WO2014133171A1 - ゲル電解質およびそれを用いたポリマー二次電池 - Google Patents

ゲル電解質およびそれを用いたポリマー二次電池 Download PDF

Info

Publication number
WO2014133171A1
WO2014133171A1 PCT/JP2014/055184 JP2014055184W WO2014133171A1 WO 2014133171 A1 WO2014133171 A1 WO 2014133171A1 JP 2014055184 W JP2014055184 W JP 2014055184W WO 2014133171 A1 WO2014133171 A1 WO 2014133171A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gel electrolyte
secondary battery
polymer secondary
polymer
Prior art date
Application number
PCT/JP2014/055184
Other languages
English (en)
French (fr)
Inventor
登 吉田
伊紀子 島貫
金子 志奈子
石川 仁志
Original Assignee
日本電気株式会社
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necエナジーデバイス株式会社 filed Critical 日本電気株式会社
Priority to US14/771,684 priority Critical patent/US9899703B2/en
Priority to JP2015503071A priority patent/JP6116029B2/ja
Publication of WO2014133171A1 publication Critical patent/WO2014133171A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a gel electrolyte for a secondary battery and a polymer secondary battery using the same.
  • Lithium polymer batteries can be thinned, have a high degree of freedom in shape selection, and have a low possibility of electrolyte leakage due to the high electrolyte retention of gel electrolytes. It is attracting attention in a wide range of applications, from power supplies to large-scale applications such as automotive drive power supplies and stationary storage batteries. Accordingly, improvement of battery characteristics is demanded.
  • cycle characteristics have been improved by variously devising polymer materials used for the gel electrolyte. For example, an improvement by mixing a physical crosslinkable polymer and a chemical crosslinkable gel electrolyte has been proposed (for example, see Patent Document 1). Further, cycle characteristics have been improved by a method of suppressing the decomposition reaction of the gel electrolyte by forming a protective film on the electrode surface.
  • Patent Documents 2 and 3 describe that a cyclic film is formed on the electrode surface by using a cyclic disulfonic acid ester as an additive for the gel electrolyte, thereby improving cycle characteristics.
  • An object of the present invention is to provide a gel electrolyte capable of suppressing self-discharge and gel decomposition when a polymer battery is stored at a high temperature, and to provide a polymer secondary battery.
  • One embodiment of the present invention relates to a gel electrolyte containing a cyclic sulfonate ester represented by the general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, or an amino group, provided that both R 1 and R 2 are hydrogen atoms.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, and a carbon number in which an alkylene unit or a fluoroalkylene unit is bonded via an ether group.
  • a linking group selected from the group consisting of 2 to 6 divalent groups is shown.
  • the present invention it is possible to provide a gel electrolyte capable of suppressing self-discharge and gel decomposition when a polymer battery is stored at a high temperature.
  • FIG. 1 is an example of a schematic configuration diagram of a polymer secondary battery using the nonaqueous electrolytic solution or the nonaqueous gel electrolyte of the present invention.
  • the battery according to the present invention has a structure as shown in FIG.
  • the layer 1 containing the positive electrode active material was formed on the positive electrode current collector 3
  • the layer 2 containing the negative electrode active material was formed on the negative electrode current collector 4. Is.
  • These positive electrode and negative electrode are arranged to face each other with a porous separator 5 interposed therebetween.
  • the porous separator 5 is disposed substantially parallel to the layer 2 containing the negative electrode active material.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3
  • a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • an electrode element in which the positive electrode and the negative electrode are arranged to face each other and a non-aqueous gel electrolyte are included in the outer casings 6 and 7.
  • Non-aqueous gel electrolyte The disulfonic acid ester compound contained in the non-aqueous gel electrolyte is decomposed by the electrochemical redox reaction during the charge / discharge reaction to form a film on the surface of the electrode active material, thereby suppressing the decomposition of the gel electrolyte and the supporting salt. It can. This is considered to be effective in extending the life of the lithium ion secondary battery.
  • the present inventors have intensively studied in more detail about a lithium ion secondary battery including a gel electrolyte containing a disulfonic acid ester compound.
  • the storage stability in the gel electrolyte is improved by containing a cyclic sulfonic acid ester represented by the following formula (1) in which a hydrogen atom at a specific position of the disulfonic acid ester is substituted with another group. Suppressed. Moreover, when this gel electrolyte was used, the self-discharge of the lithium ion secondary battery was suppressed. Furthermore, when this gel electrolyte was stored, it discovered that the fall of the viscosity of a gel was suppressed and came to this invention.
  • the non-aqueous gel electrolyte (hereinafter sometimes simply referred to as “gel electrolyte”) is a cyclic sulfonate ester represented by the formula (1) (hereinafter simply referred to as “general formula”) as an additive. (It may be referred to as “the compound of (1)”).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, or an amino group, provided that both R 1 and R 2 are hydrogen atoms.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, and a carbon number 2 in which an alkylene unit or a fluoroalkylene unit is bonded via an ether group.
  • a linking group selected from the group consisting of divalent groups of 6 to 6.
  • Examples of the alkyl group for R 1 and R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, which may be linear or branched.
  • a methyl group, an ethyl group, and a propyl group are preferable, and a methyl group and an ethyl group are more preferable.
  • the halogen for R 1 and R 2 include fluorine, chlorine, bromine and iodine. Among them, fluorine is preferable.
  • R 1 and R 2 are preferably substituted. Further, it is preferable that at least one of R 1, R 2 is an alkyl group, most preferably R 1, only one of R 2 is an alkyl group and the other is hydrogen atom.
  • R 1 and R 2 are substituted as compared to the cyclic sulfonate ester in which both R 1 and R 2 are hydrogen atoms, so that the reaction with the decomposition product of the supporting salt is suppressed.
  • the film forming ability on the negative electrode surface is improved.
  • R 1, R 2 is substituted, R 1, reductive decomposition of only one of R 2 is as compared with the case the other substituted are hydrogen atoms at the surface of the negative electrode is lowered, It is considered that the film forming ability is lowered and the battery characteristics are lowered.
  • the cyclic sulfonate ester represented by the general formula (1) is a cyclic sulfonate ester in which at least one of R 1 and R 2 is substituted, so that both R 1 and R 2 are hydrogen atoms.
  • the stability of the gel electrolyte is improved, and the holding ability of the electrolytic solution is improved.
  • R 3 is an alkylene unit or a fluoroalkylene unit bonded via an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, and an ether group.
  • a linking group selected from the group consisting of divalent groups having 2 to 6 carbon atoms is shown.
  • the linking group represented by R 3 is asymmetric, either direction may be used.
  • the alkylene group and the fluoroalkylene group may be linear or branched, and are preferably linear.
  • the alkylene group - (CH 2) n - ( n is an integer of 1-5) is represented by, - (CH 2) n - ( n is 1 or 2) represented by A methylene group or an ethylene group is more preferable, and a methylene group represented by —CH 2 — is more preferable.
  • At least one hydrogen atom of an alkylene group represented by — (CH 2 ) n — (n is an integer of 1 to 4) is substituted with an alkyl group, for example, —C (CH 3 ) 2 —, —C (CH 3 ) (CH 2 CH 3 ) —, —C (CH 2 CH 3 ) 2 —, —CH (C m H 2m + 1 ) — (m is an integer of 1 to 4), —CH 2 —C (CH 3 ) 2 —, —CH 2 —CH (CH 3 ) —, —CH (CH 3 ) —CH (CH 3 ) —, —CH (CH 3 ) CH 2 CH 2 — or —CH (CH 3 ) CH 2 CH 2 CH 2 — and the like, and —C (CH 3 ) 2 — or —CH (CH 3 ) — is more preferable, and —CH (CH 3 ) — is still more
  • the fluoroalkylene group means that at least one of the hydrogen atoms of the alkylene group is substituted with a fluorine atom, and all the hydrogen atoms may be substituted with a fluorine atom, and the fluorine substitution position and the number of substitutions. Is optional.
  • the fluoroalkylene group may be linear or branched, and is preferably linear. In a linear fluoroalkylene group, when all hydrogen atoms are substituted with fluorine atoms, R 3 is represented by — (CF 2 ) n — (n is an integer of 1 to 5).
  • the fluoroalkylene group is preferably a monofluoromethylene group, a difluoromethylene group, a monofluoroethylene group, a difluoroethylene group, a trifluoroethylene group or a tetrafluoroethylene group.
  • a divalent group having 2 to 6 carbon atoms in which an alkylene unit or a fluoroalkylene unit is bonded via an ether group includes, for example, —R 4 —O—R 5 — ( R 4 and R 5 each independently represents an alkylene group or a fluoroalkylene group, and the total number of carbon atoms of R 4 and R 5 is 2 to 6), or —R 6 —O—R 7 —O— R 8 — (R 6 , R 7 and R 8 each independently represents an alkylene group or a fluoroalkylene group, and the total number of carbon atoms of R 6 , R 7 and R 8 is 3 to 6).
  • R 4 and R 5 may both be an alkylene group, or both may be a fluoroalkylene group, or one may be an alkylene group and the other may be a fluoroalkylene group.
  • R 6 , R 7 and R 8 may each independently be an alkylene group or a fluoroalkylene group.
  • —CH 2 —O—CH 2 —, —CH 2 —O—C 2 H 4 —, —C 2 H 4 —O—C 2 H 4 —, —CH 2 —O—CH 2 —O—CH 2 —, —CH 2 —O—CHF—, —CH 2 —O—CF 2 —, —CF 2 —O—CF 2 —, —C 2 F 4 —O—C 2 F 4 —, —CF 2 — O—CF 2 —O—CF 2 —, —CH 2 —O—CF 2 —O—CH 2 — and the like can be mentioned.
  • R 3 is preferably an alkylene group, a carbonyl group or a fluoroalkylene group, more preferably an alkylene group or a fluoroalkylene group, and — (CH 2 ) n — (n is 1 or 2 ), —C (CH 3 ) 2 —, —CH (CH 3 ) —, monofluoromethylene group, difluoromethylene group, monofluoroethylene group, difluoroethylene group, trifluoroethylene group or tetrafluoroethylene group. More preferred.
  • R 3 is preferably —CH 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, —CHF— or —CF 2 —, and —CH 2 — or —CF 2 -Is more preferable.
  • the reason for this is not clear, but when the compound represented by the formula (1) is a compound having a 6-membered ring structure, the electrochemical reactivity when forming a film as compared with the compound having a 7-membered ring structure It is presumed that this is because the resistance is lower, and a stronger and better quality film is formed.
  • R 3 is particularly preferably a methylene group represented by —CH 2 —.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen or an amino group, provided that both R 1 and R 2 are hydrogen atoms.
  • R 3 is a methylene group optionally substituted with fluorine.
  • R represents methyl, ethyl, propyl, butyl or pentyl, and preferably represents methyl or ethyl.
  • R represents methyl, ethyl, propyl, butyl or pentyl, and preferably represents methyl or ethyl.
  • Table 1 specifically illustrates representative examples of the compound represented by the general formula (1), but the present invention is not limited thereto.
  • R 1 is a methyl group or an ethyl group
  • R 2 is hydrogen
  • R 3 can be cited compounds is a methylene group or an ethylene group.
  • a compound in which R 1 is a methyl group or an ethyl group, R 2 is hydrogen, and R 3 is a methylene group is preferable, R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methylene group. Certain compounds are more preferred.
