JP2009016883A - 光半導体素子および光半導体集積回路 - Google Patents

光半導体素子および光半導体集積回路 Download PDF

Info

Publication number
JP2009016883A
JP2009016883A JP2008271385A JP2008271385A JP2009016883A JP 2009016883 A JP2009016883 A JP 2009016883A JP 2008271385 A JP2008271385 A JP 2008271385A JP 2008271385 A JP2008271385 A JP 2008271385A JP 2009016883 A JP2009016883 A JP 2009016883A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide
region
semiconductor
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271385A
Other languages
English (en)
Inventor
Nobuhiro Nunotani
伸浩 布谷
Yasuo Shibata
泰夫 柴田
Naoki Fujiwara
直樹 藤原
Nobuhiro Kikuchi
順裕 菊池
Yuichi Tomori
裕一 東盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008271385A priority Critical patent/JP2009016883A/ja
Publication of JP2009016883A publication Critical patent/JP2009016883A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • H01S5/06206Controlling the frequency of the radiation, e.g. tunable twin-guide lasers [TTG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1017Waveguide having a void for insertion of materials to change optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1025Extended cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1221Detuning between Bragg wavelength and gain maximum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Abstract

【課題】導波方向の設計の自由度を向上させることを可能としつつ、屈折率が互いに異なる導波路間における反射および屈折による導波路損失を低減する。
【解決手段】第1導波路1201と第2導波領域1202との境界面1204を第1導波路1201の光の伝播方向に対して傾くように配置し、第2導波領域1202と第3導波路1203との境界面1205を第1導波路1201と第2導波領域1202との境界面1204における光の屈折方向の延長線上に対して傾くように配置し、第2導波領域1202と第3導波路1203との境界面1205における光の屈折方向が第3導波路1203の光の伝播方向に一致するように設定する。
【選択図】図26

