量([FSO])と、LiPFに由来するPFの含有量([PF])との比([FSO]/[PF])を、本発明の範囲内とすると、上記特性が向上する。また、フルオロスルホン酸塩に用いられるカチオンは、リチウムに代表される金属、第4級アンモニウム、第4級ホスホニウムのいずれであってもよい。更に、不飽和結合を有するカーボネート、フッ素原子を有するカーボネート、ニトリル化合物、イソシアノ化合物、環状スルホン酸エステルのような助剤が添加されていても、本発明に係る効果は維持される。更に、LiPFとフルオロスルホン酸塩に加えて、更に他の電解質が導入されていても、本発明の範囲内であればその効果を発揮する。加えて、様々な電池電圧であっても、また如何なる電極活物質であっても、本発明の効果は発現されることも理解できる。
本発明の非水系電解液によれば、非水系電解液二次電池の初期充電容量及び入出力特性を改善できる。本発明の非水系電解液を用いた非水系電解液二次電池は、高温保存試験やサイクル試験といった耐久試験後においても、容量維持率が高く、入出力性能に優れ、また、低温での入出力特性にも優れており、有用である。そのため、本発明の非水系電解液及びこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。
別態様の発明<1>〜<22>は、以下のとおりである。
<1>
非水溶媒、LiPF及び式(1):
M(FSO
[式(1)中、
Mは、金属原子、N(R)又はP(R)(ここで、Rは、炭素数1〜12の有機基又は水素原子であり(ただし、4つのRの全部が水素原子であることはない)、複数のRは互いに同一であっても異なっていてもよく、4つのRの一部又は全部は、それらが結合している窒素原子又はリン原子と共に環を形成してもよい)であり、
Mが金属原子の場合、xは金属原子Mの価数であって1以上の整数であり、MがN(R)又はP(R)の場合、xは1である]
で表されるフルオロスルホン酸塩を含有する非水系電解液であって、
非水電解液中の、PFのモル含有量に対するFSOのモル含有量の比が、0.001〜1.2である非水系電解液。
<2>
非水系電解液中のFSOのモル含有量が、0.0005mol/L〜0.5mol/Lである、上記<1>に記載の非水系電解液。
<3>
式(1)で表されるフルオロスルホン酸塩が、フルオロスルホン酸リチウムである、上記<1>または<2>に記載の非水系電解液。
<4>
非水系電解液が、フッ素原子を有する環状カーボネートを含有する上記<1>〜<3>の何れか1に記載の非水系電解液。
<5>
前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている上記<4>に記載の非水系電解液。
<6>
非水系電解液が、炭素−炭素不飽和結合を有する環状カーボネートを含有する上記<1>〜<5>の何れか1に記載の非水系電解液。
<7>
前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている<6>に記載の非水系電解液。
<8>
非水系電解液が、環状スルホン酸エステルを含有する<1>〜<7>の何れか1に記載の非水系電解液。
<9>
前記環状スルホン酸エステルが、非水電解液中に0.001質量%以上10質量%以下含有されている<8>に記載の非水系電解液。
<10>
非水系電解液が、シアノ基を有する化合物を含有する<1>〜<9>の何れか1に記載の非水系電解液。
<11>
前記シアノ基を有する化合物が、非水電解液中に0.001質量%以上10質量%以下含有されている<10>に記載の非水系電解液。
<12>
非水系電解液が、ジイソシアネート化合物を含有する<1>〜<11>の何れか1に記載の非水系電解液。
<13>
前記ジイソシアネート化合物が、非水電解液中に0.001質量%以上5質量%以下含有されている<12>に記載の非水系電解液。
<14>
非水系電解液が、LiPF以外のフルオロリン酸リチウム塩及びリチウムイミド塩類の少なくとも一種を含有する<1>〜<13>の何れか1に記載の非水系電解液。
<15>
非水系電解液が、リチウムオキサラート塩類を含有する<1>〜<14>の何れか1に記載の非水系電解液。
<16>
前記LiPF以外のフルオロリン酸リチウム塩及びリチウムイミド塩類の少なくとも一種またはリチウムオキサラート塩類の、非水系電解液中の濃度が、0.0005mol/L以上0.5mol/L以下である<14>または<15>に記載の非水系電解液。
<17>
リチウムイオンを吸蔵・放出可能な負極及び正極、並びに<1>〜<16>の何れか1に記載の非水系電解液を含む非水系電解液二次電池。
<18>
前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物のうちの少なくとも1種を含有する負極活物質を含む<17>に記載の非水系電解液二次電池。
<19>
前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む<17>に記載の非水系電解液二次電池。
<20>
前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む<17>に記載の非水系電解液二次電池。
<21>
前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物、からなる群より選ばれた一種を含有することを特徴とする<17>に記載の非水系電解液二次電池。
<22>
前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)を含有することを特徴とする<17>に記載の非水系電解液二次電池。

Claims (15)

  1. 非水溶媒、LiPF及び式(1):
    M(FSO)x
    [式(1)中、
    Mは、金属原子、N(R)又はP(R)(ここで、Rは、炭素数1〜12の有機基又は水素原子であり(ただし、4つのRの全部が水素原子であることはない)、複数のRは互いに同一であっても異なっていてもよく、4つのRの一部又は全部は、それらが結合している窒素原子又はリン原子と共に環を形成してもよい)であり、
    Mが金属原子の場合、xは金属原子Mの価数であって1以上の整数であり、MがN(R)又はP(R)の場合、xは1である]
    で表されるフルオロスルホン酸塩を含有し、
    さらに、フッ素原子を有する環状カーボネート、炭素−炭素不飽和結合を有する環状カーボネート、環状スルホン酸エステル、シアノ基を有する化合物、ジイソシアネート化合物、LiPF以外のフルオロリン酸リチウム塩、リチウムイミド塩類及びリチウムオキサラート塩類からなる群より選ばれる少なくとも1種を含有することを特徴とする非水系電解液。
  2. 非水系電解液中のFSOのモル含有量が、0.0005mol/L〜0.5mol/Lである、請求項1に記載の非水系電解液。
