JP2004265508A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2004265508A
JP2004265508A JP2003054450A JP2003054450A JP2004265508A JP 2004265508 A JP2004265508 A JP 2004265508A JP 2003054450 A JP2003054450 A JP 2003054450A JP 2003054450 A JP2003054450 A JP 2003054450A JP 2004265508 A JP2004265508 A JP 2004265508A
Authority
JP
Japan
Prior art keywords
word
select
gate
line
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003054450A
Other languages
English (en)
Inventor
Yoshihito Owa
義仁 大輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003054449A priority Critical patent/JP3786096B2/ja
Priority to JP2003054450A priority patent/JP2004265508A/ja
Priority to US10/783,019 priority patent/US6934191B2/en
Priority to US10/782,974 priority patent/US7053441B2/en
Publication of JP2004265508A publication Critical patent/JP2004265508A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】レイアウトサイズの小さな不揮発性半導体記憶装置を提供すること。
【解決手段】行方向及び列方向に複数のメモリセル410が配設されて構成されたメモリセルアレイ4000を有し、前記複数のメモリセル410の各々は、ソース領域と、ドレイン領域と、前記ソース領域及び前記ドレイン領域間のチャネル領域と、前記チャネル領域と対向して配置されたセレクトゲート411及びワードゲート412と、前記ワードゲート412と前記チャネル領域との間に形成された不揮発性メモリ素子413とを有し、ワード・セレクト線駆動部は、複数の単位ワード・セレクト線駆動部310を有し、前記複数の単位ワード・セレクト線駆動部310の各々は、前記各行の前記複数のメモリセルの各々の前記セレクトゲート及び前記ワードゲートを同電位に設定駆動する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、ワードゲート及びセレクトゲートにより制御される不揮発性メモリ素子を備えた不揮発性半導体記憶装置に関する。
【0002】
【背景技術】
不揮発性半導体記憶装置の一例として、チャネルとゲートとの間のゲート絶縁膜が、酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜の積層体からなり、窒化シリコン膜に電荷がトラップされるMONOS(Metal−Oxide−Nitride−Oxide−Semiconductorまたは−substrate)型が知られている。
【0003】
MONOS型不揮発性半導体記憶装置として、1つの選択ゲートと、1つの制御ゲートにより制御される不揮発性メモリ素子(MONOSメモリ素子)を備えたMONOSフラッシュメモリセルが開示されている。(例えば、特許文献1、特許文献2、特許文献3及び特許文献4参照)
【0004】
【特許文献1】
特開平6−181319号公報
【特許文献2】
特開平11−74389号公報
【特許文献3】
米国特許5408115号明細書
【特許文献4】
米国特許5969383号明細書
【0005】
【発明が解決しようとする課題】
本発明は、レイアウト面積の小さい不揮発性半導体記憶装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の不揮発性半導体記憶装置は、
行方向及び列方向に複数のメモリセルが配設されて構成されたメモリセルアレイを有し、
前記複数のメモリセルの各々は、ソース領域と、ドレイン領域と、前記ソース領域及び前記ドレイン領域間のチャネル領域と、前記チャネル領域と対向して配置されたワードゲート及びセレクトゲートと、前記ワードゲートと前記チャネル領域との間に形成された不揮発性メモリ素子とを有し、
前記メモリセルアレイは、前記行方向に沿って配置された各行の前記複数のメモリセルの前記ワードゲートにそれぞれ共通接続された複数のワード線と、
前記行方向に沿って配置された各行の前記複数のメモリセルの前記セレクトゲートにそれぞれ共通接続された複数のセレクト線と、
前記列方向に沿って配置された各列の前記複数のメモリセルの前記ドレイン領域または前記ソース領域のいずれかにそれぞれ共通接続された複数のビット線と、
前記ワード線及び前記セレクト線を駆動するワード/セレクト線駆動部と、
前記ビット線を駆動するビット線駆動部と、
を有し、
前記ワード/セレクト線駆動部は、複数の単位ワード/セレクト線駆動部を有し、
前記複数の単位ワード/セレクト線駆動部の各々は、前記各行の前記複数のメモリセルの各々の前記セレクトゲート及び前記ワードゲートを同電位に設定駆動することができる。
【0007】
上記の構成により、前記セレクトゲート専用の駆動部及びワードゲート専用の駆動部を別々に設ける必要が無く、レイアウト面積を縮小させることができる。
【0008】
前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線を互いに短絡することができる。この構成により、前記複数のメモリセルの各々の前記セレクトゲート及び前記ワードゲートを同電位に駆動することができる。
【0009】
前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線の配線表面上をまたがるように覆い被せられた配線コンタクトを有することができる。この構成により、前記ワード線及び前記セレクト線を一つのコンタクトで短絡させて駆動部に接続できるので、コンタクトの面積を節約できる。
【0010】
前記複数のメモリセルの各々では、前記ワードゲートと前記セレクトゲートとが容量結合されることができる。
【0011】
容量結合されている場合には、前記ワード/セレクト線駆動部は、前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線のいずれかに駆動電圧を供給することができる。
【0012】
前記不揮発性メモリ素子は、前記複数のメモリセルの各々の前記ワードゲート及び前記セレクトゲートの間に延在形成されることができる。
【0013】
前記不揮発性メモリ素子は、2つの酸化膜(O)の間に窒化膜(N)を有するONO膜で形成することができる。
【0014】
前記複数のメモリセルの各々は、前記チャネル領域に、前記ソース領域に隣接する第1の領域及び前記ドレイン領域に隣接する第2の領域を有することができ、前記セレクトゲートを前記第1の領域の上に配置することができ、前記ワードゲートを前記第2の領域上に前記不揮発性メモリを介して配置することができる。
【0015】
あるいは、前記複数のメモリセルの各々は、前記チャネル領域に、前記ソース領域に隣接する第1の領域及び前記ドレイン領域に隣接する第2の領域を有することができ、前記ワードゲートを前記第1の領域上に前記不揮発性メモリを介して配置することができ、前記セレクトゲートを前記第2の領域の上に配置することができる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照して説明する。