  • the compounds represented by the general formula (1) may be used singly or in combination of two or more.
  • the proportion of the compound represented by the general formula (1) in the gel electrolyte is not particularly limited, but it is preferably contained at 0.005 to 10 wt% of the entire gel electrolyte.
  • concentration of the compound represented by the general formula (1) By setting the concentration of the compound represented by the general formula (1) to 0.005 wt% or more, a sufficient film effect can be obtained. More preferably, 0.01 wt% or more is added. By doing so, the battery characteristics can be further improved.
  • the increase in the viscosity of a gel electrolyte and the accompanying increase in resistance can be suppressed by setting it as 10 wt% or less. More preferably, 5 wt% or less is added, and by doing so, the battery characteristics can be further improved.
  • the nonaqueous gel electrolyte of the present embodiment is not particularly limited, but generally contains a polymer and a cyclic sulfonate ester represented by the formula (1) in addition to the nonaqueous solvent and the supporting salt, and the polymer according to the present embodiment.
  • the non-aqueous gel electrolyte is preferably gelled.
  • the polymer used for the non-aqueous gel electrolyte is not particularly limited, and examples thereof include polyacrylonitrile, polyethylene oxide, and polyvinylidene fluoride.
  • a non-aqueous solvent, a supporting salt, and an additive represented by the above formula (1) are added to this polymer, mixed and gelled, and used as a non-aqueous gel electrolyte.
  • These gel electrolytes can be used after being applied onto the electrode and then drying to evaporate the solvent appropriately, and after assembling the cell, the electrolyte is injected and swollen.
  • an additive represented by the above formula (1) is added to a polymerizable monomer having a polymerizable functional group, a non-aqueous solvent, and a supporting salt, and an appropriate polymerization initiator is added and mixed as necessary. It can also be produced by a known method using heat or light, if necessary, by polymerization and, if necessary, a method of crosslinking to form a polymer.
  • in-situ polymerization of a mixture of a polymerizable monomer, a non-aqueous electrolyte, and a desired component as in the latter is performed in the battery outer case.
  • Examples of the polymerizable monomer that can be used when forming the polymer gel by in situ polymerization include a monomer having two or more polymerizable functional groups per molecule, an oligomer, and the like.
  • the gelling component ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, Propylene di (meth) acrylate, dipropylene di (meth) acrylate, tripropylene di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexane Difunctional (meth) acrylates such as diol di (meth) acrylate, trifunctional (meth) acrylates such as trimethylolpropan
  • copolymer oligomers and copolymer oligomers with acrylonitrile can also be used.
  • (Meth) acrylate means a substance containing either acrylate or methacrylate or both.
  • the above monomers, oligomers, or polymers can be used alone or in combination of two or more, and other gelable components can also be used in combination.
  • the polymer component in the non-aqueous gel electrolyte is preferably such that the total of polymer components composed of polymerizable monomers, oligomers, polymers, etc. is 0.5 to 5% by mass of the entire non-aqueous gel electrolyte, and 1 to 3% by mass. More preferably, it is the range. By making content of a polymer component into said range, the gel electrolyte which can hold
  • the weight average molecular weight of the polymer in the gelled non-aqueous gel electrolyte is preferably in the range of 1000 to 5000000, and more preferably in the range of 5000 to 500000.
  • lithium salt examples include LiPF 6 , lithium imide salt, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6, and the like.
  • lithium imide salt examples include LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently a natural number, preferably 1 or 2). These may use only 1 type and may use 2 or more types together.
  • the concentration of the lithium salt in the non-aqueous gel electrolyte is preferably 0.7 mol / L or more and 2.0 mol / L or less.
  • concentration of the lithium salt By setting the concentration of the lithium salt to 0.7 mol / L or more, sufficient ionic conductivity can be obtained.
  • concentration of lithium salt 2.0 mol / L or less a viscosity can be made low and the movement of lithium ion is not prevented.
  • At least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers and chain ethers can be used.
  • the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof (including fluorinated products).
  • the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products).
  • Examples of the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products).
  • Examples of ⁇ -lactone include ⁇ -butyrolactone and its derivatives (including fluorinated products).
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products).
  • Examples of the chain ether include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), ethyl ether, diethyl ether, and derivatives thereof (including fluorinated compounds).
  • non-aqueous solvents include dimethyl sulfoxide, formamide, acetamide, dimethylformamide, dioxolane (eg, 1,3-dioxolane), acetonitrile, propionitrile, nitromethane, ethyl monoglyme, phosphate triester, Methoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, 1,3-propane sultone, anisole, N-methylpyrrolidone, and derivatives thereof ( (Including fluorinated compounds) can also be used.
  • nonaqueous solvents may be used alone or in combination of two or more.
  • the non-aqueous gel electrolyte of the present embodiment can further include a compound having at least one sulfonyl group.
  • the compound having at least one sulfonyl group (hereinafter also referred to as a sulfonyl group-containing compound) is a compound different from the cyclic sulfonate ester represented by the general formula (1).
  • sulfonyl group-containing compound there are compounds overlapping with the above non-aqueous solvent, but “sulfonyl group-containing compounds” are usually cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ - It is used with at least one non-aqueous solvent selected from the group consisting of lactones, cyclic ethers, chain ethers and fluorine derivatives of these compounds.
  • the sulfonyl group-containing compound is preferably a sultone compound represented by the following general formula (2).
  • n represents an integer of 0 to 2
  • R 1 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or Represents an aryl group having 6 to 12 carbon atoms.
  • Examples of the compound represented by the general formula (2) include cyclic sulfonic acid esters such as 1,3-propane sultone (PS), 1,4-butane sultone, and 1,3-prop-2-ene sultone.
  • cyclic sulfonic acid esters such as 1,3-propane sultone (PS), 1,4-butane sultone, and 1,3-prop-2-ene sultone.
  • the sulfonyl group-containing compound is used at 0.005 to 10 wt% of the entire gel electrolyte.
  • the gel electrolyte of the present embodiment can further contain vinylene carbonate or a derivative thereof.
  • vinylene carbonate or derivatives thereof include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4-propyl vinylene carbonate, 4, Mention may be made of vinylene carbonates such as 5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate and 4,5-diphenyl vinylene carbonate; and vinyl alkylene carbonates such as vinyl ethylene carbonate (VEC) and divinyl ethylene carbonate.
  • VEC vinyl ethylene carbonate
  • VEC divinyl ethylene carbonate
  • Vinylene carbonate or a derivative thereof is used at 0.005 to 10 wt% of the entire gel electrolyte.
  • the gel electrolyte can contain other additives other than the above compounds as necessary.
  • other additives include an overcharge inhibitor and a surfactant.
  • the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • the negative electrode active material used for the layer 2 containing the negative electrode active material is selected from the group consisting of, for example, lithium metal, a lithium alloy, and a material that can occlude and release lithium.
  • a material for inserting and extracting lithium ions a carbon material or an oxide can be used.
  • the carbon material graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotubes, or a composite thereof can be used. Of these, graphite material or amorphous carbon is preferable.
  • the graphite material has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness, and is formed at a high processing temperature, so it contains few impurities and has negative electrode performance. It is advantageous for improvement and is preferable.
  • the oxide any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphorus oxide (phosphoric acid), boric oxide (boric acid), or a composite thereof may be used. In particular, it is preferable to include silicon oxide.
  • the structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects.
  • a film forming method a vapor deposition method, a CVD method, a sputtering method, or the like can be used.
  • the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
  • the lithium alloy is, for example, a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium. Consists of.
  • As the lithium metal or lithium alloy an amorphous one is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
  • Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. can do.
  • Negative electrode binders include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene , Polyimide, polyamideimide and the like can be used.
  • the amount of the binder for the negative electrode to be used is 0.5 to 25% by mass with respect to 100% by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • examples of the positive electrode active material used for the layer 1 containing the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the transition metal portion of these lithium-containing composite oxides may be replaced with another element.
  • a lithium-containing composite oxide having a plateau at 4.2 V or higher at the metal lithium counter electrode potential can be used.
  • examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide.
  • the lithium-containing composite oxide can be, for example, a compound represented by the following formula (3).
  • Li a (M x Mn 2-x ) O 4 (3) (However, in Formula (3), 0 ⁇ x ⁇ 2 and 0 ⁇ a ⁇ 1.2. Further, M is at least selected from the group consisting of Ni, Co, Fe, Cr, and Cu. It is a kind.)
  • the same negative electrode binder can be used.
  • polyvinylidene fluoride (PVdF) is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10% by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • binders other than polyvinylidene fluoride vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Examples thereof include polyimide and polyamideimide.
  • the positive electrode current collector aluminum, nickel, silver, and alloys thereof are preferable.
  • the shape include foil, flat plate, and mesh.
  • these active materials are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black, a binder such as polyvinylidene fluoride, and the like. It can obtain by apply
  • NMP N-methyl-2-pyrrolidone
  • a method for manufacturing a secondary battery As a method for manufacturing a secondary battery, the method for manufacturing a secondary battery in FIG. 1 will be described as an example. In particular, a case will be described where a gel electrolyte formed by in situ polymerization of a polymerizable monomer inside a cell outer package is used.
  • the non-aqueous gel electrolyte secondary battery of FIG. 1 has a negative electrode and a positive electrode laminated via a porous separator 5 in a dry air or an inert gas atmosphere. It accommodates in exterior bodies, such as a flexible film which consists of a laminated body of resin and metal foil.