Description

本発明は、半導体レーザ、光導波路、およびその他の光デバイスなどの光半導体素子および光半導体集積回路に関し、特に、半導体基板上において屈折率およびその温度依存性の異なる材料を組み合わせた光半導体素子および光半導体集積回路に関する。
半導体レーザの発振波長は、周囲温度および素子温度に依存して変化する。例えば、K.Sakai,“1.5μm range InGaAsP/InP distributed feedback lasers,“IEEEJ.Quantum Electron.,vol.QW−18,pp.1272−1278,Aug.1982に示されているように、分布帰還型(DFB)レーザの発振波長の温度依存性は0.1nm/K程度である。これは、半導体の屈折率(n)が温度依存性を持ち、これにより回折格子のブラッグ波長(λ)が、
mλ=2nΛ ・・・(1)
に従って変化するためである。ここで、mは回折の次数、Λは回折格子の周期である。
例えば、光ファイバ通信の光源として半導体レーザを用いる場合、特にいくつかの異なる波長の光信号を1本のファイバに多重化して伝送する波長多重通信(WDM)を行う場合は、信号光波長の精度が重要である。そのため、発光源である半導体レーザの発振波長を安定化することが必要不可欠である。このため、例えば、ペルチェ素子を用いて半導体レーザの温度制御を行うことにより、半導体レーザの発振波長を安定化することが行われている。
また、ペルチェ素子などによる温度制御を用いずに発振波長の温度依存性を安定させる方法としては、大きく分類して2つの方法が考えられる。すなわち、1番目の方法は、例えば、H.Asahi et al,Jpn.J.Appl.phys.,vol.35,pp.L875−,1996.に示されるように、従来に比べて屈折率の温度依存性の小さい半導体材料を用いることで、半導体のみの構成により温度依存性を低減する方法である。また、2番目の方法は、半導体と半導体以外の材料による複合構成により温度依存性を低減する方法である。例えば、“Hybrid integrated extennal Cavity laser without temperature dependent mode hopping,“T.Tanaka et al,Electron.Lett.,vol.35,no.2,pp.149−150,1999.に示されるように、半導体レーザと半導体以外の材料よりなる外部導波路を組み合わせたレーザや、特開2002−14247号公報に示されるように、半導体と半導体とは逆の屈折率温度依存性を有する半導体以外の材料とを交互に縦列接続した構成が知られている、
しかしながら、ペルチェ素子を用いて半導体レーザの温度制御を行う方法では素子構造や制御が複雑化するとともに、消費電力が増加するという問題があった。
また、屈折率の温度依存性の小さい半導体材料を用いることで、半導体のみの構成により温度依存性を低減する方法では、これまでに実用化された新材料の報告は無く、新しい半導体を開発することは、結晶成長や素子形成上、非常に困難である。
また、半導体と半導体以外の材料と組み合わせる方法では、光軸調整を不要とするなど出来るだけ簡便に組み合わせできることが望ましい。しかし、半導体基板上に有機材料をスピンコートするなど簡便な作成法であったとしても、例えば、半導体と有機材料を交互に縦列接続して分布反射器を構成するような場合は、優れた特性の得られる1次の回折格子を作製するためには、半導体と有機材料を1/4波長程度の長さで交互に並べる必要があり、加工の難易度および信頼性に大きな問題がある。
一方、半導体光導波路と半導体とは異なる特性を有する材料からなる光導波路を接続することにより、半導体のみでは得られない新しい特性を有する光導波路が得られている。例えば、半導体の屈折率は温度上昇により増大する、すなわち正の温度依存性を有するが、これとは逆に温度上昇により屈折率が低下する、すなわち負の温度依存性を有する材料からなる光導波路を半導体光導波路に縦続接続する方法がある。
これにより、全体として、屈折率と導波路長の積である光学長が温度に依存しない光導波路を得ることができ、K.Tada et al.“Temperature compensated coupled cavity diode lasers”,Optical and Quantum Electronics,vol.16,pp.463−469,1984.に開示されているように、半導体レーザの外部に負の屈折率温度依存性を有する材料からなる共振器を構成することで、発振波長が温度の依存しない温度無依存レーザを実現することができる。
すなわち、半導体媒質の実効屈折率nの増大により、レーザ共振器の光学長nは温度上昇に伴って増大する。ここで、光学長nが温度上昇に伴って低下する外部共振器にレーザダイオードが結合されているものとすると、共振器の全体の光学長n+nが温度に対して一定となる条件は、以下の(2)式で与えることができる。
∂/∂T(n+n
=L∂n/∂T+n∂L/∂T+L∂n/∂T+n∂L/∂T=0
・・・(2)
ただし、∂n/∂Tおよび∂L/∂Tは通常正であるため、∂n/∂Tおよび∂L/∂Tは負となる。
ここで、半導体光導波路と半導体以外の材料とからなる導波路を接合する場合のように異なる屈折率をもつ導波路を接合する場合には、その界面において2つの導波路の屈折率の違いから反射が生じる。第1光導波路の屈折率をN、第2光導波路の屈折率をNとし、簡単のため平面波で考えると、反射率Rは以下の(3)式で与えることができる。
R=((N−N)/(N+N)) ・・・(3)
半導体や石英導波路を伝播した光を外部に放射する場合、導波路と外部との屈折率が異なるために反射が生じる。このため、例えば、半導体光導波路中を伝播した光が半導体レーザの端面から空気中に放射される場合、草川徹著「レンズ光学」東海大学出版会pp.273〜288に開示されているように、ある特定の厚さの蒸着膜を半導体端面に成膜することにより、反射を防止することができる。しかしながら、異なる材料からなる導波路を半導体基板上に集積する場合、このような反射防止膜を精度よく形成することは困難である。
一方、屈折率が互いに異なる物質の境界面に光が斜めに入射した場合、入射角をθ、屈折角をθとすると、スネルの法則に従い、以下の(4)式で表されるように、その境界面で屈折が生じる。
sinθ/sinθ=N/N ・・・(4)
ここで、入射角θがブリュースター(Brewster)角θに一致する場合、入射面に平行な成分の反射をなくすことができ、ブリュースター角θは、以下の(5)式で表すことができる。
θ=tan−1(N/N) ・・・(5)
ところで、一般的に、半導体導波路には、埋め込みヘテロ(HB)構造やリッジ構造などが広く用いられている。そして、半導体のエッチングや埋め込み成長では、エッチングや埋め込みに適した結晶方位が存在する。
しかしながら、半導体光導波路とその半導体光導波路とは屈折率の異なる材料からなる光導波路とを結合する場合、屈折率の差に応じて接合界面での反射が起こるため、導波路設計の自由度が制限される。
ここで、ブリュースター角θを利用することにより、屈折率が互いに異なる導波路間における反射を低減することができるが、ブリュースター角θを用いると、導波路間の境界面で光が屈折し、導波方向が直線でなくなるという問題がある。
また、屈折率が互いに異なる導波路間における反射を低減するためにブリュースター角θを用いると、埋め込み半導体導波路を特定の結晶方向に沿って作製することが困難になり、埋め込み半導体導波路を信頼性よく作製することができなくなるという問題があった。
さらに、屈折率が互いに異なる導波路間における反射を低減するためにブリュースター角θを用いると、半導体導波路を劈開面に垂直に配置することが困難となり、半導体レーザなどの反射面として劈開面を用いることができなくなるという問題があった。
以上のように、屈折率およびその温度依存性の異なる材料を組み合わせるには種々の問
題があり、さらなる改善が望まれる。
上述した課題を解決するために、本発明の一実施形態に係る半導体レーザは、波長選択性を有する利得領域と、前記利得領域に光学的に結合され、実効的な屈折率の温度依存性が前記利得領域と異なる波長選択性を有しない伝搬領域と、前記伝搬領域を伝播する光を反射させる反射領域とを備える。
これにより、波長選択性を有する利得領域に波長選択性を有しない伝搬領域を結合することで、発振波長の温度依存性を制御することが可能となる。すなわち、利得領域は波長選択性を有するため特定の波長の光を選択的に励振することができる。伝搬領域は波長選択性を持たず、前記利得領域と光学的に結合しているため、前記利得領域で励振された光がそのまま伝搬領域を伝搬し、伝搬する光の位相が変化する。反射領域により前記伝搬領域を伝搬した光が反射され再び前記利得領域に戻るため、前記利得領域の温度変化による光の波長変動を前記伝搬領域の温度変化による位相変化で補償することが可能となる。このため、発振波長の温度依存性を有する材料を利得媒質として用いた場合においても、半導体と半導体以外の材料とを複雑に組み合わせることなく、半導体レーザの発振波長の温度依存性を所望の値に制御することが可能となり、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長を安定化することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、波長選択性を有する利得領域と、前記利得領域に光学的に結合され、実効的な屈折率の温度依存性が前記利得領域と異なる材料を有し、利得および波長選択性を有しない伝搬領域と、前記伝搬領域を伝播する光を反射させる利得を有しない反射領域とを備える。
これにより、有機材料などの入手可能な材料を用いることで伝搬領域を構成することが可能となり、新材料を用いることなく、簡単な構成および容易な加工方法を用いることで、発振波長の温度依存性を制御することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、波長選択性を有する利得領域と、前記利得領域に光学的に結合され、実効的な屈折率の温度依存性が前記利得領域と異なる構造を有し、利得および波長選択性を有しない伝搬領域と、前記伝搬領域を伝播する光を反射させる利得を有しない反射領域とを備える。
これにより、実効的な屈折率の温度依存性が異なる材料を用いることなく、伝搬領域を構成することが可能となり、簡単な構成および容易な加工方法を用いることで、発振波長の温度依存性を制御することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、波長選択性を有する第1の利得領域と、前記第1の利得領域に光学的に結合され、実効的な屈折率の温度依存性が前記利得領域と異なる材料または構造の少なくとも一方を有し、利得および波長選択性を有しない伝搬領域と、前記伝搬領域に光学的に結合され、波長選択性を有する第2の利得領域とを備える。
これにより、有機材料などの入手可能な材料を用いることで伝搬領域を構成することが可能となるとともに、ミラーを反射領域として用いる必要がなくなる。このため、半導体レーザのモノリシック集積化を容易に図ることが可能となるとともに、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、発振波長の温度依存性を制御することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、半導体基板と、前記半導体基板上に形成され、分布反射構造を有する活性層と、前記活性層上に形成されたクラッド層と、前記活性層および前記クラッド層の一部が除去された除去領域と、前記除去領域内に埋め込まれ、実効的な屈折率の温度依存性が前記活性層と異なる温度補償層とを備える。
これにより、活性層およびクラッド層の一部を除去した後に、温度補償層を充填することで、波長選択性を有する利得領域に波長選択性を有しない伝搬領域を容易に結合することが可能となり、簡単な構成および容易な加工方法を用いることで、発振波長の温度依存性を制御することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、半導体基板と、前記半導体基板上に積層された分布ブラッグ反射層と、前記分布ブラッグ反射層上に積層され、分布反射構造を有する活性層と、前記活性層上に積層され、実効的な屈折率の温度依存性が前記活性層と異なる温度補償層と、前記温度補償層上に積層された反射層とを備える。
これにより、分布ブラッグ反射層、活性層、温度補償層および反射層を半導体基板上に順次積層することで、波長選択性を有する利得領域に波長選択性を有しない伝搬領域を容易に結合することが可能となり、簡単な構成および容易な加工方法を用いることで、発振波長の温度依存性を制御することが可能となる。
また、本発明の他の実施形態に係る半導体レーザは、半導体基板と、前記半導体基板上に形成され、分布反射構造を有する活性層と、前記活性層上に形成され、前記活性層の端部に傾斜面が設けられたクラッド層と、前記クラッド層上に形成され、実効的な屈折率の温度依存性が前記活性層と異なる温度補償層とを備える。
これにより、傾斜面が設けられたクラッド層上に温度補償層を設けることで、波長選択性を有する利得領域に波長選択性を有しない伝搬領域を容易に結合することが可能となり、簡単な構成および容易な加工方法を用いることにより、発振波長の温度依存性を制御することが可能となる。
また、本発明の一実施形態に係る集積光導波路は、第1光導波路と、前記第1光導波路に光学的に結合され、前記第1光導波路と屈折率の異なる第2光導波路と、前記第1光導波路の光路を横切るように前記第1光導波路と前記第2光導波路との界面から所定間隔だけ隔てて配置された溝部とを備え、前記界面からの間隔と前記溝部の幅は、前記第1光導波路と前記第2光導波路との境界での反射が弱められるように設定される。
これにより、第1光導波路の光路を横切るように溝を形成することで、第1光導波路と第2光導波路の境界における反射波の位相を調整することができ、第1光導波路と第2光導波路の境界における反射波を互いに打ち消し合わせることができる。このため、第1光導波路と第2光導波路との屈折率が互いに異なる場合においても、第1光導波路と第2光導波路との境界での反射を弱めることができる。この結果、第1光導波路と第2光導波路との界面に反射防止膜を形成することなく、第1光導波路と第2光導波路との境界における損失を低減させることができ、光導波路の集積化に対応しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
また、本発明の他の実施形態に係る集積光導波路は、半導体基板上に形成された第1光導波路と、前記半導体基板上に形成され、前記第1光導波路と屈折率の異なる第2光導波路と、前記第1光導波路と前記第2光導波路との境界に配置され、前記第1光導波路から溝部を隔てて導波方向と垂直になるように前記半導体基板上に形成された半導体板とを備え、前記溝部の幅および前記半導体板の厚さは、前記第1光導波路と前記溝部との界面で反射した光が、前記溝部と前記半導体板との界面で反射した光および前記半導体板と前記第2光導波路との界面で反射した光によって弱められるように設定される。
これにより、溝部と半導体板との界面で反射した光および半導体板と第2光導波路との界面で反射した光によって、第1光導波路と溝部との界面で反射した光を弱めることができる。このため、半導体光導波路と半導体以外の光導波路とを同一半導体基板上に集積した場合においても、これらの光導波路間の反射を低減することが可能となり、導波路設計の自由度を維持しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
また、本発明の他の実施形態に係る集積光導波路は、半導体基板上に形成された第1光導波路と、前記半導体基板上に形成され、前記第1光導波路と屈折率の異なる第2光導波路と、前記第1光導波路と前記第2光導波路との境界に配置され、前記第1光導波路から第1溝部を隔てて導波方向と垂直になるように前記半導体基板上に形成された第1半導体板と、前記第1半導体板から第2溝部を隔てて導波方向と垂直になるように前記半導体基板上に形成された第2半導体板とを備え、前記第1溝部および前記第2溝部の幅ならびに前記第1半導体基板および前記第2半導体基板の厚さは、前記第1光導波路と前記第1溝部との界面で反射した光が、前記第1溝部と前記第1半導体板との界面で反射した光、前記第1半導体板と前記第2溝部と界面で反射した光、前記第2溝部と前記第2半導体板との界面で反射した光および前記第2半導体板と前記第2光導波路との界面で反射した光によって弱められるように設定される。
これにより、第1溝部と第1半導体板との界面で反射した光、第1半導体板と第2溝部と界面で反射した光、第2溝部と第2半導体板との界面で反射した光および第2半導体板と第2光導波路との界面で反射した光によって、第1光導波路と第1溝部との界面で反射した光を弱めることができる。このため、半導体光導波路と半導体以外の光導波路とを同一半導体基板上に集積した場合においても、これらの光導波路間の反射を低減することが可能となり、導波路設計の自由度を維持しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
また、本発明の他の実施形態に係る集積光導波路は、第1光導波領域と、前記第1光導波領域との境界面が前記第1光導波領域の導波方向に対して斜めに配置され、第1光導波領域と屈折率が異なる第2光導波領域と、前記第2光導波領域との境界面における屈折方向が導波方向と一致するように、前記第2光導波領域との境界面が配置された第3光導波領域とを備える。
これにより、第1光導波領域と第2光導波領域との境界面を導波方向に対して傾けることが可能となり、第1光導波領域と第2光導波領域との屈折率が互いに異なる場合においても、第1光導波領域と第2光導波領域との境界面での反射を減らすことが可能となるとともに、屈折方向が導波方向と一致するように境界面が配置された第3光導波領域を設けることで、屈折率が互いに異なる導波路間における反射および屈折による導波路損失を低減しつつ、導波方向を調整することが可能となる。
このため、屈折率が互いに異なる材料を光導波領域間に挿入した場合においても、導波路損失を抑制しつつ、劈開やエッチングや埋め込みなどに適した結晶方位を有効に活用することが可能となり、導波路作製時の信頼性の劣化を抑制しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となるとともに、導波路設計の自由度を向上させることができる。
また、本発明の他の実施形態に係る集積光導波路によれば、第1の屈折率を持つ第1光導波路と第3光導波路、および前記第1光導波路と前記第3光導波路との間にあって第2の屈折率を持つ第2光導波領域を備え、前記第1光導波路と前記第2光導波領域との境界面が前記第1光導波路の方向に対して垂直でないように、前記第1光導波路と前記第2光導波領域とが接続され、前記第1光導波路と前記第2光導波領域との境界面での光の屈折方向の延長線上において、前記第2光導波領域と前記第3光導波路との境界面が前記延長線に対して垂直でないように、前記第2光導波領域と前記第3光導波路とが接続され、前記第2光導波領域と前記第3光導波路との境界面での光の屈折方向と前記第3光導波路の方向とが一致していることを特徴とする。
これにより、屈折率が互いに異なる材料を光導波路間に挿入した場合においても、第1光導波路と第2光導波領域との境界面および第2光導波領域と第3光導波路との境界面における反射を低減し、かつ屈折による損失を抑制することができる。
以下、本発明のいくつかの実施形態について図面を参照しながら説明する。先ず、第1の実施形態として、半導体レーザにおける応用例についていくつかの実施例を示しながら説明する。この実施形態においては、半導体レーザと屈折率の温度依存性が異なる材料とを組み合わせることにより、半導体レーザの発振波長の温度依存性を制御することが可能になる。
次に、第2の実施形態として集積光導波路における応用例についていくつかの実施例を示しながら説明する。この実施例においては、半導体光導波路と屈折率およびその温度依存性が異なる光導波路とを集積する際にこれら光導波路間における境界面での反射を低減することが可能になる。また、半導体光導波路と屈折率の異なる光導波路とを集積することにより、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
さらに、第3の実施形態として半導体光導波路と屈折率の異なる光導波路との境界面を導波方向に対して斜めに配置して、これら光導波路間における反射および屈折による導波路損失を低減することが可能になる。また、半導体光導波路と屈折率の異なる光導波路とを集積することにより、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
(半導体レーザにおける応用例)
本発明の第1の実施形態に係る半導体レーザについて図面を参照しながら説明する。この第1の実施形態によれば、屈折率の温度特性の異なる材料を組み合わせて、発振波長の温度依存性を制御することが可能な半導体レーザを提供することができる。以下、本実施形態に係るいくつかの具体的な実施例について説明する。
図1は、本発明の第1の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。なお、第1の実施例は、波長選択性を持った第1の利得領域R1と波長選択性を持った第2の利得領域R2との間に、屈折率の異なる利得を有しない伝搬領域R3を設けることにより、発振波長の温度依存性を制御することができる。
図1において、半導体基板101上には、波長選択性を持った第1の利得領域R1、屈折率の異なる利得を有しない伝搬領域R3および波長選択性を持った第2の利得領域R2が設けられている。ここで、利得領域R1には、半導体基板101上に形成された活性層102が設けられている。そして、活性層102上には、クラッド層110を介して第1の利得領域用電極105が形成されている。
また、利得領域R2には、半導体基板101上に形成された活性層104が設けられている。そして、活性層104上には、クラッド層110を介して第2の利得領域用電極406が形成されている。
なお、半導体基板101およびクラッド層110としては、例えば、InP、活性層102、104としては、例えば、発光波長1.55μmのGaInAsPを用いることができる。ここで、半導体基板101上に形成された活性層102は波長選択性を持った第1の利得を有し、活性層104は波長選択性を持った第2の利得を有している。そして、活性層102、104には、複素屈折率の周期的な摂動、すなわち回折格子がそれぞれ形成され、活性層102、104は分布反射構造となっている。
さらに、伝搬領域R3には、半導体基板101上の活性層102、104およびクラッド層110の一部を除去することで形成された除去領域111が設けられ、除去領域111には屈折率の温度依存性が利得領域R1および/またはR2と異なる温度補償材料103が充填されている。
ここで、温度補償材料103としては、例えば、半導体とは逆の屈折率の温度依存性を持つ有機材料を用いることができ、このような有機材料として、例えば、BCB(Benzocyclobutene)を挙げることができる。また、温度補償材料103として、有機材料の多層膜を用いることで導波損失を低減することができる。
なお、利得を有しない伝搬領域R3を半導体基板101上に形成する場合、反応性イオンエッチングなどの異方性エッチングを用いて利得領域R1、R2の間に所望の幅の溝を形成し、スピンコーティングなどの方法により有機材料を溝部に充填することができる。
また、共振器両側の端面には、第1の利得領域側反射防止膜108および第2の利得領域側反射防止膜109がそれぞれ形成され、半導体基板101の裏面には、裏面電極107が形成されている。
ここで、第1の利得領域R1、第2の導波領域R2および伝搬領域R3の長さは、第1の利得領域R1もしくは第2の導波領域R2のみで発振しないように設定することができる。
そして、波長選択性を持った第1の利得領域R1で発光もしくは反射された光が、利得を有しない伝搬領域R3を通り、波長選択性を持った第2の利得領域R2により反射される。反射された光は、利得を有しない伝搬領域R3を再度通り、波長選択性を持った第1の利得領域R1に戻ることにより、レーザ発振を起こすことができる。
このため、第1の利得領域R1、第2の導波領域R2および伝搬領域R3においてレーザ発振を行うことが可能となり、第1の利得領域R1および第2の導波領域R2での温度変化による発振波長の変動を、伝搬領域R3での温度変化による位相の変動で補償することが可能となる。
BCBなどの有機材料を用いることで、半導体レーザの発振波長の温度依存性を制御することが可能となる。このため、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長の安定化を図ることが可能となる。
なお、利得を有しない伝搬領域R3の長さは、活性層102、104に設けられた回折格子の実効長と利得を有しない伝搬領域R3の長さの和により決定される縦モード間隔が、回折格子のストップバンド幅よりも広くなるように設定することができる。これにより、1個の縦モードのみを回折格子のストップバンド幅内に存在させることが可能となり、他の縦モードの利得を抑圧することを可能として、単一モード動作の安定性を高めることができる。
以下、本実施例を参照して発振原理および発振波長について詳細に説明する。
波長選択性を持った第1の利得領域R1と波長選択性を持った第2の利得領域R2は、波長選択性と光学利得を併せ持つため、回折格子によって決定される波長の光のみを反射し、増幅することができる。ここで、反射が最も大きくなる波長帯域は、回折格子のブラッグ波長を中心としたストップバンド幅で決定することができる。例えば、回折格子の結合係数Kを300cm−1とし、長さを50μmに設定することにより、ストップバンド幅として約10nmを得ることができる。また、利得を有しない伝搬領域103の長さは、例えば、約10μmに設定することができる。
図2は、本発明の一実施形態に係る半導体レーザの反射スペクトルおよび反射波の位相特性を示す図であり、第1の利得領域R1および第2の利得領域R2の回折格子の反射スペクトルと反射波の位相遅れを示す。
図2において、利得を有しない伝搬領域R3がない、もしくは、伝搬領域R3を光が通過する際の位相遅れがない場合、第1の利得領域R1および第2の利得領域R2の回折格子での位相遅れの和が0か2πの整数倍、すなわち、第1の利得領域R1または第2の利得領域R2の一方のみで考えると、位相遅れが0かπであるとき、その波長は共振モードとなる。
次に、利得を有しない伝搬領域R3が存在すると、光が第1の利得領域R1を出てから、第2の利得領域R2に入るまでに位相が変わる。このため、伝搬領域R3における位相変化に応じて、第1の利得領域R1、第2の利得領域R2および伝搬領域R3からなる共振器全体での位相遅れが0または2πとなるように、共振モードはストップバンドの間で変化する。
ここで、InPやGaAsなどの通常の半導体レーザに現在使われている半導体材料では、周囲温度が上昇すると屈折率も上昇するため、回折格子のブラッグ波長は、式(1)に従って長波長側に移動する。この結果、図2の反射スペクトルも全体的に長波長側にシフトする。
一方、温度補償材料103が、例えば、半導体とは逆の屈折率の温度依存性を持つ材料である場合、温度上昇に伴い、温度補償材料103の屈折率が減少し、利得を有しない伝搬領域R3の光学長が減少する。このため、利得を有しない伝搬領域R3を通過した光の位相が変化し、温度上昇に伴って、発振波長がストップバンド内を長波長側から中央部、そして短波長側へと移動する。
このため、第1の利得領域R1および第2の導波領域R2での温度変化によるブラッグ波長の変動を、伝搬領域R3での温度変化による位相の変動で補償することが可能となり、半導体レーザの発振波長の温度依存性を制御することができる。
図3は、本発明の一実施形態に係る半導体レーザの発振波長の温度依存性の補償原理を説明する図である。
図3において、温度が上昇すると、回折格子のブラッグ波長λは長波長側にシフトするが、発振波長は温度変化があっても変化しないことがわかる。なお、ストップバンド幅SBが広いほど、広い温度範囲において補償が可能である。例えば、図1の例では、回折格子の結合係数を300cm−1としたが、さらに、大きな結合係数とすることで、ストップバンドの幅を拡大し、補償する温度範囲を拡大することが可能である。
なお、上述した実施例では、波長選択性も利得も有しない伝搬領域R3に、半導体とは逆の屈折率の温度依存性を持つ温度補償材料103を用いる方法について説明したが、伝搬領域R3の材料を換えることで、任意の温度依存性を持つ半導体レーザを作製することが可能である。また、利得を有しない伝搬領域R3は、発光する必要がないため、必ずしも良好な結晶性を有する必要はない。このため、有機材料やその他の半導体以外の材料を用いることができ、材料の選択性を広げることができる。また、例えば、回折格子部分の半導体よりも大きな屈折率の温度依存性を持つ材料を用いて、利得を有しない伝搬領域を構成するようにしてもよく、これにより、温度依存性の大きな半導体レーザを形成することができ、温度センサなどとして用いることができる。また、半導体のように温度上昇により屈折率が上昇する材料であっても、回折格子部分の半導体よりも小さな屈折率の温度依存性を持つ材料とすることにより、発振波長の温度依存性を低減することができる。
図4は、本発明の一実施形態に係る半導体レーザの屈折率の温度係数差と発振波長温度依存性を説明する図である。なお、図4では、横軸は、波長選択性を有する利得領域と波長選択性も利得も有しない伝搬領域の屈折率温度係数の差と、波長選択性も利得も有しない伝搬領域の長さの積、縦軸は、発振波長の温度依存性の変化を示す。また、ここでは、半導体のみの構成で、図1と同じ各領域の長さ、回折格子の結合係数などを用いた場合の例を示した。
図4において、DFBレーザの場合、発振波長の温度依存性は1Å/K程度である。このため、発振波長をその10%程度変化させる場合、利得領域R1、R2の実効的な屈折率の温度微分係数と伝搬領域R3の実効的な屈折率の温度微分係数の差と、伝搬領域R3の長さの積を、A点(減少)もしくはA′点(増加)にすればよく、その値は、±7.5×10−4[μm/K]である。また、発振波長を20%程度変化させる場合、利得領域R1、R2の実効的な屈折率の温度微分係数と伝搬領域R3の実効的な屈折率の温度微分係数の差と、伝搬領域R3の長さの積を、±14.5×10−4[μm/K]程度とすれば良いことがわかる。例えば、伝搬領域R3の長さが10μmのとき、それぞれ±7.6×10−4[1/K]、±1.45×10−4[1/K]となる。
なお、図1の活性層102、104の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本発明を適用することにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。すなわち、活性層102、104に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能であり、活性層102、104の構造に関しても、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性層領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。半導体基板101に関しても、n型基板に限定されるものではなく、p型基板、半絶縁型基板等を用いるようにしてもよい。
また、周期的摂動は活性層102、104上に直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば、同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成してもよい。
さらに、利得を有しない伝搬領域の上下もしくは左右の少なくともどちらか一方が光閉じ込め構造を有する導波路構造とすることにより、伝搬損失を低減することができ、半導体レーザの特性を向上させることが可能となる。