  3. 式(1)で表されるフルオロスルホン酸塩が、フルオロスルホン酸リチウムである、請求項1又は2に記載の非水系電解液。
  4. 前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている請求項1に記載の非水系電解液。
  5. 前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている請求項1に記載の非水系電解液。
  6. 前記環状スルホン酸エステルが、非水電解液中に0.001質量%以上10質量%以下含有されている請求項1に記載の非水系電解液。
  7. 前記シアノ基を有する化合物が、非水電解液中に0.001質量%以上10質量%以下含有されている請求項1に記載の非水系電解液。
  8. 前記ジイソシアネート化合物が、非水電解液中に0.001質量%以上5質量%以下含有されている請求項1に記載の非水系電解液。
  9. 前記LiPF以外のフルオロリン酸リチウム塩、リチウムイミド塩類及びリチウムオキサラート塩類からなる群より選ばれる少なくとも1種の非水系電解液中の濃度が、0.0005mol/L以上0.5mol/L以下である請求項1に記載の非水系電解液。
  10. リチウムイオンを吸蔵・放出可能な負極及び正極、並びに請求項1〜9のいずれか1項に記載の非水系電解液を含む非水系電解液二次電池。
  11. 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物からなる群より選ばれる少なくとも1種を含有する負極活物質を含む請求項10に記載の非水系電解液二次電池。
  12. 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む請求項10に記載の非水系電解液二次電池。
  13. 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む請求項10に記載の非水系電解液二次電池。
  14. 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物及びリチウム・ニッケル・コバルト・マンガン複合酸化物からなる群より選ばれる少なくとも1種を含有することを特徴とする請求項10に記載の非水系電解液二次電池。
  15. 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれる少なくとも1種の元素、xは0<x<1.2)を含有することを特徴とする請求項10に記載の非水系電解液二次電池。
JP2013096366A 2010-02-12 2013-05-01 非水系電解液及び非水系電解液二次電池 Active JP5831493B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096366A JP5831493B2 (ja) 2010-02-12 2013-05-01 非水系電解液及び非水系電解液二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010029484 2010-02-12
JP2010029484 2010-02-12
JP2013096366A JP5831493B2 (ja) 2010-02-12 2013-05-01 非水系電解液及び非水系電解液二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011027697A Division JP5353923B2 (ja) 2010-02-12 2011-02-10 非水系電解液及び非水系電解液二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015212783A Division JP6187566B2 (ja) 2010-02-12 2015-10-29 非水系電解液及び非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2013152956A true JP2013152956A (ja) 2013-08-08
JP5831493B2 JP5831493B2 (ja) 2015-12-09

Family

ID=44367854

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011027697A Active JP5353923B2 (ja) 2010-02-12 2011-02-10 非水系電解液及び非水系電解液二次電池
JP2013096366A Active JP5831493B2 (ja) 2010-02-12 2013-05-01 非水系電解液及び非水系電解液二次電池
JP2015212783A Active JP6187566B2 (ja) 2010-02-12 2015-10-29 非水系電解液及び非水系電解液二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011027697A Active JP5353923B2 (ja) 2010-02-12 2011-02-10 非水系電解液及び非水系電解液二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015212783A Active JP6187566B2 (ja) 2010-02-12 2015-10-29 非水系電解液及び非水系電解液二次電池

Country Status (6)

Country Link
US (2) US8673489B2 (ja)
EP (2) EP2958181B1 (ja)
JP (3) JP5353923B2 (ja)
KR (3) KR101726144B1 (ja)
CN (2) CN104167564B (ja)
WO (1) WO2011099585A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195203A (ja) * 2014-03-27 2015-11-05 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
KR20160002314A (ko) * 2014-06-30 2016-01-07 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
JP2016143454A (ja) * 2015-01-29 2016-08-08 三洋電機株式会社 非水電解質二次電池及び製造方法