  • the gel electrolyte may be formed by previously containing a polymer gel-forming composition (polymer) in a battery outer package, followed by a crosslinking reaction, or on a positive electrode, a negative electrode, or a separator.
  • the battery may be assembled after the polymer gel electrolyte coating layer is formed.
  • coat can be formed on a negative electrode by charging a non-aqueous gel electrolyte secondary battery before or after sealing an exterior body.
  • porous films such as polyolefin, such as a polypropylene and polyethylene, a fluororesin
  • the exterior body can be appropriately selected as long as it is stable to the gel electrolyte and has a sufficient water vapor barrier property.
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • Example 1 (Production of battery) The production of the battery of this example will be described.
  • An aluminum foil having a thickness of 20 ⁇ m was used as the positive electrode current collector, and LiMn 2 O 4 was used as the positive electrode active material.
  • a copper foil having a thickness of 10 ⁇ m was used as the negative electrode current collector, and graphite was used as the negative electrode active material.
  • the negative electrode and the positive electrode were laminated
  • the high temperature self-discharge evaluation of the polymer secondary battery is performed in a constant temperature bath at 25 ° C., charging is performed with CCCV charge, rate 1C, and charge end voltage 4.2V, and then the discharge conditions are CC discharge, rate 1C, discharge Discharging was performed with a final voltage of 3 V, and the capacity obtained at this time was defined as the initial discharge capacity.
  • the battery was charged under the same charging conditions as described above, stored in a 45 ° C. constant temperature bath for 4 weeks, then discharged under the same discharging conditions as described above, and the capacity was measured.
  • the ratio of the discharge capacity after storage at 45 ° C. for 4 weeks to the initial discharge capacity was calculated as the retention capacity (%).
  • Example 2 (Examples 2 to 4)
  • Example 1 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 1 except that the compounds shown in Table 2 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 1 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 1 except that methylenemethane disulfonic acid ester (hereinafter “compound A”) was used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • compound A methylenemethane disulfonic acid ester
  • the polymer secondary batteries shown in Examples 1 to 5 have improved retention capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed, as compared with Comparative Example 1. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 1 to 5 had improved gel electrolyte viscosity after storage for 1 week at 60 ° C. as compared with Comparative Example 1, and the polymer decomposition was suppressed.
  • Example 6 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 6 except that the compounds shown in Table 3 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 6. The results are shown in Table 3.
  • Example 6 compound no. A gel electrolyte and a polymer secondary battery were prepared in the same manner as in Example 6 except that Compound A was used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 6. The results are shown in Table 3.
  • the polymer secondary batteries shown in Examples 6 to 10 have improved storage capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed, as compared with Comparative Example 2. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 6 to 10 had improved gel electrolyte viscosity after storage for 1 week at 60 ° C. as compared with Comparative Example 2, and the degradation of the polymer was suppressed.
  • Example 11 In Example 1, the polymer added when preparing the pregel solution was replaced with the gel-formed product A, 3.8% by mass of triethylene glycol diacrylate, 1% by mass of trimethylolpropane triacrylate, and t as a polymerization initiator.
  • a gel electrolyte and a polymer secondary battery were prepared in the same manner as in Example 1 except that 0.5% by mass of butyl peroxypivalate was added and mixed (hereinafter, “gel formed product C”).
  • gel formed product C As in Example 1, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated. The results are shown in Table 4.
  • Example 12 In Example 11, compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 11 except that the compounds shown in Table 4 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 11. The results are shown in Table 4.
  • Example 11 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 11 except that Compound A was used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 11. The results are shown in Table 4.
  • the polymer secondary batteries shown in Examples 11 to 15 have an improved retention capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed as compared with Comparative Example 3. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 11 to 15 had improved gel electrolyte viscosity after storage at 60 ° C. for 1 week as compared with Comparative Example 3, and the degradation of the polymer was suppressed.
  • Example 16 (Production of battery) The production of the battery of this example will be described.
  • An aluminum foil having a thickness of 20 ⁇ m was used as the positive electrode current collector, and LiMn 2 O 4 was used as the positive electrode active material.
  • a copper foil having a thickness of 10 ⁇ m was used as the negative electrode current collector, and graphite was used as the negative electrode active material.
  • the separator which consists of polyethylene was used as a separator which electronically insulates a negative electrode and a positive electrode.
  • the electrode element provided with the gel electrolyte layer was prepared by laminating the gel electrolyte layer applied and dried on at least one or both of the positive electrode, the negative electrode, and the separator.
  • the produced electrode element was accommodated in a battery outer package, and a non-aqueous solvent was injected to swell the gel electrolyte layer, thereby producing a polymer secondary battery.
  • a self-discharge evaluation test during high-temperature storage was performed in the same procedure as in Example 1.
  • Non-aqueous gel electrolyte layer First, with respect to 100% by mass of the swelling solvent (non-aqueous electrolyte), 0% of the solution obtained by uniformly adding 2% by mass of polyvinylidene fluoride (hereinafter, “gel-formed product D”) as a matrix polymer and mixing them uniformly. Compound No. 1 mol / l The compound shown by 2 was mixed and the electrolyte solution was prepared.
  • the swelling solvent a solution obtained by dissolving 12% by mass of LiPF 6 as an electrolyte salt in a non-aqueous solvent obtained by mixing 30% by mass of ethylene carbonate and 58% by mass of diethyl carbonate was used. Using this electrolyte solution, a gel electrolyte stability evaluation test was performed in the same procedure as in Example 1.
  • this electrolyte solution was applied on the positive electrode active material layer and the negative electrode active material layer. At this time, the coating was performed so that the thickness of the gel electrolyte layer after drying the electrolyte solution was 20 ⁇ m. Next, the electrolyte solution was dried under reduced pressure until the ratio of the swelling solvent to the matrix polymer was 8: 1 by weight, thereby forming an electrode provided with a gel electrolyte layer. The formed electrode was accommodated in the battery outer package, and sealed after injecting a nonaqueous solvent so as to have the same composition as the electrolyte solution before drying.
  • Example 16 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 16 except that the compounds shown in Table 5 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 16. The results are shown in Table 5.
  • Example 16 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 16 except that Compound A was used instead of 2. Thereafter, the stability of the gel electrolyte and the high temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 16. The results are shown in Table 5.
  • the polymer secondary batteries shown in Examples 16 to 20 have improved storage capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed, as compared with Comparative Example 4. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 16 to 20 had improved gel electrolyte viscosity after storage for 1 week at 60 ° C. as compared with Comparative Example 4, and the degradation of the polymer was suppressed.
  • Example 21 a gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 16, except that the matrix polymer was replaced with the gel formed product D and polyacrylonitrile (hereinafter, “gel formed product E”) was used. As in Example 1, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated. The results are shown in Table 6.
  • Example 21 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 21 except that the compounds shown in Table 6 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 21. The results are shown in Table 6.
  • Example 21 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 21 except that Compound A was used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 21. The results are shown in Table 6.
  • the polymer secondary batteries shown in Examples 21 to 25 have improved retention capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed, as compared with Comparative Example 5. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 21 to 25 had improved gel electrolyte viscosity after storage for 1 week at 60 ° C. as compared with Comparative Example 5, and the degradation of the polymer was suppressed.
  • Example 26 a gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 16 except that the gel polymer D was used instead of the matrix polymer D and polyethylene oxide (hereinafter, “gel product F”) was used. As in Example 1, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated. The results are shown in Table 7.
  • Example 26 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 26 except that the compounds shown in Table 6 were used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 26. The results are shown in Table 7.
  • Example 26 compound no. A gel electrolyte and a polymer secondary battery were produced in the same manner as in Example 26 except that Compound A was used instead of 2. Thereafter, the stability of the gel electrolyte and the high-temperature self-discharge of the polymer secondary battery were evaluated in the same manner as in Example 26. The results are shown in Table 7.
  • the polymer secondary batteries shown in Examples 26 to 30 have improved storage capacity after storage at 45 ° C. for 4 weeks, that is, high temperature self-discharge is suppressed, as compared with Comparative Example 6. It has been confirmed. Further, as compared with the R 1, R 2 of both compounds substituted (Compound No.8), R 1, R of either only two group of compounds are substituted (Compound No.2, The retention capacity when 3, 7, 9) was added was increased, and it was confirmed that self-discharge was further suppressed by good film formation. In addition, it was confirmed that the gel electrolytes shown in Examples 26 to 30 had an improved gel electrolyte viscosity after storage for 1 week at 60 ° C. as compared with Comparative Example 6, and the degradation of the polymer was suppressed.
  • Examples of use of the present invention include driving devices such as electric vehicles, hybrid vehicles, electric motorcycles, and electric assist bicycles, tools such as electric tools, electronic devices such as portable terminals and laptop computers, household power storage systems, and solar power generation. Examples include storage batteries such as systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、式(1)で表される環状スルホン酸エステルを含むゲル電解質に関する。本発明によれば、ポリマー二次電池の自己放電を抑制することができるゲル電解質およびこれを用いたポリマー二次電池を提供することができる。(式(1)中、R、Rはそれぞれ独立に水素原子、炭素数1~5のアルキル基、ハロゲン基、またはアミノ基である。但し、R、Rの両方とも水素原子ということは無い。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、およびエーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基からなる群の中から選ばれる連結基を示す。)