また、本発明の構造を基板の厚さ方向に形成し、面発光レーザ型としても同様な効果が期待できる。さらに、第1の利得領域R1、伝搬領域R3および第2の利得領域R2が光軸に沿って並んでいれば、エッチングなどにより作製した反射鏡を介して、第1の利得領域R1、伝搬領域R3および第2の利得領域R2を配置してもよく、導波路途中で層方向もしくは横方向に光軸が曲げられるようにしてもよい。
図5は、本発明の第2の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。なお、第2の実施例は、波長選択性を持った利得領域R11と利得を有しない反射領域R12との間に、屈折率の温度依存性が異なる利得を有しない伝搬領域R13を設けることにより、発振波長の温度依存性を制御するようにしたものである。
図5において、半導体基板201上には、波長選択性を持った利得領域R11、屈折率の温度依存性が異なる利得を有しない伝搬領域R13および波長選択性を持った利得を有しない反射領域R12が設けられている。ここで、利得領域R11には、半導体基板201上に形成され、波長選択性を持った利得を有する活性層202が設けられている。そして、活性層202には、複素屈折率の周期的な摂動、すなわち回折格子が形成され、活性層202は、分布反射構造となっている。そして、活性層202上には、クラッド層210を介して電極205が形成されている。
また、反射領域R12には、半導体基板201上に形成され、波長選択性を持った利得を有しない半導体層204が設けられている。ここで、半導体層204には、複素屈折率の周期的な摂動、すなわち回折格子が形成され、半導体層204は、分布反射構造となっている。そして、半導体層204上には、クラッド層210が形成されている。なお、半導体基板201およびクラッド層210としては、例えば、InP、活性層202としては、例えば、発光波長1.55μmのGaInAsP、半導体層204としては、例えば、発光波長1.2μmのGaInAsPを用いることができる。また、半導体層204は、選択成長などにより活性層202とは異なる組成の材料を成長させた後に、周期構造を有する回折格子を作成することにより形成できる。
さらに、伝搬領域R13には、半導体基板201上の活性層202、半導体層204およびクラッド層210の一部を除去することで形成された除去領域211が設けられ、除去領域211には屈折率の温度依存性が利得領域R11および反射領域R12とは異なる温度補償材料203が充填されている。
ここで、温度補償材料203としては、例えば、半導体とは逆の屈折率の温度依存性を持つ有機材料を用いることができ、このような有機材料として、例えば、BCBを挙げることができる。また、温度補償材料203として、有機材料の多層膜を用いることで導波損失を低減することができる。
なお、利得を有しない伝搬領域R13を半導体基板201上に形成する場合、反応性イオンエッチングなどの異方性エッチングを用いて利得領域R11、R12の間に所望の幅の溝を形成し、スピンコーティングなどの方法により有機材料を溝部に充填することができる。
また、共振器両側の端面には、利得領域側反射防止膜208および反射領域側反射防止膜209が形成され、半導体基板201の裏面には、裏面電極207が形成されている。ここで、利得領域R11の長さは、利得領域R11のみでは反射損失が大きく発振しないように設定することができる。
そして、波長選択性を持った利得領域R11で発光もしくは反射された光が、利得を有しない伝搬領域R13を通り、波長選択性を持った利得を有しない反射領域R12により反射され、利得を有しない伝搬領域R13を再度通り、波長選択性を持った利得領域R11に戻ることにより、帰還を生じさせつつ、レーザ発振を起こさせることができる。
このため、利得領域R11、反射領域R12および伝搬領域R13をレーザ発振に係わらせることが可能となり、利得領域R11および反射領域R12での温度変化による発振波長の変動を、伝搬領域R13での温度変化による位相の変動で補償することが可能となる。
BCBなどの有機材料を用いることで、半導体レーザの発振波長の温度依存性を制御することが可能となる。このため、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長の安定化を図ることが可能となる。
なお、利得を有しない伝搬領域R13の長さは、活性層202および半導体層204にそれぞれ設けられた回折格子の実効長と利得を有しない伝搬領域R13の長さの和により決定される縦モード間隔が、回折格子のストップバンド幅よりも広くなるように設定することができる。これにより、1個の縦モードのみを回折格子のストップバンド幅内に存在させることが可能となり、他の縦モードの利得を抑圧することを可能として、単一モード動作の安定性を高めることができる。
なお、上述した実施例では、波長選択性も利得も有しない伝搬領域R13に、半導体とは逆の屈折率の温度依存性を持つ温度補償材料203を用いる方法について説明したが、伝搬領域R13の材料を換えることで、任意の温度依存性を持つ半導体レーザを作製することが可能である。また、利得を有しない伝搬領域R13は、発光する必要がないため、必ずしも良好な結晶性を有する必要はない。このため、有機材料やその他の半導体以外の材料を用いることができ、材料の選択性を広げることができる。また、例えば、回折格子部分の半導体よりも大きな屈折率の温度依存性を持つ材料を用いて、利得を有しない伝搬領域を構成するようにしてもよく、これにより、温度依存性の大きな半導体レーザを形成することができ、温度センサなどとして用いることができる。また、半導体のように温度上昇により屈折率が上昇する材料であっても、回折格子部分の半導体よりも小さな屈折率の温度依存性を持つ材料とすることにより、発振波長の温度依存性を低減することができる。
また、図5の活性層202の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本発明を適用することにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。すなわち、活性層202に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能であり、活性層202の構造に関しても、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性層領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。半導体基板201に関しても、n型基板に限定されるものではなく、p型基板、半絶縁型基板等を用いるようにしてもよい。
また、周期的摂動は活性層202上に直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば、同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成してもよい。
さらに、利得を有しない伝搬領域の上下もしくは左右の少なくともどちらか一方が光閉じ込め構造を有する導波路構造とすることにより、伝搬損失を低減することができ、半導体レーザの特性を向上させることが可能となる。
また、本発明の構造を基板の厚さ方向に形成し、面発光レーザ型としても同様な効果が期待できる。さらに、利得領域R11、伝搬領域R13および反射領域R12が光軸に沿って並んでいれば、エッチングなどにより作製した反射鏡を介して、利得領域R11、伝搬領域R13および反射領域R12を配置してもよく、導波路途中で層方向もしくは横方向に光軸が曲げられるようにしてもよい。
図6は、本発明の第3の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。なお、この第3の実施例は、波長選択性を持った利得領域R21に屈折率の温度依存性が異なる利得を有しない伝搬領域R22を結合することにより、発振波長の温度依存性を制御するようにしたものである。
図6において、半導体基板301上には、波長選択性を持った利得領域R21および屈折率の温度依存性が異なる利得を有しない伝搬領域R22が設けられている。ここで、利得領域R21には、半導体基板301上に形成され、波長選択性を持った利得を有する活性層302が設けられている。そして、活性層302には、複素屈折率の周期的な摂動、すなわち回折格子が形成され、活性層302は、分布反射構造となっている。また、活性層302上には、クラッド層310を介して電極305が形成されている。なお、半導体基板301およびクラッド層310としては、例えば、InP、活性層302としては、例えば、発光波長1.55μmのGaInAsPを用いることができる。
さらに、伝搬領域R22には、半導体基板301上の活性層302およびクラッド層310の一部を除去することで形成された除去領域312が設けられ、除去領域312には屈折率の温度依存性が利得領域R21とは異なる温度補償材料303が充填されている。
ここで、温度補償材料303としては、例えば、半導体とは逆の屈折率の温度依存性を持つ有機材料を用いることができ、このような有機材料として、例えば、BCBを挙げることができる。また、温度補償材料303として、有機材料の多層膜を用いることで導波損失を低減することができる。
なお、利得を有しない伝搬領域R22を半導体基板301上に形成する場合、反応性イオンエッチングなどの異方性エッチングを用いて利得領域R21の端部に所望の幅の溝を形成し、スピンコーティングなどの方法により有機材料を溝部に充填することができる。
また、共振器の利得領域R21側の端面には、活性層302が形成された半導体基板301の劈開面に対して、反射防止膜308が形成されている。また、共振器の伝搬領域R22側の端面には、高反射膜311が形成されている。さらに、半導体基板301の裏面には、裏面電極307が形成されている。ここで、利得領域R21の長さは、利得領域R21のみでは反射損失が大きく発振しないように設定することができる。
そして、波長選択性を持った利得領域R21で発光もしくは反射された光が、利得を有しない伝搬領域R22を通り、高反射膜311により反射され、利得を有しない伝搬領域R22を再度通り、波長選択性を持った利得領域R21に戻ることにより、帰還を生じさせつつ、レーザ発振を起こさせることができる。
このため、利得領域R21および伝搬領域R22をレーザ発振に係わらせることが可能となり、利得領域R21での温度変化による発振波長の変動を、伝搬領域R22での温度変化による位相の変動で補償することが可能となる。
BCBなどの有機材料を用いることで、半導体レーザの発振波長の温度依存性を制御することが可能となる。このため、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長の安定化を図ることが可能となる。
なお、利得を有しない伝搬領域R22の長さは、活性層202に設けられた回折格子の実効長と利得を有しない伝搬領域R22の長さの和により決定される縦モード間隔が、回折格子のストップバンド幅よりも広くなるように設定することができる。これにより、1個の縦モードのみを回折格子のストップバンド幅内に存在させることが可能となり、他の縦モードの利得を抑圧することを可能として、単一モード動作の安定性を高めることができる。
なお、上述した実施例では、波長選択性も利得も有しない伝搬領域R22に、半導体とは逆の屈折率の温度依存性を持つ温度補償材料303を用いる方法について説明したが、伝搬領域R22の材料を換えることで、任意の温度依存性を持つ半導体レーザを作製することが可能である。また、利得を有しない伝搬領域R22は、発光する必要がないため、必ずしも良好な結晶性を有する必要はない。このため、有機材料やその他の半導体以外の材料を用いることができ、材料の選択性を広げることができる。また、例えば、回折格子部分の半導体よりも大きな屈折率の温度依存性を持つ材料を用いて、利得を有しない伝搬領域を構成するようにしてもよく、これにより、温度依存性の大きな半導体レーザを形成することができ、温度センサなどとして用いることができる。また、半導体のように温度上昇により屈折率が上昇する材料であっても、回折格子部分の半導体よりも小さな屈折率の温度依存性を持つ材料とすることにより、発振波長の温度依存性を低減することができる。
また、図6の活性層302の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本発明を適用することにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。すなわち、活性層302に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能であり、活性層302の構造に関しても、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性層領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。半導体基板301に関しても、n型基板に限定されるものではなく、p型基板、半絶縁型基板等を用いるようにしてもよい。
また、周期的摂動は活性層302上に直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば、同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成してもよい。
さらに、利得を有しない伝搬領域の上下もしくは左右の少なくともどちらか一方が光閉じ込め構造を有する導波路構造とすることにより、伝搬損失を低減することができ、半導体レーザの特性を向上させることが可能となる。
また、本発明の構造を基板の厚さ方向に形成し、面発光レーザ型構造としても同様な効果が期待できる。さらに、利得領域R21および伝搬領域R22が光軸に沿って並んでいれば、エッチングなどにより作製した反射鏡を介して、利得領域R21および伝搬領域R22を配置してもよく、導波路途中で層方向もしくは横方向に光軸が曲げられるようにしてもよい。
図7は、本発明の第4の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。なお、この第4の実施例は、面発光型レーザ上に利得を有しない伝搬領域R32を積層することにより、発振波長の温度依存性を制御するようにしたものである。
図7において、半導体基板401上には、波長選択性を持った利得領域R31が積層されている。また、利得領域R31上には、屈折率の温度依存性が異なる利得を有しない伝搬領域R32が積層され、伝搬領域R32には、屈折率の温度依存性が利得領域R31とは異なる温度補償材料404が設けられている。ここで、利得領域R31には、半導体基板401上に積層された分布ブラッグ反射層402および分布ブラッグ反射層402上に積層され、波長選択性を有する活性領域403が設けられている。なお、分布ブラッグ反射層402は、組成の異なる半導体層409a、409bが交互に積層された構造を有し、活性領域403は、活性層408aおよびクラッド層408bが交互に積層された構造を有することができる。そして、活性領域403上には、光を出射させる開口部406が設けられた電極405が形成されている。なお、利得領域R31は、その全てが利得を持っていなくとも良く、利得領域R31全体として利得が得られれば良い。
ここで、半導体基板401としては、例えば、InP、活性層408aおよびクラッド層408bとしては、例えば、GaInAs/InAlAs、半導体層409a、409bとしては、例えば、InAlGaAs/InAlAsを用いることができる。
また、温度補償材料404としては、例えば、半導体とは逆の屈折率の温度依存性を持つ有機材料を用いることができ、このような有機材料として、例えば、BCBを挙げることができる。また、温度補償材料404として、有機材料の多層膜を用いることで導波損失を低減することができる。また、利得を有しない伝搬領域R32は、利得領域R31上に有機材料などを塗布または堆積することにより形成できる。
また、温度補償材料404上には、高反射膜411が形成され、半導体基板401の裏面には、裏面電極407が形成されている。ここで、活性領域403の活性層408aおよびクラッド層408bの各層数は、それのみでは反射損失が大きく発振しないように設定することができる。
そして、波長選択性を持った利得領域R31で発光もしくは反射された光が、利得を有しない伝搬領域R32を通り、高反射膜411により反射され、利得を有しない伝搬領域R32を再度通り、波長選択性を持った利得領域R31に戻ることにより、帰還を生じさせつつ、レーザ発振を起こさせることができる。
このため、利得領域R31および伝搬領域R32をレーザ発振に係わらせることが可能となり、利得領域R31での温度変化による発振波長の変動を、伝搬領域R32での温度変化による位相の変動で補償することが可能となる。
BCBなどの有機材料を用いることで、半導体レーザの発振波長の温度依存性を制御することが可能となる。このため、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長の安定化を図ることが可能となる。
なお、利得を有しない伝搬領域R32の厚さは、利得領域R31の回折格子の実効長と利得を有しない伝搬領域R32の長さの和により決定される縦モード間隔が、回折格子のストップバンド幅よりも広くなるように設定することができる。これにより、1個の縦モードのみを回折格子のストップバンド幅内に存在させることが可能となり、他の縦モードの利得を抑圧することを可能として、単一モード動作の安定性を高めることができる。
なお、上述した実施例では、波長選択性も利得も有しない伝搬領域R32に、半導体とは逆の屈折率の温度依存性を持つ温度補償材料404を用いる方法について説明したが、伝搬領域R32の材料を換えることで、任意の温度依存性を持つ半導体レーザを作製することが可能である。また、利得を有しない伝搬領域R32は、発光する必要がないため、必ずしも良好な結晶性を有する必要はない。このため、有機材料やその他の半導体以外の材料を用いることができ、材料の選択性を広げることができる。また、例えば、回折格子部分の半導体よりも大きな屈折率の温度依存性を持つ材料を用いて、利得を有しない伝搬領域を構成するようにしてもよく、これにより、温度依存性の大きな半導体レーザを形成することができ、温度センサなどとして用いることができる。また、半導体のように温度上昇により屈折率が上昇する材料であっても、回折格子部分の半導体よりも小さな屈折率の温度依存性を持つ材料とすることにより、発振波長の温度依存性を低減することができる。
また、図7の活性領域403の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性領域403について本発明を適用することにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。すなわち、活性領域403に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能であり、活性領域403の構造に関しても、周期的に積層して回折格子を形成可能であれば、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、半絶縁埋め込み構造、酸化狭窄構造等を用いるようにしてもよい。半導体基板401に関しても、n型基板に限定されるものではなく、p型基板、半絶縁型基板等を用いるようにしてもよい。
さらに、利得を有しない伝搬領域を光閉じ込め構造のある導波路構造とすることにより、伝搬損失を低減することができ、半導体レーザの特性を向上させることが可能となる。
図8は、本発明の第5の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。なお、この第5の実施例は、光路変換構造を介して波長選択性を持った利得領域R41と屈折率の温度依存性が異なる利得を有しない伝搬領域R42とを結合することにより、発振波長の温度依存性を制御するようにしたものである。
図8において、半導体基板501上には、波長選択性を持った利得領域R41、反射鏡512および利得を有しない伝搬領域R42が設けられ、利得領域R41と伝搬領域R42は反射鏡512を介して光学的に結合されている。ここで、利得領域R41には、半導体基板501上に形成され、波長選択性を持った利得を有する活性層502が設けられている。そして、活性層502には、複素屈折率の周期的な摂動、すなわち回折格子が形成され、活性層502は、分布反射構造となっている。また、活性層502上には、クラッド層510を介して電極505が形成されている。なお、半導体基板501およびクラッド層510としては、例えば、InP、活性層502としては、例えば、発光波長1.55μmのGaInAsPを用いることができる。また、半導体基板501上には、利得領域R41の一端に配置されるようにして、反射鏡512が設けられている。ここで、反射鏡512は、利得領域R41の端部のクラッド層510をエッチングし、垂直方向に90度だけ傾斜された傾斜面をクラッド層510に形成することにより作製することができる。
また、伝搬領域R42には屈折率の温度依存性が利得領域R41とは異なる温度補償材料503が設けられ、温度補償材料503は、反射鏡512と向き合うようにして、クラッド層510上に配置されている。なお、利得を有しない伝搬領域R42は、利得領域R41から出射された光が反射鏡512で反射されて温度補償材料503に至るまでの光路と、温度補償材料503とから構成することができる。
ここで、温度補償材料503としては、例えば、半導体とは逆の屈折率の温度依存性を持つ有機材料を用いることができ、このような有機材料として、例えば、BCBを挙げることができる。また、温度補償材料503として、有機材料の多層膜を用いることで導波損失を低減することができる。
なお、利得を有しない伝搬領域R42をクラッド層510上に形成する場合、有機材料をスピンコーティングなどの方法により塗布または堆積することで作製できる。
また、温度補償材料503上には、高反射膜511が形成され、共振器の利得領域R41側の端面には、活性層502が形成された半導体基板501の劈開面に対して、反射防止膜508が形成されている。さらに、半導体基板501の裏面には、裏面電極507が形成されている。ここで、利得領域R41の長さは、利得領域R41のみでは反射損失が大きく発振しないように設定することができる。
そして、波長選択性を持った利得領域R41で発光もしくは反射された光が、反射鏡512を介して光軸が上方向に折り曲げられ、利得を有しない伝搬領域R42を通り、高反射膜511により反射される。そして、高反射膜511により反射された光は、利得を有しない伝搬領域R42を再度通り、反射鏡512で水平方向に光軸が曲げられ、波長選択性を持った利得領域R41に戻ることにより、帰還を生じさせつつ、レーザ発振を起こさせることができる。
このため、利得領域R41および伝搬領域R42をレーザ発振に係わらせることが可能となり、利得領域R41での温度変化による発振波長の変動を、伝搬領域R42での温度変化による位相の変動で補償することが可能となる。
BCBなどの有機材料を用いることで、半導体レーザの発振波長の温度依存性を制御することが可能となる。このため、新材料を用いることなく、簡単な構成および容易な加工方法を用いることにより、半導体レーザの発振波長の安定化を図ることが可能となる。
なお、利得を有しない伝搬領域R42の長さは、活性層502に設けられた回折格子の実効長と利得を有しない伝搬領域R42の長さの和により決定される縦モード間隔が、回折格子のストップバンド幅よりも広くなるように設定することができる。これにより、1個の縦モードのみを回折格子のストップバンド幅内に存在させることが可能となり、他の縦モードの利得を抑圧することを可能として、単一モード動作の安定性を高めることができる。
なお、上述した実施例では、光路変換構造として反射鏡を用いたが、例えば、回折格子などにより光路変換を行っても同様の効果が期待できる。また、上述した実施例では、水平と上下の光軸の変換を行うように反射鏡を形成したが、例えば、同一水平面内において反射させて光軸を換えても良く、反射位置が一つである必要もない。また、波長選択性も利得も有しない伝搬領域R42に、半導体とは逆の屈折率の温度依存性を持つ温度補償材料503を用いる方法について説明したが、伝搬領域R42の材料を換えることで、任意の温度依存性を持つ半導体レーザを作製することが可能である。また、利得を有しない伝搬領域R42は、発光する必要がないため、必ずしも良好な結晶性を有する必要はない。このため、有機材料やその他の半導体以外の材料を用いることができ、材料の選択性を広げることができる。また、例えば、回折格子部分の半導体よりも大きな屈折率の温度依存性を持つ材料を用いて、利得を有しない伝搬領域を構成するようにしてもよく、これにより、温度依存性の大きな半導体レーザを形成することができ、温度センサなどとして用いることができる。また、半導体のように温度上昇により屈折率が上昇する材料であっても、回折格子部分の半導体よりも小さな屈折率の温度依存性を持つ材料とすることにより、発振波長の温度依存性を低減することができる。
また、図8の活性層502の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本発明を適用することにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。すなわち、活性層502に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能であり、活性層502の構造に関しても、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性層領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。半導体基板501に関しても、n型基板に限定されるものではなく、p型基板、半絶縁型基板等を用いるようにしてもよい。
また、周期的摂動は活性層502上に直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば、同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成してもよい。
さらに、利得を有しない伝搬領域を光閉じ込め構造のある導波路構造とすることにより、伝搬損失を低減することができ、半導体レーザの特性を向上させることが可能となる。
図9は、本発明の第6の実施例に係る半導体レーザの構成を光導波方向に垂直に切断して示す断面図である。なお、この第6の実施例は、光の伝播領域と構造が異なる利得領域を設けることにより、発振波長の温度依存性を制御するようにしたものである。
図9Aにおいて、半導体基板601上には、バッファ層602、光閉じ込め層603、コア層604、光閉じ込め層605およびキャップ層606が順次積層され、これら各層は埋め込み層607で埋め込まれている。
また、図9Bにおいて、半導体基板611上には、バッファ層612、光閉じ込め層613、コア層614、光閉じ込め層615およびキャップ層616が順次積層され、これら各層は埋め込み層617で埋め込まれている。
また、図9Cにおいて、半導体基板621上には、バッファ層622、光閉じ込め層623、コア層624、光閉じ込め層625およびキャップ層626が順次積層され、これら各層は埋め込み層627で埋め込まれている。
また、図9Dにおいて、半導体基板631上には、バッファ層632、光閉じ込め層633、コア層634およびキャップ層636が順次積層され、これら各層は埋め込み層637で埋め込まれている。
また、図9Eにおいて、半導体基板641上には、バッファ層642、光閉じ込め層643、コア層644、光閉じ込め層645およびキャップ層646が順次積層され、これら各層は、BCBなどの有機材料647で埋め込まれている。
ここで、図9Bのコア層614は、図9Aのコア層604よりも厚さが薄くなっている。このため、水平方向の光フィールド分布F1、F11を変化させることなく、垂直方向の光フィールド分布F2、F12を変化させることが可能となり、実効的屈折率およびその温度依存性への各層の寄与分を異ならせることができる。この結果、図9Aの構成と図9Bの構成とで、実効的屈折率およびその温度依存性を変化させることが可能となり、図9Aの構成と図9Bの構成とを組み合わせることにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。
また、図9Cのコア層624および光閉じ込め層623、625は、図9Bのコア層614および光閉じ込め層613、615よりも幅が狭くなっている。このため、垂直方向の光フィールド分布F12、F22を変化させることなく、水平方向の光フィールド分布F11、F21を変化させることが可能となり、実効的屈折率およびその温度依存性への各層の寄与分を異ならせることができる。この結果、図9Bの構成と図9Cの構成とで、実効的屈折率およびその温度依存性を変化させることが可能となり、図9Bの構成と図9Cの構成とを組み合わせることにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。
また、図9Dの構成では、図9Bの構成に比べて、コア層633の上層の光閉じ込め層635が省略されている。このため、水平方向の光フィールド分布F11、F31を変化させることなく、垂直方向の光フィールド分布F12、F32を変化させることが可能となり、実効的屈折率およびその温度依存性への各層の寄与分を異ならせることができる。この結果、図9Bの構成と図9Dの構成とで、実効的屈折率およびその温度依存性を変化させることが可能となり、図9Bの構成と図9Dの構成とを組み合わせることにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。
また、図9Eの構成では、図9Cの埋め込み層627を設ける代わりに、有機材料647が用いられている。このため、垂直方向の光フィールド分布F22、F42を変化させることなく、水平方向の光フィールド分布F21、F41を変化させることが可能となり、実効的屈折率およびその温度依存性への構造の寄与分を異ならせることができる。この結果、図9Cの構成と図9Eの構成とで、実効的屈折率およびその温度依存性を変化させることが可能となり、図9Cの構成と図9Eの構成とを組み合わせることにより、半導体レーザの発振波長の温度依存性を制御することが可能となる。
このように、図9A〜図9Eの構成のいずれかを組み合わせることにより、光の導波方向に沿って光のフィールド分布を変化させることが可能となり、同一の材料を用いて半導体レーザを構成した場合においても、半導体レーザの発振波長の温度依存性を制御することが可能となる。
なお、半導体基板601、611、621、631、641、バッファ層602、612、622、632、642、キャップ層606、616、626、636、646および埋め込み層607、617、627、637としては、例えば、InP、コア層604、614、624、634、644としては、例えば、発光波長1.3μmのGaInAsP、光閉じ込め層603、613、623、633、643、605、615、625、645としては、例えば、発光波長1.1μmのGaInAsPをそれぞれ用いることができる。
以上説明したように、本発明の第1の実施形態によれば、屈折率の温度依存性が利得領域とは異なる材料を用い、比較的簡単な構成および容易な加工により半導体レーザの発振波長の温度依存性を所望の値に制御できる。特に、利得を持たない伝搬領域の材料として、半導体とは逆の屈折率の温度依存性を持つ材料を用いることにより、発振波長の温度依存性を無くすことが可能であり、発振波長温度無依存半導体レーザを実現できる。
(集積光導波路における応用例)
次に、本発明の第2の実施形態に係る集積光導波路について図面を参照しながら説明する。この第2の実施形態によれば、半導体光導波路とその半導体光導波路とは屈折率の異なる材料からなる光導波路との集積構造、ならびにこれを用いた光半導体素子および光半導体集積回路を提供することができる。特に、本実施形態により、屈折率の異なる材料が接合された界面において反射を低減させることが可能となる。以下、本実施形態に係るいくつかの具体的な実施例について説明する。
