EP2396545A1 - Motorpumpeneinheit - Google Patents

Motorpumpeneinheit

Info

Publication number
EP2396545A1
EP2396545A1 EP09776376A EP09776376A EP2396545A1 EP 2396545 A1 EP2396545 A1 EP 2396545A1 EP 09776376 A EP09776376 A EP 09776376A EP 09776376 A EP09776376 A EP 09776376A EP 2396545 A1 EP2396545 A1 EP 2396545A1
Authority
EP
European Patent Office
Prior art keywords
motor
cooling channel
housing
drive housing
pump unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09776376A
Other languages
English (en)
French (fr)
Inventor
Walter Schiffhauer
Lanfranco Pol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred Kaercher SE and Co KG
Original Assignee
Alfred Kaercher SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Kaercher SE and Co KG filed Critical Alfred Kaercher SE and Co KG
Publication of EP2396545A1 publication Critical patent/EP2396545A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/141Details or component parts
    • F04B1/145Housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to a Moterpurnp ⁇ ei ⁇ heit for a high-pressure cleaning device with an electric motor and a pump
  • the electric motor comprises a motor housing which is surrounded by an annulus forming an annular space with an annular space and an annulus outlet of a cooling housing
  • the pump has a drive housing, on which a motor shaft of an electric motor is mounted, and a suction inlet for sucking liquid and a pressure outlet for dispensing pressurized liquid, wherein the annular space outlet is in fluid communication with the suction inlet and fluid to be pressurized by the pump is supplied to the annular space inlet.
  • Such a motor pump unit is known from DE 10 2007 009 394 Al. It is used in a high-pressure cleaning device with which a liquid, preferably water, fed via the suction inlet a pump chamber, pressurized and then discharged through the pressure outlet.
  • a pressure hose can be connected, at the free end, for example, a spray lance can be arranged so that pressurized liquid can be directed, for example, to an object to be cleaned.
  • the pump is driven by an electric motor which can be cooled by the liquid supplied to the suction inlet of the pump.
  • the motor housing is surrounded by a cooling housing, wherein between the cooling housing and the motor housing an annular space is formed with an annular space inlet and with an annulus outlet.
  • the from the pump below Pressure to be set liquid can first be supplied to the annulus inlet, then it can flow through the annulus and then be fed via the annulus outlet to the suction inlet.
  • An additional air cooling as is often provided in electric motors, can be omitted.
  • the waste heat of the electric motor is rather delivered to the liquid to be pressurized by the pump. This has the advantage that the motor pump unit can be used in a splash-proof housing of the high-pressure cleaner without supply air and exhaust openings must be provided in the housing of the high-pressure cleaner.
  • Object of the present invention is to develop a motor pump unit of the type mentioned in such a way that the heat load of the drive housing can be reduced.
  • the drive housing has at least one cooling channel, which is arranged upstream of the suction inlet and can be flowed through by the liquid to be pressurized.
  • the liquid to be pressurized by the pump flows through not only the annular space surrounding the motor housing but also a cooling channel of the drive housing.
  • the drive housing can be cooled by the liquid to be conveyed before it is supplied to the suction inlet of the pump.
  • the heat load of the drive housing can be significantly reduced. This in turn increases the life of the motor pump unit, since in particular heat can be dissipated, which occurs at the bearing, via which the motor shaft is rotatably supported on the drive housing.
  • the drive housing and the at least one cooling channel form a one-piece component. This not only allows a cost-effective production of the drive housing with cooling channel but also reduces the thermal resistance between the at least one cooling channel and a main body of the drive housing.
  • the drive housing has a first cooling channel and a second cooling channel, the first cooling channel being connected to the annular space inlet and the second cooling channel being connected to the annular space outlet.
  • the liquid to be pressurized by the pump can first be supplied to the first cooling channel in such an embodiment of the motor pump unit.