Description

ゲル電解質およびそれを用いたポリマー二次電池
 本発明は、二次電池用ゲル電解質およびそれを用いたポリマー二次電池に関する。
 リチウムポリマー電池は、薄型化が可能であること、形状選択の自由度の高さ、ゲル電解質の電解液保持力が高いことによる電解液の漏液の可能性の低さなどから、携帯機器の電源から自動車用駆動電源、定置用蓄電池などの大型用途まで幅広い用途で注目されている。それに伴う電池特性の改善が求められている。
 こうした中で重要な技術課題として、安全性の向上、高温保存特性の改善、サイクル特性の改善などが挙げられる。このなかで、サイクル特性については、ゲル電解質に用いるポリマー材料等を種々工夫することにより改善はなされてきた。例えば、物理架橋型ポリマーと化学架橋型ゲル電解質を混合することによる改善が提案されている(例えば、特許文献1参照)。また、電極表面に保護膜を形成することによりゲル電解質の分解反応を抑制する方法によるサイクル特性の改善がなされてきた。例えば、特許文献2、3には、環状ジスルホン酸エステルをゲル電解質の添加剤として用いることで安定な皮膜が電極表面に形成されサイクル特性が改善されることが記載されている。
 また、電極材料、形状、製造条件、添加剤等の材料などについての様々な提案が行われている。
特開2002-100406号公報 特開2007-273445号公報 国際公開2011/004483号
 しかしながら上記文献に記載の二次電池に用いられるジスルホン酸エステルを含むゲル電解質を保管した場合、遊離酸濃度が増加する、これを用いた場合にゲル電解質の粘度が低下し、電解液保持力が低下する、またこれを用いたポリマー二次電池では電池の保存特性への影響、特に自己放電に伴って残存容量が低下する問題があり、更なる改善が求められていた。
 本発明は、ポリマー電池の高温保存時における、自己放電及びゲルの分解を抑制可能なゲル電解質の提供、およびポリマー二次電池の提供を課題とするものである。
 本発明の一態様は、一般式(1)で表される環状スルホン酸エステルを含むゲル電解質に関する。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、R、Rはそれぞれ独立に水素原子、炭素数1~5のアルキル基、ハロゲン基、またはアミノ基である。但し、R、Rの両方とも水素原子ということは無い。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、およびエーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基からなる群の中から選ばれる連結基を示す。)
 本発明によれば、ポリマー電池の高温保存時における自己放電及びゲルの分解を抑制することができるゲル電解質を提供することができる。
本発明のポリマー二次電池のラミネート外装型構造の概略構成図である。
 本発明の非水ゲル電解質を用いたポリマー二次電池の構成について図面を参照しながら説明する。図1は、本発明の非水電解液または非水ゲル電解質を用いたポリマー二次電池の概略構成図の一例である。本発明に係る電池は、たとえば図1のような構造を有する。正極は、正極活物質を含有する層1が正極集電体3上に成膜されたものであり、負極は、負極活物質を含有する層2が負極集電体4上に成膜されたものである。これらの正極と負極は、多孔質セパレータ5を介して対向配置されている。多孔質セパレータ5は、負極活物質を含有する層2に対して略平行に配置されている。正極集電体3には正極タブ9が接続され、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。本発明の二次電池は、これら正極および負極が対向配置された電極素子と、非水ゲル電解質とが外装体6および7に内包されている。本実施形態に係る二次電池の形状としては、特に制限はないが、例えば、ラミネート外装型、円筒型、角型、コイン型などがあげられる。
<非水ゲル電解質>
 非水ゲル電解質に含まれるジスルホン酸エステル化合物は、充放電反応時の電気化学的酸化還元反応により分解して電極活物質表面に皮膜を形成し、ゲル電解質、支持塩の分解を抑制することができる。これにより、リチウムイオン二次電池の長寿命化に効果があると考えられる。本発明者らは、ジスルホン酸エステル化合物を含むゲル電解質を備えたリチウムイオン二次電池についてより詳細に鋭意検討した。その結果ジスルホン酸エステルの特定の箇所の水素原子を別の基で置換した下記式(1)で表される環状スルホン酸エステルを含有することによりゲル電解質中の保管安定性が向上し、劣化が抑制された。また、このゲル電解質を用いた場合にリチウムイオン二次電池の自己放電が抑制された。さらに、このゲル電解質を保管した場合に、ゲルの粘度の低下が抑制されることを見出し本発明に至った。
 この理由は分かっていないが、環状ジスルホン酸エステルの硫黄原子に挟まれた炭素上の水素原子の少なくとも一つを別の基に置換することにより、支持塩の分解生成物と環状ジスルホン酸エステルの反応性を低下させ、ゲル電解質からの遊離酸の発生を抑制することができるものと推定される。これによって、高温保存時において活物質の遊離酸による劣化を抑制し、特に自己放電に伴う容量減少を抑制することができる。また、遊離酸によるポリマーの分解を抑制し、ゲルの安定性が向上する。
 本実施形態において、非水ゲル電解質(以下、単に「ゲル電解質」と記載することもある。)は、添加剤として、式(1)で表される環状スルホン酸エステル(以下、単に「一般式(1)の化合物」と記載することもある。)を含む。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R、Rはそれぞれ独立に水素原子、炭素数1~5のアルキル基、ハロゲン基、またはアミノ基である。但し、R、Rの両方とも水素原子ということは無い。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、およびエーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基から成る群から選ばれる連結基を示す。)
 RおよびRのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基およびペンチル基が挙げられ、これらは、直鎖でも分岐でもよい。特に、メチル基、エチル基およびプロピル基が好ましく、メチル基およびエチル基がより好ましい。RおよびRのハロゲンとしては、フッ素、塩素、臭素、ヨウ素が挙げられ、中でもフッ素が好ましい。
 上記一般式(1)で表される環状スルホン酸エステルは、R、Rの少なくとも一方が置換されていることが好ましい。さらに、R、Rの少なくとも一つがアルキル基であることが好ましく、R、Rのいずれか一方のみがアルキル基であり他方が水素原子であることが最も好ましい。
 この理由として、R、Rの両方が水素原子である環状スルホン酸エステルに比べてR、Rの少なくとも一方が置換されていることで支持塩の分解生成物との反応が抑制され、負極表面上における皮膜形成能が向上する。しかしながら、R、Rの両方が置換された場合、R、Rのいずれか一方のみが置換され他方が水素原子である場合と比較して負極表面での還元分解性が低下し、皮膜形成能が低下し、電池特性が低下するためと考えられる。
 また、上記一般式(1)で表される環状スルホン酸エステルは、R、Rの少なくとも一方が置換されていることにより、R、Rの両方が水素原子である環状スルホン酸エステルに比べて、ゲル電解質の安定性が向上し、電解液の保持能力が向上する。
 式(1)において、Rは、炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、およびエーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基からなる群の中から選ばれる連結基を示す。なお、Rで表される連結基が非対称の場合、向きはどちらでもよい。
 式(1)のRにおいて、アルキレン基およびフルオロアルキレン基は、直鎖であっても分岐鎖を有していてもよく、直鎖であることが好ましい。直鎖アルキレン基の場合、アルキレン基は-(CH-(nは、1~5の整数)で表され、-(CH-(nは、1または2)で表されるメチレン基またはエチレン基であることがより好ましく、-CH-で表されるメチレン基であることがさらに好ましい。分岐アルキレン基は、-(CH-(nは1~4の整数)で表されるアルキレン基の少なくともひとつの水素原子がアルキル基で置換されており、例えば、-C(CH-、-C(CH)(CHCH)-、-C(CHCH-、-CH(C2m+1)-(mは1~4の整数)、-CH-C(CH-、-CH-CH(CH)-、-CH(CH)-CH(CH)-、-CH(CH)CHCH-または-CH(CH)CHCHCH-等が挙げられ、-C(CH-または-CH(CH)-であることがより好ましく、-CH(CH)-であることがさらに好ましい。フルオロアルキレン基は、上記アルキレン基が有する水素原子の少なくとも1つがフッ素原子で置換されていることを意味し、全ての水素原子がフッ素原子で置換されていてもよく、フッ素の置換位置および置換数は任意である。フルオロアルキレン基は直鎖であっても分岐鎖を有していてもよく、直鎖であることが好ましい。直鎖のフルオロアルキレン基で、水素原子が全てフッ素原子で置換されている場合、Rは-(CF-(nは、1~5の整数)で表される。フルオロアルキレン基として、具体的にはモノフルオロメチレン基、ジフルオロメチレン基、モノフルオロエチレン基、ジフルオロエチレン基、トリフルオロエチレン基またはテトラフルオロエチレン基が好ましい。
 式(1)のRにおいて、「エーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基」としては、例えば、-R-O-R-(RおよびRは、それぞれ独立に、アルキレン基またはフルオロアルキレン基を表し、RおよびRの炭素数の合計が2~6である)、または-R-O-R-O-R-(R、RおよびRは、それぞれ独立に、アルキレン基またはフルオロアルキレン基を表し、R、RおよびRの炭素数の合計が3~6である)が挙げられる。RおよびRは、いずれもアルキレン基であってもよいし、いずれもフルオロアルキレン基であってもよいし、一方がアルキレン基でもう一方がフルオロアルキレン基であってもよい。R、RおよびRは、それぞれ独立に、アルキレン基であってもフルオロアルキレン基であってもよい。例えば、-CH-O-CH-、-CH-O-C-、-C-O-C-、-CH-O-CH-O-CH-、-CH-O-CHF-、-CH-O-CF-、-CF-O-CF-、-C-O-C-、-CF-O-CF-O-CF-、-CH-O-CF-O-CH-等が挙げられる。
