EP2396546A1 - Motorpumpeneinheit - Google Patents

Motorpumpeneinheit

Info

Publication number
EP2396546A1
EP2396546A1 EP10702858A EP10702858A EP2396546A1 EP 2396546 A1 EP2396546 A1 EP 2396546A1 EP 10702858 A EP10702858 A EP 10702858A EP 10702858 A EP10702858 A EP 10702858A EP 2396546 A1 EP2396546 A1 EP 2396546A1
Authority
EP
European Patent Office
Prior art keywords
motor
pump
housing
annular space
pump unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10702858A
Other languages
English (en)
French (fr)
Inventor
Walter Schiffhauer
Lanfranco Pol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred Kaercher SE and Co KG
Original Assignee
Alfred Kaercher SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Kaercher SE and Co KG filed Critical Alfred Kaercher SE and Co KG
Publication of EP2396546A1 publication Critical patent/EP2396546A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/026Cleaning by making use of hand-held spray guns; Fluid preparations therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0223Electric motor pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/027Pump details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0294Wobbling swash plates for high pressure cleaners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to a motor pump unit for a high-pressure cleaner with a liquid-cooled electric motor and a pump, wherein the electric motor has a pot-shaped motor housing, which is surrounded by an annulus forming an annular space inlet and an annular space of a cooling housing, and wherein the pump with a
  • Annular inlet connected suction inlet for sucking liquid and a pressure outlet for dispensing liquid and wherein the pump to be conveyed by the liquid is supplied to the annular space inlet.
  • Such motor pump units are known from DE 10 2007 009 394 Al. They are used in high-pressure cleaning devices in which a liquid, preferably water, can be pressurized and then discharged via the pressure outlet. At the pressure outlet, a high-pressure hose can be connected, which carries at its free end, for example, a spray lance or a spray nozzle. This provides the ability to direct a high pressure jet of liquid at an object, for example, to clean the object.
  • the drive of the pump takes place by means of an electric motor, which is cooled by the liquid, which is supplied to the pump.
  • the motor housing is surrounded by a cylinder jacket-shaped cooling housing, wherein between the motor housing and the cooling housing, an annular space is formed, which can be supplied via an annulus inlet liquid.
  • the liquid can flow through the annulus and through the annulus outlet get to the suction inlet of the pump, so that they can then be put under pressure.
  • the pump will be connected to a public water supply network.
  • the liquid In the water supply network, the liquid is subject to a delivery pressure of a few bar, for example 3 to 10 bar. This has the consequence that also prevails within the annulus of the pressure prevailing in the water supply network discharge pressure.
  • This in turn requires that the motor housing from the liquid is subjected to a considerable, radially inwardly directed pressure.
  • the engine case must withstand this pressure.
  • Object of the present invention is to develop a motor pump unit of the type mentioned in such a way that the motor housing have the lowest possible wall thickness and yet can be effectively cooled over a large area.
  • a motor pump unit of the generic type according to the invention in that the motor housing is designed as a one-piece deep-drawn part, which in a front shell region on stator laminations the electric motor rests and is arranged in a rear jacket region at a distance from the rear winding heads of the stator and in the rear jacket region has stiffness-increasing depressions, wherein both the front and the rear jacket region are surrounded by the annular space.
  • the motor housing used according to the invention is manufactured as a one-piece deep-drawn part, that is, it is formed by deep drawing of a relatively thin sheet. It has a jacket and a bottom, the jacket being surrounded by the annular space over virtually its entire length, through which the liquid to be pressurized by the pump is passed.
  • the motor housing bears against stator laminations of the electric motor and is thereby supported in the radial direction.
  • a rear jacket area lacks a radial support of the motor housing, but takes the motor housing in the rear shell area a distance from the live rear winding heads of the stator. In this area, the motor housing has stiffness-increasing depressions. These effectively counteract deformation of the motor housing.
  • the annulus can therefore extend in the longitudinal direction of the motor over the entire jacket of the motor housing, so that a very good heat dissipation is ensured without the risk that the motor housing is deformed in the rear shell area by the fluid pressure.
  • the stiffness-increasing depressions can be configured, for example, as an annular groove or knurling. However, it is of particular advantage if the stiffness-increasing recesses are formed in the form of beads.
  • the beads are favorably aligned in the longitudinal direction of the electric motor. tet. They extend in the longitudinal direction advantageously over the entire rear cladding region of the motor housing, which is arranged at a distance from the rear winding heads of the stator.
  • the motor housing on the side facing away from the pump of the stiffness-increasing recesses forms a sealing surface on which a sealing ring bears sealingly.
  • the sealing ring limits the annular space in the axial direction. He therefore prefers to close at a short distance to the stiffness-enhancing wells.
  • the motor housing on the side facing away from the pump of the wells has a concentric with the motor shaft aligned collar, which forms a sealing surface for a sealing ring.
  • the voltage applied to the sealing surface sealing ring is preferably clamped radially between the motor housing and the cooling housing. This simplifies the assembly of the motor pump unit. In addition, can be compensated by the radial loading of the sealing ring manufacturing tolerances of the motor housing and the cooling housing in terms of their concentricity.
  • the cooling housing is designed as a cylinder jacket-shaped plastic part which can be pushed onto the motor housing in the axial direction and which has a cylinder jacket-shaped sealing surfaces aligned concentrically with the motor shaft in a front region facing the pump and a rear region facing away from the pump in each case bears a strained in the radial direction sealing ring for sealing the annular space.
  • the plastic be pushed cooling housing with the interposition of a front and a rear sealing ring on the motor housing.
  • an annular space is formed along the lateral surface of the motor housing, which is sealed axially by the two sealing rings.
  • the radial loading of the sealing rings not only simplifies the assembly of the motor pump unit but also allows, as already explained, to compensate for manufacturing tolerances of the motor housing and the cooling housing in terms of their concentricity.
  • the cooling housing comprises in its end region facing away from the pump an annular projection which defines a cylinder jacket-shaped sealing surface for abutment of a sealing ring.
  • the sealing surface of the attachment is arranged in the radial direction at the same height as the bottom of the rigidity-increasing depressions.
  • a connection nipple oriented parallel to the motor shaft is arranged on the annular space inlet and / or the annular space outlet, which can be connected in a fluid-tight manner to a cooling channel of a drive housing of the pump when the cooling housing is pushed onto the motor housing.
  • a fluid-tight connection between the annular space inlet and / or the annular space outlet and a cooling channel of the drive housing is thus simultaneously produced.
  • the provision of the at least one cooling channel makes it possible for the pump to be pressurized by the pump liquid also for direct cooling of the drive housing use.
  • the cooling passage can be connected in a simple manner to the annular space inlet or the annular space outlet by the cooling housing being pushed onto the motor housing in the axial direction.
  • both the annular space inlet and the annular space outlet are connected to a cooling channel of the drive housing.
  • the liquid to be conveyed first flows through a first cooling channel of the drive housing, then enters the annular space surrounding the motor housing via the annular space inlet and flows via the annular space outlet and the second cooling channel of the drive housing adjoining it to the suction inlet.
  • the latter can be connected via a connecting line with the annulus outlet.
  • FIG. 1 is a partial sectional view of a motor pump unit
  • Figure 2 is a sectional view taken along the line 2-2 in Figure 1;
  • Figure 3 is a side view of a motor housing of the electric motor of the motor pump unit of Figure 1 and
  • FIG. 4 shows a perspective illustration of the motor housing from FIG. 3.
  • 1 shows schematically a motor pump unit 10 according to the invention with a liquid-cooled electric motor 11, which is designed as an asynchronous motor, and with a pump 12, which is driven by the electric motor 11.
  • the electric motor 11 has in the usual way a rotor 14 which is surrounded by a stator 15.
  • the stator 15 comprises stator windings 16, which are held on stator plates 17 and form the pump 12 facing front winding heads 18 and the pump 12 facing away from the rear winding heads 19.
  • the electric motor 11 has a cup-shaped motor housing 22 which is formed by deep drawing of a sheet metal. It comprises a cylindrical shell 23 and a bottom 24. In the bottom 24, a receptacle 26 is formed centrally, which receives a first bearing 27 of a motor shaft 29. A second bearing 31 of the motor shaft 29 is held on a bearing plate 33 which is integrally formed on a drive housing 35 of the pump 12.
  • a front shell portion 37 of the jacket 23 of the motor housing 22 is located directly on the stator lugs 17, and in a rear shell portion 38 surrounds the motor housing 22 at a radial distance the rear winding heads 19 of the stator 15.
  • the motor housing 22 in the circumferential direction in uniformly spaced from each other a plurality of stiffness-enhancing depressions in the form of longitudinal beads 40 on.
  • the longitudinal beads 40 extend in the direction away from the pump as far as an arcuate transition region 42, to which a collar 44 aligned concentrically with the motor shaft 29 adjoins.
  • This forms an engine-side cylinder jacket-shaped rear sealing surface 45, against which a rear sealing ring 46 abuts.
  • To the engine-side rear sealing surface 45th joins the bottom 24.
  • This has in a central receptacle 26 surrounding the annular bottom portion 48 a plurality of radially extending grooves 49 which increase the rigidity of the bottom 24 of the motor housing 22.
  • the motor housing 22 forms an outwardly projecting annular flange 51, to which the pump 12 facing away from an engine-side cylinder jacket-shaped front sealing surface 52 connects, on which a front sealing ring 53 abuts.
  • the motor housing 22 is surrounded in the circumferential direction by a cooling housing 55 made of plastic, which is formed in a cylinder jacket and pushed onto the motor housing 22 in the axial direction.
  • a concentric with the collar 44 aligned approach 57 of the cooling housing 55 dedefiniert a corresponding with the rear sealing surface 45 of the motor housing 22 rear sealing surface 58 of the cooling housing 55.
  • the rear sealing ring 46 is radially clamped.
  • a cylinder jacket-shaped front sealing surface 59 of the cooling housing 55 surrounds the front sealing surface 52 of the motor housing 22. Between the front sealing surfaces 52 and 59, the front sealing ring 53 is radially braced.
  • annular space 60 surrounding the motor housing 22 extends in the circumferential direction, to which liquid can be supplied via an annular space inlet 61 and from which the liquid can flow out via an annular space outlet 62.
  • a first cooling channel 64 of the drive housing 35 is arranged, and downstream of the annular space outlet 62, a second cooling channel 65 of the drive housing 35 connects.
  • the two cooling channels 64 and 65 are each connected in one piece via a heat-conducting rib 66 to a base body 68 of the drive housing 35. As a result, a particularly good heat conduction from the base body 68 to the cooling channels 64, 65 is achieved.
  • the main body 68 surrounds a wobble drive 70 held on the motor shaft 29 with a swashplate 71.
  • the main body 68 surrounds the piston 73 of the pump 12 abutting the swashplate 71 on the front side.
  • the pistons 73 are arranged at a distance from the swashplate 71 for clarity. In fact, they abut against the swash plate 71 and are driven by this to a reciprocating motion.
  • the pistons 73 With their ends facing away from the swash plate 71, the pistons 73 dive into a pumping space in the usual way, so that due to the reciprocating motion of the pistons, liquid is sucked into the pump chamber from a suction inlet 75 of the pump 12 and after a compression stroke of the pistons 73 can be output via a pressure outlet 76 of the pump 12.
  • the suction inlet 75 is connected via a connecting line 78 of a line arrangement 80 with the second cooling channel 65 of the drive housing 35.
  • the line arrangement 80 also has a feed line 82, which can be supplied with liquid via a pipe stub 84.
  • the liquid to be pressurized by the pump 12 first flows through the pipe socket 84 and the supply line 82 and the first cooling channel 64, then enters via the annular space inlet 61 in the annular space 60, flows around the motor housing 22 within the annular space 60 and enters the second cooling channel 65 via the annular space outlet 62. From this, the liquid is supplied via the connecting line 78 to the suction inlet 75, so that it can then be pressurized by the pump 12.
  • the liquid flowing through the cooling channels 64 and 65 and the annular space 60 absorbs waste heat from the drive housing 35 and from the motor housing 22.
  • the drive housing 35 and the motor housing 22 are thus effectively cooled.
  • the pipe socket 84 is in many cases connected to a pressurized water supply network. This has the consequence that the liquid flowing into the annular space 60 is already under a pressure of a few bar, for example under a pressure of 3 to 10 bar.
  • the practically over his entire length surrounded by the annular space 60 jacket 23 of the motor housing 22 is therefore subject to a not inconsiderable pressure load.
  • the jacket 23 In the area of the front jacket section 37, the jacket 23 abuts directly against the stator laminations 17 and is reliably supported by them. However, in the area of the rear winding heads 19, the jacket 23 does not undergo such a change
  • the stiffness-increasing longitudinal beads 40 are formed in the motor housing 22 in the rear jacket section 38. It has been found that, as a result of this, the motor housing 22 can reliably withstand a pressure load, such as is usually present in public water supply networks, even with prolonged use of the motor pump unit 10.
  • the annular space 60 can therefore extend over the entire length of the jacket 23 of the motor housing 22 and not just about the front jacket portion 37, which undergoes a support by the stator laminations 17. The thus enlarged annular space 60 leads to a particularly effective cooling of the electric motor 11.
  • the motor pump unit 10 since the drive housing 35 and this particular the bearing plate 33 and the wobble drive 70 are cooled by the liquid to be conveyed, the motor pump unit 10 according to the invention is characterized by a particularly effective Cooling off. Even if the motor pump unit 10 is surrounded by a housing without Zu Kunststoff- and exhaust openings, there is no risk of overheating. The motor pump unit 10 is therefore particularly suitable for use in splash-proof housings of high-pressure cleaning devices.