【0017】
(全体構成とメモリブロック)
図1は、本実施形態の全体構成を表すブロック図である。メモリセルアレイ4000は、行方向X及び列方向Yに沿って配列された複数のメモリセル410(後に図示する)を備える。また、メモリセルアレイ4000は、複数のメモリブロック400を備える。電源回路100からは複数種の電圧が発生される。発生された複数種の電圧は、複数の電圧供給線により各メモリブロック400へ供給される。また、メモリセルアレイ4000は、メモリセルアレイ4000中のビット線60(後に図示する)を駆動するビット線駆動部(図示せず)を備える。
【0018】
図2は、メモリブロック400の一部を示した回路図である。メモリブロック400は、複数のワード線50、複数のビット線60、複数のセレクト線70、複数のソース線80及び複数のメモリセル410を備える。また、メモリブロック400は、ワード/セレクト線駆動部300及びソース線駆動部(図示せず)を備える。図2中で点線で丸く囲まれた部分は、メモリセル410を示す。
【0019】
メモリセル410は、セレクトゲート411、ワードゲート412及びONO膜413を有する。符号417は、ONO膜413を構成する窒化膜を表す(図3も参照)。メモリセル410の構造については、後に詳細を述べる。
【0020】
ワード/セレクト線駆動部300は、複数の単位ワード/セレクト線駆動部310から構成されている。複数のワード線50の各々は、メモリブロック400内の行方向Xに沿って配置された複数のメモリセル410のワードゲート412を共通接続する。複数のセレクト線70の各々は、複数のワード線50の各々によって共通接続された複数のメモリセル410のセレクトゲート411それぞれを行方向Xに沿って共通接続する。
【0021】
図2によると、複数のワード線50の各々および複数のセレクト線70の各々は複数の単位ワード/セレクト線駆動部310の各々に共通接続されている。つまり、複数のメモリセル410の各々のセレクトゲート411及びワードゲート412は複数の単位ワード/セレクト線駆動部310の各々よって、それぞれ同一の信号で駆動される。これにより、ワード線50及びセレクト線70それぞれに個別の単位駆動部を設ける場合にくらべて、レイアウト面積を縮小できる。
【0022】
複数のビット線60の各々は列方向Yに、複数のメモリセル410のそれぞれのビット線拡散層BLD(後に図示する)を共通接続する。また、複数のソース線80の各々は列方向Yに、複数のメモリセル410のそれぞれのソース線拡散層SLD(後に図示する)を共通接続する。
【0023】
図3は、メモリブロック400の一部の断面図である。符号414は基板を表す。ビット線60は、導電体(例えばメタル)で形成することができる。ソース・ドレイン領域(図3中の符号BLDまたはSLDで示された拡散層)に挟まれたチャネル領域上にセレクトゲート411及びワードゲート412が絶縁体膜(例えばSiO2)を介して配置されている。前記絶縁体膜は、窒化酸化膜でも形成することができる。また、ワードゲート412とチャネル領域との間にL字状(または逆L字状)に窒化膜417(例えばSiN)が形成されている。セレクトゲート411及びワードゲート412はポリシリコンで形成することができる。窒化膜417を絶縁体416(例えばSiO2)の膜で挟むようにして構成されたものが、ONO膜413である。また、メモリセル410の窒化膜417は図4に示すように、セレクトゲート411及びワードゲート412の間に延在形成させなくてもよい。
【0024】
また、セレクトゲート411及びワードゲート412の表面には、シリサイド(図示せず)を形成することができる。シリサイド(図示せず)として、例えばCoシリサイドまたはTiシリサイドを使用することができる。これによりセレクトゲート411及びワードゲート412の抵抗値を下げることができる。符号PSLDはポリプラグ(ポリシリコン製のプラグ)を表し、ポリプラグPSLDは他の導電体で形成することもでき、ソース線拡散層SLDの抵抗値を下げる効果を奏する。各ビット線拡散層BLDは、各ビット線拡散層の列方向Yでの両端側に配置されている2つのメモリセル410に共用される。また、各ソース線拡散層SLDは、各ソース線拡散層の列方向Yでの両端側に配置されている2つのメモリセル410に共用される。図3の断面では、それぞれのビット線拡散層BLDはビット線60に列方向Yに沿って共通接続される。なお、以下の図において図3と同符号のものは、図3中の同符号のものと同様の意味を表す。
【0025】
上記の構造とは別に、ビット線拡散層BLDとソース線拡散層SLDとは互いに入れ替えて構成することもできる。その場合は、ビット線駆動部(図示せず)の出力電圧とソース線駆動部(図示せず)の出力電圧を互いに入れ替えればよい。なお、この構成については、後に本実施形態の変形例として記載する。
【0026】
図5(a)〜図5(e)は、本実施形態のメモリブロック400の一部の平面及び断面を示した図である。平面図である図5(a)の符号A−A〜D−Dはそれぞれ断面を表し、A−A断面〜D−D断面をそれぞれ図5(b)〜図5(e)に示した。なお、図5(a)中のワード線50及びセレクト線70は、図5(b)〜図5(e)中のワードゲート412及びセレクトゲート411と同一である。
【0027】
各ビット線60は、各ワード線50、各セレクト線70及び各ソース線拡散層SLDとは、形成されている層が異なるので、電気的に絶縁されている(図5(b)参照)。各ビット線60は、ビット線コンタクトBCNTによって下層の複数のビット線拡散層BLDそれぞれに接続されている(図5(b)参照)。各ビット線拡散層BLDは、複数のビット線60の各々同士を電気的に絶縁するように、素子分離部419によってビット線コンタクトBCNT毎に絶縁されている(図5(a)参照)。この素子分離部419は、図5(c)に示すように、例えばSTI(Shallow−Trench−Isolation)にて形成することができる。素子分離部419でビット線拡散層BLDを絶縁分離することにより、ビット線拡散層BLDに接続された各ビット線60を互いに絶縁分離させることができる(図7参照)。
【0028】
符号WSCNTは、複数のワード線50の各々と複数のワード線50の各々に隣り合うセレクト線70とを同時に上層(複数の単位ワード/セレクト線駆動部310の各々)へ接続するコンタクトを表す。すなわち、コンタクトWSCNTは、複数のメモリセル410にそれぞれ接続されたワード線50及びセレクト線70の配線表面上をまたがるように覆い被せられた配線コンタクトである。
【0029】
コンタクトWSCNT(以下、バッティングコンタクトとも言う)は、図5(a)に示されるように、メモリブロック400の行方向Xの両端側に互い違いに配置することもできる。また、行方向Xの片側にそろえて、コンタクトWSCNTを配置することもできる。図5(a)では、コンタクトWSCNT(バッティングコンタクト)を用いて各ワード線50及び各セレクト線70を各単位ワード/セレクト線駆動部310へ接続している。各ワード線50及び各セレクト線70を各単位ワード/セレクト線駆動部310へ接続するのに一つのコンタクトを共用するので、レイアウト面積の縮小が可能である。また、各ワード線50及び各セレクト線70の各々に個別のコンタクトを配置して、各単位ワード/セレクト線駆動部310へ接続することも可能である。
【0030】
図5(d)及び図5(e)に示すように、コンタクトWSCNTにより、セレクト線70(セレクトゲート411)及びワード線50(ワードゲート412)が上層部へ共通接続されている。
【0031】