US9876229B2 (en) 2015-03-31 2018-01-23 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and manufacturing method of the same
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
US10784536B2 (en) 2015-03-31 2020-09-22 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery including a nonaqueous electrolyte containing a compound represented by LiO3S—R—SO3Li and method of manufacturing the same
WO2021015264A1 (ja) 2019-07-24 2021-01-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物
WO2022158399A1 (ja) 2021-01-22 2022-07-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物
WO2022158397A1 (ja) 2021-01-22 2022-07-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100014725A (ko) 2007-04-05 2010-02-10 미쓰비시 가가꾸 가부시키가이샤 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
EP2958181B1 (en) 2010-02-12 2017-06-14 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
WO2011142276A1 (ja) 2010-05-10 2011-11-17 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用非水電解液
WO2012053395A1 (ja) * 2010-10-19 2012-04-26 ダイキン工業株式会社 非水電解液
JP5966410B2 (ja) * 2011-02-16 2016-08-10 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
CN108502904B (zh) * 2011-04-11 2021-06-08 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
JP6035835B2 (ja) * 2011-04-19 2016-11-30 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
US9306238B2 (en) 2011-10-11 2016-04-05 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2013149461A (ja) * 2012-01-19 2013-08-01 Jsr Corp 電解液
CN103907235B (zh) * 2012-05-31 2017-03-29 株式会社Lg化学 锂二次电池
JP5978787B2 (ja) * 2012-06-11 2016-08-24 ソニー株式会社 非水二次電池用電解液、非水二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014017250A (ja) * 2012-06-15 2014-01-30 Mitsubishi Chemicals Corp 非水系電解液二次電池及びその使用方法
JP6213468B2 (ja) 2012-06-29 2017-10-18 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP6201485B2 (ja) * 2012-07-27 2017-09-27 三菱ケミカル株式会社 非水系電解液二次電池
WO2014030684A1 (ja) * 2012-08-24 2014-02-27 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
CN104685696B (zh) * 2012-09-28 2017-06-13 三洋电机株式会社 非水电解质二次电池
WO2014074118A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-aqueous electrolytic solutions and electrochemical cells comprising same
CA2900665C (en) 2013-02-11 2021-02-09 Martin Reid Johnson Preparation of fluorosulfonate esters and onium salts derived therefrom
SG11201506261PA (en) * 2013-02-12 2015-09-29 Showa Denko Kk Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
KR101754608B1 (ko) * 2013-02-27 2017-07-07 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN104995784A (zh) 2013-02-27 2015-10-21 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
KR20160102083A (ko) 2013-02-28 2016-08-26 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
KR20150121010A (ko) * 2013-02-28 2015-10-28 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
WO2014133171A1 (ja) * 2013-03-01 2014-09-04 日本電気株式会社 ゲル電解質およびそれを用いたポリマー二次電池
CN109301162A (zh) 2013-03-27 2019-02-01 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
KR101634749B1 (ko) * 2013-06-18 2016-06-29 주식회사 엘지화학 수명 특성이 향상된 리튬 이차전지