Abstract

Die Erfindung betrifft eine Motorpumpeneinheit für ein Hochdruckreinigungs gerät mit einem Elektromotor und einer Pumpe, wobei der Elektromotor ein Motorgehäuse aufweist, das unter Ausbildung eines Ringraums mit einem Ringraumeinlass und einem Ringraumauslass von einem Kühlgehäuse umgeben ist, wobei die Pumpe einen mit dem Ringraumauslass verbundenen Saugeinlass und einen Druckauslass aufweist und die von der Pumpe zu fördernde Flüssigkeit dem Ringraumeinlass zuführbar ist. Um die Motorpumpeneinheit derart weiterzubilden, dass das Motorgehäuse eine geringe Wandstärke aufweisen und dennoch wirkungsvoll über einen großen Flächenbereich gekühlt werden kann, wird erfindungsgemäß vorgeschlagen, dass das Motorgehäuse als einteiliges Tiefziehteil ausgestaltet ist, das in einem vorderen Mantel- bereich an Statorblechen des Elektromotors anliegt und in einem hinteren Mantelbereich im Abstand zu hinteren Wicklungsköpfen des Stators angeordnet ist und im hinteren Mantelbereich steifigkeitserhöhende Vertiefungen aufweist, wobei der vordere und der hintere Mantelbereich vom Ringraum umgeben sind.