図6は、図5(a)の一部を立体的に表した概略斜視図である。図6によると、素子分離部419(例えばSTI(Shallow−Trench−Isolation))によって、行方向Xにてビット線拡散層BLDが素子分離されている。これにより、各々のビット線60を、行方向Xに沿って配列された複数のメモリセル410毎に、電気的に分離することができる。ワードゲート412は行方向Xに沿って素子が連続して形成されているので、これをもってワード線50と兼用できるが、ワードゲート412に沿って金属配線を裏打ちし、その金属配線をワード線50としても良い。
【0032】
図3のような構成の場合、各セレクト線70はフローティング状態にし、各ワード線50にコンタクトを配置し、各単位ワード/セレクト線駆動部310へ接続する方法も可能である(以下、セレクトゲートフローティング法と呼ぶ)。メモリセル410が図3のような構成の場合、ワードゲート412へ電圧印加を行うと、容量カップリング効果により、セレクトゲート411はワードゲート412とほぼ同じ値の電圧にチャージアップされる。つまり、各単位ワード/セレクト線駆動部310へ接続するためのコンタクトは、各ワード線50に配置すればよく、各セレクト線70に配置する必要が無くなる。
【0033】
図3よると各メモリセル410のワードゲート412とセレクトゲート411の間にONO膜413が延在形成されているため、容量カップリング効果が生じる。つまり、セレクトゲートフローティング法は、各メモリセル410のワードゲート412とセレクトゲート411の間に容量カップリング効果を生じさせるような誘電体膜が形成されていれば可能である。図7は、一実施形態にセレクトゲートフローティング法を用いたときのメモリブロックの部分図である。
【0034】
(動作説明)
本実施形態では、各メモリセル410へのアクセスは、メモリブロック400単位で行われる。つまり、メモリセル410を選択するためには、まず、メモリブロック400を選択し、その後メモリセル410を選択する。選択されたメモリセル410を選択メモリセルと呼ぶ。選択メモリセルを有するメモリブロック400を選択メモリブロック、それ以外のメモリブロック400を非選択メモリブロックと呼ぶ。
【0035】
複数のワード線50のうち、選択されたワード線50を選択ワード線、それ以外のワード線50を非選択ワード線と呼ぶ。複数のビット線60のうち、選択されたビット線60を選択ビット線、それ以外のビット線60を非選択ビット線と呼ぶ。複数のセレクト線70のうち、選択されたセレクト線70を選択セレクト線、それ以外のセレクト線70を非選択セレクト線と呼ぶ。複数のソース線80のうち、選択されたソース線80を選択ソース線、それ以外のソース線80を非選択ソース線と呼ぶ。
【0036】
また、非選択メモリブロック中のワード線50、ビット線60、セレクト線70及びソース線80は、すべての動作において、すべて電圧0Vに設定されている。以下、スタンバイ、イレーズ、プログラム、リードの各動作について図を参照しながら説明する。
【0037】
(スタンバイ)
図8は、メモリブロック400の一部に、スタンバイ時の電圧印加状態をあわせて表した図である。符号WL0〜3はそれぞれ、ワード線50を表す。符号BL0〜3はそれぞれビット線60を表す。符号SG0〜3はそれぞれ、セレクト線70を表す。符号SL0、1はそれぞれ、ソース線80を表す。以下の図において、図8と同符号のものは、図8の同符号のものが表す意味と同様の意味を表す。
【0038】
各ワード線WL0〜3はすべてスタンバイ用ワード/セレクト電圧(0V)に設定されている。各セレクト線SG0〜3は、対応する各ワード線WL0〜3のそれぞれに接続されているので、各セレクト線SG0〜3に印加される電圧は、すべてスタンバイ用ワード/セレクト電圧(0V)である。各ビット線BL0〜3はすべてスタンバイ用ビット電圧(0V)に設定されている。また、各ソース線SL0、1はすべてスタンバイ用ソース電圧(0V)に設定されている。
【0039】
スタンバイ時は、メモリセルアレイ4000内(選択メモリブロック内及び非選択メモリブロック内)のすべてのメモリセル410は、上述のような電圧印加状態にある。
【0040】
(イレーズ)
図9は、メモリブロック400の一部に、イレーズ時の電圧印加状態をあわせて表した図である。
【0041】
イレーズは、選択メモリブロック内すべてのメモリセル410に対して行われる。つまり、選択メモリブロック内のすべてのメモリセル410が選択メモリセルとなる。選択メモリブロック内のすべてのワード線50(ワード線WL0〜3を含む)及びセレクト線70(セレクト線SG0〜3を含む)はすべて消去用ワード/セレクト電圧(−3V)にチャージアップされている。また、メモリブロック内のすべてのソース線80(ソース線SL0、1を含む)はすべて消去用ソース電圧(0V)にチャージアップされている。さらに、メモリブロック内のすべてのビット線60(ビット線BL0〜3を含む)は消去用ビット電圧(5V)に設定される。また、選択メモリブロックの基盤414には消去用基板電圧(0V)が印加される。
【0042】
前述のような電圧印加状態になると、ソース線拡散層SLDとビット線拡散層BLDの間のチャネル領域にチャネルが形成される。ところが、選択ブロック内のメモリセル410の各ワードゲート412は消去用ワード/セレクト電圧(−3V)にチャージアップされているので、各ワードゲート412とビット線拡散層BLDの間に電界が生じる。その結果で生じたホットホールにより、ONO膜413にトラップされていた電荷(電子)を消去できるのである。
【0043】
なお、選択メモリブロック内のメモリセル410の各セレクトゲート411にも同時に消去用ワード/セレクト電圧(−3V)が印加されるので、前記各セレクトゲート411とソース線拡散層SLDの間に電界が生じる。この結果、上述の電圧印加方法において、ビット線60に印加する消去用ビット電圧を例えば0Vに設定し、ソース線80に印加する消去用ソース電圧を例えば5Vに設定することも可能である。
【0044】
本実施形態では、ホットホールによってデータ消去を行ったが、FN(Fowler−Norheim)消去という手法を用いることもできる。図10にFN消去時の電圧印加状態を示した。
【0045】
図10によると、選択メモリブロック内のすべてのワード線50(ワード線WL0〜3を含む)及びセレクト線70(セレクト線SG0〜3を含む)はすべてFN消去用ワード/セレクト電圧(−8V)にチャージアップされている。また、選択メモリブロック内のすべてのソース線80(ソース線SL0、1を含む)はフローティング状態、または、FN消去用ソース電圧(5V)に設定されている。さらに、選択メモリブロック内のすべてのビット線60(ビット線BL0〜3を含む)は消去用ビット電圧(5V)に設定される。また、選択メモリブロックの基盤414(図10中の符号Pwell)にはFN消去用基板電圧(5V)が印加される。FN消去は、FNトネリングを用いたものであり、ONO膜413に所定の電界(例えば電圧差15V)をかけると、ONO膜413内の電荷(電子)はトンネル効果によってONO膜413の外部へ放出されるという原理である。
【0046】
イレーズ動作時(ホットホールによる消去及びFN消去)の非選択メモリブロックについては、スタンバイ時と同様の電圧印加状態にある。
【0047】
(プログラム)
図11は、メモリブロック400の一部に、プログラム時の電圧印加状態をあわせて表した図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。
【0048】
図11によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はプログラム用選択ワード/セレクト電圧(5.5V)にチャージアップされている。ソース線SL0(選択ソース線)はプログラム用選択ソース電圧(0V)にチャージアップされ、ソース線SL1を含む非選択ソース線はすべてプログラム用非選択ソース電圧(Vcc)に設定されている。また、ビット線BL1を含む選択ビット線はすべてプログラム用選択ビット電圧(5V)に設定され、その他のビット線60、つまり選択メモリブロック中の非選択ビット線はすべてプログラム用非選択ビット電圧(0V)に設定されている。ワード線WL0、WL2及びWL3を含む選択メモリブロック内の非選択ワード線及びセレクト線SG0、SG2及びSG3を含む選択メモリブロック内の非選択セレクト線はすべてプログラム用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはプログラム用基板電圧(0V)が印加される。