図10は、本発明の第7の実施例に係る集積光導波路の結合部の概略構成を示す斜視図である。なお、この第7の実施例は、溝部A61および半導体板B61を1対設けることにより、光導波路領域R61と光導波路領域R62との境界における反射を低減するようにしたものである。
図10において、半導体基板701には、光導波路領域R61、溝部A61、半導体板B61および光導波路領域R62が光導波方向に沿って順次形成されている。ここで、光導波路領域R61と光導波路領域R62との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R61は半導体材料で構成することができ、光導波路領域R62は半導体以外の材料で構成することができる。
また、溝部A61には、半導体以外の材料を充填することができ、例えば、光導波路領域R62の材料と同一の材料を充填することができる。また、半導体板B61は、光導波路領域R61の構造と同一となるように構成することができる。また、溝部A61および半導体板B61は光導波方向を横切るように配置され、好ましくは、溝部A61および半導体板B61は光導波方向に対して垂直に配置することができる。
そして、溝部A61の幅および半導体板B61の厚さは、光導波路領域R61と溝部A61との界面で反射した光が、溝部A61と半導体板B61との界面で反射した光および半導体板B61と光導波路領域R62との界面で反射した光によって弱められるように設定することができる。
これにより、半導体光導波路と半導体以外の光導波路とを同一半導体基板701上に集積した場合においても、これらの光導波路間の反射を低減することが可能となり、導波路設計の自由度を維持しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
また、光導波路領域R61が形成された半導体基板701のエッチング加工を行うことにより、溝部A61および半導体板B61を半導体基板701に形成することができる。このため、光導波路領域R61と光導波路領域R62との界面に反射防止膜を形成することなく、光導波路領域R61と光導波路領域R62との境界における反射を低減させることができ、光導波路の集積化に容易に対応することが可能となる。
さらに、半導体基板701に半導体板B61を1枚だけ設けることで、光導波路領域R61と光導波路領域R62との境界における反射を低減させることができ、分布反射器のように多数枚の半導体板を配置する必要をなくして、集積光導波路の作製を容易化することができる。
図11は、図10の光導波方向に沿ったXI−XI線で切断した断面図である。図11において、半導体基板701上には、コア層702a、702bが積層され、コア層702a、702b上には、上部クラッド層703a、703bがそれぞれ積層されている。なお、半導体基板701および上部クラッド層703a、703bとしては、例えば、InP、コア層702a、702bとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
また、コア層702a、702bおよび上部クラッド層703a、703bを半導体基板701上に順次積層する場合、例えば、MBE(molecular beam epitaxy)、MOCVD(metal organic chemical vaper depiosition)、あるいはALCVD(atomic layer chemical vaper depiosition)などのエピタキシャル成長を用いることができる。
そして、コア層702a、702bおよび上部クラッド層703a、703bが順次積層された半導体基板701をエッチング加工することにより、光導波方向に対して垂直に配置された幅dの溝704aを形成するとともに、溝704aから所定間隔dだけ隔てて配置された段差704bを半導体基板701上に形成する。
そして、溝704aに充填材料705aを埋め込むとともに、段差704bに光導波路材料705bを埋め込むことにより、光導波路領域R61との界面に配置された溝部A61を形成することが可能となるとともに、溝部A61から厚さdの半導体板B61を隔てて配置された光導波路領域R62を形成することができる。
これにより、光導波路領域R61と光導波路領域R62との境界における反射波の位相を調整することができ、光導波路領域R61と光導波路領域R62の境界における反射波を互いに打ち消し合わせることができる。
このため、光導波路領域R61と光導波路領域R62との境界における反射を低減させることを可能としつつ、屈折率が互いに異なる光導波路領域R61と光導波路領域R62とを同一半導体基板701上に集積することが可能なり、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
ここで、充填材料705aおよび光導波路材料705bとしては、半導体とは異なる屈折率を持つ材料を用いることができ、例えば、BCB(Benzocyclobutene)を挙げることができる。この場合、光導波路領域R61および半導体板B61の等価屈折率は3.12、光導波路領域R62および溝部A61の等価屈折率は1.54とすることができる。なお、等価屈折率とは、光導波路を伝播する光に対して定義される屈折率である。従って、光導波路を伝播する光を取り扱う場合には、これまでの屈折率を等価屈折率に置き換えればよい。
なお、溝部A61および光導波路領域R62における導波損失は、これらの伝播距離が短い場合は無視できる程小さいが、溝部A61および光導波路領域R62における伝播距離が長くなると、導波損失が無視できなくなる。
このため、図10のXII−XII線で切断した図11の断面構造を図12の断面構造に置き換えるようにしてもよい。
図12は、本発明の第8の実施例に係る集積光導波路の結合部の概略構成を光導波方向に沿って示す断面図である。なお、この第8の実施例は、図11の溝部A61および光導波路領域R62にコア層を設けるようにしたものである。図12において、半導体基板801には、光導波路領域R71、溝部A71、半導体板B71および光導波路領域R72が光導波方向に沿って順次形成されている。
すなわち、半導体基板801上には、コア層802a、802bが積層され、コア層802a、802b上には、上部クラッド層803a、803bがそれぞれ積層されている。なお、半導体基板801および上部クラッド層803a、803bとしては、例えば、InP、コア層802a、802bとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層802a、802bおよび上部クラッド層803a、803bが順次積層された半導体基板801をエッチング加工することにより、光導波方向に対して垂直に配置された溝804aを形成するとともに、溝804aから所定間隔だけ隔てて配置された段差804bを半導体基板801上に形成する。
そして、クラッド層805a、807aで挟まれたコア層806aを溝804aに埋め込むとともに、クラッド層805b、807bで挟まれたコア層806bを段差804bに埋め込むことにより、光導波路領域R71との界面に配置された溝部A71を形成することが可能となるとともに、溝部A71から半導体板B71を隔てて配置された光導波路領域R72を形成することができる。
ここで、コア層806a、806bの材料としては、例えば、BCBを用いることができ、クラッド層805a、807a、805b、807bの材料としては、例えば、コア層806a、806bよりも屈折率が底いポリイミドを用いることができる。
これにより、光導波路領域R71と光導波路領域R72との境界における反射を低減させることを可能としつつ、溝部A71および光導波路領域R72における導波損失を低減させることができる。
なお、図10の光導波路領域R61における横方向の導波損失を抑えるために、図10のXIII−XIII線で切断した断面構造を図13の断面構造に置き換えるようにしてもよい。
図13は、本発明の第9の実施例に係る集積光導波路の概略構成を光導波方向と直交する方向に沿って示す断面図である。図13において、半導体基板901上には、コア層902および上部クラッド層903が順次積層されている。そして、上部クラッド層903、コア層902および半導体基板901の上部は、光導波方向に沿ってストライブ状にエッチング加工され、上部クラッド層903、コア層902および半導体基板901の上部の両側には、埋め込み層904a、904bがそれぞれ形成されている。
なお、半導体基板901、上部クラッド層903および埋め込み層904a、904bとしては、例えば、InP、コア層902としては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
これにより、光導波路領域R61と光導波路領域R62との境界における反射を低減させることを可能としつつ、光導波路領域R61における導波損失を低減させることができる。
なお、図10の光導波路領域R62における横方向の導波損失を抑えるために、図10のXIV−XIV線で切断した断面構造を図14の断面構造に置き換えるようにしてもよい。
図14は、本発明の第10の実施例に係る集積光導波路の概略構成を光導波方向と直交する方向に沿って示す断面図である。図14において、半導体基板1001上には、クラッド層1003にて周囲を囲まれたコア層1002が形成されている。なお、半導体基板1001としては、例えば、InP、コア層1002の材料としては、例えば、BCB、クラッド層1003の材料としては、例えば、コア層1002よりも屈折率が低いポリイミドを用いることができる。
これにより、光導波路領域R61と光導波路領域R62との境界における反射を低減させることを可能としつつ、光導波路領域R62における導波損失を低減させることができる。
なお、図11のコア層702a、702bの形状に関しては、特に制約を設けるものではなく、例えば、コア層中央部の屈折率とクラッド層の屈折率との間の屈折率を持つ材料によりサンドイッチされた分離閉じ込めヘテロ構造(SCH)や、屈折率を段階的に変化させた傾斜屈折率(GI−)SCHとしてもよい。
また、半導体レーザに本構造を適用する場合、コアとして活性領域を用いてもよく、その形状は、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。さらに、材料に関しても、InPおよびGaInAsPの組み合わせに限定されることなく、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能である。
また、図13の横方向閉じ込めに関しても、特に制約を設けるものではなく、半導体導波路構造として通常用いられているリッジ導波路やハイメサ導波路等を用いるようにしてもよい。
また、図14の光導波路領域R62に関しても、特に制約を設けるものではなく、リッジ導波路やハイメサ導波路等を用いるようにしてもよい。
以下、図11の実施例の動原理作をより詳細に説明する。
図11において、光導波路領域R61および半導体板B61の等価屈折率を3.12、光導波路領域R62および溝部A61の等価屈折率を1.54とすると、(3)式により、各領域の界面で12%程度の反射が生じる。しかし、各領域の界面における全体の反射率は単なる足し合わせではなく、反射波の位相を考慮する必要がある。すなわち、強度が同等でも、位相が反転していれば、光は打ち消し合う。従って、溝部A61の幅および半導体板B61の厚さを調整することにより、各領域の界面における反射波の位相を最適化して、これらの界面における全体の反射率を低減することができる。
図15は、図11の集積光導波路の結合部における反射率を溝部A61の幅dと半導体板B61の厚さdとの関係で示す図である。なお、図15は、光導波路領域R61および半導体板B61の等価屈折率Nを3.12、光導波路領域R62および溝部A61の等価屈折率Nを1.54、として、溝部A61の幅dと半導体板B61の厚さdに対する反射率を等高線で示したものである。また、より一般的に話を進めるため、各軸の反対側の軸に光学長を示した。
図15において、太い実線は、溝部A61および半導体板B61を形成することなく、光導波路領域R61と光導波路領域R62とを直接接合した場合の反射率(約12%)を示す。すなわち、入射波長をλとすると、溝部A61もしくは半導体板B61の光学長がλ/2の時の直線と、破線で示したN+N=λ/4×(2l+1)の直線(lは整数)に近接した曲線である。
これらの太線で囲まれたほぼ三角形の領域では、単なる二導波路の接合よりも反射率が小さくなる。これらの三角形の領域は、近似的に、
>λ/2n、N>λ/2m、N+N<λ/4(2l+1)
・・・(6)
(l、m、nはn+m=lの関係を満たす整数)
もしくは、
<λ/2n、N<λ/2m、N+N>λ/4(2l+1)
・・・(7)
(l、m、nはn+m=l−1の関係を満たす整数)
の範囲で示すことができる。
ここで、原点に最も近い三角形で示したように、この三角形の各辺をλ/64だけ三角形の中心寄りにずらした領域cでは、反射率10%以下(単なる二導波路の接合に対して約80%)、同様にλ/32だけずらした領域bでは、反射率5%以下(単なる二導波路の接合に対して約40%)、同様にλ/16だけずらした領域aでは、反射率1%以下(単なる二導波路の接合に対して約8%)とすることができる。なお、領域dは、単なる二導波路を接合した時の反射率よりも低くなる領域である。
すなわち、三角形の各辺を小さくする量をδxとすると、これを表す各辺は、
>nλ/2±δx、
>mλ/2±δx、
+N=λ/4×(2l+1)±δx、
となる。これらは、他の三角形の領域でも同様である。
また、無反射を得るには、m、nを整数として、
+N
=±λ/(2π)[cos−1{±(N +N )/(N+N}+2mπ]
・・・(8)
−N=λ/2n ・・・(9)
を満たせばよい。これは、各三角形の領域のほぼ中心に相当する。
なお、上述した実施例では、溝部A61に充填する材料を光導波路領域R62の材料と同一とする方法について説明したが、溝部A61に充填する材料と光導波路領域R62の材料とは互いに異なっていてもよい。また、光導波路領域R61と半導体板B61とは、必ずしも同じ層構造でなくてもよい。
図16は、本発明の第10の実施例に係る集積光導波路の概略構成を示す断面図である。なお、この第10の実施例は、図12の構造を対向配置したものである。図16において、半導体基板1101には、光導波路領域R111、溝部A111、半導体板B111、光導波路領域R112、半導体板B112、溝部A112および光導波路領域R113が光導波方向に沿って順次形成されている。
ここで、光導波路領域R111、R113と光導波路領域R112との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R111、R113は半導体材料で構成することができ、光導波路領域R112は半導体以外の材料で構成することができる。
また、溝部A111、A112には、半導体以外の材料を充填することができ、例えば、光導波路領域R112の材料と同一の材料を充填することができる。また、半導体板B111、B112は、光導波路領域R111、R113の構造と同一となるように構成することができる。また、溝部A111、A112および半導体板B111、B112は光導波方向を横切るように配置され、好ましくは、溝部A111、A112および半導体板B111、B112は光導波方向に対して垂直に配置することができる。
そして、溝部A111の幅および半導体板B111の厚さは、光導波路領域R111と溝部A111との界面で反射した光が、溝部A111と半導体板B111との界面で反射した光および半導体板B111と光導波路領域R112との界面で反射した光によって弱められるように設定することができる。
また、溝部A112の幅および半導体板B112の厚さは、光導波路領域R112と半導体板B112との界面で反射した光が、半導体板B112と溝部A112との界面で反射した光および溝部A112と光導波路領域R113との界面で反射した光によって弱められるように設定することができる。
すなわち、半導体基板1101上には、コア層1101a〜1101dが積層され、コア層1101a〜1101d上には、上部クラッド層1103a〜1103dがそれぞれ積層されている。なお、半導体基板1101および上部クラッド層1103a〜1103dとしては、例えば、InP、コア層1101a〜1101dとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層1101a〜1101dおよび上部クラッド層1103a〜1103dが順次積層された半導体基板1101をエッチング加工することにより、光導波方向に対して垂直に配置された溝1104a、1104cを形成するとともに、溝1104a、1104cから所定間隔だけ隔てて配置された凹部1104bを半導体基板1101上に形成する。
そして、クラッド層1105a、1107aで挟まれたコア層1106aを溝1104aに埋め込むとともに、クラッド層1105c、1107cで挟まれたコア層1106cを溝1104cに埋め込むことにより、光導波路領域R111、R113との界面にそれぞれ配置された溝部A111、A112を形成することが可能となる。
また、クラッド層1105b、1107bで挟まれたコア層1106bを凹部1104bに埋め込むことにより、溝部A111、A112から半導体板B111、B112をそれぞれ隔てて配置された光導波路領域R112を形成することができる。
ここで、コア層1106a〜1106cの材料としては、例えば、BCBを用いることができ、クラッド層1105a〜1105c、1107a〜1107cの材料としては、例えば、コア層1106a〜1106cよりも屈折率が低いポリイミドを用いることができる。
これにより、半導体光導波路と半導体以外の光導波路とを同一半導体基板1101上に集積した際の光導波路間の反射を低減することを可能としつつ、半導体とは異なる屈折率を有する材料からなる光導波路を半導体光導波路の途中に集積することができる。このため、導波路設計の自由度を向上させることを可能としつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
なお、図16の実施例は、図12の構造を対向配置したものであるため、図16の実施例の導波路、コア層およびクラッド層の材料や構造は、特に制約を設けるものではなく、ここで説明した以外の材料や構造を用いるようにしてもよい。
また、図16の実施例では、図12の構造を1組だけ対向配置する方法について説明したが、図12の構造を3個以上縦列接続するようにしてもよい。ここで、図12の構造を用いることにより、個々の光導波路間の反射率を抑制することができ、集積光導波路全体の反射率を抑制することができる。
また、上述した集積光導波路の光学長について考えると、半導体の屈折率は温度上昇により増大する、すなわち屈折率の温度微分係数は正であるため、周囲温度が上昇すると、光導波路の光学長が長くなる。
そこで、例えば、図11の光導波路領域R62や図16の光導波路領域R112を、負の屈折率温度微分係数を有する材料を用いて構成するようにしてもよい。これにより、温度変化により個々の光導波路の光学長が変化した場合においても、光導波路全体の光学長の温度変化を抑制することが可能となる。なお、負の屈折率温度微分係数を有する材料としては、例えば、PMMAを用いることができる。
図17は、本発明の第11の実施例に係る集積光導波路の概略構成を示す断面図である。なお、この第11の実施例は、図16の構造に半導体レーザを集積化するようにしたものである。図17において、半導体基板1201には、光導波路領域R121、溝部A121、半導体板B121、光導波路領域R122、半導体板B122、溝部A122および光導波路領域R123が光導波方向に沿って順次形成され、光導波路領域R121および光導波路領域R123には、レーザダイオードが形成されている。
ここで、光導波路領域R121、R123と光導波路領域R122との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R121、R123は半導体材料で構成することができ、光導波路領域R122は半導体以外の材料で構成することができる。
また、溝部A121、A122には、半導体以外の材料を充填することができ、例えば、光導波路領域R122の材料と同一の材料を充填することができる。また、半導体板B121、B122は、光導波路領域R121、R123の構造と同一となるように構成することができる。また、溝部A121、A122および半導体板B121、B122は光導波方向を横切るように配置され、好ましくは、溝部A121、A122および半導体板B121、B122は光導波方向に対して垂直に配置することができる。
そして、溝部A121の幅および半導体板B121の厚さは、光導波路領域R121と溝部A121との界面で反射した光が、溝部A121と半導体板B121との界面で反射した光および半導体板B121と光導波路領域R122との界面で反射した光によって弱められるように設定することができる。
また、溝部A122の幅および半導体板B122の厚さは、光導波路領域R122と半導体板B122との界面で反射した光が、半導体板B122と溝部A122との界面で反射した光および溝部A122と光導波路領域R123との界面で反射した光によって弱められるように設定することができる。
すなわち、半導体基板1201上には、活性層1202a、1202dおよびコア層1201b、1201cが積層され、活性層1201a、1201dおよびコア層1202b、1202c上には、半導体基板1201と異なる導電型の上部クラッド層1203a、1203d、1203b、1203cがそれぞれ積層されている。なお、半導体基板1201および上部クラッド層1203a〜1203dとしては、例えば、InP、活性層1202a、1202dおよびコア層1202b、1202cとしては、例えば、波長1.55μmのGaInAsPを用いることができる。また、例えば、半導体基板1201をn型とし、上部クラッド層1203a〜1203dをp型とすることができる。
そして、活性層1202a、1202dおよびコア層1202c、1202c上に上部クラッド層1203a〜1203dが積層された半導体基板1201をエッチング加工することにより、光導波方向に対して垂直に配置された溝1204a、1204cを形成するとともに、溝1204a、1204cから所定間隔だけ隔てて配置された凹部1204bを半導体基板1201上に形成する。これにより、光導波路領域R121、R123に対応して活性層1202a、1202dをそれぞれ配置するとともに、半導体板B121、B122に対応してコア層1202b、1202cをそれぞれ配置することができる。
そして、クラッド層1205a、1207aで挟まれたコア層1206aを溝1204aに埋め込むとともに、クラッド層1205c、1207cで挟まれたコア層1206cを溝1204cに埋め込むことにより、光導波路領域R121、R123との界面にそれぞれ配置された溝部A121、A122を形成することが可能となる。
また、クラッド層1205b、1207bで挟まれたコア層1206bを凹部1204bに埋め込むことにより、溝部A121、A122から半導体板B121、B122をそれぞれ隔てて配置された光導波路領域R122を形成することができる。
また、上部クラッド層1203a、1203d上に電極1208a、1208bをそれぞれ形成するとともに、半導体基板1201の裏面に電極1208cを形成することにより、光導波路領域R121および光導波路領域R123にレーザダイオードをそれぞれ形成することができる。
ここで、コア層1206a〜1206cの材料としては、例えば、BCBを用いることができ、クラッド層1205a〜1205c、1207a〜1207cの材料としては、例えば、コア層1206a〜1206cよりも屈折率が低いポリイミドを用いることができる。
また、負の屈折率温度微分係数を有する材料を用いて光導波路領域R122を構成するようにしてもよく、例えば、PMMAを用いることができる。これにより、共振器長を温度に対して一定とすることができ、半導体レーザの発振波長の温度依存性を抑制することができる。
さらに、光導波路領域R121およびR123に回折格子などを形成して波長選択性を付与するようにしてもよく、分布帰還型(DFB)半導体レーザや分布反射器(DBR)などを作製するようにしてもよい。
なお、活性層1202a、1202dおよびコア層1202b、1202cの構造は、例えば、活性層またはコア層中央部の屈折率とクラッド層の屈折率との間の屈折率を持つ材料によりサンドイッチされた分離閉じ込めヘテロ構造(SCH)や、屈折率を段階的に変化させた傾斜屈折率(GI−)SCHとしてもよい。
また、活性層1202a、1202dの形状は、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、リッジ構造、埋め込みヘテロ構造、ハイメサ構造等を用いるようにしてもよい。さらに、材料に関しても、InPおよびGaInAsPの組み合わせに限定されることなく、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能である。
図18は、本発明の第12の実施例に係る集積光導波路の結合部の概略構成を示す斜視図である。なお、この第12の実施例は、溝部A131、A132および半導体板B131、B132を2対設けることにより、光導波路領域R131と光導波路領域R132との境界での反射を低減できる波長範囲を拡大できるようにしたものである。
図18において、半導体基板711には、光導波路領域R131、溝部A131、半導体板B131、溝部A132、半導体板B132および光導波路領域R132が光導波方向に沿って順次形成されている。ここで、光導波路領域R131と光導波路領域R132との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R131は半導体材料で構成することができ、光導波路領域R132は半導体以外の材料で構成することができる。
また、溝部A131、A132には、半導体以外の材料を充填することができ、例えば、光導波路領域R132の材料と同一の材料を充填することができる。また、半導体板B131、B132は、光導波路領域R131の構造と同一となるように構成することができる。また、溝部A131、A132および半導体板B131、B132は光導波方向を横切るように配置され、好ましくは、溝部A131、A132および半導体板B131、B132は光導波方向に対して垂直に配置することができる。
そして、溝部A131、A132の幅および半導体板B131、B132の厚さは、光導波路領域R131と溝部A131との界面で反射した光が、溝部A131と半導体板B131との界面で反射した光、半導体板B131と溝部A132との界面で反射した光、溝部A132と半導体板B132との界面で反射した光および半導体板B132と光導波路領域R132との界面で反射した光によって弱められるようにそれぞれ設定することができる。
これにより、半導体光導波路と半導体以外の光導波路とを同一半導体基板711上に集積した場合においても、これらの光導波路間の反射を低減することが可能となり、導波路設計の自由度を維持しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
また、光導波路領域R131が形成された半導体基板711のエッチング加工を行うことにより、溝部A131、A132および半導体板B131、B132を半導体基板711に形成することができる。このため、光導波路領域R131と光導波路領域R132との界面に反射防止膜を形成することなく、光導波路領域R131と光導波路領域R132との境界における反射を低減させることができ、光導波路の集積化に容易に対応することが可能となる。
さらに、溝部A131、A132の幅および半導体板B131、B132の厚さを調整することで、光導波路領域R131と光導波路領域R132との境界での反射を低減できる波長範囲を拡大することが可能となり、波長多重光ネットワークなどへの適用を可能としつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
図19は、図18の光導波方向に沿ったXIX,XX−XIX,XX線で切断した切断図である。図19において、半導体基板711上には、コア層712a〜712cが積層され、コア層712a〜712c上には、上部クラッド層713a〜713cがそれぞれ積層されている。なお、半導体基板711および上部クラッド層713a〜713cとしては、例えば、InP、コア層712a〜712cとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層712a〜712cおよび上部クラッド層713a〜713cが順次積層された半導体基板711をエッチング加工することにより、光導波方向に対して垂直に配置された幅dの溝714aを形成するとともに、溝714aから所定間隔dだけ隔てて配置された幅dの溝714bを形成し、さらに、溝714bから所定間隔dだけ隔てて配置された段差714cを半導体基板711上に形成する。
そして、溝714a、714bに充填材料715a、715bをそれぞれ埋め込むことにより、光導波路領域R131との界面に配置された溝部A131を形成することが可能となるとともに、溝部A131から厚さdの半導体板B131を隔てて配置された溝部A132を形成することが可能となる。
また、段差714cに光導波路材料715cを埋め込むことにより、溝部A132から厚さdの半導体板B132を隔てて配置された光導波路領域R132を形成することができる。
ここで、充填材料715a、715bおよび光導波路材料715cとしては、半導体とは異なる屈折率を持つ材料を用いることができ、例えば、BCBを挙げることができる。この場合、光導波路領域R131および半導体板B131、B132の等価屈折率は3.12、光導波路領域R132および溝部A131、A132の等価屈折率は1.54とすることができる。
これにより、光導波路領域R131と光導波路領域R132との境界における反射を広い波長範囲に渡って低減させることを可能としつつ、屈折率が互いに異なる光導波路領域R131と光導波路領域R132とを同一半導体基板711上に集積することが可能なり、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
なお、溝部A131、A132および光導波路領域R132における導波損失は、これらの伝播距離が短い場合は無視できる程小さいが、溝部A131、A132および光導波路領域R132における伝播距離が長くなると、導波損失が無視できなくなる。
このため、図18のXX−XX線で切断した図19の断面構造を図20の断面構造に置き換えるようにしてもよい。
図20は、本発明の第13の実施例に係る集積光導波路の結合部の概略構成を光導波方向に沿って示す断面図である。なお、この第13の実施例は、図19の溝部A131、A132および光導波路領域R132にコア層を設けるようにしたものである。
図20において、半導体基板811には、光導波路領域R141、溝部A141、半導体板B141、溝部A142、半導体板B142および光導波路領域R142が光導波方向に沿って順次形成されている。
すなわち、半導体基板811上には、コア層812a〜812cが積層され、コア層812a〜812c上には、上部クラッド層813a〜813cがそれぞれ積層されている。なお、半導体基板811および上部クラッド層813a〜813cとしては、例えば、InP、コア層812a〜812cとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層812a〜812cおよび上部クラッド層813a〜813cが順次積層された半導体基板811をエッチング加工することにより、光導波方向に対して垂直に配置された溝814aを形成するとともに、溝814aから所定間隔だけ隔てて配置された溝814bを形成し、さらに、溝814bから所定間隔だけ隔てて配置された段差814cを半導体基板811上に形成する。