Description

Motorpumpeneinheit
Die Erfindung betrifft eine Motorpumpeneinheit für ein Hochdruckreinigungsgerät mit einem flüssigkeitsgekühlten Elektromotor und einer Pumpe, wobei der Elektromotor ein topfförmiges Motorgehäuse aufweist, das unter Ausbildung eines Ringraums mit einem Ringraumeinlass und einem Ringraumauslass von einem Kühlgehäuse umgeben ist, und wobei die Pumpe einen mit dem
Ringraumauslass verbundenen Saugeinlass zum Ansaugen von Flüssigkeit und einen Druckauslass zum Abgeben von Flüssigkeit aufweist und wobei die von der Pumpe zu fördernde Flüssigkeit dem Ringraumeinlass zuführbar ist.
Derartige Motorpumpeneinheiten sind aus der DE 10 2007 009 394 Al bekannt. Sie kommen bei Hochdruckreinigungsgeräten zum Einsatz, bei denen eine Flüssigkeit, vorzugsweise Wasser, unter Druck gesetzt und anschließend über den Druckauslass abgegeben werden kann. An den Druckauslass kann ein Hochdruckschlauch angeschlossen werden, der an seinem freien Ende bei- spielsweise eine Sprühlanze oder eine Sprühdüse trägt. Dies gibt die Möglichkeit, einen unter Hochdruck stehenden Flüssigkeitsstrahl auf einen Gegenstand zu richten, beispielsweise um den Gegenstand zu reinigen.
Der Antrieb der Pumpe erfolgt mittels eines Elektromotors, der von der Flüs- sigkeit gekühlt wird, die der Pumpe zugeführt wird. Hierzu ist das Motorgehäuse von einem zylindermantelförmigen Kühlgehäuse umgeben, wobei zwischen dem Motorgehäuse und dem Kühlgehäuse ein Ringraum ausgebildet ist, dem über einen Ringraumeinlass Flüssigkeit zugeführt werden kann. Die Flüssigkeit kann den Ringraum durchströmen und über den Ringraumauslass zum Saugeinlass der Pumpe gelangen, so dass sie anschließend unter Druck gesetzt werden kann.
In vielen Fällen wird die Pumpe an ein öffentliches Wasserversorgungsnetz angeschlossen. Im Wasserversorgungsnetz unterliegt die Flüssigkeit einem Förderdruck von einigen bar, beispielsweise 3 bis 10 bar. Dies hat zur Folge, dass auch innerhalb des Ringraums der im Wasserversorgungsnetz herrschende Förderdruck herrscht. Dies wiederum bedingt, dass das Motorgehäuse von der Flüssigkeit mit einem beachtlichen, radial einwärts gerichteten Druck beaufschlagt ist. Das Motorghäuse muss diesem Druck standhalten. Es soll allerdings aus Fertigungsgründen eine möglichst geringe Wandstärke aufweisen. Es besteht deshalb die Gefahr, dass das Motorgehäuse durch den im Ringraum herrschenden Flüssigkeitsdruck beschädigt wird, sofern sich der Ringraum über Bereiche des Motorgehäuses erstreckt, die vom Stator des Elektromotors innenseitig nicht abgestützt sind. Dem könnte entgegengewirkt werden, indem sich der Ringraum nur über einen Teilbereich des Mantels des Motorgehäuses erstreckt. Dies hätte aber eine eingeschränkte Kühlwirkung zur Folge.
Aufgabe der vorliegenden Erfindung ist es, eine Motorpumpeneinheit der eingangs genannten Art derart weiterzubilden, dass das Motorgehäuse eine möglichst geringe Wandstärke aufweisen und dennoch wirkungsvoll über einen großen Flächenbereich gekühlt werden kann.
Diese Aufgabe wird bei einer Motorpumpeneinheit der gattungsgemäßen Art erfindungsgemäß dadurch gelöst, dass das Motorgehäuse als einteiliges Tiefziehteil ausgestaltet ist, das in einem vorderen Mantelbereich an Statorblechen des Elektromotors anliegt und in einem hinteren Mantelbereich im Abstand zu hinteren Wicklungsköpfen des Stators angeordnet ist und im hinteren Mantelbereich steifigkeitserhöhende Vertiefungen aufweist, wobei sowohl der vordere als auch der hintere Mantelbereich vom Ringraum umgeben sind.
Das erfindungsgemäß zum Einsatz kommende Motorgehäuse ist als einteiliges Tiefziehteil gefertigt, das heißt es wird durch Tiefziehen aus einem verhältnismäßig dünnen Blech geformt. Es weist einen Mantel auf und einen Boden, wobei der Mantel praktisch über seine gesamte Länge vom Ringraum umgeben ist, durch den die von der Pumpe unter Druck zu setzende Flüssigkeit hindurchgeführt ist. In einem vorderen Mantelbereich liegt das Motorgehäuse an Statorblechen des Elektromotors an und wird dadurch in radialer Richtung abgestützt. In einem hinteren Mantelbereich fehlt jedoch eine radiale Abstützung des Motorgehäuses, vielmehr nimmt das Motorgehäuse im hinteren Mantelbereich einen Abstand zu den spannungsführenden hinteren Wicklungsköpfen des Stators ein. In diesem Bereich weist das Motorgehäuse steifigkeitserhöhende Vertiefungen auf. Diese wirken einer Verformung des Motorgehäuses wirksam entgegen. Der Ringraum kann sich deshalb in Längsrichtung des Motors über den gesamten Mantel des Motorgehäuses erstrecken, so dass eine sehr gute Wärmeabfuhr sichergestellt ist, ohne dass die Gefahr besteht, dass das Motorgehäuse im hinteren Mantelbereich durch den Flüssigkeitsdruck verformt wird.
Die steifigkeitserhöhenden Vertiefungen können beispielsweise als Ringnut oder Rändelung ausgestaltet sein. Von besonderem Vorteil ist es jedoch, wenn die steifigkeitserhöhenden Vertiefungen in Form von Sicken ausgebildet sind. Die Sicken sind günstigerweise in Längsrichtung des Elektromotors ausgerich- tet. Sie erstrecken sich in Längsrichtung vorteilhafterweise über den gesamten hinteren Mantelbereich des Motorgehäuses, der im Abstand zu den hinteren Wicklungsköpfen des Stators angeordnet ist.
Von Vorteil ist es, wenn das Motorgehäuse auf der der Pumpe abgewandten Seite der steifigkeitserhöhenden Vertiefungen eine Dichtfläche ausbildet, an der ein Dichtring dichtend anliegt. Der Dichtring begrenzt den Ringraum in axialer Richtung. Er schließt sich deshalb bevorzugt in kurzem Abstand an die steifigkeitserhöhenden Vertiefungen an.
Es kann vorgesehen sein, dass das Motorgehäuse auf der der Pumpe abgewandten Seite der Vertiefungen einen konzentrisch zur Motorwelle ausgerichteten Kragen aufweist, der eine Dichtfläche für einen Dichtring ausbildet.
Der an der Dichtfläche anliegende Dichtring wird vorzugsweise radial zwischen dem Motorgehäuse und dem Kühlgehäuse eingespannt. Dies vereinfacht die Montage der Motorpumpeneinheit. Außerdem können durch die radiale Beaufschlagung des Dichtrings Fertigungstoleranzen des Motorgehäuses und des Kühlgehäuses im Hinblick auf deren Konzentrizität ausgeglichen werden.
Von Vorteil ist es, wenn das Kühlgehäuse als zylindermantelförmiges Kunststoffteil ausgestaltet ist, das in axialer Richtung auf das Motorgehäuse aufschiebbar ist und das in einem der Pumpe zugewandten vorderen Bereich und einem der Pumpe abgewandten hinteren Bereich konzentrisch zur Motorwelle ausgerichtete, zylindermantelförmige Dichtflächen aufweist, an denen jeweils ein in radialer Richtung verspannter Dichtring zur Abdichtung des Ringraums anliegt. Zur Montage der Motorpumpeneinheit kann das aus Kunststoff gefer- tigte Kühlgehäuse unter Zwischenlage eines vorderen und eines hinteren Dichtrings auf das Motorgehäuse aufgeschoben werden. Hierbei bildet sich entlang der Mantelfläche des Motorgehäuses ein Ringraum aus, der axial von den beiden Dichtringen abgedichtet wird. Die radiale Beaufschlagung der Dichtringe vereinfacht nicht nur die Montage der Motorpumpeneinheit sondern ermöglicht es auch, wie bereits erläutert, Fertigungstoleranzen des Motorgehäuses und des Kühlgehäuses im Hinblick auf deren Konzentrizität auszugleichen.
Günstigerweise umfasst das Kühlgehäuse in seinem der Pumpe abgewandten Endbereich einen ringförmigen Ansatz, der eine zylindermantelförmige Dichtfläche definiert zur Anlage eines Dichtrings.
Besonders günstig ist es, wenn die Dichtfläche des Ansatzes in radialer Rich- tung auf gleicher Höhe wie der Boden der steifigkeitserhöhenden Vertiefungen angeordnet ist.
Bei einer besonders bevorzugten Ausführungsform der Erfindung ist am Ring- raumeinlass und/oder am Ringraumauslass ein parallel zur Motorwelle ausge- richteter Anschlussnippel angeordnet, der beim Aufschieben des Kühlgehäuses auf das Motorgehäuse flüssigkeitsdicht mit einem Kühlkanal eines Antriebsgehäuses der Pumpe verbindbar ist. Durch das Aufschieben des Kühlgehäuses auf das Motorgehäuse wird somit gleichzeitig auch eine flüssigkeitsdichte Verbindung zwischen dem Ringraumeinlass und/oder dem Ringraumauslass und einem Kühlkanal des Antriebsgehäuses hergestellt. Die Bereitstellung des mindestens einen Kühlkanals ermöglicht es, die von der Pumpe unter Druck zu setzende Flüssigkeit auch zur unmittelbaren Kühlung des Antriebsgehäuses einzusetzen. Der Kühlkanal ist hierbei auf einfache Weise an den Ringraum- einlass oder den Ringraumauslass anschließbar, indem das Kühlgehäuse in axialer Richtung auf das Motorgehäuse aufgeschoben wird.
Günstigerweise sind sowohl der Ringraumeinlass als auch der Ringraumauslass mit einem Kühlkanal des Antriebsgehäuses verbunden. Die zu fördernde Flüssigkeit durchströmt bei einer derartigen Ausgestaltung zunächst einen ersten Kühlkanal des Antriebsgehäuses, tritt dann über den Ringraumeinlass in den das Motorgehäuse umgebenden Ringraum und strömt über den Ringraumaus- lass und den sich daran anschließenden zweiten Kühlkanal des Antriebsgehäuses zum Saugeinlass. Letzterer kann über eine Verbindungsleitung mit dem Ringraumauslass verbunden sein.