CN103346328A (zh) * 2013-07-16 2013-10-09 中国科学院青岛生物能源与过程研究所 一种耐高电位窗口锂离子二次电池粘合剂及其制备方法
WO2015026180A1 (ko) * 2013-08-22 2015-02-26 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
JP6398983B2 (ja) * 2013-08-30 2018-10-03 宇部興産株式会社 蓄電デバイス用非水電解液
US9882244B2 (en) 2013-11-07 2018-01-30 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery
JP6287187B2 (ja) * 2013-12-26 2018-03-07 三洋電機株式会社 非水電解質二次電池
JP6424426B2 (ja) * 2013-12-26 2018-11-21 三洋電機株式会社 組電池
JP6287186B2 (ja) * 2013-12-26 2018-03-07 三洋電機株式会社 非水電解質二次電池
JP6183472B2 (ja) * 2014-01-16 2017-08-23 株式会社カネカ 非水電解質二次電池およびその組電池
JP6086248B2 (ja) * 2014-02-17 2017-03-01 トヨタ自動車株式会社 非水電解液二次電池
US10020539B2 (en) * 2014-03-14 2018-07-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
CN104934635A (zh) * 2014-03-21 2015-09-23 江苏海四达电源股份有限公司 改善水系负极锂离子动力电池充放电性能的非水电解液
JP2015187926A (ja) * 2014-03-26 2015-10-29 三井化学株式会社 リチウム二次電池
KR102273779B1 (ko) * 2014-04-04 2021-07-06 삼성에스디아이 주식회사 복합양극활물질 제조방법, 복합양극활물질 및 이를 채용한 양극과 리튬전지
CN104022307A (zh) * 2014-06-24 2014-09-03 东莞市凯欣电池材料有限公司 一种电解液及其制备方法以及一种锂硫电池
EP3171445B1 (en) * 2014-07-15 2020-09-02 UBE Industries, Ltd. Non-aqueous electrolyte solution and electricity storage device in which same is used
US20170207486A1 (en) * 2014-07-23 2017-07-20 Basf Corporation Electrolytes for lithium transition metal phosphate batteries
WO2016017809A1 (ja) * 2014-08-01 2016-02-04 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP6520064B2 (ja) * 2014-11-19 2019-05-29 セントラル硝子株式会社 非水電解液電池用電解液及びリチウム非水電解液電池
US10276871B2 (en) 2014-12-09 2019-04-30 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN104600299B (zh) * 2015-01-08 2017-07-07 华中科技大学 一种锂离子/钠离子电池用负极活性材料、负极及电池
JP2016146341A (ja) * 2015-02-02 2016-08-12 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP6604014B2 (ja) * 2015-03-25 2019-11-13 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
JP6890630B2 (ja) * 2015-03-25 2021-06-18 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
JP2016186915A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
CN104868096B (zh) * 2015-05-04 2017-04-05 宁德时代新能源科技股份有限公司 一种锂离子电池
JP6582605B2 (ja) * 2015-06-24 2019-10-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP6403278B2 (ja) * 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
CN105140564B (zh) * 2015-07-28 2017-11-24 东莞市凯欣电池材料有限公司 一种高电压三元正极材料体系锂离子电池电解液
JP6323723B2 (ja) 2015-08-03 2018-05-16 トヨタ自動車株式会社 非水電解液二次電池の製造方法および電池組立体
CN108432026B (zh) * 2015-08-31 2021-04-06 琳得科株式会社 电解质组合物、二次电池和二次电池的使用方法
JP6538500B2 (ja) 2015-09-16 2019-07-03 株式会社東芝 非水電解質電池、電池パック、及び車
JP6628697B2 (ja) * 2015-09-30 2020-01-15 パナソニック株式会社 非水電解質二次電池
TWI584104B (zh) 2015-11-27 2017-05-21 圓展科技股份有限公司 存放架及具有此存放架的充電櫃
KR20170072032A (ko) * 2015-12-16 2017-06-26 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP6690275B2 (ja) * 2016-02-09 2020-04-28 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
US20190044179A1 (en) * 2016-02-29 2019-02-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN105845983B (zh) * 2016-04-15 2020-02-21 宁德时代新能源科技股份有限公司 一种电解液及含有该电解液的锂离子电池