そして、クラッド層815a、817aで挟まれたコア層816aを溝814aに埋め込むとともに、クラッド層815b、817bで挟まれたコア層816bを溝814bに埋め込むことにより、光導波路領域R141との界面に配置された溝部A141を形成することが可能となるとともに、溝部A141から半導体板B141を隔てて配置された溝部A142を形成することが可能となる。
また、クラッド層815c、817cで挟まれたコア層816cを段差814cに埋め込むことにより、溝部A142から半導体板B142を隔てて配置された光導波路領域R142を形成することができる。
ここで、コア層816a〜816cの材料としては、例えば、BCBを用いることができ、クラッド層815a〜815c、817a〜817cの材料としては、例えば、コア層816a〜816cよりも屈折率が低いポリイミドを用いることができる。
これにより、光導波路領域R141と光導波路領域R142との境界における反射を低減させることを可能としつつ、溝部A141、A142および光導波路領域R142における導波損失を低減させることができる。
なお、図19の光導波路領域R131における横方向の導波損失を抑えるために、図18のXIII−XIII線で切断した断面構造を図13の断面構造に置き換えるようにしてもよい。また、図18の光導波路領域R132における横方向の導波損失を抑えるために、図18のXIV−XIV線で切断した断面構造を図14の断面構造に置き換えるようにしてもよい。
また、図19のコア層712a、712bの形状に関しては、特に制約を設けるものではなく、例えば、コア層中央部の屈折率とクラッド層の屈折率との間の屈折率を持つ材料によりサンドイッチされた分離閉じ込めヘテロ構造(SCH)や、屈折率を段階的に変化させた傾斜屈折率(GI−)SCHとしてもよい。
また、半導体レーザに本構造を適用する場合、コアとして活性領域を用いてもよく、その形状は、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。さらに、材料に関しても、InPおよびGaInAsPの組み合わせに限定されることなく、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能である。
なお、図19の光導波路領域R131および半導体板B131、B132の等価屈折率Nを3.12、光導波路領域R132および溝部A131、A132の等価屈折率Nを1.54とすると、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される光導波路では、溝部A131の幅dと半導体板B131の厚さdに対する反射率は図15と同様になる。
このため、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される光導波路の反射率を低減させるためには、(6)式または(7)式の関係を満たすように、溝部A131の幅dと半導体板B131dの厚さを設定すればよい。
また、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される光導波路の反射率を0にするためには、(8)式または(9)式の関係を満たすように、溝部A131の幅dと半導体板B131の厚さdを設定すればよい。
また、ある波長λについて図19の光導波路全体での反射を0にするためには、図19の全体構成を溝部A132で分割し、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される光導波路と、溝部A132、半導体板B132および光導波路領域R132で構成される光導波路とを想定すると、これら双方の光導波路の反射率を0とする必要がある。
このため、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される光導波路の反射率を0にした上で、溝部A132、半導体板B132および光導波路領域R132で構成される光導波路の反射率を0とする必要がある。
ここで、溝部A132、半導体板B132および光導波路領域R132で構成される光導波路の反射率を0とする条件は、以下の(10)式で与えることができる。
=λ/2n ・・・(10)
(nは整数)
図21は、図19の溝部A132、半導体板B132および光導波路領域R132で構成される光導波路の反射率と半導体板B132の厚さdとの関係を示す図である。なお、入射波長は1.55μmとした。
図21において、溝部A132、半導体板B132および光導波路領域R132で構成される光導波路の反射率は、斜線で示した領域では、単なる二導波路の接合(約12%)よりも小さくなる。そして、溝部A132、半導体板B132および光導波路領域R132で構成される光導波路の反射率を単なる二導波路の接合よりも小さくする条件は、以下の(11)式で与えることができる。
λ/2n−λ/16<N<λ/2n+λ/16 ・・・(11)
(nは整数)
ここで、図19の全体の光導波路は、光導波路領域R131、溝部A131、半導体板B131および溝部A132で構成される左側光導波路と、溝部A132、半導体板B132および光導波路領域R132で構成される右側光導波路とを接続したものであり、左側光導波路の後端と右側光導波路の前端とは同じ屈折率であるから、この部分では反射は生じない。このため、分割前の光導波路全体を考えても、入射波長λの時、光導波路領域R131と光導波路領域R132との結合部での反射を0とすることができる。これは、溝部A132の幅dには依存しない。
図22は、図18の溝部A132の幅dと入射波長に対する反射率との関係を示す図である。なお、図22では、N=1.54、N=3.21として入射波長λ=1.55μmとした時に反射率が0となる条件を満たすように、d=1.08μm、d=1.00μm、d=0.966μmとした。また、より一般的に話を進めるために光学長も示した。
図22において、領域dは光導波路領域R131と光導波路領域R132とを単に接合した時の反射率(約12%)よりも低くなる領域、領域cは反射率10%以下の領域、領域bは反射率5%以下の領域、領域aは反射率1%以下の領域である。
すなわち、溝部A132の幅dを変えることにより、低反射率が得られる領域を変化させることができる。例えば、領域dの波長幅を広げるには、
λ/2(n+1/4)<N<λ/2(n+1)
(nは整数)
とすればよい。また、領域aの波長幅を広げるには、
λ/2(m+3/8)<N<λ/2(m+3/4)
(mは整数)
とすればよい。
なお、上述した実施例では、溝部A131、A132に充填する材料を光導波路領域R132の材料と同一とする方法について説明したが、溝部A131、A132に充填する材料と光導波路領域R132の材料とは互いに異なっていてもよい。また、光導波路領域R131と半導体板B131、B132とは、必ずしも同じ層構造でなくてもよい。
図23は、本発明の第14の実施例に係る集積光導波路の概略構成を示す断面図である。なお、この第14の実施例は、溝部A151〜A154および半導体板B151〜B154を交互に繰り返し配置することにより、低反射となる波長帯を急峻化できるようにしたものである。
図23において、半導体基板911には、光導波路領域R151および光導波路領域R152が光導波方向に沿って形成されるとともに、光導波路領域R151と光導波路領域R152との間には、溝部A151〜A154および半導体板B151〜B154が光導波方向に沿って交互に配置されている。
ここで、光導波路領域R151と光導波路領域R152との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R151は半導体材料で構成することができ、光導波路領域R152は半導体以外の材料で構成することができる。
また、溝部A151〜A154には、半導体以外の材料を充填することができ、例えば、光導波路領域R152の材料と同一の材料を充填することができる。また、半導体板B151〜B154は、光導波路領域R151の構造と同一となるように構成することができる。また、溝部A151〜A154および半導体板B151〜B154は光導波方向を横切るように配置され、好ましくは、溝部A151〜A154および半導体板B151〜B154は光導波方向に対して垂直に配置することができる。
そして、溝部A151の幅および半導体板B151の厚さは、光導波路領域R14、溝部A151、半導体板B151および溝部A152で構成される光導波路における反射率が弱められるように設定することができる。
また、溝部A152の幅および半導体板B152の厚さは、溝部A152、半導体板B152および溝部A153で構成される光導波路が無反射率条件を満たすように設定することができる。
さらに、溝部A153、A154の幅および半導体板B153、B154の厚さは、溝部A152の幅および半導体板B152の厚さとそれぞれ同一となるように設定することができる。
ここで、溝部A152、半導体板B152および溝部A153で構成される光導波路が無反射率条件を満たすように溝部A152の幅および半導体板B152の厚さを設定するとともに、溝部A152の幅および半導体板B152の厚さとそれぞれ同一となるように溝部A153、A154の幅および半導体板B153、B154の厚さを設定することにより、溝部A151〜A154および半導体板B151〜B154を交互に繰り返し配置した場合においても、入射波長λにおける反射率を一定に保つことができる。
すなわち、半導体基板911上には、コア層912a〜912eが積層され、コア層912a〜912e上には、上部クラッド層913a〜913eがそれぞれ積層されている。なお、半導体基板911および上部クラッド層913a〜913eとしては、例えば、InP、コア層912a〜912eとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層912a〜912eおよび上部クラッド層913a〜913eが順次積層された半導体基板911をエッチング加工することにより、光導波方向に対して垂直に配置された溝914a〜914dを形成するとともに、溝914dから所定間隔だけ隔てて配置された段差914eを半導体基板911上に形成する。
そして、溝914a〜914dに充填材料915a〜915dをそれぞれ埋め込むとともに、段差914eに光導波路材料915eを埋め込むことにより、光導波方向に沿って交互に配置された溝部A151〜A154および半導体板B151〜B154を光導波路領域R151と光導波路領域R152との間に形成することが可能となるとともに、溝部A154から半導体板B154を隔てて配置された光導波路領域R152を半導体基板911に形成することができる。
これにより、溝914a〜914dを形成するためのエッチング加工を半導体基板911に行うことにより、低反射となる波長帯を急峻化することが可能となり、半導体光導波路と半導体以外の光導波路とを同一半導体基板911上に集積した場合においても、これらの光導波路間にける特定の波長の反射を効率よく低減することが可能となる。
なお、上述した実施例では、溝部A151〜A154および半導体板B151〜B154を4回繰り返し配置する方法について説明したが、溝部および半導体板を3回または5回以上繰り返し配置してもよい。
図24は、本発明の第15の実施例に係る集積光導波路の概略構成を示す断面図である。なお、この第15の実施例は、図19の構造を対向配置したものである。図24において、半導体基板1011には、光導波路領域R161、溝部A161、半導体板B161、溝部A162、半導体板B162、光導波路領域R162、半導体板B163、溝部A163、半導体板B164、溝部A164および光導波路領域R163が光導波方向に沿って順次形成されている。
ここで、光導波路領域R161、R163と光導波路領域R162との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R161、R163は半導体材料で構成することができ、光導波路領域R162は半導体以外の材料で構成することができる。
また、溝部A161〜A164には、半導体以外の材料を充填することができ、例えば、光導波路領域R162の材料と同一の材料を充填することができる。また、半導体板B161〜B164は、光導波路領域R161、R163の構造と同一となるように構成することができる。また、溝部A161〜A164および半導体板B161〜B164は光導波方向を横切るように配置され、好ましくは、溝部A161〜A164および半導体板B161〜B164は光導波方向に対して垂直に配置することができる。
そして、溝部A161の幅および半導体板B161の厚さは、光導波路領域R161と溝部A161との界面で反射した光が、溝部A161と半導体板B161との界面で反射した光、半導体板B161と溝部A162との界面で反射した光、溝部A162と半導体板B162との界面で反射した光および半導体板B162と光導波路領域R162との界面で反射した光によって弱められるようにそれぞれ設定することができる。
また、溝部A164の幅および半導体板B164の厚さは、光導波路領域R163と溝部A164との界面で反射した光が、溝部A164と半導体板B164との界面で反射した光、半導体板B164と溝部A163との界面で反射した光、溝部A163と半導体板B163との界面で反射した光および半導体板B163と光導波路領域R162との界面で反射した光によって弱められるようにそれぞれ設定することができる。
すなわち、半導体基板1011上には、コア層1012a〜1012fが積層され、コア層1012a〜1012f上には、上部クラッド層1013a〜1013fがそれぞれ積層されている。なお、半導体基板1011および上部クラッド層1013a〜1013fとしては、例えば、InP、コア層1012a〜1012fとしては、例えば、発光波長1.3μmのGaInAsPを用いることができる。
そして、コア層1012a〜1012fおよび上部クラッド層1013a〜1013fが順次積層された半導体基板1011をエッチング加工することにより、光導波方向に対して垂直に配置された溝1014a、1014b、1014d、1014eを形成するとともに、溝1014b、1014dから所定間隔だけ隔てて配置された凹部1014cを半導体基板1011上に形成する。
そして、クラッド層1015a、1017aで挟まれたコア層1016aを溝1014aに埋め込むとともに、クラッド層1015b、1017bで挟まれたコア層1016bを溝1014bに埋め込むことにより、光導波路領域R161と光導波路領域R162との間に配置された溝部A161、A162を形成することが可能となる。
また、クラッド層1015d、1017dで挟まれたコア層1016dを溝1014dに埋め込むとともに、クラッド層1015e、1017eで挟まれたコア層1016eを溝1014eに埋め込むことにより、光導波路領域R162と光導波路領域R163との間に配置された溝部A163、A164を形成することが可能となる。
さらに、クラッド層1015c、1017cで挟まれたコア層1016cを凹部1014cに埋め込むことにより、溝部A162、A164から半導体板B162、B164をそれぞれ隔てて配置された光導波路領域R162を形成することができる。
ここで、コア層1016a〜1016eの材料としては、例えば、BCBを用いることができ、クラッド層1015a〜1015e、1017a〜1017eの材料としては、例えば、コア層1016a〜1016eよりも屈折率が低いポリイミドを用いることができる。
なお、図24の実施例は、図20の構造を対向配置したものであるため、図24の実施例の導波路、コア層およびクラッド層の材料や構造は、特に制約を設けるものではなく、ここで説明した以外の材料や構造を用いるようにしてもよい。
また、図24の実施例では、図20の構造を1組だけ対向配置する方法について説明したが、図20の構造を3個以上縦列接続するようにしてもよい。ここで、図20の構造を用いることにより、個々の光導波路間の反射率を抑制することができ、集積光導波路全体の反射率を抑制することができる。
また、上述した集積光導波路の光学長について考えると、半導体の屈折率は温度上昇により増大する、すなわち屈折率の温度微分係数は正であるため、周囲温度が上昇すると、光導波路の光学長が長くなる。
そこで、例えば、図19の光導波路領域R132や図24の光導波路領域R162を、負の屈折率温度微分係数を有する材料を用いて構成するようにしてもよい。これにより、温度変化により個々の光導波路の光学長が変化した場合においても、光導波路全体の光学長の温度変化を抑制することが可能となる。なお、負の屈折率温度微分係数を有する材料としては、例えば、PMMAを用いることができる。
図25は、本発明の第16の実施例に係る集積光導波路の概略構成を示す断面図である。なお、この第16の実施例は、図24の構造に半導体レーザを集積化するようにしたものである。
図25において、半導体基板1111には、光導波路領域R171、溝部A171、半導体板B171、溝部A172、半導体板B172、光導波路領域R172、半導体板B173、溝部A173、半導体板B174、溝部A174および光導波路領域R173が光導波方向に沿って順次形成され、光導波路領域R171および光導波路領域R173には、レーザダイオードが形成されている。
ここで、光導波路領域R171、R173と光導波路領域R172との屈折率は互いに異なるように設定することができ、例えば、光導波路領域R171、R173は半導体材料で構成することができ、光導波路領域R172は半導体以外の材料で構成することができる。
また、溝部A171〜A174には、半導体以外の材料を充填することができ、例えば、光導波路領域R172の材料と同一の材料を充填することができる。また、半導体板B171〜B174は、光導波路領域R171、R173の構造と同一となるように構成することができる。また、溝部A171〜A174および半導体板B171〜B174は光導波方向を横切るように配置され、好ましくは、溝部A171〜A174および半導体板B171〜B174は光導波方向に対して垂直に配置することができる。
そして、溝部A171の幅および半導体板B171の厚さは、光導波路領域R171と溝部A171との界面で反射した光が、溝部A171と半導体板B171との界面で反射した光、半導体板B171と溝部A172との界面で反射した光、溝部A172と半導体板B172との界面で反射した光および半導体板B172と光導波路領域R172との界面で反射した光によって弱められるようにそれぞれ設定することができる。
また、溝部A174の幅および半導体板B174の厚さは、光導波路領域R173と溝部A174との界面で反射した光が、溝部A174と半導体板B174との界面で反射した光、半導体板B174と溝部A173との界面で反射した光、溝部A173と半導体板B173との界面で反射した光および半導体板B173と光導波路領域R172との界面で反射した光によって弱められるようにそれぞれ設定することができる。
すなわち、半導体基板1111上には、活性層1112a、1112fおよびコア層1112b〜1112eが積層され、活性層1112a、1112fおよびコア層1112b〜1112e上には、半導体基板1111と異なる導電型の上部クラッド層1113a、1113f、1113b〜1113eがそれぞれ積層されている。なお、半導体基板1111および上部クラッド層1113a〜1113fとしては、例えば、InP、活性層1112a、1112fおよびコア層1112b〜1112eとしては、例えば、波長1.55μmのGaInAsPを用いることができる。また、例えば、半導体基板1111をn型とし、上部クラッド層1113a〜1113fをp型とすることができる。
そして、活性層1112a、1112fおよびコア層1112c〜1112e上に上部クラッド層1113a〜1113fが積層された半導体基板1111をエッチング加工することにより、光導波方向に対して垂直に配置された溝1114a、1114b、1114d、1114eを形成するとともに、溝1114ba、1114dから所定間隔だけ隔てて配置された凹部1114cを半導体基板1111上に形成する。これにより、光導波路領域R171、R173に対応して活性層1112a、1112fをそれぞれ配置するとともに、半導体板B171〜B174に対応してコア層1112b〜1112eをそれぞれ配置することができる。
そして、クラッド層1115a、1117aで挟まれたコア層1116aを溝1114aに埋め込むとともに、クラッド層1115b、1117bで挟まれたコア層1116bを溝1114bに埋め込むことにより、光導波路領域R171と光導波路領域R172との間に配置された溝部A171、A172を形成することが可能となる。
また、クラッド層1115d、1117dで挟まれたコア層1116dを溝1114dに埋め込むとともに、クラッド層1115e、1117eで挟まれたコア層1116eを溝1114eに埋め込むことにより、光導波路領域R172と光導波路領域R173との間に配置された溝部A173、A174を形成することが可能となる。
さらに、クラッド層1115c、1117cで挟まれたコア層1116cを凹部1114cに埋め込むことにより、溝部A172、A174から半導体板B172、B174をそれぞれ隔てて配置された光導波路領域R172を形成することができる。
また、上部クラッド層1113a、1113f上に電極1118a、1118bをそれぞれ形成するとともに、半導体基板1111の裏面に電極1118cを形成することにより、光導波路領域R171および光導波路領域R173にレーザダイオードをそれぞれ形成することができる。
ここで、コア層1116a〜1116eの材料としては、例えば、BCBを用いることができ、クラッド層1115a〜1115e、1117a〜1117eの材料としては、例えば、コア層1116a〜1116eよりも屈折率が低いポリイミドを用いることができる。
また、負の屈折率温度微分係数を有する材料を用いて光導波路領域R172を構成するようにしてもよく、例えば、PMMAを用いることができる。これにより、共振器長を温度に対して一定とすることができ、半導体レーザの発振波長の温度依存性を抑制することができる。
さらに、光導波路領域R171およびR173に回折格子などを形成して波長選択性を付与するようにしてもよく、分布帰還型(DFB)半導体レーザや分布反射器(DBR)などを作製するようにしてもよい。
なお、活性層1112a、1112fおよびコア層1112b〜1112eの構造は、例えば、活性層またはコア層中央部の屈折率とクラッド層の屈折率との間の屈折率を持つ材料によりサンドイッチされた分離閉じ込めヘテロ構造(SCH)や、屈折率を段階的に変化させた傾斜屈折率(GI−)SCHとしてもよい。
また、活性層1112a、1112fの形状は、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、リッジ構造、埋め込みヘテロ構造、ハイメサ構造等を用いるようにしてもよい。さらに、材料に関しても、InPおよびGaInAsPの組み合わせに限定されることなく、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能である。
以上説明したように、本発明の第2の実施形態によれば、第1光導波路と第2光導波路との界面に反射防止膜を形成することなく、第1光導波路と第2光導波路との境界における反射を低減させることができ、光導波路の集積化に対応しつつ、半導体のみでは得られない新しい特性を有する光導波路を半導体基板上に安易に実現することが可能となる。
(ブリュースター角を用いた光導波路および光デバイス)
次に、本発明の第3の実施形態に係る集積光導波路について図面を参照しながら説明する。この第3の実施形態によれば、導波方向の設計の自由度を向上させることを可能にしつつ、屈折率が互いに異なる導波路間における反射および屈折による導波路損失を低減し、半導体基板上に集積化が可能な光導波路および光デバイスを提供することができる。以下、本実施形態に係るいくつかの具体的な実施例について説明する。
図26は、本発明の第17の実施例に係る集積光導波路の概略構成を示す断面図である。図26において、半導体基板1200には、第1導波路1201、第2導波領域1202および第3導波路1203が形成され、第2導波領域1202は、第1導波路1201と第3導波路1203との間に配置されている。ここで、第1導波路1201および第3導波路1203の屈折率は互いに等しくなるように設定することができ、第1導波路1201と第2導波領域1202との屈折率は互いに異なるように設定することができる。例えば、第1導波路1201および第3導波路1203は半導体材料で構成することができ、第2導波領域1202は半導体以外の材料で構成することができる。なお、第2導波領域1202の材料としては、例えば、重水素化ポリフルオロメタクリレート(d−PFMA)などを用いることができる。
また、第1導波路1201と第2導波領域1202との境界面1204は、第1導波路1201の光の伝播方向に対して傾くように配置することができる。また、第2導波領域1202と第3導波路1203との境界面1205は、第1導波路1201と第2導波領域1202との境界面1204における光の屈折方向の延長線上に対して傾くように配置することができる。ここで、第1導波路1201と第2導波領域1202との境界面1204における光の屈折方向の延長線上に対して、第2導波領域1202と第3導波路1203との境界面1205を傾ける場合、第2導波領域1202と第3導波路1203との境界面1205における光の屈折方向が第3導波路1203の光の伝播方向に一致するように設定することができる。
これにより、第1導波路1201と第3導波路1203との間に屈折率が互いに異なる第2導波領域1202を配置した場合においても、第1導波路1201と第2導波領域1202との境界面1204および第2導波領域1202と第3導波路1203との境界面1205における反射を低減し、かつ屈折による損失を抑制することができる。
すなわち、第1導波路1201と第2導波領域1202とは、その間の境界面1204が第1導波路1201の光の伝播方向に対して傾くように接続されているため、境界面1204で生じる反射光が第1導波路1201に戻ることがなく、第1導波路1201が局所的な共振器を構成することを回避することができる。同様に、第2導波領域1202と第3導波路1203とは、その間の境界面1205が第2導波領域1202の光の伝播方向に対して傾くように接続されているため、第2導波領域1202および第3導波路1203が局所的な共振器を構成することを回避することができる。
さらに、第2導波領域1202と第3導波路1203との境界面1205における光の屈折方向を第3導波路1203の光の伝播方向に一致させることにより、第1導波路1201、第2導波領域1202および第3導波路1203を伝播する光が、第1導波路1201と第2導波領域1202との境界面1204および第2導波領域1202と第3導波路1203との境界面1205において屈折した場合においても、第1導波路1201、第2導波領域1202および第3導波路1203から漏れ出すことを防止することができる。
この結果、第1導波路1201から入射した光は、従来に比べて小さな損失で、第1導波路1201、第2導波領域1202および第3導波路1203を伝播して、第3導波路1203から出射することができる。
ここで、第1導波路1201の光の伝播方向に対して第1導波路1201と第2導波領域1202との境界面1204を傾ける場合、その境界面1204の傾斜角はブリュースター角を満たすように設定することができる。また、第2導波領域1202の光の伝播方向に対して第2導波領域1202と第3導波路1203との境界面1205を傾ける場合、その境界面1205の傾斜角はブリュースター角を満たすように設定することができる。この際、第2導波領域1202の中点に対して点対称になるように、第1導波路1201および第3導波路1203を第2導波領域1202に接続することができる。
これにより、第1導波路1201と第2導波領域1202との境界面1204および第2導波領域1202と第3導波路1203との境界面1205での反射を低減することを可能としつつ、第1導波路1201と第3導波路1203との方向を互いに平行にすることが可能となる。
このため、屈折率の異なる材料が挿入された導波路間の反射を抑制するために、ブリュースター角を用いた場合においても、入射方向と出射方向とを互いに一致させることが可能となる。
このため、屈折率が互いに異なる材料を第1導波路1201と第3導波路1203との間に挿入した場合においても、導波路損失を抑制しつつ、劈開やエッチングや埋め込みなどに適した結晶方位を有効に活用することが可能となり、第1導波路1201および第3導波路1203の作製時における信頼性の劣化を抑制しつつ、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となるとともに、導波路設計の自由度を向上させることができる。
図27は、図26の第1導波路1201および第3導波路1203の概略構成を示す断面図である。図27において、半導体基板1200上には、コア層1301および上部クラッド層1302が順次積層されている。そして、上部クラッド層1302、コア層1301および半導体基板1201の上部は、光導波方向に沿ってストライブ状にエッチング加工され、上部クラッド層1302、コア層1301および半導体基板1200の上部の両側には、埋め込み層1303、1304がそれぞれ形成されている。
これにより、第1導波路1201および第3導波路1203を埋め込みヘテロ(BH)構造とすることができ、横方向の光閉じ込めを可能として、第1導波路1201および第3導波路1203における導波損失を低減することができる。
なお、半導体基板1200、上部クラッド層1302および埋め込み層1303、1304としては、例えば、InP、コア層1301としては、例えば、GaInAsPを用いることができる。
また、コア層1301および上部クラッド層1302を半導体基板1200上に順次積層する場合、例えば、MBE(molecular beam epitaxy)、MOCVD(metal organic chemical vaper deposition)、あるいはALCVD(atomic layer chemical vaper deposition)などのエピタキシャル成長を用いることができる。
図28は、本発明の第18の実施例に係る集積光導波路の概略構成を示す平面図である。図28において、半導体基板1400には、第1導波路1401、第2導波路1402および第3導波路1403が形成され、第2導波路1402は、第1導波路1401と第3導波路1403との間に配置されている。ここで、第1導波路1401および第3導波路1403の屈折率は互いに等しくなるように設定することができ、第1導波路1401と第2導波路1402との屈折率は互いに異なるように設定することができる。例えば、第1導波路1401および第3導波路1403は半導体材料で構成することができ、第2導波路1402は半導体以外の材料で構成することができる。
また、第1導波路1401と第2導波路1402との境界面1404は、第1導波路1401の光の伝播方向に対して傾くように配置することができる。また、第2導波路1402と第3導波路1403との境界面1405は、第1導波路1401と第2導波路1402との境界面1404における光の屈折方向の延長線上に対して傾くように配置することができる。ここで、第1導波路1401と第2導波路1402との境界面1404における光の屈折方向の延長線上に対して、第2導波路1402と第3導波路1403との境界面1405を傾ける場合、第2導波路1402と第3導波路1403との境界面1405における光の屈折方向が第3導波路1403の光の伝播方向に一致するように設定することができる。
例えば、これらの境界面1404、1405の傾斜角はブリュースター角を満たすようにそれぞれ設定するとともに、第2導波路1402の中点に対して点対称になるように、第1導波路1401および第3導波路1403を第2導波路1402に接続することができる。