 これらのうち、Rは、アルキレン基、カルボニル基またはフルオロアルキレン基であることが好ましく、アルキレン基またはフルオロアルキレン基であることがより好ましく、-(CH-(nは、1または2)、-C(CH-、-CH(CH)-、モノフルオロメチレン基、ジフルオロメチレン基、モノフルオロエチレン基、ジフルオロエチレン基、トリフルオロエチレン基またはテトラフルオロエチレン基であることがより好ましい。
 中でも、Rは、-CH-、-C(CH-、-CH(CH)-、-CHF-または-CF-であることが好ましく、-CH-または-CF-であることがさらに好ましい。この理由は明らかではないが、式(1)で表される化合物が6員環構造の化合物であると、7員環構造の化合物と比較して皮膜を形成する際の電気化学的な反応性が高いため、より抵抗が低く、また、より強固で良質な皮膜が形成されるからであると推定される。Rは、-CH-で表されるメチレン基であることが特に好ましい。
 式(1)の化合物のうち、下記式(1-1)で表される化合物が好ましく、下記式(1-2)または式(1-3)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000005
(式(1-1)中、RおよびRはそれぞれ独立に水素原子、炭素数1~5のアルキル基、ハロゲンまたはアミノ基を表し、但し、R、Rの両方とも水素原子ということはない。Rは、フッ素で置換されていてもよいメチレン基である。)
Figure JPOXMLDOC01-appb-C000006
(式(1-2)中、Rは、メチル、エチル、プロピル、ブチルまたはペンチルを表し、好ましくはメチルまたはエチルを表す。)
Figure JPOXMLDOC01-appb-C000007
(式(1-3)中、Rは、メチル、エチル、プロピル、ブチルまたはペンチルを表し、好ましくはメチルまたはエチルを表す。)
 表1に一般式(1)で示される化合物の代表例を具体的に例示するが、本発明はこれらに限定されるものはない。
Figure JPOXMLDOC01-appb-T000008
 上記一般式(1)の好ましい化合物としては、例えば、式(1)中、Rがメチル基またはエチル基、Rが水素、Rがメチレン基またはエチレン基である化合物が挙げられる。中でも、式(1)中、Rがメチル基またはエチル基、Rが水素、Rがメチレン基である化合物が好ましく、Rがメチル基、Rが水素、Rがメチレン基である化合物がより好ましい。
 上記一般式(1)の化合物は、一種を単独で使用しても二種以上を併用してもよい。
 一般式(1)で示される化合物のゲル電解質に占める割合は特に限定されないが、ゲル電解質全体の0.005~10wt%で含まれることが好ましい。一般式(1)で示される化合物の濃度を0.005wt%以上とすることにより、十分な皮膜効果を得ることができる。より好ましくは0.01wt%以上添加され、こうすることにより、電池特性をさらに向上させることができる。また、10wt%以下とすることにより、ゲル電解質の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。より好ましくは5wt%以下添加され、こうすることにより、電池特性をさらに向上させることができる。
 本実施形態の非水ゲル電解質は、特に限定されないが、一般に非水溶媒および支持塩に加えて、ポリマーおよび式(1)で表される環状スルホン酸エステルを含有し、本実施形態に係るポリマー二次電池において、非水ゲル電解質は好ましくはゲル化されている。
 非水ゲル電解質に用いられるポリマーとしては特に限定されないが、例えばポリアクリルニトリル、ポリエチレンオキシド、ポリビニリデンフルオライド等が挙げられる。このポリマーに、非水溶媒、支持塩、上記式(1)で表される添加剤を加えて混合し、ゲル化させたものを非水ゲル電解質として用いることができる。これらのゲル電解質は電極上に塗布後、乾燥させることによって溶媒を適度に蒸発させ、セルを組み立てた後に電解液を注液して膨潤させて、用いることができる。
 また、重合性の官能基を有する重合性モノマーと、非水溶媒、支持塩に、上記式(1)で表される添加剤を加え、必要により適切な重合開始剤を添加して混合し、必要により熱または光等を用いる公知の方法によって、重合および必要により架橋して重合体とする方法によっても製造することができる。
 特に、後者のように重合性モノマーと非水電解液と所望の成分を混合したものを電池外装容器内においてin situ重合することが好ましい。
 ポリマーゲルをin situ重合で形成する際に使用可能な重合性モノマーとしては、重合可能な官能基を一分子あたり2個以上有するモノマー、またはオリゴマーなどが挙げられる。具体的には、ゲル化成分としては、エチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレンジ(メタ)アクリレート、ジプロピレンジ(メタ)アクリレート、トリプロピレンジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどの2官能(メタ)アクリレート、また、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能(メタ)アクリレート、また、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能(メタ)アクリレート、また、グリシジルメタクリレートなどのグリシジルエーテルモノマーや3,4-エポキシシクロヘキシルメチル(メタ)アクリレートなどの脂環式エポキシモノマー、(3-オキセタニル)メチル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-3-オキセタニル)メチル(メタ)アクリレート、(3-ブチル-3-オキセタニル)メチル(メタ)アクリレート、(3-ヘキシル-3-オキセタニル)メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートなどのオキセタンモノマー、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロフルフリルモノマー等の開環重合性官能基を有するモノマーが挙げられる。これらの他に、ウレタン(メタ)アクリレートなどのモノマーも使用することができる。
 また、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマーを用いることもできる。
 なお、(メタ)アクリレートは、アクリレート、メタクリレートのいずれか、または両者を含む物質を意味する。
 以上のモノマー、オリゴマー、またはポリマーは、単独であるいは複数種を混合して使用することができ、またその他のゲル化可能な成分を混合して使用することもできる。
 非水ゲル電解質中のポリマー成分は、重合性モノマー、オリゴマー、ポリマー等からなるポリマー成分の合計が、非水ゲル電解質全体の0.5~5質量%であることが好ましく、1~3質量%の範囲であることがより好ましい。ポリマー成分の含有量を上記の範囲とすることにより、電解液を良好に保持することが可能なゲル電解質を形成でき、また、過度のゲル化による電池特性の低下を抑制することができる。
 また、ゲル化した非水ゲル電解質中のポリマーの重量平均分子量は、1000~5000000の範囲であることが好ましく、5000~500000の範囲であることがより好ましい。
 リチウム塩としては、LiPF、リチウムイミド塩、LiAsF、LiAlCl、LiClO、LiBF、LiSbF等が挙げられる。リチウムイミド塩としては、LiN(C2k+1SO)(C2m+1SO)(kおよびmは、それぞれ独立して自然数であり好ましくは1または2である)が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 非水ゲル電解質中のリチウム塩の濃度としては、0.7mol/L以上、2.0mol/L以下であることが好ましい。リチウム塩の濃度を0.7mol/L以上とすることにより、十分なイオン導電性が得られる。また、リチウム塩の濃度を2.0mol/L以下とすることにより、粘度を低くすることができ、リチウムイオンの移動が妨げられない。
 非水溶媒としては、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、γ-ラクトン、環状エーテルおよび鎖状エーテルからなる群から選択される少なくとも1種の溶媒を用いることができる。環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。脂肪族カルボン酸エステルとしては、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。γ-ラクトンとしては、γ-ブチロラクトンおよびその誘導体(フッ素化物を含む)が挙げられる。環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフランおよびその誘導体(フッ素化物を含む)が挙げられる。鎖状エーテルとしては、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、エチルエーテル、ジエチルエーテル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。非水溶媒としては、これら以外にも、ジメチルスルホキシド、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン(例えば、1,3-ジオキソラン)、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、およびこれらの誘導体(フッ素化物を含む)を用いることもできる。
 これらの非水溶媒は一種のみを用いてもよく、二種以上を併用してもよい。
 本実施形態の非水ゲル電解質は、少なくとも1個のスルホニル基を有する化合物をさらに含むことができる。ここで、少なくとも1個のスルホニル基を有する化合物(以下、スルホニル基含有化合物ともいう。)は、前記一般式(1)で表される環状スルホン酸エステルとは異なる化合物である。尚、スルホニル基含有化合物としては、上記の非水溶媒と重複する化合物もあるが、「スルホニル基含有化合物」は、通常、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類およびこれらの化合物のフッ素誘導体からなる群より選択される少なくとも1種の非水溶媒とともに使用される。