【0049】
前述のような電圧印加状態になると、選択メモリセルの両側にあるソース線拡散層SLDとビット線拡散層BLDの間のチャネル領域にチャネルが形成される。そして、選択メモリセルのセレクトゲート411はプログラム用選択ワード/セレクト電圧(5.5V)にチャージアップされているので、チャネル領域に飛び出した電子はホットエレクトロンとなる。さらに選択メモリセルのワードゲート412はプログラム用選択ワード/セレクト電圧(5.5V)にチャージアップされているので、ホットエレクトロンはワードゲート412側に引き寄せられる。このとき、引き寄せられたホットエレクトロンは、ONO膜413によりトラップされる。以上が選択メモリセルに対してのデータ書き込み(プログラム)の原理である。
【0050】
(リード)
図12は、メモリブロック400の一部に、リード時の電圧印加状態をあわせて表した図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。
【0051】
図12によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はリード用選択ワード/セレクト電圧(電源電圧Vcc)にチャージアップされている。ソース線SL0、1を含むすべてのソース線80はすべてリード用選択ソース電圧(0V)に設定されている。また、ビット線BL1を含む選択ビット線はすべてリード用選択ビット電圧(Vsa、例えば電圧1V)に設定され、その他のビット線60つまり選択メモリブロック中の非選択ビット線はすべてリード用非選択ビット電圧(0V)に設定されている。ワード線WL0、WL2及びWL3を含む選択メモリブロック内の非選択ワード線及びセレクト線SG0、SG2及びSG3を含む選択メモリブロック内の非選択セレクト線はすべてリード用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはリード用基板電圧(0V)が印加される。
【0052】
前述のような電圧印加状態になると、選択メモリセルの両側にあるソース線拡散層SLDとビット線拡散層BLDの間のチャネル領域にチャネルが形成される。そして、選択メモリセルのワードゲート412はリード用選択ワード/セレクト電圧(Vcc)にチャージアップされているので、チャネル領域に飛び出した電子はホットエレクトロンとなる。さらに、選択メモリセルのセレクトゲート411はリード用選択ワード/セレクト電圧(Vcc)にチャージアップされているので、ホットエレクトロンはセレクトゲート411側に引き寄せられる。このようにして、選択メモリセルの両側にあるソース線拡散層SLDとビット線拡散層BLDの間のチャネル領域に電流(IDS)が流れる。
【0053】
メモリセル410のワードゲート412、ONO膜413、チャネル領域の3つの領域構造を、MOSトランジスタと見なすことができる。このとき、ONO膜に電荷がトラップされている状態では、電荷がトラップされていない状態より閾値が高くなる。図14が前述の電荷の有無と、ソース線拡散層SLDとビット線拡散層BLDとの間に流れる電流についての相関関係を表した図である。
【0054】
図14によると、ワードゲート412に電圧Vreadを印加した時において、ONO膜に電荷がトラップされていない場合では電流IDSは20μA流れるが、電荷がトラップされている場合では電流IDSはあまり流れない。つまり、ONO膜に電荷がトラップされていると、トランジスタの閾値が高くなるので、ワードゲート412への印加電圧が、電圧Vreadでは、電流IDSがあまり流れないのである。
【0055】
この電流の大小を各ビット線60に配置されているセンスアンプ(図示せず)で読みとることで、選択メモリセルに保持されているデータを読みとることができる。
【0056】
以上が選択メモリセルに対してのデータ読み出し(リード)の原理である。なお、上述のリード動作は、フォワードリードである。つまり、ソース線拡散層SLDとビット線拡散層BLDとにおいて、プログラム時と同様にソース線拡散層SLDに高電圧を印加している。読み出し方法としてリバースリードを用いることも可能である。その場合、本実施形態でのソース線拡散層SLDとビット線拡散層BLDとのそれぞれに印加する電圧値が、お互い入れ替わることになる。
【0057】
図13はリバースリード時の電圧印加状態を表した図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。図13によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はリバースリード用選択ワード/セレクト電圧(電源電圧Vcc)にチャージアップされている。ソース線SL0、1を含むすべてのソース線80はすべてリバースリード用選択ソース電圧(Vcc)に設定されている。また、ビット線BL1を含む選択ビット線はすべてリバースリード用選択ビット電圧(Vcc−Vsa)に設定され、その他のビット線60つまり選択メモリブロック中の非選択ビット線はすべてリバースリード用非選択ビット電圧(Vcc)に設定されている。ワード線WL0、WL2及びWL3を含む非選択ワード線及びセレクト線SG0、SG2及びSG3を含む非選択セレクト線はすべてリバースリード用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはリード用基板電圧(0V)が印加される。メモリセル410からデータを読み出せる原理は、フォワードリードと同様である。
【0058】
(比較例との対比と、効果)
図15は、第1比較例におけるメモリブロック400の一部を表した図である。図15によると、第1比較例のメモリブロック400内の複数のメモリセル410のそれぞれに、ワード線50及びセレクト線70が1本ずつ接続されている。ワード線50及びセレクト線70はそれぞれ単位ワード線駆動部320または単位セレクト線駆動部330によって駆動される。つまり、第1比較例は、メモリブロック400内において、単位ワード線駆動部320及び単位セレクト線駆動部330をメモリブロック400内のワード線50及びセレクト線70の数だけ、必要とする。さらに、配線ピッチに制限があるので、多数の駆動部を配置するためには、配置方法に工夫が必要となる。これらは、結果的にレイアウト面積の増大につながる。
【0059】
第1比較例に比べて、本実施形態では、各単位ワード・セレクト線駆動部310が各ワード線50の他、各セレクト線70も駆動するので、別途セレクト線70用の単位駆動部を設置する必要がない。セレクト線70専用の駆動部を省略できるので、レイアウト面積を大幅に小さく設計することができる。
【0060】
図16は、第2比較例におけるメモリブロック400の一部の断面を表した図である。図16によると、各セレクトゲート411は四角形状に比較的大きく形成されている。これに比べ、本実施形態では各セレクトゲート411はサイドウォール形状に形成されている(図3参照)。基板上に積層された導電体に対してエッチングを施した際に、エッチングしきれなかった部分(導電体)がサイドウォール(側壁)として残る。このサイドウォール(側壁)をセレクトゲート411として用いることができる。つまり、本実施形態では各セレクトゲート411をサイドウォール形状に形成することで、各メモリセル410のサイズを微細化している。これは、メモリセルアレイ400のダイサイズの縮小を可能とする効果を奏する。これらは、製造コストの大幅な削減を可能にする。
【0061】
(変形例の構成)