図29は、図28の第2導波路1402の概略構成を示す断面図である。図29において、半導体基板1400上には、クラッド層1502にて周囲を囲まれたコア層1501が形成されている。なお、半導体基板1400としては、例えば、InPを用いることができる。また、クラッド層1502およびコア層1501としては、例えば、フッ素含有量を変えて屈折率が変更された重水素化ポリフルオロメタクリレート(d−PFMA)などを用いることができる。
これにより、第2導波路1402における導波損失を低減させることを可能としつつ、第1導波路1401と第2導波路1402との境界面1404および第2導波路1402と第3導波路1403との境界面1405での反射を低減することが可能となる。
なお、図26の第1導波路1201および第3導波路1203、図28の第1導波路1401、第2導波路1402および第3導波路1403に関しては、特に制約を設けるものではなく、半導体導波路構造として通常用いられているリッジ導波路やハイメサ導波路等を用いるようにしてもよい。
また、導波路のコア層およびクラッド層の形状に関しては、特に制約を設けるものではなく、例えば、コア層中央部の屈折率とクラッド層の屈折率との間の屈折率を持つ材料によりサンドイッチされた分離閉じ込めヘテロ構造(SCH)や、屈折率を段階的に変化させた傾斜屈折率(GI−)SCHとしてもよい。
また、半導体レーザに本構造を適用する場合、コアとして活性領域を用いてもよく、その形状は、バルク、MQW(多重量子井戸)、量子細線、量子ドットを問わず、また活性領域の導波路構造に関しても、pn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いるようにしてもよい。さらに、材料に関しても、InPおよびGaInAsPの組み合わせに限定されることなく、GaAs、AlGaAs、InGaAs、GaInNAsなど任意の材質について適用が可能である。
さらに、図26の第2導波領域1202および図28の第2導波路1402についても、特に制約を設けるものではなく、例えば、ポリイミドやベンゾシクロブテンなどを用いるようにしてもよい。
また、上述した集積光導波路の光学長について考えると、半導体の屈折率は温度上昇により増大する、すなわち屈折率の温度微分係数は正であるため、周囲温度が上昇すると、光導波路の光学長が長くなる。
そこで、例えば、図26の第2導波領域1202や図28の第2導波路1402を、負の屈折率温度微分係数を有する材料を用いて構成するようにしてもよい。これにより、温度変化により個々の光導波路の光学長が変化した場合においても、光導波路全体の光学長の温度変化を抑制することが可能となる。なお、負の屈折率温度微分係数を有する材料としては、例えば、PMMAを用いることができる。
以下、図26および図28の実施例の動作原理をより詳細に説明する。
図30は、屈折率の異なる物質の接合面に光が入射した場合の入射角と屈折角との関係を示す模式図である。
図30において、屈折率Nの物質側から屈折率Nの物質側に入射角θで入射した光は、これらの物質の界面において屈折角θで屈折する。この時、入射角θと屈折角θとの間の関係は(4)式で表すことができる。特に、入射角θが(5)式で表される関係を満たし、入射角θがブリュースター角θに一致する場合、入射面に平行な成分の反射をなくすことができる。
そして、入射角θがブリュースター角θに一致する場合、(4)式および(5)式から以下の(12)式が成り立つ。
cosθ=sinθ
∴θ=π/2−θ ・・・(12)
このため、図28の第2導波領域1402の中点に対して点対称になるように、第1導波路1401および第3導波路1403を第2導波領域1402に接続することにより、第1導波路1401と第2導波領域1402との境界面1404および第2導波領域1402と第3導波路1403との境界面1405における傾斜角をブリュースター角に一致させることを可能としつつ、第1導波路1201と第3導波路1203との方向を互いに平行にすることが可能となる。
また、図30から明らかなように、屈折率Nの物質内を導波する方向と屈折率Nの物質内を導波する方向との成す角θ12は、以下の(13)式で表すことができる。
θ12=π/2−2θ ・・・(13)
図31は、屈折率Nの物質側から屈折率Nの物質側に光が入射した場合の導波方向の成す角θ12と屈折率比N/Nとの関係を示す図である。なお、導波方向の成す角θ12は、図26の構成では、第1導波路1201を光が導波する方向と、第2導波領域1202を光が導波する方向との成す角、図28の構成では、第1導波路1401の方向と第2導波路1402の方向との成す角を示す。
図31において、図28の構成を例にとると、第1導波路1401と第2導波路1402との屈折率比が0.9(例えば、第1導波路1401の屈折率が3.21であるとすると、第2導波路1402の屈折率が2.89)であるとすると、第1導波路1401と第2導波路1402との成す角θ12は6度程度となる。このため、例えば、第2導波路1402の導波長が10μmであるとすると、第2導波路1402からの光の出射位置は第1導波路1401の延長線上から1μm程度ずれる。
また、第1導波路1401と第2導波路1402との屈折率比が0.8になると、第1導波路1401と第2導波路1402との成す角θ12は12度程度、第1導波路1401と第2導波路1402との屈折率比が0.7になると、第1導波路1401と第2導波路1402との成す角θ12は20度程度、第1導波路1401と第2導波路1402との屈折率比が0.6になると、第1導波路1401と第2導波路1402との成す角θ12は28度程度、第1導波路1401と第2導波路1402との屈折率比が0.5になると、第1導波路1401と第2導波路1402との成す角θ12は37度程度となり、第1導波路1401の延長線上からのずれはさらに大きくなる。
このため、第1導波路1401と第3導波路1403とを直線上に配置すると、光を効率よく導波させることができなくなるが、第1導波路1401と第2導波路1402との成す角θ12および第2導波路1402の導波長に対応させて、第1導波路1401の延長線上から第3導波路1403をずらして配置することにより、光を効率よく導波させることが可能となる。
なお、光の軌跡は進行方向が逆であっても同じであるので、N>Nの場合は、(3)式〜(5)式および(12)式より明らかなように、NとNとを入れ替えて考えればよい。
例えば、第1導波路1401および第3導波路1403の屈折率が3.12、第2導波路1402の屈折率が1.54で、第1導波路1401と第2導波路1402との屈折率比が0.48であるとすると、第1導波路1401から第2導波路1402へのブリュースター角θは25.6度、屈折角θは25.6度となり、第1導波路1401と第2導波路1402との成す角θ12は38.8度となる。
一方、第2導波路1402から第3導波路1403への場合は、(3)式〜(5)式および(12)式より明らかなように、第1導波路1401と第2導波路1402との屈折率を入れ替えた場合に相当するので、ブリュースター角θは64.4度、屈折角θは25.6度となる。
従って、図28の第2導波領域1402の中点に対して点対称になるように、第1導波路1401および第3導波路1403を第2導波領域1402に接続することにより、各導波路間における反射を抑制しつつ、第1導波路1401と第3導波路1403との方向を互いに平行にすることが可能となる。このため、第1導波路1401と第3導波路1403とを同じ結晶方向に沿って作製することが可能となり、埋め込みヘテロ構造を持つ第1導波路1401および第3導波路1403を信頼性よく作製することができる。
特に、図31から判るように、第1導波路1401と第2導波路1402との屈折率比が0.41程度の場合、第1導波路1401と第2導波路1402との成す角θ12は45度とすることができ、第1導波路1401と第3導波路1403との方向を互いに直交させることができる。
なお、第1導波路1401および第3導波路1403が半導体以外の材料で構成した場合においても、本発明の原理は同じであるため、第1導波路1401と第3導波路1403との方向を互いに平行にすることが可能となる。
次に、第1導波路1401の屈折率をN、第2導波路1402の屈折率をNとすると、入射面に平行な成分の反射率Rは以下の(14)式で与えることができる。
R=|tan(θ−sin−1(N/Nsinθ))/
tan(θ+sin−1(N/Nsinθ))| ・・・(14)
図32は、屈折率の異なる物質の接合面に光が入射した場合の入射角と入射面に平行な成分の反射率との関係を示す図である。なお、図32の例では、第1導波路1401の屈折率をN=3.21、第2導波路1402の屈折率をN=1.54とした。
図32において、入射角θが増加するに従って、入射面に平行な成分の反射率Rは漸減し、入射角θがブリュースター角θ=25.6度に一致した時に反射率Rが0となる。そして、入射角θがブリュースター角θを超えると、入射面に平行な成分の反射率Rは急激に増加し、全反射角θ=28.7度に漸近する。
なお、全反射角θは以下の(15)式で与えることができる。
θ=sin−1(N/N) ・・・(15)
ここで、反射率Rが小さくなる入射角θとして、入射角θが0度の時の反射率Rの1/3になる場合を例にとると、ブリュースター角θの4/5の角度から、ブリュースター角θより全反射角θとブリュースター角θの差の2/3だけ大きい角度の範囲内とすることができる。すなわち、反射率Rが小さくなる入射角θは、以下の(16)式により与えることができる。
4θ/5≦θ≦θ+2/3(θ−θ) ・・・(16)
このように、入射角θ、つまり、第1導波路1401における光の伝播方向に対する第1導波路1401と第2導波路1402との境界面1404との成す角をブリュースター角θに一致させることにより、境界面1404に平行な成分の反射率を0とすることができる。通常、導波路を伝播する光は、境界面に平行な成分のみを持つTEモードであるから、第1導波路1401を伝播する光は、境界面1404による損失を受けることなく、第2導波路1402に透過させることができる。また、入射角θを(16)式で示される範囲に設定することにより、反射による損失を小さくすることができる。
図33は、本発明の第19の実施例に係る集積光導波路の概略構成を示す平面図である。図33において、半導体基板1600には、第1導波路1601、第2導波路1602および第3導波路1603が形成され、第2導波路1602は、第1導波路1601と第3導波路1603との間に配置されている。ここで、第1導波路1601および第3導波路1603の屈折率は互いに等しくなるように設定することができる。また、第1導波路1601と第2導波路1602との屈折率は互いに異なるように設定することができ、第1導波路1401と第2導波路1402との屈折率比は0.41程度とすることができる。
また、第1導波路1601と第2導波路1602との境界面1604および第2導波路1602と第3導波路1603との境界面1605は、光の入射方向に対してブリュースター角をそれぞれ満たすように傾斜させることができる。
これにより、第1導波路1601と第2導波路1602との成す角および第2導波路1602と第3導波路1603との成す角をそれぞれ45度とすることができ、第1導波路1601と第3導波路1603との方向を互いに直交させることが可能となるとともに、第1導波路1601と第2導波路1602との境界面1604および第2導波路1602と第3導波路1603との境界面1605での反射を低減することが可能となる。このため、結晶構造から考えると、第1導波路1601および第3導波路1603に劈開面を形成する場合には、劈開面は平行でなくても、直交に配置することができる。
図34は、本発明の第4の実施例に係る集積光導波路の概略構成を示す平面図である。図34において、半導体基板1700には、第1導波路1701、第2導波路1702、第3導波路1703、第4導波路1704および第5導波路1705が形成されている。そして、第2導波路1702は、第1導波路1701と第3導波路1703との間に配置され、第4導波路1704は、第3導波路1703と第5導波路1705との間に配置されている。
ここで、第1導波路1701、第3導波路1703および第5導波路1705の屈折率は互いに等しくなるように設定することができ、第2導波路1702および第4導波路1704の屈折率は互いに等しくなるように設定することができる。また、第1導波路1701と第2導波路1702との屈折率は互いに異なるように設定することができる。例えば、第1導波路1701、第3導波路1703および第5導波路1705は半導体材料で構成することができ、第2導波路1702および第4導波路1704は半導体以外の材料で構成することができる。
また、第1導波路1701と第2導波路1702との境界面1706は、第1導波路1701の光の伝播方向に対して傾くように配置することができる。また、第2導波路1702と第3導波路1703との境界面1707は、第1導波路1701と第2導波路1702との境界面1706における光の屈折方向の延長線上に対して傾くように配置することができる。ここで、第1導波路1701と第2導波路1702との境界面1706における光の屈折方向の延長線上に対して、第2導波路1702と第3導波路1703との境界面1707を傾ける場合、第2導波路1702と第3導波路1703との境界面1706における光の屈折方向が第3導波路1703の光の伝播方向に一致するように設定することができる。
さらに、第3導波路1703と第4導波路1704との境界面1708は、第3導波路1703の光の伝播方向に対して傾くように配置することができる。また、第4導波路1704と第5導波路1705との境界面1709は、第3導波路1703と第4導波路1704との境界面1708における光の屈折方向の延長線上に対して傾くように配置することができる。ここで、第3導波路1703と第4導波路1704との境界面1708における光の屈折方向の延長線上に対して、第4導波路1704と第5導波路1705との境界面1709を傾ける場合、第4導波路1704と第5導波路1705との境界面1709における光の屈折方向が第5導波路1705の光の伝播方向に一致するように設定することができる。
例えば、これらの境界面1706〜1709の傾斜角はブリュースター角を満たすようにそれぞれ設定し、第2導波路1702の中点に対して点対称になるように、第1導波路1701および第3導波路1703を第2導波路1702に接続するとともに、第4導波路1704の中点に対して点対称になるように、第3導波路1703および第5導波路1705を第4導波路1704に接続することができる。
これにより、これらの境界面1706〜1709での反射を低減することを可能としつつ、入力側の第1導波路1701および出力側の第5導波路1705とを一直線上に配置することが可能となり、導波路設計の自由度を向上させることができる。
なお、図34の第20の実施例は、図28の構成を折り返して配置するようにしたものであるため、第1導波路1701、第2導波路1702、第3導波路1703、第4導波路1704および第5導波路1705の材料および形状などは、上述した実施例で説明したものを使用することができる。
また、図34の構成をさらに複数個縦列接続するようにしてもよく、これにより、半導体とは異なる材料の導波領域を分布させて配置することが可能となり、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
図35は、本発明の第5の実施例に係る集積光導波路の概略構成を示す平面図である。 図35において、半導体基板1800には、第1導波路1801、第2導波路1802および第3導波路1803が形成され、第2導波路1802は、第1導波路1801と第3導波路1803との間に配置されている。ここで、第1導波路1801および第3導波路1803の屈折率は互いに等しくなるように設定することができ、第1導波路1801と第2導波路1802との屈折率は互いに異なるように設定することができる。例えば、第1導波路1801および第3導波路1803は半導体材料で構成することができ、第2導波路1802は半導体以外の材料で構成することができる。
また、第1導波路1801と第2導波路1802との境界面1804は、第1導波路1801の光の伝播方向に対して傾くように配置することができる。また、第2導波路1802と第3導波路1803との境界面1805は、第1導波路1801と第2導波路1802との境界面1804における光の屈折方向の延長線上に対して傾くように配置することができる。また、第1導波路1801と第3導波路1803は、同一直線上に配置するとともに、各境界面1804、1805における屈折方向に対応しつつ、第1導波路1801と第3導波路1803とを接続可能となるように、第2導波路1802を円弧状に折り曲げることができる。
例えば、これらの境界面1804、1805の傾斜角はブリュースター角を満たすようにそれぞれ設定するとともに、第2導波路1802の中央線に対して線対称になるように、第1導波路1801および第3導波路1803を第2導波路1802に接続することができる。
これにより、導波損失を抑制しつつ、屈折角による光線の曲がりを修正することが可能となるとともに、第3光導波路1803の位置を任意の場所に設定することが可能となり、導波路設計の自由度を向上させることができる。
なお、図10の第21の実施例では、屈折角による光線の曲がりを修正するために、第2導波領域1802を曲がり導波路で構成する方法について説明したが、第1導波領域1801または第3導波領域1803を曲がり導波路で構成するようにしてもよい。
また、図35の第21の実施例は、図28の構成の変形例であるため、第1導波路1801、第2導波路1802および第3導波路1803の材料および形状などは、上述した実施例で説明したものを使用することができる。
また、図35の構成をさらに複数個縦列接続するようにしてもよく、これにより、半導体とは異なる材料の導波領域を分布させて配置することが可能となり、半導体のみでは得られない新しい特性を有する光導波路を実現することが可能となる。
図36は、本発明の第22の実施例に係る集積光導波路の概略構成を示す断面図である。
図36において、半導体基板1900には、第1導波路WG1、第2導波路WG2および第3導波路WG3が形成され、第2導波路WG2は、第1導波路WG1と第3導波路WG3との間に配置されている。ここで、第1導波路WG1および第3導波路WG3の屈折率は互いに等しくなるように設定することができ、第1導波路WG1と第2導波路WG2との屈折率は互いに異なるように設定することができる。例えば、第1導波路WG1および第3導波路WG3は半導体材料で構成することができ、第2導波路WG2は半導体以外の材料で構成することができる。
また、第1導波路WG1と第2導波路WG2との境界面は、第1導波路WG1の光の伝播方向に対して傾くように配置することができる。また、第2導波路WG2と第3導波路WG3との境界面は、第1導波路WG1と第2導波路WG2との境界面における光の屈折方向の延長線上に対して傾くように配置することができる。ここで、第1導波路WG1と第2導波路WG2との境界面における光の屈折方向の延長線上に対して、第2導波路WG2と第3導波路WG3との境界面を傾ける場合、第2導波路WG2と第3導波路WG3との境界面における光の屈折方向が第3導波路WG3の光の伝播方向に一致するように設定することができる。また、第1導波路WG1および第3導波路WG3には、レーザダイオードが形成されている。
すなわち、半導体基板1900上には、コア層1901が積層され、コア層1901上には、半導体基板1900と異なる導電型の上部クラッド層1902が積層されている。なお、半導体基板1900および上部クラッド層1902としては、例えば、InP、コア層1901としては、例えば、GaInAsPを用いることができる。また、例えば、半導体基板1901をn型とし、上部クラッド層1902をp型とすることができる。
そして、コア層1901および上部クラッド層1902が順次積層された半導体基板1900をエッチング加工することにより、上部クラッド層1902、コア層1901および半導体基板1900の上部を第1導波路WG1および第3導波路WG3の形状に成形する。そして、第1導波路WG1および第3導波路WG3の両側に埋め込み層1903、1905をそれぞれ成長させることにより、埋め込みヘテロ構造を形成する。なお、埋め込み層1903、1905としては、例えば、FeドープされたInP絶縁層を用いることができる。
そして、第1導波路WG1と第3導波路WG3との間の上部クラッド層1902、コア層1901および半導体基板1900の上部を、第1導波路WG1と第2導波路WG2との境界および第2導波路WG2と第3導波路WG3との境界にそれぞれ沿って除去する。そして、第2導波路WG2の形状に対応するようにして、BCBなどの有機材料を第1導波路WG1と第3導波路WG3との間に埋め込むことにより、第1導波路WG1と第3導波路WG3とに接続された第2導波路WG2を半導体基板1900上に形成する。
また、第1導波路WG1と第3導波路WG3の配置位置にそれぞれ対応して上部クラッド層1902上に電極1906、1907を形成するとともに、半導体基板1900の裏面に電極1908を形成することにより、第1導波路WG1および第3導波路WG3にレーザダイオードをそれぞれ形成することができる。
なお、図36の第22の実施例では、図28の構造を例にとって電極1906〜1908を設ける方法について説明したが、上述した図26または図33〜図35の構造に対して電極を設けるようにしてもよい。
また、図36の第22の実施例では、電流を注入するための活性層を半導体導波路に設けた構造であるため、第1導波路WG1、第2導波路WG2および第3導波路WG3の材料および形状などは、上述した実施例で説明したものをそのまま適用することができる。
さらに、例えば、半導体導波路部分に回折格子などを形成して波長選択性を付与するようにしてもよく、分布帰還型(DFB)半導体レーザや分布反射器(DBR)などを作製するようにしてもよい。
また、第2導波路WG2として屈折率の温度係数が負の材料を用いれば、波長選択性により発振波長を単一とすることが可能となるとともに、温度によって波長が変わらないレーザを得ることができる。
以上説明したように、本発明の第3の実施形態によれば、屈折率が互いに異なる材料を光導波領域間に挿入した場合においても、境界面における反射を抑制しつつ、導波方向の設計の自由度を向上させることが可能となり、集積光導波路作製時に劈開やエッチングや埋め込みなどに適した結晶方位を有効に活用することを可能として、半導体のみでは得られない新しい特性を有する光導波路および光デバイスを半導体基板上に安易に実現することが可能となる。
以上説明したように、本発明によれば、半導体基板上において屈折率およびその温度依存性の異なる材料を伝搬領域および/または導波路領域に適用することによって、加工および集積化が容易で、半導体のみでは得られない新しい特性を有する光半導体素子および光半導集積回路を提供することが可能となる。
本発明の第1の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。 本発明の一実施形態に係る半導体レーザの反射スペクトルおよび反射波の位相特性を示す図である。 本発明の一実施形態に係る半導体レーザの発振波長の温度依存性の補償原理を説明する図である。 本発明の一実施形態に係る半導体レーザの屈折率の温度係数差と発振波長温度依存性を説明する図である。 本発明の第2の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。 本発明の第3の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。 本発明の第4の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。 本発明の第5の実施例に係る半導体レーザの構成を光導波方向に沿って示す断面図である。 本発明の第6の実施例に係る半導体レーザの一構成方法を光導波方向に垂直に切断して示す断面図である。 本発明の第6の実施例に係る半導体レーザの一構成方法を光導波方向に垂直に切断して示す断面図である。 本発明の第6の実施例に係る半導体レーザの一構成方法を光導波方向に垂直に切断して示す断面図である。 本発明の第6の実施例に係る半導体レーザの一構成方法を光導波方向に垂直に切断して示す断面図である。 本発明の第6の実施例に係る半導体レーザの一構成方法を光導波方向に垂直に切断して示す断面図である。 本発明の第7の実施例に係る集積光導波路の結合部の概略構成を示す斜視図である。 図10の光導波方向に沿ったXI,XII−XI,XII線で切断した断面図である。 本発明の第8の実施例に係る集積光導波路の結合部の概略構成を光導波方向に沿って示す断面図である。 本発明の第9の実施例に係る集積光導波路の概略構成を光導波方向と直交する方向に沿って示す断面図である。 本発明の第10の実施例に係る集積光導波路の概略構成を光導波方向と直交する方向に沿って示す断面図である。 図11の集積光導波路の結合部における反射率を溝部A61の幅dと半導体板B61の厚さdとの関係で示す図である。 本発明の第10の実施例に係る集積光導波路の概略構成を示す断面図である。 本発明の第11の実施例に係る集積光導波路の概略構成を示す断面図である。 本発明の第12の実施例に係る集積光導波路の結合部の概略構成を示す斜視図である。 図18の光導波方向に沿ったXIX,XX−XIX,XX線で切断した切断図である。 本発明の第13の実施例に係る集積光導波路の結合部の概略構成を光導波方向に沿って示す断面図である。 図18の領域A132、B132、R132で構成される光導波路の反射率と半導体板B132の厚さdとの関係を示す図である。 図18の溝部A132の幅dと入射波長に対する反射率との関係を示す図である。 本発明の第14の実施例に係る集積光導波路の概略構成を示す断面図である。 本発明の第15の実施例に係る集積光導波路の概略構成を示す断面図である。 本発明の第16の実施例に係る集積光導波路の概略構成を示す断面図である。 本発明の第17の実施例に係る集積光導波路の概略構成を示す平面図である。 図26の第1導波領域1201の概略構成を示す断面図である。 本発明の第18の実施例に係る集積光導波路の概略構成を示す平面図である。 図28の第2導波路1402の概略構成を示す断面図である。 屈折率の異なる物質の接合面に光が入射した場合の入射角と屈折角との関係を示す模式図である。 屈折率の異なる物質を光が導波する場合の導波方向の成す角と屈折率比との関係を示す図である。 屈折率の異なる物質の接合面に光が入射した場合の入射角と入射面に平行な成分の反射率との関係を示す図である。 本発明の第19の実施例に係る集積光導波路の概略構成を示す平面図である。 本発明の第20の実施例に係る集積光導波路の概略構成を示す平面図である。 本発明の第21の実施例に係る集積光導波路の概略構成を示す平面図である。 本発明の第22の実施例に係る集積光導波路の概略構成を示す斜視図である。
符号の説明
101,201,301,401,501 半導体基板
102,202,302,408a,502 活性層
103,203,303,404,503 温度補償材料
104 活性層
105,205,305,405,505 電極
106,406 電極
107,207,307,407,507 裏面電極
108,208,308,508 反射防止膜
109,209 反射防止膜
110,210,310,408b,510 クラッド層
111,211,312 除去領域
204,409a,409b 半導体層
311,411,511 高反射膜
402 分布ブラッグ反射層
403 活性領域
512 反射鏡
601,611,621,631,641 半導体基板
602,612,622,632,642 バッファ層
603,613,623,633,643 光閉じ込め層
604,614,624,634,644 コア層
605,615,625,645 光閉じ込め層
606,616,626,636,646 キャップ層
607,617,627,637,647 埋め込み層
701,711,801,811,901,911,1001,1011,1101,1201,1111 半導体基板
702a,702b,712a,712b,712c,802a,802b,812a,812b,812c,902,912a,912b,912c,912d,912e,1002,1012a,1012b,1012c,1012d,1012e,1012f,1102a,1102b,1102c,1102d,1112b,1112c,1112d,1112e,1202b,1202c コア層
703a,703b,713a,713b,713c,803a,803b,813a,813b,813c,903,913a,913b,913c,913d,913e,1013a,1013b,1013c,1013d,1013e,1013f,1103a,1103b,1103c,1103d,1113a,1113b,1113c,1113d,1113e、1113f,1203a,1203b,1203c,1203d 上部クラッド層
704a,714a,714b,804a,814a,814b,914a,914b,914c,914d,1014a,1014b,1014d,1014e,1104a,1104c,1114a,1114b,1114d,1114e,1204a,1204c 溝
704b,714c,804b,814c 段差
705a,715a,715b,915a,915b,915c,915d 充填材料
705b 光導波路材料
805a,805b,807a,807b,815a,815b,815c,817a,817b,817c,1003,1015a,1015b,1015c,1015d,1015e,1017a,1017b,1017c,1017d,1017e,1105a,1105b,1105c、1107a,1107b,1107c,1115a,1115b,1115c,1115d,1115e,1117a,1117b,1117c,1117d,1117e,1205a,1205b,1205c,1207a,1207b,1207c クラッド層
806a,806b,816a,816b,816c,1016a,1016b,1016c,1016d,1016d,1016e,1106a,1106b,1106c,1116a,1116b,1116c,1116d,1116e,1206a,1206b,1206c コア層
904a,904b 埋め込み層
1014c,1104b,1114c,1204b 凹部
1112a,1112f,1202a,1202d 活性層
1118a,1118b,1208a,1208b,1208c 電極
1200,1300,1400,1500,1600,1700,1800,1900 半導体基板
1201,1203,1401,1402,1403,1601,1602,1603,1701,1702,1703,1704,1705,1801,1802,1803 導波路
1202 導波領域
1204,1205,1404,1405,1604,1605,1706,1707,1708,1709,1804,1805 境界面
1301,1501,1901 コア層
1302,1902 上部クラッド層
1303,1304,1903,1905 埋め込み層
1502 クラッド層
1906,1907 電極
A61,A71,A111,A112,A121,A122,A131,A132,A141,A142,A151,A152,A153,A154,A161,A162,A163,A164,A171,A172,A73,A174 溝部
B61,B71,B111,B112,B121,B122,B131,B132,B141,B142,B151,B152,B153,B154,B161,B162,B163,B164,B171,B172,B173,B174 半導体板
F1 水平方向の光フィールド分布
F2 垂直方向の光フィールド分布
R1,R11,R21,R31,R41 利得領域
R2 利得領域
R3,R13,R22,R32,R42 伝搬領域
R12 反射領域
R61,R62,R71,R72、R111,R112,R113,R121,R122,R123,R131,R132,R141,R142,R151,R152,R161,R162,R16,R171,R172,R173 光導波路領域
WG1,WG2,WG3 導波路