Die nachfolgende Beschreibung einer bevorzugten Ausführungsform der Erfin- düng dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen :
Figur 1 : eine Teilschnittansicht einer Motorpumpeneinheit;
Figur 2: eine Schnittansicht längs der Linie 2-2 in Figur 1;
Figur 3: eine Seitenansicht eines Motorgehäuses des Elektromotors der Motorpumpeneinheit aus Figur 1 und
Figur 4: eine perspektivische Darstellung des Motorgehäuses aus Figur 3. In Figur 1 ist schematisch eine erfindungsgemäße Motorpumpeneinheit 10 dargestellt mit einem flüssigkeitsgekühlten Elektromotor 11, der als Asynchronmotor ausgebildet ist, und mit einer Pumpe 12, die vom Elektromotor 11 angetrieben wird. Der Elektromotor 11 weist in üblicher Weise einen Rotor 14 auf, der von einem Stator 15 umgeben ist. Der Stator 15 umfasst Statorwicklungen 16, die an Statorblechen 17 gehalten sind und der Pumpe 12 zugewandte vordere Wicklungsköpfe 18 und der Pumpe 12 abgewandte hintere Wicklungsköpfe 19 ausbilden.
Der Elektromotor 11 weist ein topfförmiges Motorgehäuse 22 auf, das durch Tiefziehen aus einem Blech geformt ist. Es umfasst einen zylindrischen Mantel 23 und einen Boden 24. In den Boden 24 ist zentrisch eine Aufnahme 26 eingeformt, die ein erstes Lager 27 einer Motorwelle 29 aufnimmt. Ein zweites Lager 31 der Motorwelle 29 ist an einem Lagerschild 33 gehalten, das an ein Antriebsgehäuse 35 der Pumpe 12 angeformt ist.
Mit einem vorderen Mantelabschnitt 37 liegt der Mantel 23 des Motorgehäuses 22 unmittelbar an den Statorblechen 17 an, und in einem hinteren Mantelabschnitt 38 umgibt das Motorgehäuse 22 in radialem Abstand die hinteren Wicklungsköpfe 19 des Stators 15. In diesem Bereich weist das Motorgehäuse 22 in Umfangsrichtung in gleichmäßigem Abstand zueinander angeordnet eine Vielzahl steifigkeitserhöhender Vertiefungen in Form von Längssicken 40 auf. Die Längssicken 40 erstrecken sich in der der Pumpe abgewandten Richtung bis zu einem bogenförmigen Übergangsbereich 42, an den sich ein konzen- trisch zur Motorwelle 29 ausgerichteter Kragen 44 anschließt. Dieser bildet eine motorseitige zylindermantelförmige hintere Dichtfläche 45 aus, an der ein hinterer Dichtring 46 anliegt. An die motorseitige hintere Dichtfläche 45 schließt sich der Boden 24 an. Dieser weist in einem die zentrale Aufnahme 26 umgebenden ringförmigen Bodenabschnitt 48 eine Vielzahl radial verlaufender Rillen 49 auf, die die Steifigkeit des Bodens 24 des Motorgehäuses 22 erhöhen.
An seiner der Pumpe 12 zugewandten Stirnseite bildet das Motorgehäuse 22 einen nach außen abstehenden Ringflansch 51, an den sich der Pumpe 12 abgewandt eine motorseitige zylindermantelförmige vordere Dichtfläche 52 anschließt, an der ein vorderer Dichtring 53 anliegt.
Das Motorgehäuse 22 ist in Umfangsrichtung von einem aus Kunststoff gefertigten Kühlgehäuse 55 umgeben, das zylindermantelförmig ausgebildet und in axialer Richtung auf das Motorgehäuse 22 aufgeschoben ist. Ein konzentrisch zum Kragen 44 ausgerichteter Ansatz 57 des Kühlgehäuses 55 dedefiniert eine mit der hinteren Dichtfläche 45 des Motorgehäuses 22 korrespondierende hintere Dichtfläche 58 des Kühlgehäuses 55. Zwischen den hinteren Dichtflächen 45 und 58 ist der hintere Dichtring 46 radial verspannt. Eine zylindermantelförmige vordere Dichtfläche 59 des Kühlgehäuses 55 umgibt die vordere Dichtfläche 52 des Motorgehäuses 22. Zwischen den vorderen Dicht- flächen 52 und 59 ist der vordere Dichtring 53 radial verspannt. Im Bereich zwischen dem hinteren Dichtring 46 und dem vorderen Dichtring 53 erstreckt sich ein das Motorgehäuse 22 in Umfangsrichtung umgebender Ringraum 60, dem über einen Ringraumeinlass 61 Flüssigkeit zugeführt werden kann und aus dem die Flüssigkeit über einen Ringraumauslass 62 herausströmen kann. Stromaufwärts des Ringraumeinlasses 61 ist ein erster Kühlkanal 64 des Antriebsgehäuses 35 angeordnet, und stromabwärts schließt sich an den Ringraumauslass 62 ein zweiter Kühlkanal 65 des Antriebsgehäuses 35 an.
Die beiden Kühlkanäle 64 und 65 sind jeweils über eine Wärmeleitrippe 66 mit einem Grundkörper 68 des Antriebsgehäuses 35 einstückig verbunden. Dadurch wird eine besonders gute Wärmeleitung vom Grundkörper 68 zu den Kühlkanälen 64, 65 erreicht.
Der Grundkörper 68 umgibt einen an der Motorwelle 29 gehaltenen Taumeltrieb 70 mit einer Taumelscheibe 71. Außerdem umgibt der Grundkörper 68 an der Taumelscheibe 71 stirnseitig anliegende Kolben 73 der Pumpe 12. In der Zeichnung sind die Kolben 73 zur Verdeutlichung im Abstand zur Taumelscheibe 71 angeordnet. Tatsächlich liegen sie aber an der Taumelscheibe 71 an und werden von dieser zu einer hin- und hergehenden Bewegung angetrieben. Mit ihren der Taumelscheibe 71 abgewandten Enden tauchen die Kolben 73 in üblicher Weise jeweils in einen Pumpraum ein, so dass aufgrund der hin- und hergehenden Bewegung der Kolben Flüssigkeit von einem Saugeinlass 75 der Pumpe 12 in den Pumpraum eingesaugt und nach einem Verdichtungshub der Kolben 73 über einen Druckauslass 76 der Pumpe 12 ausgegeben werden kann.
Der Saugeinlass 75 ist über eine Verbindungsleitung 78 einer Leitungsanordnung 80 mit dem zweiten Kühlkanal 65 des Antriebsgehäuses 35 verbunden. Zusätzlich zur Verbindungsleitung 78 weist die Leitungsanordnung 80 noch eine Zuleitung 82 auf, der über einen Rohrstutzen 84 Flüssigkeit zugeführt werden kann. Die von der Pumpe 12 unter Druck zu setzende Flüssigkeit durchströmt zunächst den Rohrstutzen 84 und die Zuleitung 82 sowie den ersten Kühlkanal 64, tritt dann über den Ringraumeinlass 61 in den Ringraum 60 ein, umströmt innerhalb des Ringraums 60 das Motorgehäuse 22 und tritt über den Ringraumauslass 62 in den zweiten Kühlkanal 65 ein. Von diesem wird die Flüssigkeit über die Verbindungsleitung 78 dem Saugeinlass 75 zugeführt, so dass sie anschließend von der Pumpe 12 unter Druck gesetzt werden kann.
Die flüssigkeitsdichte Verbindung zwischen dem Ringraumeinlass 61 und dem ersten Kühlkanal 64 erfolgt über einen parallel zum ersten Kühlkanal 64 ausgerichteten und am Ringraumeinlass 61 angeformten Anschlussnippel 69, der beim Aufschieben des Kühlgehäuses 55 auf das Motorgehäuse 22 in den ersten Kühlkanal 64 eintaucht und der von einem Dichtring 72 umgeben ist. In entsprechender Weise erfolgt die flüssigkeitsdichte Verbindung zwischen dem Ringraumauslass 62 und dem zweiten Kühlkanal 65 mittels eines an den Ringraumauslass 62 angeformten Anschlussnippels 74, der in den zweiten Kühlkanal 65 eintaucht und von einem Dichtring 77 umgeben ist.
Die die Kühlkanäle 64 und 65 sowie den Ringraum 60 durchströmende Flüs- sigkeit nimmt Abwärme des Antriebsgehäuses 35 und des Motorgehäuses 22 auf. Das Antriebsgehäuse 35 und das Motorgehäuse 22 werden somit wirksam gekühlt.
Der Rohrstutzen 84 wird in vielen Fällen an ein unter Druck stehendes Was- serversorgungsnetz angeschlossen. Dies hat zur Folge, dass die in den Ringraum 60 einströmende Flüssigkeit bereits unter einem Druck von einigen bar, beispielsweise unter einem Druck von 3 bis 10 bar, steht. Der praktisch über seine gesamte Länge vom Ringraum 60 umgebene Mantel 23 des Motorgehäuses 22 unterliegt daher einer nicht unbeachtlichen Druckbelastung. Im Bereich des vorderen Mantelabschnitts 37 liegt der Mantel 23 unmittelbar an den Statorblechen 17 an und wird von diesen zuverlässig abgestützt. Im Bereich der hinteren Wicklungsköpfe 19 erfährt der Mantel 23 jedoch keine derartige
Abstützung. Deshalb sind im hinteren Mantelabschnitt 38 die steifigkeitserhö- henden Längssicken 40 in das Motorgehäuse 22 eingeformt. Es hat sich gezeigt, dass dadurch das Motorgehäuse 22 auch bei längerem Einsatz der Motorpumpeneinheit 10 zuverlässig einer Druckbelastung, wie sie üblicher- weise in öffentlichen Wasserversorgungsnetzen vorliegt, standhalten kann. Der Ringraum 60 kann sich daher über die gesamte Länge des Mantels 23 des Motorgehäuses 22 erstrecken und nicht etwa nur über den vorderen Mantelabschnitt 37, der durch die Statorbleche 17 eine Abstützung erfährt. Der somit vergrößerte Ringraum 60 führt zu einer besonders wirkungsvollen Kühlung des Elektromotors 11. Da außerdem auch das Antriebsgehäuse 35 und über dieses insbesondere das Lagerschild 33 und der Taumeltrieb 70 von der zu fördernden Flüssigkeit gekühlt werden, zeichnet sich die erfindungsgemäße Motorpumpeneinheit 10 durch eine besonders wirkungsvolle Kühlung aus. Selbst wenn die Motorpumpeneinheit 10 von einem Gehäuse ohne Zuluft- und Abluft- Öffnungen umgeben ist, besteht keine Gefahr einer Überhitzung. Die Motorpumpeneinheit 10 eignet sich daher in besonderer Weise für den Einsatz in spritzwassergeschützten Gehäusen von Hochdruckreinigungsgeräten.