 前記スルホニル基含有化合物として、下記一般式(2)で示されるスルトン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、nは0~2の整数を表し、R~Rは、互いに独立に、水素原子、炭素数1~12のアルキル基、炭素数3~6のシクロアルキル基または炭素数6~12のアリール基を表す。
 一般式(2)で表される化合物としては、例えば1,3-プロパンスルトン(PS)、1,4-ブタンスルトン、1,3-プロパ-2-エンスルトン等の環状スルホン酸エステル類が挙げられる。
 スルホニル基含有化合物は、ゲル電解質全体の0.005~10wt%で使用される。
 また、本実施形態のゲル電解質は、ビニレンカーボネートまたはその誘導体をさらに含むことができる。ビニレンカーボネートまたはその誘導体としては、ビニレンカーボネート(VC)、4-メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4-エチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、4-プロピルビニレンカーボネート、4,5-ジプロピルビニレンカーボネート、4-フェニルビニレンカーボネートおよび4,5-ジフェニルビニレンカーボネート等のビニレンカーボネート類;並びにビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート等のビニルアルキレンカーボネート類を挙げることができる。
 ビニレンカーボネートまたはその誘導体は、ゲル電解質全体の0.005~10wt%で使用される。
 また、本実施形態において、ゲル電解質には、必要に応じて、上記化合物以外のその他の添加剤も含めることができる。その他の添加剤としては、例えば、過充電防止剤、界面活性剤、が挙げられる。
<負極>
 負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。図1の非水ゲル電解質二次電池において、負極活物質を含有する層2に用いる負極活物質には、たとえばリチウム金属、リチウム合金、およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二種以上の物質を用いることができる。リチウムイオンを吸蔵、放出する材料としては、炭素材料または酸化物を用いることができる。
 炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブなど、あるいはこれらの複合物を用いることができる。これらのうち、黒鉛材料または非晶質炭素であることが好ましい。特に、黒鉛材料は、電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため含有不純物が少なく、負極性能の向上に有利であり、好ましい。また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、酸化リン(リン酸)、酸化ホウ酸(ホウ酸)のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。
 リチウム合金は、リチウムおよびリチウムと合金形成可能な金属により構成される。リチウム合金は、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属やリチウム合金としては、特にアモルファス状のものが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル-ゲル方式、などの適宜な方式で形成することができる。
 負極用結着剤としては、ポリビニリデンフルオライド、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量%に対して、0.5~25質量%が好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
<正極>
 図1の二次電池において、正極活物質を含有する層1に用いる正極活物質としては、例えば、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物があげられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば下記の式(3)で表される化合物とすることができる。
  Li(MMn2-x)O      (3)
(ただし、式(3)において、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)
 正極用結着剤としては、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリビニリデンフルオライド(PVdF)が好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して2~10質量%が好ましい。
 ポリビニリデンフルオライド以外の結着剤としては、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が挙げられる。
 正極用集電体としては、アルミニウム、ニッケル、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 正極は、これらの活物質を、カーボンブラック等の導電性物質、ポリビニリデンフルオライド等の結着剤とともにN-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の正極集電体上に塗布することにより得ることができる。
<二次電池の製造方法>
 二次電池の製造方法として、図1の二次電池の製造方法を一例として説明する。特に、重合性モノマーをセル外装体内部でin situ重合させて形成するゲル電解質を用いた場合について説明する。図1の非水ゲル電解質二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、多孔質セパレータ5を介して積層、あるいは積層したものを捲回した後に、電池缶や、合成樹脂と金属箔との積層体からなる可とう性フィルム等の外装体に収容する。その後、重合反応前のポリマーゲル形成用組成物(モノマー)を注入した後に、in situ架橋重合させ、ゲル電解質を形成する。なお、ゲル電解液は、あらかじめ電池外装体に、ポリマーゲル形成用の組成物(ポリマー)を収容した後、架橋反応を行って形成しても良く、あるいは、正極電極、負極電極またはセパレータ上にポリマーゲル電解質の塗布層を形成した後に、電池を組み立てても良い。そして、外装体を封止前または封止後に、非水ゲル電解質二次電池の充電を行うことにより、負極上に良好な皮膜を形成させることができる。なお、多孔質セパレータ5としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが用いられる。外装体としては、ゲル電解質に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
 以下、本実施形態を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
(電池の作製)
 本実施例の電池の作製について説明する。正極集電体として厚み20μmのアルミニウム箔を用い、正極活物質としてLiMnを用いた。また、負極集電体として厚み10μmの銅箔を用い、負極活物質として黒鉛を用いた。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、アルミラミネートフィルムからなる電池外装体に収容して二次電池を作製した。
(非水電ゲル電解質の作製)
 ポリマーゲル電解質となるプレゲル溶液は、30質量%のエチレンカーボネート(EC)と58質量%のジエチルカーボネート(DEC)とからなる非水溶媒に、12質量%の支持塩としてのLiPFを添加し、電解液100質量%に対して、エチルアクリレートと(3-エチル-3オキセタニル)メチルメタクリレートを74:26(質量%)で含む共重合体(エチルアクリレートの繰り返し数=2620、(3-エチル-3オキセタニル)メチルメタクリレートの繰り返し数=420)(以下、「ゲル形成物A」)を2質量%加え、さらに、この電解液に対して0.1mol/lの表1に記載の化合物No.2で示される化合物を混合することで調製した。このプレゲル溶液を60℃で20時間加熱してゲル化処理を行ったゲル電解質を用いて、ゲル電解質の安定性評価試験を行った。また、このプレゲル溶液を注液部分から注液して真空含浸を行い、60℃で20時間のゲル化処理を行うことで、リチウムポリマー電池を作製し、高温保管時の自己放電評価試験を行った。
 ゲル電解質の安定性試験は、ポリプロピレン製のサンプル管にゲル電解質を3mlずつ取り分け、上記ゲル電解質を60℃の恒温槽中で1週間保管し、1週間後のゲル電解質の粘度(Pa・s)を測定した。測定は音叉型振動式粘度計を用いて行った。60℃1週間保管後のゲル電解質の粘度の結果を表2に示す。
 ポリマー二次電池の高温自己放電評価は、25℃の恒温槽で、充電条件をCCCV充電、レート1C、充電終止電圧4.2Vとして充電を行った後、放電条件をCC放電、レート1C、放電終止電圧3Vとして放電を行い、この時得られた容量を初回放電容量とした。次に、上記と同様の充電条件で充電を行い、45℃の恒温槽中で4週間保管した後、上記と同様の放電条件で放電を行い、容量を測定した。初回放電容量に対する、45℃4週間保管後の放電容量の比率を、保持容量(%)として算出した。
 (実施例2~4)
 実施例1において化合物No.2の代わりに表2に示す化合物を用いる他は実施例1と同様にゲル電解質およびポリマー二次電池を作製した。以下、実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表2に示す。
 <比較例1>
 実施例1において、化合物No.2の代わりにメチレンメタンジスルホン酸エステル(以下、「化合物A」)を用いる他は実施例1と同様にゲル電解質及びポリマー二次電池を作製した。以下、実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000010