Claims (14)

  1. 第1光導波領域と、
    前記第1光導波領域との境界面が前記第1光導波領域の導波方向に対して斜めに配置され、第1光導波領域と屈折率が異なる第2光導波領域と、
    前記第2光導波領域との境界面における屈折方向が導波方向と一致するように、前記第2光導波領域との境界面が配置された第3光導波領域と
    を備えることを特徴とする集積光導波路。
  2. 第1の屈折率を持つ第1光導波路と第3光導波路および前記第1光導波路と前記第3光導波路との間にあって第2の屈折率を持つ第2光導波領域を備え、
    前記第1光導波路と前記第2光導波領域との境界面が前記第1光導波路の方向に対して垂直でないように、前記第1光導波路と前記第2光導波領域とが接続され、
    前記第1光導波路と前記第2光導波領域との境界面での光の屈折方向の延長線上において、前記第2光導波領域と前記第3光導波路との境界面が前記延長線に対して垂直でないように、前記第2光導波領域と前記第3光導波路とが接続され、
    前記第2光導波領域と前記第3光導波路との境界面での光の屈折方向と前記第3光導波路の方向とが一致していることを特徴とする集積光導波路。
  3. 前記第1光導波路の方向と前記第3光導波路の方向とが互いに平行であることを特徴とする請求項2記載の集積光導波路。
  4. 前記第1光導波路の方向と前記第3光導波路の方向とが互いに垂直であることを特徴とする請求項2記載の集積光導波路。
  5. 前記第1光導波路の方向に対して前記第1光導波路と前記第2光導波領域との境界面の成す角と、前記第3光導波路の方向に対して前記第2光導波領域と前記第3光導波路の境界面の成す角とが互いに等しく、前記第1の屈折率をN、前記第2の屈折率をNとすると、前記第1光導波路の方向に対して前記第1光導波路と前記第2光導波領域との境界面の成す角θは、
    4θ/5≦θ≦θ+2/3(θ−θ
    θ=tan−1(N/N
    θ=sin−1(N/N
    の関係を満たすことを特徴とする請求項2〜4のいずれか1項記載の集積光導波路。
  6. θ=θであることを特徴とする請求項5記載の集積光導波路。
  7. 前記第2光導波領域は導波構造を備えることを特徴とする請求項2〜6のいずれか1項記載の集積光導波路。
  8. 前記第2光導波領域は円弧形状を持つことを特徴とする請求項7記載の集積光導波路。
  9. 前記第1光導波路および前記第3光導波路は半導体で構成され、前記第2光導波領域は半導体以外の材料で構成されていることを特徴とする請求項2〜8のいずれか1項記載の集積光導波路。
  10. 前記第1の屈折率をN、前記第2の屈折率をNとすると、屈折率比N/NまたはN/Nが0.9以下であることを特徴とする請求項2〜9のいずれか1項記載の集積光導波路。
  11. 請求項2〜10のいずれか1項記載の集積光導波路が複数個縦列接続されていることを特徴とする集積光導波路。
  12. 前記第1光導波路または前記第3光導波路のいずれか少なくとも一方は、
    半導体基板上に形成されたコア層と、
    前記コア層上に積層され、前記半導体基板と導電型の異なる上部クラッド層と、
    前記上部クラッド層上に形成された第1電極と、
    前記半導体基板の裏面に形成された第2電極と
    を備えることを特徴とする請求項2〜11のいずれか1項記載の光デバイス。
  13. 前記第1光導波路または前記第3光導波路のいずれか少なくとも一方は波長選択性を持つことを特徴とする請求項2〜12のいずれか1項記載の光デバイス。
  14. 請求項2〜13のいずれか1項記載の集積光導波路を備えることを特徴とする光デバイス。
JP2008271385A 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路 Pending JP2009016883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271385A JP2009016883A (ja) 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003094696 2003-03-31
JP2003400156 2003-11-28
JP2003412062 2003-12-10
JP2008271385A JP2009016883A (ja) 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005504307A Division JP4295278B2 (ja) 2003-03-31 2004-03-30 光半導体素子および光半導体集積回路