Claims

PATENTANSPRÜCHE
1. Motorpumpeneinheit für ein Hochdruckreinigungsgerät mit einem flüssig- keitsgekühlten Elektromotor und einer Pumpe, wobei der Elektromotor ein topfförmiges Motorgehäuse aufweist, das unter Ausbildung eines Ringraums mit einem Ringraumeinlass und einem Ringraumauslass von einem Kühlgehäuse umgeben ist, und wobei die Pumpe einen mit dem Ringraumauslass verbundenen Saugeinlass zum Ansaugen von Flüssigkeit und einen Druckauslass zum Abgeben von Flüssigkeit aufweist und wobei die von der Pumpe zu fördernde Flüssigkeit dem Ringraumeinlass zuführ- bar ist, dadurch gekennzeichnet, dass das Motorgehäuse (22) als einteiliges Tiefziehteil ausgestaltet ist, das in einem vorderen Mantelbereich (37) an Statorblechen (17) des Elektromotors (11) anliegt und in einem hinteren Mantelbereich (38) im Abstand zu hinteren Wicklungsköpfen (19) des Stators (15) angeordnet ist und im hinteren Mantelbereich (38) steifigkeitserhöhende Vertiefungen (40) aufweist, wobei der vordere und der hintere Mantelbereich (37, 38) vom Ringraum (60) umgeben sind.
2. Motorpumpeneinheit nach Anspruch 1, dadurch gekennzeichnet, dass die steifigkeitserhöhenden Vertiefungen als in Längsrichtung des Elektromo- tors (11) ausgerichtete Sicken (40) ausgestaltet sind.
3. Motorpumpeneinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Motorgehäuse (22) auf der der Pumpe (12) abgewandten Seite der Vertiefungen (40) einen konzentrisch zu einer Motorwelle (29) aus- gerichteten Kragen (44) aufweist, der eine Dichtfläche (45) für einen
Dichtring (46) ausbildet.
4. Motorpumpeneinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlgehäuse (55) als zylindermantelförmiges Kunststoffteil ausgestaltet ist, das in axialer Richtung auf das Motorgehäuse (22) aufschiebbar ist und das in einem der Pumpe zugewandten vorderen Bereich und einem der Pumpe abgewandten hinteren Bereich konzentrisch zur Motorwelle (29) ausgerichtete Dichtflächen (52, 58) aufweist, an denen jeweils ein in radialer Richtung verspannter Dichtring (53, 46) zur Abdichtung des Ringraums (60) anliegt.
5. Motorpumpeneinheit nach Anspruch 4, dadurch gekennzeichnet, dass das Kühlgehäuse (55) in seinem der Pumpe (12) abgewandten Endbereich einen ringförmigen Ansatz (57) aufweist, der eine zylindermantelförmige Dichtfläche (58) definiert zur Anlage eines Dichtrings (46).
6. Motorpumpeneinheit nach Anspruch 5, dadurch gekennzeichnet, dass die Dichtfläche (58) des Ansatzes (57) in radialer Richtung auf gleicher Höhe wie der Boden der Vertiefungen (40) angeordnet ist.
7. Motorpumpeneinheit nach Anspruch 4, 5 oder 6, dadurch gekennzeich- net, dass am Ringraumeinlass (61) und/oder am Ringraumauslass (62) ein parallel zur Motorwelle (29) ausgerichteter Anschlussnippel (69, 74) angeordnet ist, der beim Aufschieben des Kühlgehäuses (55) auf das Motorgehäuse (22) flüssigkeitsdicht mit einem Kühlkanal (64, 65) eines Antriebsgehäuses (35) der Pumpe (12) verbindbar ist.
EP10702858A 2009-02-13 2010-01-29 Motorpumpeneinheit Withdrawn EP2396546A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009010461A DE102009010461A1 (de) 2009-02-13 2009-02-13 Motorpumpeneinheit
PCT/EP2010/051100 WO2010091965A1 (de) 2009-02-13 2010-01-29 Motorpumpeneinheit