  • the liquid flows through the first cooling channel and then passes via the annular space inlet in the surrounding the motor housing annulus, which flows through the liquid to then pass through the annulus to the second cooling channel of the drive housing, which communicates with the suction inlet, for example via a connecting line in flow communication.
  • the liquid to be delivered by the pump thus flows through the first cooling channel and the second cooling channel, so that a particularly effective heat transfer is ensured.
  • the two cooling channels are arranged parallel to one another. In particular, it can be provided that the two cooling channels are aligned parallel to the motor shaft.
  • a particularly effective cooling of the drive housing is ensured in an advantageous embodiment in that the drive housing including the at least one cooling channel is made of metal, in particular of a metal diecasting alloy, for example an aluminum alloy. This allows a particularly effective heat transfer from the motor shaft supporting portion of the drive housing to the at least one cooling channel, from which the heat can be delivered to the pressurized liquid to be dispensed.
  • the drive housing has a base body, which is connected in one piece to a cooling channel via at least one heat conduction rib protruding outward from the base body. It has been shown that a particularly low thermal resistance between the base body and the cooling channel can be achieved by providing a heat-conducting rib between the base body of the drive housing and the cooling channel.
  • the drive housing has two mutually parallel heat conducting ribs, which are each arranged between a cooling channel and the base body.
  • the two heat conducting ribs not only increase the mechanical stability of the drive housing, but they also allow a particularly low thermal resistance between the main body of the drive housing and the cooling channels.
  • the drive housing has a bearing sleeve which supports the motor shaft via bearing elements and which is surrounded by an encircling wall portion of the drive housing to form an annular space, wherein projecting into the gap winding heads of the electric motor and the outside of the peripheral wall portion of the at least a cooling channel is formed.
  • the winding heads of the electric motor facing the drive housing are thus surrounded radially on the inside by the bearing sleeve and radially on the outside by the peripheral wall section of the drive housing.
  • at least one cooling channel is integrally formed on the circumferential wall section. This allows a particularly effective cooling not only of the motor shaft bearing bearing sleeve but also the immersed in the gap winding heads, as outgoing from the winding heads heat can be delivered over a large area to the liquid-cooled drive housing.
  • the drive housing surrounds a wobble drive held on the motor shaft.
  • the wobble drive may have a rotatably connected to the motor shaft wobble body on which a swash plate is rotatably mounted.
  • On the swash plate can abut in a conventional manner pistons of the pump, which are driven by the swash plate to a reciprocating motion and each protrude into a pump chamber, so sucked because of the reciprocating movement of the piston liquid into the pump chamber and then can be delivered under pressure.
  • By providing the liquid cooled drive housing can also be delivered effectively in the area of the wobble drive heat to the pressurized liquid to be set by the pump.
  • the cooling housing is designed in the form of a cylinder jacket which can be pushed onto the motor housing in the axial direction and detachably connectable to the drive housing to produce a liquid-tight connection between the at least one cooling channel and the annular space inlet or the annular space outlet.
  • the cooling housing is preferably made of plastic and may be bolted to the drive housing, for example.
  • the plastic cooling housing surrounds the motor housing only in the circumferential direction. Thereby, the mechanical load of the cooling housing can be reduced.
  • the latter is particularly important when the pump is powered by a public water supply network in which the liquid to be delivered is already subject to a fluid pressure of, for example, 5 bar or more. This fluid pressure then also prevails in the annular space surrounding the motor housing and the plastic cooling housing must be able to withstand this pressure.
  • a cylinder jacket-shaped configuration has proven to be particularly suitable for this purpose.
  • FIG. 1 is a partial sectional view of a motor pump unit
  • Figure 2 is a sectional view taken along the line 2-2 in Figure 1;
  • FIG. 3 shows a sectional view along the line 3-3 in Figure 1.
  • a motor pump unit 10 which is used in high-pressure cleaning devices. It has an electric motor 11 which drives reciprocating piston 56 of a pump 13 via a wobble drive 12.