図17に一実施形態のメモリブロック400に係る変形例を示した。変形例は、一実施形態と同様の効果を奏する。一実施形態との相違は、ビット線60及びソース線70に対するメモリセル410のセレクトゲート411及びワードゲート412の配置方向である。より具体的にわかるように列方向Yに沿ったメモリブロック400の断面を図18に示した。
【0062】
図18によると、変形例ではセレクトゲート411に隣接する拡散層がビット線拡散層BLDになり、ワードゲート412に隣接する拡散層がソース線拡散層SLDとなる。変形例においても、一実施形態と同様にメモリブロック400の行方向Xに沿った両端にコンタクトWSCNT(バッティングコンタクト)が串歯上に配置されているが、コンタクトWSCNT(バッティングコンタクト)はすべて同じ側に配置されてもよい。また、ワードゲート412(ワード線50)及びセレクトゲート411(セレクト線70)のそれぞれに個別のコンタクトを配置して、各ワード線50及び各セレクト線70を各単位ワード・セレクト線駆動部310へ接続することも可能である。さらに、各メモリセル410のONO膜417を図19に示すように形成することもできる。
【0063】
図18によると各メモリセルの窒化膜417は、セレクトゲート411とワードゲート412の間まで延在形成されているので、前述してあるセレクトゲートフローティング法を用いることができる。変形例においても、セレクトゲート411とワードゲート412の間に容量カップリングを生じさせるような誘電体膜が形成されていれば、セレクトゲートフローティング法を用いることができる。図20は、変形例においてセレクトゲートフローティング法を用いたときのメモリブロック400の一部を示した図である。
【0064】
(変形例の動作説明)
変形例は、一実施形態と同様にスタンバイ、イレーズ、プログラム、リードの各状態を有する。以下に、図面を参照しながら説明する。図21〜25は、選択メモリブロックについての電圧印加状態を示している。スタンバイ時では、メモリセルアレイ4000内の各ワード線50(ワード線WL0〜3を含む)及び各セレクト線70(セレクト線SG0〜3を含む)はすべてスタンバイ用ワード・セレクト電圧(0V)に設定されている。同様に、メモリセルアレイ4000内の各ビット線60(ビット線BL0〜3を含む)はすべてスタンバイ用ビット電圧(0V)に設定され、メモリセルアレイ4000内の各ソース線80(ソース線SL0、1を含む)はすべてスタンバイ用ソース電圧(0V)に設定される。また、各動作時(イレーズ、プログラム、リード)の非選択メモリブロックはすべて、スタンバイ時と同様の状態に設定される。各動作時(イレーズ、プログラム、リード)の基本原理は、一実施形態と同様である。
【0065】
(変形例のイレーズ)
図21は、イレーズ時の選択メモリブロックの一部についての電圧印加状が示された図である。選択メモリブロック内のすべてのワード線50(ワード線WL0〜3を含む)及び選択メモリブロック内のすべてのセレクト線70(セレクト線SG0〜3を含む)は消去用ワード・セレクト電圧(−3V)に設定される。選択メモリブロック内のすべてのビット線60(ビット線BL0〜3を含む)は消去用ビット電圧(0V)に設定される。選択メモリブロック内のすべてのソース線80(ソース線SL0、1を含む)はすべて消去用ソース電圧(5V)に設定される。また、選択メモリブロックの基盤414には消去用基板電圧(0V)が印加される。
【0066】
また、変形例においてもイレーズは前述したFN消去を用いることができる。図22は、イレーズ動作をFN消去で行ったときの電圧印加状態が示された図である。選択メモリブロック内のすべてのワード線50(ワード線WL0〜3を含む)及びセレクト線70(セレクト線SG0〜3を含む)はすべてFN消去用ワード/セレクト電圧(−8V)に設定されている。また、選択メモリブロック内のすべてのビット線60(ビット線BL0〜3を含む)はフローティング状態、または、FN消去用ビット電圧(5V)に設定されている。さらに、選択メモリブロック内のすべてのソース線80(ソース線SL0、1を含む)は消去用ソース電圧(5V)に設定される。また、選択メモリブロックの基盤414(図22中の符号Pwell)にはFN消去用基板電圧(5V)が印加される。
【0067】
(変形例のプログラム)
図23は、プログラム時の選択メモリブロックの一部についての電圧印加状が示された図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。
【0068】
図8によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はプログラム用選択ワード/セレクト電圧(5.5V)に設定されている。ソース線SL0(選択ソース線)はプログラム用選択ソース電圧(5V)に設定され、ソース線SL1を含む選択メモリブロック内の非選択ソース線はすべてプログラム用非選択ソース電圧(0V)に設定されている。また、ビット線BL1を含む選択ビット線はすべてプログラム用選択ビット電圧(0V)に設定され、その他のビット線60、つまり選択メモリブロック中の非選択ビット線はすべてプログラム用非選択ビット電圧(Vpbl、たとえば約5V)に設定されている。ワード線WL0、WL2及びWL3を含む選択メモリブロック内の非選択ワード線及びセレクト線SG0、SG2及びSG3を含む選択メモリブロック内の非選択セレクト線はすべてプログラム用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはプログラム用基板電圧(0V)が印加される。
【0069】
(変形例のリード)
図24は、リード時の選択メモリブロックの一部についての電圧印加状が示された図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。
【0070】
図24によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はリード用選択ワード/セレクト電圧(電源電圧Vcc)に設定されている。ソース線SL0、1を含む選択メモリブロック内のすべてのソース線80はリード用選択ソース電圧(Vcc)に設定されている。また、ビット線BL1を含む選択ビット線はすべてリード用選択ビット電圧(Vcc−Vsa)に設定され、選択メモリブロック中の非選択ビット線はすべてリード用非選択ビット電圧(Vcc)に設定されている。ワード線WL0、WL2及びWL3を含む選択メモリブロック内の非選択ワード線及びセレクト線SG0、SG2及びSG3を含む選択メモリブロック内の非選択セレクト線はすべてリード用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはリード用基板電圧(0V)が印加される。なお、これは、フォワードリードである。一実施形態と同様に、変形例もリバースリードが可能である。
【0071】
図25はリバースリード時の電圧印加状態を表した図である。点線で丸く囲まれたメモリセル410が選択メモリセルである。図25によると、ワード線WL1(選択ワード線)及びセレクト線SG1(選択セレクト線)はリバースリード用選択ワード/セレクト電圧(電源電圧Vcc)に設定されている。ソース線SL0、1を含む選択メモリブロック内のすべてのソース線80はリバースリード用選択ソース電圧(0V)に設定されている。また、ビット線BL1を含む選択ビット線はすべてリバースリード用選択ビット電圧(Vsa、例えば電圧1V)に設定され、選択メモリブロック中の非選択ビット線はすべてリバースリード用非選択ビット電圧(0V)に設定されている。ワード線WL0、WL2及びWL3を含む選択メモリブロック内の非選択ワード線及びセレクト線SG0、SG2及びSG3を含む選択メモリブロック内の非選択セレクト線はすべてリバースリード用非選択ワード/セレクト電圧(0V)に設定されている。また、選択メモリブロックの基盤414にはリード用基板電圧(0V)が印加される。