JP2018060690A (ja) * 2016-10-05 2018-04-12 旭化成株式会社 非水系二次電池
JP6354964B2 (ja) * 2016-10-31 2018-07-11 株式会社Gsユアサ 非水電解質二次電池
CN110383557B (zh) * 2017-03-30 2022-03-08 松下知识产权经营株式会社 非水电解液和非水电解液二次电池
WO2018200631A1 (en) * 2017-04-25 2018-11-01 Board Of Regents, The University Of Texas System Electrolytes and electrochemical devices
CN108711620A (zh) * 2017-05-09 2018-10-26 云南锡业集团(控股)有限责任公司 一种高功率型钛酸锂锂离子电池及其制作方法
US11196087B2 (en) * 2017-05-19 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte containing perfluoropolyether and nitrile compound, and secondary battery including the same
CN108963319B (zh) * 2017-05-27 2021-05-25 中国科学院宁波材料技术与工程研究所 电解液添加剂、含添加剂的电解液及使用电解液的锂电池
JP6883262B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP6880453B2 (ja) 2017-09-11 2021-06-02 トヨタ自動車株式会社 非水電解液二次電池
JP6883263B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP2019057372A (ja) 2017-09-20 2019-04-11 株式会社東芝 リチウムイオン二次電池、電池パック、及び車両
US12002926B2 (en) 2017-12-01 2024-06-04 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP7116314B2 (ja) * 2017-12-06 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6997946B2 (ja) 2017-12-11 2022-02-04 トヨタ自動車株式会社 非水電解液二次電池
JP7251959B2 (ja) 2017-12-11 2023-04-04 トヨタ自動車株式会社 非水電解液二次電池および非水電解液二次電池の製造方法
JP6994153B2 (ja) 2017-12-11 2022-02-03 トヨタ自動車株式会社 非水電解液二次電池
CN118026845A (zh) * 2018-01-30 2024-05-14 大金工业株式会社 氟代乙酸酯化合物
KR102301670B1 (ko) 2018-01-30 2021-09-14 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지
JP6994157B2 (ja) 2018-02-09 2022-01-14 トヨタ自動車株式会社 非水電解液二次電池および電池組立体
JP7301557B2 (ja) * 2018-03-16 2023-07-03 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
US10978752B2 (en) * 2018-03-19 2021-04-13 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JP6892407B2 (ja) 2018-03-23 2021-06-23 株式会社東芝 電極、二次電池、電池パック、及び車両
KR102211172B1 (ko) * 2018-03-23 2021-02-01 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP6980587B2 (ja) 2018-03-23 2021-12-15 株式会社東芝 電極、二次電池、電池パック、及び車両
JP7103713B2 (ja) * 2018-03-27 2022-07-20 三井化学株式会社 電池用非水電解液及びリチウム二次電池
HUE061383T2 (hu) * 2018-03-27 2023-06-28 Daikin Ind Ltd Elektrolit oldat, elektrokémiai eszköz, lítium-ion másodlagos akkumulátor, modul és vegyület
JP7071695B2 (ja) * 2018-05-01 2022-05-19 トヨタ自動車株式会社 電池組立体および非水電解液二次電池の製造方法
JP7071697B2 (ja) 2018-06-01 2022-05-19 トヨタ自動車株式会社 非水電解液二次電池
US11367901B2 (en) * 2018-06-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
WO2019244955A1 (ja) 2018-06-21 2019-12-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
CN112470320A (zh) 2018-07-26 2021-03-09 三井化学株式会社 电池用非水电解液及锂二次电池
US10847839B2 (en) 2018-08-01 2020-11-24 Uchicago Argonne, Llc Non-aqueous electrolytes for lithium batteries
US11552334B1 (en) * 2021-09-01 2023-01-10 Enevate Corporation Nitrogen-containing compounds as additives for silicon-based Li-ion batteries
CN109638352B (zh) * 2018-11-21 2022-07-08 上海大学 基于环酰胺-异氰酸酯的组合物及其应用
US20220013780A1 (en) * 2018-11-30 2022-01-13 Panasonic Intellectual Property Management Co., Ltd. Secondary battery and electrolyte solution