Publications (1)

Publication Number Publication Date
JP2009016883A true JP2009016883A (ja) 2009-01-22

Family

ID=33135755

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2005504307A Expired - Fee Related JP4295278B2 (ja) 2003-03-31 2004-03-30 光半導体素子および光半導体集積回路
JP2008271384A Expired - Fee Related JP4669540B2 (ja) 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路
JP2008271385A Pending JP2009016883A (ja) 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2005504307A Expired - Fee Related JP4295278B2 (ja) 2003-03-31 2004-03-30 光半導体素子および光半導体集積回路
JP2008271384A Expired - Fee Related JP4669540B2 (ja) 2003-03-31 2008-10-21 光半導体素子および光半導体集積回路

Country Status (6)

Country Link
US (3) US7738520B2 (ja)
EP (3) EP1813975B1 (ja)
JP (3) JP4295278B2 (ja)
KR (4) KR100799797B1 (ja)
DE (1) DE602004028878D1 (ja)
WO (1) WO2004088802A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080826A (ja) * 2011-10-04 2013-05-02 Fujitsu Ltd 光半導体素子、光送信モジュール、光伝送システム及び光半導体素子の製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084607A2 (en) * 2003-03-19 2004-10-07 Binoptics Corporation High smsr unidirectional etched lasers and low back-reflection photonic device
JP4608334B2 (ja) * 2005-02-10 2011-01-12 日本電信電話株式会社 半導体光素子の波長調整方法
JP2007072433A (ja) * 2005-08-11 2007-03-22 Ricoh Co Ltd 光集積素子及び光制御素子
JP4868827B2 (ja) * 2005-11-08 2012-02-01 株式会社東芝 レーザ誘導光配線装置
JP2007157888A (ja) * 2005-12-02 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> 発振波長温度無依存半導体レーザ
JP5191143B2 (ja) * 2006-03-30 2013-04-24 アンリツ株式会社 半導体レーザ素子、半導体レーザモジュール、および半導体レーザモジュールを用いたラマン増幅器
US7616854B2 (en) * 2007-05-09 2009-11-10 Alcatel-Lucent Usa Inc. Optical coupling structure
JP2009188262A (ja) * 2008-02-07 2009-08-20 Sumitomo Electric Ind Ltd 半導体レーザ素子及び半導体光集積素子
US8515225B2 (en) * 2008-03-13 2013-08-20 Nec Corporation Optical device, method for manufacturing the same and optical integrated device using the same
DE102008029726A1 (de) * 2008-06-23 2009-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lichtleiteranordnung und Verfahren zum Herstellen von Lichtleiteranordnungen
WO2010116460A1 (ja) * 2009-03-30 2010-10-14 富士通株式会社 光素子及びその製造方法
JP2011066174A (ja) * 2009-09-17 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> 光集積素子
JP5477148B2 (ja) * 2010-04-28 2014-04-23 日本電気株式会社 半導体光配線装置
JP5703598B2 (ja) 2010-06-11 2015-04-22 セイコーエプソン株式会社 発光装置、およびプロジェクター
JP5957855B2 (ja) * 2011-11-21 2016-07-27 住友電気工業株式会社 半導体集積素子
JP5957856B2 (ja) * 2011-11-21 2016-07-27 住友電気工業株式会社 半導体集積素子
CN102742099B (zh) 2011-12-20 2013-12-18 华为技术有限公司 激光器、无源光网络系统、装置以及波长控制方法
JP5880065B2 (ja) 2012-01-18 2016-03-08 住友電気工業株式会社 光集積素子の製造方法
JP5880063B2 (ja) * 2012-01-18 2016-03-08 住友電気工業株式会社 光集積素子の製造方法
JP2013149724A (ja) * 2012-01-18 2013-08-01 Sumitomo Electric Ind Ltd 光集積素子の製造方法
US9645311B2 (en) 2013-05-21 2017-05-09 International Business Machines Corporation Optical component with angled-facet waveguide
US9644966B2 (en) * 2014-09-11 2017-05-09 Honeywell International Inc. Integrated optic circuit with waveguides stitched at supplementary angles for reducing coherent backscatter
JP6527415B2 (ja) * 2015-07-23 2019-06-05 日本電信電話株式会社 半導体レーザ素子
US10809591B2 (en) 2016-04-28 2020-10-20 Analog Photonics LLC Optical phase shifter device
US10921525B2 (en) * 2018-11-30 2021-02-16 Mitsubishi Electric Research Laboratories, Inc. Grating coupler and integrated grating coupler system
CN112740492B (zh) * 2019-01-04 2023-04-04 华为技术有限公司 半导体激光器、光发射组件、光线路终端及光网络单元
US10923884B2 (en) * 2019-05-15 2021-02-16 Microsoft Technology Licensing, Llc Two-section edge-emitting laser
US11381056B2 (en) * 2020-02-28 2022-07-05 Silc Technologies, Inc. Laser cavity construction for reduced wavelengths
CN112993751B (zh) * 2021-01-28 2022-08-19 湖北光安伦芯片有限公司 一种纳米柱vcsel光源结构及其制备方法
US20220368105A1 (en) * 2021-05-14 2022-11-17 Microsoft Technology Licensing, Llc Laser having reduced coherence via phaser shifter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123585A (en) * 1975-04-21 1976-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS5743485A (en) * 1980-08-13 1982-03-11 Agency Of Ind Science & Technol Semiconductor ring laser device
JPS58155788A (ja) * 1982-02-22 1983-09-16 ウエスターン・エレクトリツク・カンパニー,インコーポレーテツド 半導体レ−ザ−
JPH0992924A (ja) * 1995-09-25 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JP2000124554A (ja) * 1998-10-13 2000-04-28 Hitachi Cable Ltd 高消光比半導体光増幅器及びそれを用いた光スイッチ

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605037A (en) * 1969-05-02 1971-09-14 Bell Telephone Labor Inc Curved junction laser devices
JPS55123188A (en) 1979-03-16 1980-09-22 Toshiba Corp Spectral bragg reflection mirror
DE3138968A1 (de) * 1981-09-30 1983-04-14 Siemens AG, 1000 Berlin und 8000 München Optische steuervorrichtung zum steuern der in einem optischen wellenleiter gefuehrten strahlung, insbesondere optischer schalter
GB2115217B (en) * 1982-02-09 1986-04-03 Standard Telephones Cables Ltd Semiconductor lasers
JPS60207389A (ja) 1984-03-31 1985-10-18 Agency Of Ind Science & Technol 半導体レ−ザ装置
JPS62202583A (ja) 1986-03-03 1987-09-07 Toshiba Corp 分布帰還型半導体レ−ザ
JPS63116485A (ja) * 1986-11-04 1988-05-20 Sharp Corp 半導体レ−ザ素子
JPS6425586A (en) 1987-07-22 1989-01-27 Hitachi Ltd Photo-semiconductor device
JPH01118806A (ja) * 1987-11-02 1989-05-11 Nippon Sheet Glass Co Ltd 複合光導波型デバイス
JPH0769494B2 (ja) 1988-09-12 1995-07-31 横浜国立大学長 光導波路
US5022042A (en) * 1990-09-10 1991-06-04 General Dynamics Corp. High power laser array with stable wavelength
JPH04132274A (ja) * 1990-09-21 1992-05-06 Eastman Kodak Japan Kk 発光ダイオード
DE69101693T2 (de) * 1990-11-07 1994-08-11 Nippon Telegraph & Telephone Halbleiter-Wellenlängenwandler.
JP2757615B2 (ja) * 1991-08-14 1998-05-25 日本電気株式会社 半導体光第2高調波発光素子
EP0681742B1 (en) * 1993-01-29 2010-02-24 BRITISH TELECOMMUNICATIONS public limited company Optical device packaging
JP3129028B2 (ja) * 1993-05-28 2001-01-29 松下電器産業株式会社 短波長レーザ光源
US5544268A (en) * 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
JP3751052B2 (ja) * 1994-12-28 2006-03-01 シャープ株式会社 集積型光制御素子およびその作製方法、並びにそれを備えた光集積回路素子および光集積回路装置
JPH08211342A (ja) 1995-02-03 1996-08-20 Hitachi Ltd 半導体光機能素子
US5617436A (en) * 1995-06-07 1997-04-01 Cornell Research Foundation, Inc. Strain-compensated multiple quantum well laser structures
JP2713256B2 (ja) 1995-07-21 1998-02-16 日本電気株式会社 光通信等に用いる波長可変半導体レーザ
GB2310316A (en) 1996-02-15 1997-08-20 Sharp Kk Semiconductor laser
JPH09331102A (ja) * 1996-06-12 1997-12-22 Canon Inc レーザ出射端面が傾いている波長多重光源
US6075799A (en) 1996-08-28 2000-06-13 Canon Kabushiki Kaisha Polarization selective semiconductor laser, optical transmitter using the same, optical communication system using the same and fabrication method of the same
JP4117854B2 (ja) * 1997-06-20 2008-07-16 シャープ株式会社 導波路型光集積回路素子及びその製造方法
WO1999008141A1 (en) * 1997-08-04 1999-02-18 International Business Machines Corporation Curved waveguide element for connecting singlemode optical waveguides
JP3337403B2 (ja) * 1997-09-19 2002-10-21 日本電信電話株式会社 周波数安定化レーザ
US6195478B1 (en) 1998-02-04 2001-02-27 Agilent Technologies, Inc. Planar lightwave circuit-based optical switches using micromirrors in trenches
JP3479220B2 (ja) * 1998-07-03 2003-12-15 日本電気株式会社 光集積モジュール
JP2000223787A (ja) * 1999-01-29 2000-08-11 Canon Inc 半導体レーザー
US6501776B1 (en) * 1999-01-29 2002-12-31 Canon Kabushiki Kaisha Temperature-insensitive semiconductor laser
JP2000223784A (ja) 1999-01-29 2000-08-11 Canon Inc 波長安定化半導体レーザー
JP3054707B1 (ja) * 1999-03-19 2000-06-19 東京大学長 光アイソレ―タ
JP2001021775A (ja) * 1999-07-09 2001-01-26 Sumitomo Electric Ind Ltd 光学装置
JP3485260B2 (ja) * 2000-06-30 2004-01-13 日本電信電話株式会社 分布反射光導波路及びこれを含む光素子
JP2002076513A (ja) 2000-09-01 2002-03-15 Fujitsu Ltd 温度無依存分布ブラッグ反射型ミラー及び面型光学素子
JP2002182051A (ja) * 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd 光導波路モジュール
JP3908923B2 (ja) * 2001-05-01 2007-04-25 日本電信電話株式会社 光部品、光部品の設計方法および光モジュール
US6580740B2 (en) * 2001-07-18 2003-06-17 The Furukawa Electric Co., Ltd. Semiconductor laser device having selective absorption qualities
EP1283571B1 (de) * 2001-08-06 2015-01-14 nanoplus GmbH Nanosystems and Technologies Laser mit schwach gekoppeltem Gitterbereich
US20030044119A1 (en) * 2001-08-28 2003-03-06 Takashi Sasaki Optical waveguide module
US6711323B1 (en) * 2002-04-08 2004-03-23 Jamshid Nayyer Wide deflection-angle optical switches and method of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123585A (en) * 1975-04-21 1976-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS5743485A (en) * 1980-08-13 1982-03-11 Agency Of Ind Science & Technol Semiconductor ring laser device
JPS58155788A (ja) * 1982-02-22 1983-09-16 ウエスターン・エレクトリツク・カンパニー,インコーポレーテツド 半導体レ−ザ−
JPH0992924A (ja) * 1995-09-25 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JP2000124554A (ja) * 1998-10-13 2000-04-28 Hitachi Cable Ltd 高消光比半導体光増幅器及びそれを用いた光スイッチ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080826A (ja) * 2011-10-04 2013-05-02 Fujitsu Ltd 光半導体素子、光送信モジュール、光伝送システム及び光半導体素子の製造方法

Also Published As

Publication number Publication date
EP1813975A3 (en) 2007-10-17
EP1813974B1 (en) 2019-02-27
EP1813975A2 (en) 2007-08-01
US20070223856A1 (en) 2007-09-27
JP4295278B2 (ja) 2009-07-15
KR100799797B1 (ko) 2008-02-01
US20060050752A1 (en) 2006-03-09
JP2009020538A (ja) 2009-01-29
EP1610426A1 (en) 2005-12-28
KR20060107499A (ko) 2006-10-13
JP4669540B2 (ja) 2011-04-13
WO2004088802A1 (ja) 2004-10-14
JPWO2004088802A1 (ja) 2006-07-06
EP1610426B1 (en) 2014-01-08
EP1813974A2 (en) 2007-08-01
EP1610426A4 (en) 2006-07-26
KR100681714B1 (ko) 2007-02-15
KR20070041635A (ko) 2007-04-18
US20070223857A1 (en) 2007-09-27
KR20060110012A (ko) 2006-10-23
KR100804371B1 (ko) 2008-02-15
EP1813975B1 (en) 2010-08-25
DE602004028878D1 (de) 2010-10-07
KR20050040943A (ko) 2005-05-03
EP1813974A3 (en) 2007-10-31
US7738520B2 (en) 2010-06-15
US7474817B2 (en) 2009-01-06
US7471864B2 (en) 2008-12-30

Similar Documents

Publication Publication Date Title
JP4669540B2 (ja) 光半導体素子および光半導体集積回路
JP6224495B2 (ja) 半導体レーザ装置
US7450624B2 (en) Grating—outcoupled surface-emitting lasers
US4185256A (en) Mode control of heterojunction injection lasers and method of fabrication
US20020008215A1 (en) Grating-outcoupled surface-emitting lasers with flared gain regions
CN100377455C (zh) 光半导体元件和光半导体集成电路
JP2002353559A (ja) 半導体レーザ及びその製造方法
WO2018197015A1 (en) Curved waveguide laser
US6647048B2 (en) Grating-outcoupled surface-emitting lasers using quantum wells with thickness and composition variation
WO2021148121A1 (en) Dfb laser with angled central waveguide section
JP4523131B2 (ja) 半導体レーザ装置
JPH0230195B2 (ja)
JP2007157888A (ja) 発振波長温度無依存半導体レーザ
JP2003283046A (ja) 半導体レーザ素子
JPS59152685A (ja) 半導体レ−ザ素子
JPS6381305A (ja) 光集積回路
JPH04340782A (ja) 半導体発光装置
JP2013021120A (ja) 半導体光反射器及び半導体レーザ、並びにそれらの駆動方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821