【0072】
以上のようにして、本発明はレイアウト面積の小さい不揮発性半導体記憶装置を提供できる。
【0073】
本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る全体図。
【図2】本発明のメモリブロックの構成図。
【図3】本発明の一実施形態に係るメモリブロックの断面構造図。
【図4】本発明の一実施形態に係るメモリブロックの他の断面構造図。
【図5】図5(a)〜図5(e)は、本発明の一実施形態に係るメモリブロックの平面及び断面を示す部分図。
【図6】図5を立体的に示した概略斜視図。
【図7】図4に示す断面構造を有するメモリブロックの部分図。
【図8】スタンバイ時の電圧印加状が示された図。
【図9】イレーズ時の電圧印加状が示された図。
【図10】FN消去時の電圧印加状が示された図。
【図11】プログラム時の電圧印加状が示された図。
【図12】フォワードリード時の電圧印加状が示された図。
【図13】リバースリード時の電圧印加状が示された図。
【図14】ONO膜内の電荷の有無と流れる電流の関係を表す図。
【図15】第1比較例のメモリブロックの一部を示した図。
【図16】第2比較例のメモリブロックの断面図。
【図17】変形例のメモリブロック400の一部を示した図。
【図18】メモリブロックの断面図。
【図19】メモリブロックの断面図。
【図20】変形例にセレクトゲートフローティング法を用いたときのメモリブロックの図。
【図21】変形例のイレーズ時の電圧印加状が示された図。
【図22】変形例のFN消去時の電圧印加状が示された図。
【図23】変形例のプログラム時の電圧印加状が示された図。
【図24】変形例のフォワードリード時の電圧印加状が示された図。
【図25】変形例のリバースリード時の電圧印加状が示された図。
【符号の説明】
50 ワード線、60 ビット線、70 セレクト線、80 ソース線、300ワード/セレクト線駆動部、310 単位ワード・セレクト線駆動部、400メモリブロック、410 メモリセル、411 セレクトゲート、412 ワードゲート、413 ONO膜、417 窒化膜

Claims (9)

  1. 行方向及び列方向に複数のメモリセルが配設されて構成されたメモリセルアレイを有し、
    前記複数のメモリセルの各々は、ソース領域と、ドレイン領域と、前記ソース領域及び前記ドレイン領域間のチャネル領域と、前記チャネル領域と対向して配置されたワードゲート及びセレクトゲートと、前記ワードゲートと前記チャネル領域との間に形成された不揮発性メモリ素子とを有し、
    前記メモリセルアレイは、前記行方向に沿って配置された各行の前記複数のメモリセルの前記ワードゲートにそれぞれ共通接続された複数のワード線と、
    前記行方向に沿って配置された各行の前記複数のメモリセルの前記セレクトゲートにそれぞれ共通接続された複数のセレクト線と、
    前記列方向に沿って配置された各列の前記複数のメモリセルの前記ドレイン領域または前記ソース領域のいずれかにそれぞれ共通接続された複数のビット線と、
    前記ワード線及び前記セレクト線を駆動するワード/セレクト線駆動部と、
    前記ビット線を駆動するビット線駆動部と、
    を有し、
    前記ワード/セレクト線駆動部は、複数の単位ワード/セレクト線駆動部を有し、
    前記複数の単位ワード/セレクト線駆動部の各々は、前記各行の前記複数のメモリセルの各々の前記セレクトゲート及び前記ワードゲートを同電位に設定駆動することを特徴とする不揮発性半導体記憶装置。
  2. 請求項1において、
    前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線は互いに短絡されていることを特徴とする不揮発性記憶装置。
  3. 請求項2において、
    前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線の配線表面上をまたがるように覆い被せられた配線コンタクトを有することを特徴とする不揮発性記憶装置。
  4. 請求項1において、
    前記複数のメモリセルの各々では、前記ワードゲートと前記セレクトゲートとが容量結合されていることを特徴とする不揮発性記憶装置。
  5. 請求項4において、
    前記ワード/セレクト線駆動部は、前記複数のメモリセルにそれぞれ接続された前記ワード線及び前記セレクト線のいずれかに駆動電圧を供給することを特徴とする不揮発性記憶装置。
  6. 請求項4または5において、
    前記不揮発性メモリ素子は、前記複数のメモリセルの各々の前記ワードゲート及び前記セレクトゲートの間に延在形成されていることを特徴とする不揮発性記憶装置。
  7. 請求項1乃至6のいずれかにおいて、
    前記不揮発性メモリ素子は、2つの酸化膜(O)の間に窒化膜(N)を有するONO膜で形成されていることを特徴とする不揮発性記憶装置。
  8. 請求項1乃至7のいずれかにおいて、
    前記複数のメモリセルの各々は、前記チャネル領域に、前記ソース領域に隣接する第1の領域及び前記ドレイン領域に隣接する第2の領域を有し、
    前記セレクトゲートは前記第1の領域の上に配置され、前記ワードゲートは前記第2の領域上に前記不揮発性メモリを介して配置されていることを特徴とする不揮発性記憶装置。
  9. 請求項1乃至7のいずれかにおいて、
    前記複数のメモリセルの各々は、前記チャネル領域に、前記ソース領域に隣接する第1の領域及び前記ドレイン領域に隣接する第2の領域を有し、
    前記ワードゲートは前記第1の領域上に前記不揮発性メモリ素子を介して配置され、前記セレクトゲートは前記第2の領域の上に配置されていることを特徴とする不揮発性記憶装置。
JP2003054450A 2003-02-28 2003-02-28 不揮発性半導体記憶装置 Pending JP2004265508A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003054449A JP3786096B2 (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置
JP2003054450A JP2004265508A (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置
US10/783,019 US6934191B2 (en) 2003-02-28 2004-02-23 Nonvolatile semiconductor memory device
US10/782,974 US7053441B2 (en) 2003-02-28 2004-02-23 Nonvolatile semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003054449A JP3786096B2 (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置
JP2003054450A JP2004265508A (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2004265508A true JP2004265508A (ja) 2004-09-24

Family

ID=38002234

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003054449A Expired - Fee Related JP3786096B2 (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置