  • the electric motor 11 is designed as an asynchronous motor and has in the usual way a rotor 16 with a motor shaft 17 and a stator 18 with stator windings 19.
  • the stator windings 19 form the pump 13 facing front winding heads 20 and the pump 13 facing away from the rear winding heads 21.
  • the stator 18 is surrounded by a cup-shaped motor housing 24 which is surrounded by forming a ring space 26 of a cylinder jacket-shaped, made of plastic cooling housing 28.
  • the cooling housing forms an annular space inlet 30 and an annular space outlet 31.
  • liquid can be supplied to the annular space 26 for cooling the electric motor 11.
  • the liquid flows through the annular space 26 in the circumferential direction and can be removed via the annular space outlet 31.
  • flow guide elements in the form of guide ribs 34, which are integrally formed on the inside of the cooling housing 28 and extend in the axial direction of the motor pump unit 10.
  • the guide ribs 34 each have a passage 35 through which the liquid supplied to the annular space 26 can flow.
  • the passages 35 of adjacent guide ribs 34 are arranged axially offset from one another. net, so that the guide ribs 34 as a whole define a labyrinth-like flow path leading from the annular space inlet 30 to the annular space outlet 31 in the circumferential direction around the motor housing 24.
  • the pump 13 has a drive housing 38 which is made of metal, preferably of an aluminum alloy. It comprises a main body 39 with a motor-side wall portion 41 which rests on the front side of the motor housing 24, and a pump-side wall portion 42, to which a pump housing 44 connects in the axial direction.
  • the motor-side wall section 41 surrounds a gap 46 into which the front winding heads 20 dip and which is bounded on the inside by a bearing sleeve 47, which is integrally formed on the base body 39 via a step 48.
  • the motor shaft 17 is rotatably supported on the bearing sleeve 47.
  • a second bearing 51 for the motor shaft 17 is held on the bottom 54 of the cup-shaped motor housing 24.
  • a wobble drive 52 is held, which is surrounded by the pump-side wall portion 42 and a wobble body 53, on which a swash plate 54 is rotatably supported.
  • a swash plate 54 At the swash plate 54 are frontally a plurality of pistons 56 of the pump 13, which are driven by the swash plate 54 to a reciprocating motion.
  • the piston 56 are shown in the drawing at a distance from the swash plate 54.
  • the piston 56 dive with its swash plate 54 facing away in a known per se and therefore not shown in the drawing, each in a pumping space, which is provided with a suction inlet 58 for sucking pressurized liquid and with a pressure outlet 60 for dispensing pressurized fluid is in fluid communication.
  • a first cooling channel 61 and a second cooling channel 62 are formed on the outside, which are aligned parallel to the motor shaft 17.
  • the first cooling channel 61 is connected to the pump-side wall section 42 via a first heat-conducting rib 64
  • the second cooling channel 62 is connected to the pump-side wall section 42 via a second heat-conducting rib 65.
  • the two cooling channels 61 and 62 projects in each case one integrally connected to the cooling housing 28 connecting nipple 66, which is aligned with the respective cooling channel 61 and 62 aligned and surrounded by an O-ring 67.
  • the first cooling channel 61 is fluid-tightly connected to the annular space inlet 30 via the associated connection nipple 66, and the second cooling channel 62 is connected in a flow-tight manner to the annular space outlet 31 via the associated connection nipple 66.
  • a plastic line system 70 Connected to the two cooling channels 61 and 62 and to the suction inlet 58 is a plastic line system 70, which has a feed line 71 leading into the first cooling channel 61 and a connecting line 72 connecting the second cooling channel 62 to the suction inlet 58.
  • a pipe socket 74 is connected, to which in turn a not shown in the drawing supply hose is connected.
  • the first cooling channel 61st Liquid are supplied, which then flows through the annular space inlet 30 in the surrounding the motor housing 24 annular space 26, from which they can be fed via the annular space 31, the second cooling channel 62 and the connecting line 72 to the suction inlet 58, and then subsequently by the pump 13 pressurized and delivered via the pressure release 60.