 表2に示したように実施例1~5に示したポリマー二次電池は比較例1と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例1~5に示したゲル電解質は比較例1と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 (実施例6)
 実施例1において、プレゲル溶液を作製する際に用いるポリマーを、ゲル形成物Aに代えてエチルメタクリレートと(3-エチル-3オキセタニル)メチルメタクリレートを74:26(質量%)で含む共重合体(エチルメタクリレートの繰り返し数=2620、(3-エチル-3オキセタニル)メチルメタクリレートの繰り返し数=420)(以下、「ゲル形成物B」)とする他は、実施例1と同様にしてゲル電解質及びポリマー二次電池を作製した。実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表3に示す。
 (実施例7~10)
 実施例6において、化合物No.2に代えて表3に示す化合物を用いる他は、実施例6と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例6と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表3に示す。
 <比較例2>
 実施例6において、化合物No.2の代わりに化合物Aを用いる他は、実施例6と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例6と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000011
 表3に示したように実施例6~10に示したポリマー二次電池は比較例2と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例6~10に示したゲル電解質は比較例2と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 (実施例11)
 実施例1において、プレゲル溶液を作製する際に添加するポリマーを、ゲル形成物Aに代えて、トリエチレングリコールジアクリレート3.8質量%とトリメチロールプロパントリアクリレート1質量%、重合開始剤としてt-ブチルパーオキシピバレートを0.5質量%加えて混合したもの(以下、「ゲル形成物C」)とする他は、実施例1と同様にしてゲル電解質及びポリマー二次電池を作製した。実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表4に示す。
 (実施例12~15)
 実施例11において、化合物No.2に代えて表4に示す化合物を用いる他は、実施例11と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例11と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表4に示す。
 <比較例3>
 実施例11において、化合物No.2の代わりに化合物Aを用いる他は、実施例11と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例11と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012
 表4に示したように実施例11~15に示したポリマー二次電池は比較例3と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例11~15に示したゲル電解質は比較例3と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 (実施例16)
(電池の作製)
 本実施例の電池の作製について説明する。正極集電体として厚み20μmのアルミニウム箔を用い、正極活物質としてLiMnを用いた。また、負極集電体として厚み10μmの銅箔を用い、負極活物質として黒鉛を用いた。また、負極と正極とを電子絶縁させるセパレータとして、ポリエチレンからなるセパレータを用いた。正極・負極・セパレータの少なくとも一つ以上の両面または片面にゲル電解質層を塗布・乾燥させたものと積層させてゲル電解質層を備えた電極素子を作製した。作製した電極素子を電池外装体に収容し、非水溶媒を注液してゲル電解質層を膨潤させることでポリマー二次電池を作製した。このリチウムポリマー電池を用いて、実施例1と同様の手順で高温保管時の自己放電評価試験を行った。
(非水ゲル電解質層の作製)
 まず、膨潤溶媒(非水電解液)100質量%に対して、マトリクスポリマーとして、ポリビニリデンフルオライド(以下「ゲル形成物D」)を2質量%加えて均一に混合した溶液に対して、0.1mol/lの化合物No.2で示される化合物を混合し、電解質溶液を調製した。膨潤溶媒は、エチレンカーボネート30質量%とジエチルカーボネート58質量%を混合した非水溶媒に、電解質塩としてLiPFを12質量%溶解させたものを用いた。この電解質溶液を用いて、実施例1と同様の手順でゲル電解質の安定性評価試験を行った。
 また、この電解質溶液を、正極活物質層上及び負極活物質層上に塗布した。この際、電解質溶液乾燥後のゲル電解質層の厚みが20μmになるように塗布を行った。次に、膨潤溶媒とマトリクスポリマーとの比が重量比で8:1になるまで電解質溶液を減圧乾燥させ、これによって、ゲル電解質層を備えた電極を形成した。形成した電極を電池外装体に収容し、乾燥前の電解質溶液と同じ組成となるように非水溶媒を注液後封止した。
 (実施例17~20)
 実施例16において、化合物No.2に代えて表5に示す化合物を用いる他は、実施例16と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例16と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表5に示す。
 <比較例4>
 実施例16において、化合物No.2の代わりに化合物Aを用いる他は、実施例16と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例16と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000013
 表5に示したように実施例16~20に示したポリマー二次電池は比較例4と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例16~20に示したゲル電解質は比較例4と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 (実施例21)
 実施例16において、マトリックスポリマーをゲル形成物Dに代えてポリアクリロニトリル(以下、「ゲル形成物E」)とする他は、実施例16と同様にしてゲル電解質及びポリマー二次電池を作製した。実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表6に示す。
 (実施例22~25)
 実施例21において、化合物No.2に代えて表6に示す化合物を用いる他は、実施例21と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例21と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表6に示す。
 <比較例5>
 実施例21において、化合物No.2の代わりに化合物Aを用いる他は、実施例21と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例21と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000014
 表6に示したように実施例21~25に示したポリマー二次電池は比較例5と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例21~25に示したゲル電解質は比較例5と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 (実施例26)
 実施例16において、マトリックスポリマーをゲル形成物Dに代えてポリエチレンオキシド(以下、「ゲル形成物F」)とする他は、実施例16と同様にしてゲル電解質及びポリマー二次電池を作製した。実施例1と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表7に示す。
 (実施例27~30)
 実施例26において、化合物No.2に代えて表6に示す化合物を用いる他は、実施例26と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例26と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表7に示す。
 <比較例6>
 実施例26において、化合物No.2の代わりに化合物Aを用いる他は、実施例26と同様にしてゲル電解質及びポリマー二次電池を作製した。以下、実施例26と同様にゲル電解質の安定性およびポリマー二次電池の高温自己放電を評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000015
 表7に示したように実施例26~30に示したポリマー二次電池は比較例6と比較して、45℃4週間保管後の保持容量が向上していること、すなわち高温自己放電が抑制されていることが確認された。また、R、Rの両方が置換されている化合物群(化合物No.8)と比較して、R、Rのいずれか一方のみが置換されている化合物群(化合物No.2、3、7、9)を添加した場合の保持容量が増加しており、良好な皮膜形成によって自己放電がより抑制されていることが確認された。また実施例26~30に示したゲル電解質は比較例6と比較して60℃1週間保管後のゲル電解質粘度が向上しており、ポリマーの分解が抑制されていることが確認された。
 本発明の活用例として、電気自動車やハイブリッド自動車、電動バイク、電動アシスト自転車などの駆動用機器、電動工具などの工具類、携帯端末やノートパソコンなどの電子機器、家庭用蓄電システムや太陽光発電システムなどの蓄電池などが挙げられる。
  1 正極活物質層
  2 負極活物質層
  3 正極集電体
  4 負極集電体
  5 多孔質セパレータ
  6 ラミネート外装体
  7 ラミネート外装体
  8 負極タブ
  9 正極タブ