JP7085139B2 (ja) 2018-12-18 2022-06-16 トヨタ自動車株式会社 リチウム二次電池用電解液およびリチウム二次電池
CN113228368B (zh) * 2018-12-28 2024-10-18 三洋电机株式会社 非水电解质二次电池和其制造方法
US10964975B2 (en) 2019-01-17 2021-03-30 Uchicago Argonne, Llc Electrolytes for lithium-ion batteries
CN109786834B (zh) * 2019-01-25 2021-01-12 宁德新能源科技有限公司 电解液及电化学装置
CN109980225B (zh) * 2019-03-18 2020-09-08 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN110061292B (zh) * 2019-03-28 2021-04-09 合肥国轩高科动力能源有限公司 一种低温电解液及使用该电解液的锂电池
CN113646931B (zh) * 2019-03-29 2024-09-10 三井化学株式会社 电池用非水电解液及锂二次电池
CN111864264B (zh) * 2019-04-29 2024-04-12 中国科学院福建物质结构研究所 一种锂离子电池电解液
JPWO2020246540A1 (ja) 2019-06-04 2020-12-10
CN112234252A (zh) * 2019-07-15 2021-01-15 杉杉新材料(衢州)有限公司 一种高电压用宽温型锂离子电池非水电解液及锂离子电池
CN112397784B (zh) * 2019-08-19 2022-08-30 宁德国泰华荣新材料有限公司 一种电解液及高镍三元锂离子电池
CN114342147A (zh) * 2019-09-13 2022-04-12 旭化成株式会社 非水系电解液和非水系二次电池
CN114846669A (zh) 2019-12-17 2022-08-02 三菱化学株式会社 非水电解液及能量设备
KR102614016B1 (ko) * 2020-04-14 2023-12-13 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US20230395794A1 (en) 2020-10-30 2023-12-07 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN114583242B (zh) * 2020-11-30 2024-08-09 深圳新宙邦科技股份有限公司 锂离子电池
CN114583240B (zh) * 2020-11-30 2024-08-09 深圳新宙邦科技股份有限公司 锂离子电池
CN114583241B (zh) * 2020-11-30 2024-08-13 三明市海斯福化工有限责任公司 锂离子电池
JP7167117B2 (ja) * 2020-12-07 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
CN114628774A (zh) * 2020-12-14 2022-06-14 深圳新宙邦科技股份有限公司 一种锂离子电池
CN114843580B (zh) * 2021-02-01 2023-09-22 宁德时代新能源科技股份有限公司 锂离子电池、电池模块、电池包、及用电装置
CN117296180A (zh) 2021-05-13 2023-12-26 中央硝子株式会社 非水钠离子电池用电解液、非水钠离子电池及非水钠离子电池的制造方法
KR20230004299A (ko) 2021-06-30 2023-01-06 솔브레인 주식회사 전해액 및 이를 포함하는 이차전지
CN113562746B (zh) * 2021-07-14 2023-09-01 珠海理文新材料有限公司 一种氟磺酸钾的制备方法
CN115810796B (zh) * 2021-09-26 2024-04-09 宁德时代新能源科技股份有限公司 一种电解液、包括其的二次电池及该二次电池的制备方法
KR20230045406A (ko) * 2021-09-28 2023-04-04 에스케이온 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN116365045A (zh) * 2021-09-30 2023-06-30 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置
JP7527391B2 (ja) * 2021-10-13 2024-08-02 寧徳時代新能源科技股▲分▼有限公司 正極板、この正極板を含む二次電池、電池モジュール、電池パック及び電力消費装置
CN114335719A (zh) * 2021-11-29 2022-04-12 惠州市豪鹏科技有限公司 锂离子电池电解液及锂离子电池
CN115367775B (zh) * 2022-08-18 2024-05-14 上海如鲲新材料股份有限公司 一种采用氟磺酸酯制备氟磺酸盐的方法
CN117219869A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置
CN117254130B (zh) * 2023-11-20 2024-01-30 江苏中兴派能电池有限公司 二次电池群裕度的设计方法和计算方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362787A (en) * 1993-11-18 1994-11-08 The Goodyear Tire & Rubber Company Rubbery blend having low permanent compression set
JPH07296849A (ja) 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd 非水電解質二次電池
JP3396990B2 (ja) * 1995-03-02 2003-04-14 日本電池株式会社 有機電解液二次電池
JP3451781B2 (ja) 1995-03-02 2003-09-29 日本電池株式会社 有機電解液二次電池