JP2003054450A Pending JP2004265508A (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003054449A Expired - Fee Related JP3786096B2 (ja) 2003-02-28 2003-02-28 不揮発性半導体記憶装置

Country Status (2)

Country Link
US (2) US7053441B2 (ja)
JP (2) JP3786096B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228957A (ja) * 2004-02-13 2005-08-25 Nec Electronics Corp 不揮発性記憶素子およびその製造方法
JP2008097758A (ja) * 2006-10-13 2008-04-24 Renesas Technology Corp 半導体記憶装置
JP2009146497A (ja) * 2007-12-13 2009-07-02 Renesas Technology Corp 半導体装置
JP2009301691A (ja) * 2008-06-17 2009-12-24 Renesas Technology Corp 不揮発性半導体記憶装置
JP2010114380A (ja) * 2008-11-10 2010-05-20 Toshiba Corp 半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985689B2 (ja) * 2003-02-21 2007-10-03 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3786095B2 (ja) * 2003-02-28 2006-06-14 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP4461042B2 (ja) * 2005-03-11 2010-05-12 Okiセミコンダクタ株式会社 不揮発性メモリの製造方法
US7307882B2 (en) * 2005-06-29 2007-12-11 Macronix International Co., Ltd. Non-volatile memory
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
CN103000218A (zh) * 2012-11-20 2013-03-27 上海宏力半导体制造有限公司 存储器电路

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521812A (ja) * 1991-07-16 1993-01-29 Toshiba Corp 不揮発性半導体メモリ
JP3221754B2 (ja) 1992-12-15 2001-10-22 ローム株式会社 半導体装置
JPH07161851A (ja) 1993-12-10 1995-06-23 Sony Corp 半導体不揮発性記憶装置およびその製造方法
US5408115A (en) 1994-04-04 1995-04-18 Motorola Inc. Self-aligned, split-gate EEPROM device
US5422504A (en) 1994-05-02 1995-06-06 Motorola Inc. EEPROM memory device having a sidewall spacer floating gate electrode and process
US5969383A (en) 1997-06-16 1999-10-19 Motorola, Inc. Split-gate memory device and method for accessing the same
JP2978477B1 (ja) 1998-06-12 1999-11-15 株式会社日立製作所 半導体集積回路装置およびその製造方法
JP3973819B2 (ja) 1999-03-08 2007-09-12 株式会社東芝 半導体記憶装置およびその製造方法
US6255166B1 (en) 1999-08-05 2001-07-03 Aalo Lsi Design & Device Technology, Inc. Nonvolatile memory cell, method of programming the same and nonvolatile memory array
US6177318B1 (en) 1999-10-18 2001-01-23 Halo Lsi Design & Device Technology, Inc. Integration method for sidewall split gate monos transistor
US6248633B1 (en) 1999-10-25 2001-06-19 Halo Lsi Design & Device Technology, Inc. Process for making and programming and operating a dual-bit multi-level ballistic MONOS memory
JP3874234B2 (ja) * 2000-04-06 2007-01-31 株式会社ルネサステクノロジ 半導体集積回路装置
JP3640175B2 (ja) 2001-04-13 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3780865B2 (ja) 2001-04-13 2006-05-31 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP4715024B2 (ja) 2001-05-08 2011-07-06 セイコーエプソン株式会社 不揮発性半導体記憶装置のプログラム方法
JP2002334588A (ja) 2001-05-11 2002-11-22 Seiko Epson Corp 不揮発性半導体記憶装置のプログラム方法
JP3682462B2 (ja) 2001-05-31 2005-08-10 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3606231B2 (ja) 2001-05-31 2005-01-05 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3716914B2 (ja) 2001-05-31 2005-11-16 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3640177B2 (ja) 2001-06-04 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3640176B2 (ja) 2001-06-04 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3873679B2 (ja) 2001-07-23 2007-01-24 セイコーエプソン株式会社 半導体容量装置、昇圧回路および不揮発性半導体記憶装置
JP3594001B2 (ja) 2001-07-23 2004-11-24 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3622697B2 (ja) 2001-07-23 2005-02-23 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3640180B2 (ja) 2001-07-23 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3640179B2 (ja) 2001-07-23 2005-04-20 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3812645B2 (ja) 2001-07-31 2006-08-23 セイコーエプソン株式会社 半導体装置