Publications (1)

Publication Number Publication Date
EP2396546A1 true EP2396546A1 (de) 2011-12-21

Family

ID=41824935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10702858A Withdrawn EP2396546A1 (de) 2009-02-13 2010-01-29 Motorpumpeneinheit

Country Status (6)

Country Link
US (1) US9046087B2 (de)
EP (1) EP2396546A1 (de)
JP (1) JP5502904B2 (de)
CN (1) CN102292544B (de)
DE (1) DE102009010461A1 (de)
WO (1) WO2010091965A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125904B (fi) 2010-05-31 2016-03-31 Upm Kymmene Corp L-profiilin muotoinen elementti, sen käyttö ja menetelmä sen asentamiseksi
ES2692358T3 (es) * 2010-12-14 2018-12-03 Alfred Kärcher SE & Co. KG Unidad motobomba para un aparato de limpieza a alta presión así como aparato de limpieza a alta presión
RU2560856C1 (ru) 2011-08-15 2015-08-20 Альфред Кэрхер Гмбх Унд Ко. Кг Моторно-насосный узел
CN104364023B (zh) * 2012-06-29 2016-04-20 阿尔弗雷德·凯驰两合公司 高压清洁设备
WO2014090314A1 (de) * 2012-12-13 2014-06-19 Alfred Kärcher Gmbh & Co. Kg Motorpumpeneinheit
JP6248487B2 (ja) * 2013-09-12 2017-12-20 株式会社ジェイテクト 電動ポンプ装置
KR101646498B1 (ko) 2014-04-21 2016-08-11 부산대학교 산학협력단 고밀도 폴리에틸렌 배관의 결함을 검출하기 위한 초음파 검사 시스템 및 방법
CA2978795A1 (en) 2015-03-16 2016-09-22 Dana Canada Corporation Heat exchangers with plates having surface patterns for enhancing flatness and methods for manufacturing same
DE102015208299A1 (de) * 2015-05-05 2016-11-10 Continental Automotive Gmbh Gehäuse für eine elektrische Maschine, elektrische Maschine
DE102015218620A1 (de) * 2015-09-28 2017-03-30 Robert Bosch Gmbh Gehäuse für eine elektrische Maschine
ITUB20155865A1 (it) * 2015-11-24 2017-05-24 Lavorwash Spa Dispositivo di lavaggio mediante un getto a pressione
USD861733S1 (en) * 2016-04-11 2019-10-01 Robert Bosch Gmbh Hydraulic power unit
FR3051297B1 (fr) * 2016-05-13 2018-04-20 Valeo Equipements Electriques Moteur Machine electrique tournante a refroidissement optimise
WO2019057301A1 (de) 2017-09-22 2019-03-28 Alfred Kärcher SE & Co. KG Motorpumpeneinheit
CN109861458B (zh) * 2019-02-19 2024-03-12 格力博(江苏)股份有限公司 高压泵
CN110138131B (zh) * 2019-04-29 2020-07-31 江苏苏美达五金工具有限公司 一种具有静音水冷高效电机的手持式高压清洗机
CN110052342B (zh) * 2019-04-29 2020-09-18 江苏苏美达五金工具有限公司 一种防水型充电式水陆两用高压清洗机
CN110159549B (zh) 2019-06-19 2024-01-02 格力博(江苏)股份有限公司 泵组件及高压清洗设备
FR3098051B1 (fr) * 2019-06-27 2021-07-02 Valeo Equip Electr Moteur Carter pour machine électrique tournante comprenant un palier plastique
CN110685896A (zh) 2019-11-11 2020-01-14 常州格力博有限公司 高压清洗设备
DE102020124216A1 (de) 2020-09-17 2022-03-17 Schaeffler Technologies AG & Co. KG Gehäuse mit einem Hitzeschild für einen Elektromotor
FR3135364A1 (fr) * 2022-05-05 2023-11-10 Psa Automobiles Sa Machine electrique de vehicule automobile avec couronne d’etancheite du refroidissement