  • the liquid to be pressurized by the pump thus also serves to cool the drive housing 38 and the electric motor 11.
  • Heat generated in the region of the first bearing 50 and the wobble drive 52 can be transmitted via the main body 30 and the heat-conducting ribs 64 and 65 Cooling channels 61 and 62 are supplied, of which the heat is then delivered to the the cooling channels 61, 62 flowing through the liquid.
  • the heat-conducting ribs 64 and 65 By providing the heat-conducting ribs 64 and 65, a particularly low-resistance heat conduction from the base body 39 to the cooling channels 61 and 62 is ensured. Waste heat generated in the region of the front winding heads 20 can also be absorbed by the drive housing 38 and delivered to the liquid to be pressurized by the pump.
  • the liquid-cooled drive housing 38 thus prevents overheating, in particular of the first bearing 50 and the wobble drive 52 and also the pump 13, in particular a piston guide, in which the pistons 56 are displaceably mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Motorpumpeneinheit für ein Hochdruckreinigungsgerät mit einem Elektromotor und einer Pumpe, wobei der Elektromotor ein Motorgehäuse aufweist, das unter Ausbildung eines Ringraumes mit einem Ringraumeinlass und einem Ringraumauslass von einem Kühlgehäuse umgeben ist, und wobei die Pumpe ein Antriebsgehäuse aufweist, an dem die Motorwelle gelagert ist, sowie einen Saugeinlass und einen Druckauslass, und wobei der Ringraumauslass mit dem Saugeinlass in Strömungsverbindung steht und von der Pumpe unter Druck zu setzende Flüssigkeit dem Ringraumeinlass zuführbar ist. Um die Motorpumpeneinheit derart weiterzubilden, dass die Wärmebelastung des Antriebsgehäuses reduziert werden kann, wird erfindungsgemäß vorgeschlagen, dass das Antriebsgehäuse mindestens einen Kühlkanal aufweist, der stromaufwärts des Saugeinlasses angeordnet ist und von der unter Druck zu setzenden Flüssigkeit durchströmbar ist.

Description

Motorpumpeneinheit
Die Erfindung betrifft eine Moterpurnpεπeiπheit für ein Hochdruckreinigungs- gerät mit einem Elektromotor und einer Pumpe, wobei der Elektromotor ein Motorgehäuse umfasst, das unter Ausbildung eines Ringraumes mit einem Ringraumeinlass und mit einem Ringraumauslass von einem Kühlgehäuse umgeben ist, und wobei die Pumpe ein Antriebsgehäuse aufweist, an dem eine Motorwelle eines Elektromotors gelagert ist, sowie einen Saugeinlass zum Ansaugen von Flüssigkeit und einen Druckauslass zum Abgeben von unter Druck gesetzter Flüssigkeit, wobei der Ringraumauslass mit dem Saugeinlass in Strömungsverbindung steht und von der Pumpe unter Druck zu setzende Flüssigkeit dem Ringraumeinlass zuführbar ist.
Eine derartige Motorpumpeneinheit ist aus der DE 10 2007 009 394 Al bekannt. Sie kommt bei einem Hochdruckreinigungsgerät zum Einsatz, mit dessen Hilfe eine Flüssigkeit, vorzugsweise Wasser, über den Saugeinlass einem Pumpraum zugeführt, unter Druck gesetzt und anschließend über den Druckauslass abgegeben werden kann. An den Druckauslass kann ein Druckschlauch angeschlossen werden, an dessen freiem Ende beispielsweise eine Sprühlanze angeordnet sein kann, so dass unter Druck gesetzte Flüssigkeit beispielsweise auf einen zu reinigenden Gegenstand gerichtet werden kann.