Claims (20)

  1.  一般式(1)で表される環状スルホン酸エステルを含むゲル電解質。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R、Rはそれぞれ独立に水素原子、炭素数1~5のアルキル基、ハロゲン基、またはアミノ基である。但し、R、Rの両方とも水素原子ということは無い。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、およびエーテル基を介してアルキレン単位またはフルオロアルキレン単位が結合した炭素数2~6の2価の基からなる群の中から選ばれる連結基を示す。)
  2.  前記一般式(1)中のRが水素原子であることを特徴とする請求項1に記載のゲル電解質。
  3.  前記一般式(1)中のRが水素原子であり、Rが-(CH-または-(CF-(n=1、2、3、4または5)であることを特徴とする請求項1に記載のゲル電解質。
  4.  前記一般式(1)中のRが水素原子であり、Rが-C2m+1(m=1、2または3)であり、Rが-CH-であることを特徴とする請求項1に記載のゲル電解質。
  5.  前記一般式(1)で表される環状スルホン酸エステルに加え、一つ以上のスルホニル基を有する化合物をさらに含むことを特徴とする、請求項1~4のいずれか一項に記載のゲル電解質。
  6.  前記スルホニル基を有する化合物として下記一般式(2)で表されるスルトン化合物を含むことを特徴とする請求項5に記載のゲル電解質。
    Figure JPOXMLDOC01-appb-C000002
    (ただし、上記一般式(2)において、nは0以上2以下の整数である。また、R~Rは、水素原子、炭素数1以上12以下のアルキル基、炭素数3以上6以下のシクロアルキル基および炭素数6以上12以下のアリール基から成る群より独立に選択される。)
  7.  前記一般式(1)で表される環状スルホン酸エステルが、ゲル電解質量全体の0.005質量%以上10質量%以下含まれることを特徴とする、請求項1~6のいずれか一項に記載のゲル電解質。
  8.  ビニレンカーボネートまたはその誘導体を含むことを特徴とする、請求項1~7のいずれか一項に記載のゲル電解質。
  9.  ゲル電解質を構成するポリマーが、ポリ(メタ)アクリレート、ポリビニリデンフルオライド、ポリアクリロニトリルおよびポリエチレンオキシドから成る群より選択される一種または二種以上を含むことを特徴とする、請求項1~8のいずれか一項に記載のゲル電解質。
  10.  非水溶媒として環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類およびこれらの化合物のフッ素誘導体、からなる群から選択された一種以上の溶媒を含むことを特徴とする、請求項1~9のいずれか一項に記載のゲル電解質。
  11.  リチウム塩として、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、およびLiN(C2n+1SO)(C2m+1SO)(n、mはそれぞれ独立して自然数)、からなる群から選択された一種以上の物質を含むことを特徴とする請求項1~10のいずれか一項に記載のゲル電解質。
  12.  少なくとも正極と負極を備えた二次電池において、請求項1~11のいずれか一項に記載のゲル電解質を含むことを特徴とするポリマー二次電池。
  13.  正極活物質としてリチウム含有複合酸化物を含むことを特徴とする、請求項12に記載のポリマー二次電池。
  14.  負極活物質として、リチウムを吸蔵・放出できる材料、リチウム金属、リチウムと合金を形成しうる金属材料および酸化物材料からなる群から選択される一または二種以上の物質を含むことを特徴とする、請求項12または13に記載のポリマー二次電池。
  15.  前記負極活物質として、炭素材料を含むことを特徴とする請求項14に記載のポリマー二次電池。
  16.  前記炭素材料が黒鉛であることを特徴とする請求項15に記載のポリマー二次電池。
  17.  前記炭素材料が非晶質炭素であることを特徴とする請求項15に記載のポリマー二次電池。
  18.  フィルム外装体を有することを特徴とする請求項12~17のいずれか一項に記載のポリマー二次電池。
  19.  請求項12~18のいずれか一項に記載の二次電池を含むことを特徴とする自動車用電池。
  20.  請求項19に記載の自動車用電池を用いたことを特徴とする自動車。
PCT/JP2014/055184 2013-03-01 2014-02-28 ゲル電解質およびそれを用いたポリマー二次電池 WO2014133171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/771,684 US9899703B2 (en) 2013-03-01 2014-02-28 Gel electrolyte and polymer secondary battery using same
JP2015503071A JP6116029B2 (ja) 2013-03-01 2014-02-28 ゲル電解質およびそれを用いたポリマー二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013041322 2013-03-01
JP2013-041322 2013-03-01

Publications (1)

Publication Number Publication Date
WO2014133171A1 true WO2014133171A1 (ja) 2014-09-04

Family

ID=51428428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055184 WO2014133171A1 (ja) 2013-03-01 2014-02-28 ゲル電解質およびそれを用いたポリマー二次電池

Country Status (3)

Country Link
US (1) US9899703B2 (ja)
JP (1) JP6116029B2 (ja)
WO (1) WO2014133171A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017429A (zh) * 2015-12-16 2017-08-04 三星Sdi株式会社 用于可再充电锂电池的电解液和包括其的可再充电锂电池
CN109309254A (zh) * 2017-07-27 2019-02-05 宁德时代新能源科技股份有限公司 电解液及电化学储能装置
US10224152B2 (en) * 2015-08-21 2019-03-05 National Cheng Kung University Electrolyte for dye-sensitized solar cell and method for preparing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061370A1 (en) 2013-10-21 2015-04-30 Milwaukee Electric Tool Corporation Adapter for power tool devices
CN110462909B (zh) * 2017-03-15 2023-04-04 远景Aesc 日本有限公司 锂离子二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354157A (ja) * 1998-06-05 1999-12-24 Mitsubishi Chemical Corp リチウム二次電池およびその製造方法
JP2009070827A (ja) * 2003-12-15 2009-04-02 Nec Corp 二次電池
JP2010177124A (ja) * 2009-01-30 2010-08-12 Sony Corp 非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100406A (ja) 2000-09-25 2002-04-05 Toshiba Battery Co Ltd ポリマーリチウム二次電池及びその製造方法
JP4033074B2 (ja) * 2002-08-29 2008-01-16 日本電気株式会社 二次電池用電解液およびそれを用いた二次電池
WO2005057714A1 (ja) 2003-12-15 2005-06-23 Nec Corporation 二次電池用電解液およびそれを用いた二次電池
JP2007273445A (ja) 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
JP5169400B2 (ja) * 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 非水電解液およびそれを用いた非水電解液二次電池
EP2453511A4 (en) 2009-07-09 2013-11-27 Nec Energy Devices Ltd POLYMER GEL ELECTROLYTE AND POLYMER ACCUMULATOR THEREWITH
CN102742063B (zh) 2010-02-08 2015-04-29 Nec能源元器件株式会社 非水电解液二次电池
CN104167564B (zh) * 2010-02-12 2017-04-12 三菱化学株式会社 非水电解液及非水电解质二次电池
JP5586532B2 (ja) * 2011-06-23 2014-09-10 株式会社東芝 非水電解質電池及び電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354157A (ja) * 1998-06-05 1999-12-24 Mitsubishi Chemical Corp リチウム二次電池およびその製造方法
JP2009070827A (ja) * 2003-12-15 2009-04-02 Nec Corp 二次電池
JP2010177124A (ja) * 2009-01-30 2010-08-12 Sony Corp 非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224152B2 (en) * 2015-08-21 2019-03-05 National Cheng Kung University Electrolyte for dye-sensitized solar cell and method for preparing same
CN107017429A (zh) * 2015-12-16 2017-08-04 三星Sdi株式会社 用于可再充电锂电池的电解液和包括其的可再充电锂电池
CN107017429B (zh) * 2015-12-16 2022-02-25 三星Sdi株式会社 用于可再充电锂电池的电解液和包括其的可再充电锂电池
CN109309254A (zh) * 2017-07-27 2019-02-05 宁德时代新能源科技股份有限公司 电解液及电化学储能装置
CN109309254B (zh) * 2017-07-27 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电化学储能装置

Also Published As

Publication number Publication date
JP6116029B2 (ja) 2017-04-19
JPWO2014133171A1 (ja) 2017-02-09
US20160013514A1 (en) 2016-01-14
US9899703B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
JP5573313B2 (ja) 非水電解液電池用電解液及びこれを用いる非水電解液電池
JP5239119B2 (ja) 非水電解液電池用電解液及び非水電解液電池
JP5163065B2 (ja) 非水電解液二次電池および非水電解液組成物
JP2007273445A (ja) ポリマーゲル電解質およびそれを用いたポリマー二次電池
WO2014133163A1 (ja) 非水電解液二次電池
JP5641593B2 (ja) リチウムイオン電池
JP5601576B2 (ja) 非水電解質組成物及び非水電解質二次電池
JP6380377B2 (ja) リチウムイオン二次電池
JP2021500715A (ja) 固体電解質電池、それを含む電池モジュール及び電池パック
WO2011004483A1 (ja) ポリマーゲル電解質及びそれを用いたポリマー二次電池
JP6116029B2 (ja) ゲル電解質およびそれを用いたポリマー二次電池
JPWO2015087580A1 (ja) 二次電池の製造方法
KR102211367B1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
JP7314739B2 (ja) リチウム二次電池
JP6341195B2 (ja) 二次電池用電解液およびそれを用いた二次電池
KR101797289B1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
US10622674B2 (en) Polymer gel electrolyte, lithium ion battery and method for producing same
JP6992362B2 (ja) リチウムイオン二次電池
JP6319092B2 (ja) 二次電池
KR20170120897A (ko) 유기전해액 및 이를 포함하는 리튬전지
JP2009134943A (ja) 非水電解質電池
JP6086116B2 (ja) リチウム二次電池用電解液およびこれを含むリチウム二次電池
WO2014133161A1 (ja) 非水電解液二次電池
JP2017182946A (ja) リチウム二次電池用電解液およびこれを備えるリチウム二次電池
KR20060045257A (ko) 알킬포스페이트계 화합물이 첨가된 리튬폴리머전지용 겔폴리머전해질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503071

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771684

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757731

Country of ref document: EP

Kind code of ref document: A1