US6180283B1 (en) 1998-01-20 2001-01-30 Wilson Greatbatch Ltd. Method for reducing voltage delay in an alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6013394A (en) 1998-01-20 2000-01-11 Wilson Greatbatch Ltd. Organic sulfate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6444360B2 (en) 1998-01-20 2002-09-03 Wilson Greatbatch Ltd. Electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6350546B1 (en) 1998-01-20 2002-02-26 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
US6265106B1 (en) 1998-01-20 2001-07-24 Wilson Greatbatch Ltd. Alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
JP4281030B2 (ja) 1998-08-28 2009-06-17 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
US6967315B2 (en) 2002-06-12 2005-11-22 Steris Inc. Method for vaporizing a fluid using an electromagnetically responsive heating apparatus
US7482302B2 (en) * 2003-02-14 2009-01-27 Daikin Industries, Ltd. Fluorosulfonic acid compound, process for producing the same, and use thereof
DE102004016766A1 (de) * 2004-04-01 2005-10-20 Degussa Nanoskalige Siliziumpartikel in negativen Elektrodenmaterialien für Lithium-Ionen-Batterien
DE102004018929A1 (de) * 2004-04-20 2005-11-17 Degussa Ag Elektrolytzusammensetzung sowie deren Verwendung als Elektrolytmaterial für elektrochemische Energiespeichersysteme
DE102004018930A1 (de) * 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
KR100823816B1 (ko) * 2004-11-19 2008-04-21 마쯔시다덴기산교 가부시키가이샤 비수전해질 이차전지
US7598002B2 (en) * 2005-01-11 2009-10-06 Material Methods Llc Enhanced electrochemical cells with solid-electrolyte interphase promoters
DE102005011940A1 (de) * 2005-03-14 2006-09-21 Degussa Ag Verfahren zur Herstellung von beschichteten Kohlenstoffpartikel und deren Verwendung in Anodenmaterialien für Lithium-Ionenbatterien
KR100948723B1 (ko) 2005-05-12 2010-03-22 미쓰이 가가쿠 가부시키가이샤 락트산계 폴리머 조성물, 상기 조성물로 이루어지는 성형품및 그의 제조방법
EP1722428A1 (en) * 2005-05-13 2006-11-15 Süd-Chemie Ag Lithium secondary battery and electrodes for use therein
DE102005029124A1 (de) 2005-06-23 2006-12-28 Degussa Ag Filmbildner freies Elektrolyt-Separator-System sowie dessen Verwendung in elektrochemischen Energiespeichern
US7824578B2 (en) * 2005-09-15 2010-11-02 Lg Chem, Ltd. Additives for non-aqueous electrolytes and electrochemical device using the same
US20070287071A1 (en) * 2006-06-11 2007-12-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
JP5219401B2 (ja) * 2006-06-14 2013-06-26 三洋電機株式会社 二次電池用非水電解液及びこれを用いた非水電解液二次電池
KR100767427B1 (ko) * 2006-12-21 2007-10-17 제일모직주식회사 리튬 2차전지용 비수성 전해액 및 이를 포함하는 리튬2차전지
WO2008078626A1 (ja) * 2006-12-22 2008-07-03 Daikin Industries, Ltd. 非水系電解液
US8758945B2 (en) * 2007-03-06 2014-06-24 Air Products And Chemicals, Inc. Overcharge protection by coupling redox shuttle chemistry with radical polymerization additives
KR20100014725A (ko) 2007-04-05 2010-02-10 미쓰비시 가가꾸 가부시키가이샤 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
KR20120025619A (ko) * 2007-05-10 2012-03-15 히다치 막셀 에너지 가부시키가이샤 전기 화학 소자
FR2916905B1 (fr) * 2007-06-04 2010-09-10 Commissariat Energie Atomique Nouvelle composition pour la fabrication d'electrodes, electrodes et batteries en resultant.