JP3849759B2 (ja) 2001-07-31 2006-11-22 セイコーエプソン株式会社 半導体装置
JP3659205B2 (ja) 2001-08-30 2005-06-15 セイコーエプソン株式会社 不揮発性半導体記憶装置及びその駆動方法
JP2003091998A (ja) 2001-09-19 2003-03-28 Seiko Epson Corp 不揮発性半導体記憶装置
JP2003091996A (ja) 2001-09-19 2003-03-28 Seiko Epson Corp 不揮発性半導体記憶装置
JP2003091997A (ja) 2001-09-19 2003-03-28 Seiko Epson Corp 不揮発性半導体記憶装置
JP2003091999A (ja) 2001-09-19 2003-03-28 Seiko Epson Corp 不揮発性半導体記憶装置
JP3671890B2 (ja) 2001-09-25 2005-07-13 セイコーエプソン株式会社 半導体装置およびその製造方法
JP2003208794A (ja) 2002-01-10 2003-07-25 Seiko Epson Corp 不揮発性半導体記憶装置
JP3726753B2 (ja) 2002-01-23 2005-12-14 セイコーエプソン株式会社 不揮発性半導体記憶装置の昇圧回路
JP3702851B2 (ja) 2002-01-24 2005-10-05 セイコーエプソン株式会社 不揮発性半導体装置の昇圧回路
JP3772756B2 (ja) 2002-02-13 2006-05-10 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3738838B2 (ja) 2002-02-13 2006-01-25 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3900979B2 (ja) 2002-03-14 2007-04-04 セイコーエプソン株式会社 不揮発性レジスタおよび半導体装置
JP3843869B2 (ja) 2002-03-15 2006-11-08 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3821026B2 (ja) 2002-03-18 2006-09-13 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3840994B2 (ja) 2002-03-18 2006-11-01 セイコーエプソン株式会社 不揮発性半導体記憶装置
JP3821032B2 (ja) 2002-03-20 2006-09-13 セイコーエプソン株式会社 ファイルストレージ型不揮発性半導体記憶装置
JP3815381B2 (ja) 2002-06-06 2006-08-30 セイコーエプソン株式会社 不揮発性半導体記憶装置およびその駆動方法
JP3867624B2 (ja) 2002-06-06 2007-01-10 セイコーエプソン株式会社 不揮発性半導体記憶装置およびその駆動方法
JP2004103153A (ja) 2002-09-11 2004-04-02 Seiko Epson Corp 不揮発性半導体記憶装置の電圧発生回路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228957A (ja) * 2004-02-13 2005-08-25 Nec Electronics Corp 不揮発性記憶素子およびその製造方法
JP4629982B2 (ja) * 2004-02-13 2011-02-09 ルネサスエレクトロニクス株式会社 不揮発性記憶素子およびその製造方法
JP2008097758A (ja) * 2006-10-13 2008-04-24 Renesas Technology Corp 半導体記憶装置
JP2009146497A (ja) * 2007-12-13 2009-07-02 Renesas Technology Corp 半導体装置
JP2009301691A (ja) * 2008-06-17 2009-12-24 Renesas Technology Corp 不揮発性半導体記憶装置
JP2010114380A (ja) * 2008-11-10 2010-05-20 Toshiba Corp 半導体装置

Also Published As

Publication number Publication date
US20040229407A1 (en) 2004-11-18
US6934191B2 (en) 2005-08-23
US7053441B2 (en) 2006-05-30
JP2004266085A (ja) 2004-09-24
JP3786096B2 (ja) 2006-06-14
US20040228181A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US8314455B2 (en) Non-volatile semiconductor storage device
JP5051342B2 (ja) 不揮発性半導体メモリ及びその駆動方法
US20190371404A1 (en) Semiconductor memory device with memory cells each including a charge accumulation layer and a control gate
JP4817617B2 (ja) 不揮発性半導体記憶装置
JP3947135B2 (ja) 不揮発性半導体記憶装置
USRE37311E1 (en) Parallel type nonvolatile semiconductor memory device and method of using the same
JP2005093808A (ja) メモリセルユニット、それを備えてなる不揮発性半導体記憶装置及びメモリセルアレイの駆動方法
JP5088465B2 (ja) 不揮発性半導体メモリ
US20030020123A1 (en) Non-volatile semiconductor memory device
JP2008021782A5 (ja)
US6934191B2 (en) Nonvolatile semiconductor memory device
JP2003037192A (ja) 不揮発性半導体記憶装置
JP3871049B2 (ja) 不揮発性半導体記憶装置
JP5483826B2 (ja) 不揮発性半導体記憶装置及びその書き込み方法
US7061043B2 (en) Non-volatile semiconductor memory device and method of manufacturing the same
JP2009141278A (ja) 不揮発性半導体記憶装置
JP3985689B2 (ja) 不揮発性半導体記憶装置
JPH04278297A (ja) 不揮発性半導体記憶装置
JP2005353646A (ja) 不揮発性半導体記憶装置およびその製造方法
JP3786095B2 (ja) 不揮発性半導体記憶装置
JP2001308209A (ja) 不揮発性半導体記憶装置
JPH10321821A (ja) 不揮発性半導体メモリおよびその動作方法
JP2007310999A (ja) 半導体記憶装置
JPH11251462A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070516