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734459A (en) 1956-02-14 zimsky
US1431907A (en) 1919-08-21 1922-10-10 Stanley S Cramer Pneumatic power generator
US1614091A (en) 1925-01-12 1927-01-11 Ernest Van Toff Fan and fan blower
US2037245A (en) 1934-11-07 1936-04-14 Frank J Leifheit Fluid separator
US2301063A (en) 1941-07-12 1942-11-03 Ingersoll Rand Co Pumping mechanism
DE926676C (de) 1950-06-15 1955-04-21 Alwin Karl Dipl-Ing Borchers Elektrische Maschine
US2763214A (en) * 1953-12-17 1956-09-18 Howard T White Motor driven pumps
US2784672A (en) 1954-03-15 1957-03-12 Us Electrical Motors Inc Fluid pump drive
US2782720A (en) 1954-10-29 1957-02-26 Gen Electric Submersible pump-motor
US2913988A (en) * 1956-04-06 1959-11-24 Fostoria Corp Motor driven pumps
US2914253A (en) 1956-05-25 1959-11-24 Continental Can Co Means for maintaining constant delivery from a fluid circuit
US2854595A (en) 1957-08-08 1958-09-30 Reda Pump Company Motor protector and cooling system for submergible pumping assembly
US2993449A (en) 1959-03-09 1961-07-25 Hydratomic Engineering Corp Motor-pump
US3135213A (en) 1962-10-30 1964-06-02 Watt V Smith Immersible motor-pump unit
SE367465B (de) 1965-04-30 1974-05-27 Stenberg Flygt Ab
US3426691A (en) 1967-04-04 1969-02-11 Du Pont Pump expansion chamber
US3434656A (en) 1967-09-14 1969-03-25 Worthington Corp Lubrication system for rotary vane compressors
US3525001A (en) * 1968-09-23 1970-08-18 Preco Inc Liquid cooled electric motor
DE1964474A1 (de) 1969-12-23 1971-07-15 Siemen & Hinsch Gmbh Pumpe zur Foerderung von Medien mit hoher Temperatur
US3667870A (en) 1971-01-04 1972-06-06 Matsushita Electric Ind Co Ltd Motor driven pump
US3744935A (en) 1971-10-07 1973-07-10 Crane Co Cooling systems for motor driven pumps and the like
DE2413691B2 (de) 1974-03-21 1976-04-29 Druckoelpumpe
JPS5131103A (en) 1974-09-10 1976-03-17 Kiichi Sekiguchi Kaarajioryodoraibuinshiataonkyo no zatsuonboshisochi
GB1547393A (en) 1976-04-15 1979-06-20 Sabev T Squrrel cage rotor electrical machines
DE2920883A1 (de) 1979-05-23 1980-12-04 Heinz Dipl Phys Bohn Waermefalle zur nutzung der verlustwaerme an feldwicklungen von elektromaschinen, insbesondere verdichtermotore fuer waermepumpenbetrieb
DE3001571C2 (de) 1980-01-17 1982-10-28 Alfred Kärcher GmbH & Co, 7057 Winnenden Hochdruckreinigungsgerät
DE3017117A1 (de) 1980-05-03 1981-11-19 Alfred Kärcher GmbH & Co, 7057 Winnenden Hochdruckreinigungsgeraet
DE8111792U1 (de) 1981-04-18 1981-08-27 Alfred Kärcher GmbH & Co, 7057 Winnenden "motorpumpeneinheit fuer ein hochdruckreinigungsgeraet"
DE3115698C1 (de) 1981-04-18 1982-12-16 Alfred Kärcher GmbH & Co, 7057 Winnenden Motorpumpeneinheit fuer ein Hochdruckreinigungsgeraet
JPS5958197A (ja) 1982-09-28 1984-04-03 Nikkiso Co Ltd キヤンドモ−タポンプ
DE3312828A1 (de) 1983-04-09 1984-10-11 Flutec Fluidtechnische Geräte GmbH, 6603 Sulzbach Vorrichtung zum foerdern eines druckmittels, insbesondere oel
US4516044A (en) 1984-05-31 1985-05-07 Cincinnati Milacron Inc. Heat exchange apparatus for electric motor and electric motor equipped therewith
JPS619566A (ja) 1984-06-21 1986-01-17 Yanmar Diesel Engine Co Ltd 有底円筒体への線爆溶射法
DK481284A (da) 1984-10-08 1986-04-09 Knud Erik Westergaard Motorpumpeenhed til et hoejtryksrenseapparat
JPS61110877A (ja) 1984-11-02 1986-05-29 Hitachi Ltd 復水器真空ポンプ装置
IT209469Z2 (it) 1985-07-09 1988-10-10 Lafert Srl Motore elettrico a raffreddamento forzato con liquido.
US4958988A (en) 1985-09-26 1990-09-25 Ormat Turbines, Ltd. Motor driven pump for pumping viscous solutions
DE3545665A1 (de) 1985-12-21 1987-07-02 Kaercher Gmbh & Co Alfred Fluessigkeitsgekuehlter elektromotor
DE8536175U1 (de) * 1986-02-05 1987-07-02 Alfred Kaercher Gmbh & Co, 7057 Winnenden, De
JPH0616186B2 (ja) 1987-01-09 1994-03-02 キヤノン株式会社 プロセスカートリッジおよび画像形成装置
JPS63257434A (ja) 1987-04-13 1988-10-25 Mitsubishi Electric Corp 車両用交流発電機
US4934914A (en) 1987-07-30 1990-06-19 Ebara Corporation Portable motor pump
DE3862268D1 (de) 1987-09-15 1991-05-08 Bieri Pumpenbau Ag Umwaelzpumpe insbesondere fuer warmwasseranlagen.
DE3736159C3 (de) 1987-10-26 1993-09-30 Abs Pumpen Ag Elektromotor
DE3738592C1 (en) 1987-11-13 1989-05-24 Licentia Gmbh Electric motor for driving a liquid pump, and a method for its production
US4844701A (en) 1987-12-02 1989-07-04 The Gorman-Rupp Company Mobile pump apparatus
JPH0810974B2 (ja) 1988-04-25 1996-01-31 三菱電機株式会社 車両用交流発電機
DE3817641A1 (de) 1988-05-25 1989-11-30 Kaercher Gmbh & Co Alfred Hochdruckreinigungsgeraet
US5040950A (en) 1989-08-07 1991-08-20 Northland Aluminum Products, Inc. Power washing apparatus
JP2820463B2 (ja) 1989-11-02 1998-11-05 松下電器産業株式会社 スクロール圧縮機の始動方法
DE3941474A1 (de) 1989-12-15 1991-06-20 Bosch Gmbh Robert Fluessigkeitsgekuehlter elektrischer generator
DE4017193A1 (de) 1990-05-29 1991-12-05 Leybold Ag Geraeuscharme vakuumpumpe
DE4105349A1 (de) * 1991-02-21 1992-08-27 Swf Auto Electric Gmbh Elektromotor mit angesetzter pumpe
DE4121430C1 (de) 1991-06-28 1992-11-05 Grundfos International A/S, Bjerringbro, Dk
SE467752B (sv) 1991-09-03 1992-09-07 Flygt Ab Itt Anordning foer aastadkommande av kylning av en vaetsketaett kapslad elmotor
US5240391A (en) 1992-05-21 1993-08-31 Carrier Corporation Compressor suction inlet duct
US5283915A (en) 1992-08-10 1994-02-08 Softub, Inc. Power package for spa apparatus
DE4301666A1 (de) 1993-01-22 1994-07-28 Pierburg Gmbh Elektrisch angetriebene Luftpumpe
US5350281A (en) 1993-01-26 1994-09-27 Sundstrand Corporation Fan with secondary air passage for motor cooling
IT229678Y1 (it) 1993-02-26 1999-01-29 Gallone Cesare Dispositivo di protezione contro spruzzi d'acqua per interruttori elet trici e simili
US5363674A (en) 1993-05-04 1994-11-15 Ecoair Corp. Zero superheat refrigeration compression system
US5354182A (en) * 1993-05-17 1994-10-11 Vickers, Incorporated Unitary electric-motor/hydraulic-pump assembly with noise reduction features
IT231077Y1 (it) 1993-12-22 1999-07-12 Pavarini Srl Idropulitrice.
JP3014909B2 (ja) 1993-12-27 2000-02-28 株式会社デンソー スクロール型圧縮機
US5616973A (en) * 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
DE4445521C1 (de) 1994-12-20 1995-12-07 Kaercher Gmbh & Co Alfred Pumpe für ein Hochdruckreinigungsgerät
JP3281752B2 (ja) 1995-03-30 2002-05-13 三菱重工業株式会社 スクロール型流体機械
US5533875A (en) 1995-04-07 1996-07-09 American Standard Inc. Scroll compressor having a frame and open sleeve for controlling gas and lubricant flow
JPH0914199A (ja) 1995-06-30 1997-01-14 Sugino Mach Ltd 高圧水発生装置
DE19604447C2 (de) 1995-07-31 2002-03-21 Knorr Bremse Systeme Spiralverdichter
EP0842363B1 (de) 1995-07-31 2002-12-04 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Spiralverdichter, insbesondere zum einsatz bei der drucklufterzeugung für schienenfahrzeuge
EP0868613B1 (de) 1995-12-22 2000-09-20 Mannesmann Rexroth Aktiengesellschaft Hydraulisches kompaktaggregat
JP3737198B2 (ja) 1996-04-25 2006-01-18 株式会社荏原製作所 防音装置付き給液装置
DE19628781A1 (de) 1996-07-17 1998-01-22 Voith Turbo Kg Pumpaggregat mit einer Antriebskühlung mittels der zu fördernden Flüssigkeit
US5938389A (en) 1996-08-02 1999-08-17 Crown Cork & Seal Technologies Corporation Metal can and method of making
US5930852A (en) 1997-03-21 1999-08-03 Aqua-Flo, Incorporated Heat exchanging pump motor for usage within a recirculating water system
DE19716758C2 (de) 1997-04-12 2002-01-10 System Antriebstechnik Dresden Gehäuselose elektrische Maschine mit mehreren unmittelbar fluiddurchströmten axialen Kühlkanälen
JPH10317964A (ja) 1997-05-15 1998-12-02 Hitachi Constr Mach Co Ltd 建設機械のエンジン冷却装置
JP3957365B2 (ja) 1997-07-03 2007-08-15 北越工業株式会社 作業機の防音構造
JP3800374B2 (ja) 1997-08-07 2006-07-26 本田技研工業株式会社 エンジン発電機
US5997261A (en) 1997-10-31 1999-12-07 Siemens Canada Limited Pump motor having fluid cooling system
US6000917A (en) 1997-11-06 1999-12-14 American Standard Inc. Control of suction gas and lubricant flow in a scroll compressor
EP1065381A4 (de) * 1998-02-09 2007-01-10 Ebara Corp Verdrängermaschine
US6068459A (en) 1998-02-19 2000-05-30 Varian, Inc. Tip seal for scroll-type vacuum pump
DE19808602C1 (de) 1998-02-28 1999-09-02 Grundfos As Vorrichtung zum äußeren Kühlen des elektrischen Antriebsmotors eines Kreiselpumpenaggregates
JPH11270885A (ja) 1998-03-24 1999-10-05 Mitsubishi Electric Corp 換気装置
DE29809473U1 (de) * 1998-05-26 1998-10-01 Kaercher Gmbh & Co Alfred Hochdruckreinigungsgerät
EP0987441B1 (de) 1998-09-15 2003-12-10 Wilo Ag Rohrpumpe
EP0989658A1 (de) 1998-09-28 2000-03-29 The Swatch Group Management Services AG Flussigkeitsgekühlter elektrischen Asynchronmaschine
JP2000130800A (ja) 1998-10-29 2000-05-12 Sharp Corp 空気調和機の室外機
US6132183A (en) 1998-11-23 2000-10-17 Carrier Corporation Compressor mounting
US6074185A (en) 1998-11-27 2000-06-13 General Motors Corporation Scroll compressor with improved tip seal
US6300693B1 (en) 1999-03-05 2001-10-09 Emerson Electric Co. Electric motor cooling jacket assembly and method of manufacture
DE19910460A1 (de) 1999-03-10 2000-09-21 Bitzer Kuehlmaschinenbau Gmbh Kompressor
DE10045424A1 (de) 2000-09-14 2002-03-28 Va Tech Elin Ebg Motoren Gmbh Flüssigkeitsgekühlter Elektromotor
US6439861B1 (en) 2000-11-22 2002-08-27 Sen-Yuan Shieh Blower machine with an inherent air flow heat dissipation structure
DE10065821A1 (de) 2000-12-22 2002-07-11 Bitzer Kuehlmaschinenbau Gmbh Kompressor
JP2003193837A (ja) 2001-12-25 2003-07-09 Yanmar Co Ltd 発電装置
JP4099335B2 (ja) 2002-02-12 2008-06-11 シスメックス株式会社 エアポンプ装置
US7063519B2 (en) 2002-07-02 2006-06-20 R & D Dynamics Corporation Motor driven centrifugal compressor/blower
DE10247310A1 (de) 2002-10-10 2004-04-22 Siemens Ag Belüftung einer elektrischen Maschine
JP2004183605A (ja) 2002-12-05 2004-07-02 Sanden Corp 電動圧縮機
DE10305812A1 (de) 2003-02-12 2004-09-02 DMT GmbH Feinwerktechnische Komplettlösungen Fördervorrichtung zum Fördern eines Fluids
DE10307813B4 (de) 2003-02-24 2006-05-24 Siemens Ag Elektrische Maschine
CN2608729Y (zh) * 2003-03-10 2004-03-31 博利源科技股份有限公司 罐装马达泵结构
US7182583B2 (en) 2004-02-06 2007-02-27 Sauer-Danfoss Inc. Electro-hydraulic power unit with a rotary cam hydraulic power unit
JP2005306153A (ja) 2004-04-20 2005-11-04 Shin Caterpillar Mitsubishi Ltd 建設機械のエンジンルームの構造
JP2006291744A (ja) 2005-04-06 2006-10-26 Denyo Co Ltd エンジン駆動作業機
JP4359265B2 (ja) 2005-06-23 2009-11-04 本田技研工業株式会社 汎用エンジンのマフラカバー構造
DE102005046120A1 (de) 2005-09-26 2007-03-29 Wilo Ag Gehäuse eines Elektromotors
US7591147B2 (en) 2006-11-01 2009-09-22 Honeywell International Inc. Electric motor cooling jacket resistor
JP4967510B2 (ja) 2006-08-03 2012-07-04 パナソニック株式会社 冷蔵庫
DE102007009394A1 (de) 2007-02-21 2008-08-28 Alfred Kärcher Gmbh & Co. Kg Motorpumpeneinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010091965A1 *