KR101159001B1 (ko) * 2007-09-12 2012-06-21 다이킨 고교 가부시키가이샤 전해액
KR101211127B1 (ko) * 2007-12-14 2012-12-11 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP5245404B2 (ja) * 2007-12-28 2013-07-24 ダイキン工業株式会社 非水系電解液
JP5125559B2 (ja) * 2008-02-04 2013-01-23 株式会社Gsユアサ 非水電解質電池及びその製造方法
CN101515640B (zh) * 2008-02-22 2011-04-20 比亚迪股份有限公司 一种负极和包括该负极的锂离子二次电池
US20090269676A1 (en) * 2008-04-29 2009-10-29 Barbarich Thomas J Non-aqueous electrolytes for lithium electrochemical cells
JP5338151B2 (ja) * 2008-06-16 2013-11-13 三菱化学株式会社 非水系電解液及び非水系電解液電池
TWI372481B (en) 2008-06-17 2012-09-11 Ind Tech Res Inst Lithium battery
JP2010029484A (ja) 2008-07-30 2010-02-12 Dainippon Printing Co Ltd ドリップ用バッグ
JP2010140959A (ja) * 2008-12-09 2010-06-24 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液
TW201106523A (en) * 2009-06-23 2011-02-16 A123 Systems Inc Battery electrodes and methods of manufacture related applications
JP5678539B2 (ja) 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
EP2958181B1 (en) 2010-02-12 2017-06-14 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195203A (ja) * 2014-03-27 2015-11-05 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2021015812A (ja) * 2014-03-27 2021-02-12 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
KR102355697B1 (ko) * 2014-06-30 2022-01-27 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
KR20160002314A (ko) * 2014-06-30 2016-01-07 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
JP2016143454A (ja) * 2015-01-29 2016-08-08 三洋電機株式会社 非水電解質二次電池及び製造方法
US9876229B2 (en) 2015-03-31 2018-01-23 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and manufacturing method of the same
US10784536B2 (en) 2015-03-31 2020-09-22 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery including a nonaqueous electrolyte containing a compound represented by LiO3S—R—SO3Li and method of manufacturing the same
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
WO2021015264A1 (ja) 2019-07-24 2021-01-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物
KR20220039726A (ko) 2019-07-24 2022-03-29 샌트랄 글래스 컴퍼니 리미티드 비수전해액, 비수전해액 전지 및 화합물
WO2022158399A1 (ja) 2021-01-22 2022-07-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物
WO2022158397A1 (ja) 2021-01-22 2022-07-28 セントラル硝子株式会社 非水電解液、非水電解液電池、及び化合物
KR20230135070A (ko) 2021-01-22 2023-09-22 샌트랄 글래스 컴퍼니 리미티드 비수전해액, 비수전해액 전지 및 화합물
KR20230137315A (ko) 2021-01-22 2023-10-04 샌트랄 글래스 컴퍼니 리미티드 비수전해액, 비수전해액 전지 및 화합물

Also Published As

Publication number Publication date
US20130280622A1 (en) 2013-10-24
JP5353923B2 (ja) 2013-11-27
WO2011099585A1 (ja) 2011-08-18
EP2535976A4 (en) 2014-12-17
EP2958181A1 (en) 2015-12-23
JP2011187440A (ja) 2011-09-22
US8673489B2 (en) 2014-03-18
CN104167564B (zh) 2017-04-12
KR101612351B1 (ko) 2016-04-15
JP5831493B2 (ja) 2015-12-09
US20120308881A1 (en) 2012-12-06
EP2535976A1 (en) 2012-12-19
US9515348B2 (en) 2016-12-06
KR20120133378A (ko) 2012-12-10
KR101412899B1 (ko) 2014-06-26
EP2958181B1 (en) 2017-06-14
KR20140007000A (ko) 2014-01-16
JP2016029668A (ja) 2016-03-03
CN102754268B (zh) 2014-11-19
EP2535976B1 (en) 2015-09-02
CN102754268A (zh) 2012-10-24
KR20160043149A (ko) 2016-04-20
CN104167564A (zh) 2014-11-26
KR101726144B1 (ko) 2017-04-11
JP6187566B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187566B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6750716B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
KR102416651B1 (ko) 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
JP6604014B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5962028B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP5720325B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2016146341A (ja) 非水系電解液及び非水系電解液二次電池
JP2015164126A (ja) 非水系電解液及び非水系電解液二次電池
JP6031868B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2019135730A (ja) 非水系電解液及び非水系電解液二次電池
JP6459695B2 (ja) 非水系電解液二次電池
JP2013109930A (ja) 非水系電解液、および非水系電解液二次電池
JP2015195203A (ja) 非水系電解液及び非水系電解液二次電池
JP2018073738A (ja) 非水系電解液及び非水系電解液二次電池
JP2017142940A (ja) 非水系電解液及び非水系電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350