Also Published As

Publication number Publication date
JP2012518111A (ja) 2012-08-09
US9046087B2 (en) 2015-06-02
CN102292544A (zh) 2011-12-21
DE102009010461A1 (de) 2010-08-19
CN102292544B (zh) 2016-07-20
JP5502904B2 (ja) 2014-05-28
WO2010091965A1 (de) 2010-08-19
US20120034111A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2010091965A1 (de) Motorpumpeneinheit
WO2008101594A1 (de) Motorpumpeneinheit insbesondere für ein hochdruckreinigungsgerät
DE2244275C3 (de) Gekapselter Kollektormotor für ein Pumpenaggregat
EP2396545A1 (de) Motorpumpeneinheit
DE19753860C1 (de) Kraftstoff-Förderaggregat mit verbesserter Förderpumpe
EP2181264B1 (de) Kreiselmotorpumpe
DE3152000A1 (de) Elektrisch betaetigbare fluessigkeitspumpe
WO2018041401A1 (de) Motor-pumpenvorrichtung
DE102012212423A1 (de) Flüssigkeitspumpe
DE4107049C2 (de) Elektrisch angetriebene Luftpumpe
DE1528650A1 (de) Versenkbare Einrichtung zur Fluessigkeitsfoerderung
DE102009045049A1 (de) Elektrische Förderpumpe und Verfahren zum Antreiben einer elektrischen Förderpumpe
EP2491273B1 (de) Spindelmotor
WO2014090314A1 (de) Motorpumpeneinheit
EP2396550B1 (de) Motorpumpeneinheit
EP2244845B1 (de) Hochdruckreinigungsgerät
EP2745011B1 (de) Motorpumpeneinheit
EP2966304B1 (de) Pumpenanordnung
DE102016225196B4 (de) Elektromotorische Ölpumpe
EP3500732B1 (de) Förderaggregat
EP0873199B1 (de) Hochdruckreinigungsgerät
EP2766603B1 (de) Kolbenpumpe für ein hochdruckreinigungsgerät
EP0584106B1 (de) Mehrflutige flüssigkeitsringpumpe
DE102021200101B4 (de) Linearkompressor
DE202016107030U1 (de) Elektromotorische Ölpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 17/03 20060101ALI20170801BHEP

Ipc: H02K 5/173 20060101ALI20170801BHEP

Ipc: H02K 7/14 20060101ALI20170801BHEP

Ipc: F04C 29/04 20060101AFI20170801BHEP

Ipc: F04B 53/08 20060101ALI20170801BHEP

Ipc: H02K 5/10 20060101ALI20170801BHEP

Ipc: H02K 5/20 20060101ALI20170801BHEP

Ipc: B08B 3/02 20060101ALI20170801BHEP

Ipc: F04B 39/06 20060101ALI20170801BHEP

Ipc: H02K 5/15 20060101ALI20170801BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170921

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180222

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALFRED KAERCHER SE & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180705