Die Pumpe wird von einem Elektromotor angetrieben, der von der Flüssigkeit gekühlt werden kann, die dem Saugeinlass der Pumpe zugeführt wird. Hierzu ist das Motorgehäuse von einem Kühlgehäuse umgeben, wobei zwischen dem Kühlgehäuse und dem Motorgehäuse ein Ringraum ausgebildet ist mit einem Ringraumeinlass und mit einem Ringraumauslass. Die von der Pumpe unter Druck zu setzende Flüssigkeit kann zunächst dem Ringraumeinlass zugeführt werden, sie kann dann den Ringraum durchströmen und anschließend über den Ringraumauslass dem Saugeinlass zugeführt werden. Eine zusätzliche Luftkühlung, wie sie häufig bei Elektromotoren vorgesehen ist, kann dadurch entfallen. Die Abwärme des Elektromotors wird vielmehr an die von der Pumpe unter Druck zu setzende Flüssigkeit abgegeben. Dies hat den Vorteil, dass die Motorpumpeneinheit in ein spritzwasserdichtes Gehäuse des Hochdruckreinigungsgeräts eingesetzt werden kann, ohne dass Zuluft- und Abluftöffnungen im Gehäuse des Hochdruckreinigungsgerätes bereitgestellt werden müssen.
Während des Betriebs der Motorpumpeneinheit erwärmt sich allerdings nicht nur der Elektromotor, sondern auch das Antriebsgehäuse der Pumpe erfährt eine beachtliche Wärmebelastung. Diese hat ihre Ursache unter anderem darin, dass die Motorwelle am Antriebsgehäuse gelagert ist.
Aufgabe der vorliegenden Erfindung ist es, eine Motorpumpeneinheit der eingangs genannten Art derart weiterzubilden, dass die Wärmebelastung des Antriebsgehäuses reduziert werden kann.
Diese Aufgabe wird bei einer Motorpumpeneinheit der gattungsgemäßen Art erfindungsgemäß dadurch gelöst, dass das Antriebsgehäuse mindestens einen Kühlkanal aufweist, der stromaufwärts des Saugeinlasses angeordnet ist und von der unter Druck zu setzenden Flüssigkeit durchströmbar ist.
Bei der erfindungsgemäßen Motorpumpeneinheit durchströmt die von der Pumpe unter Druck zu setzende Flüssigkeit nicht nur den das Motorgehäuse umgebenden Ringraum sondern auch einen Kühlkanal des Antriebsgehäuses. Somit kann das Antriebsgehäuse von der zu fördernden Flüssigkeit gekühlt werden, bevor diese dem Saugeinlass der Pumpe zugeführt wird. Die Wärmebelastung des Antriebsgehäuses kann dadurch deutlich reduziert werden. Dies wiederum erhöht die Lebensdauer der Motorpumpeneinheit, da insbesondere Wärme abgeführt werden kann, die an dem Lager auftritt, über das die Motorwelle an dem Antriebsgehäuse drehbar gehalten ist.
Das Antriebsgehäuse und der mindestens eine Kühlkanal bilden ein einteiliges Bauteil. Dies erlaubt nicht nur eine kostengünstige Herstellung des Antriebs- gehäuses mit Kühlkanal sondern reduziert auch den Wärmewiderstand zwischen dem mindestens einen Kühlkanal und einem Grundkörper des Antriebsgehäuses.
Von besonderem Vorteil ist es, wenn das Antriebsgehäuse einen ersten Kühl- kanal und einen zweiten Kühlkanal aufweist, wobei der erste Kühlkanal an den Ringraumeinlass und der zweite Kühlkanal an den Ringraumauslass angeschlossen sind. Die von der Pumpe unter Druck zu setzende Flüssigkeit kann bei einer derartigen Ausgestaltung der Motorpumpeneinheit zunächst dem ersten Kühlkanal zugeführt werden. Die Flüssigkeit durchströmt den ersten Kühlkanal und tritt dann über den Ringraumeinlass in den das Motorgehäuse umgebenden Ringraum, den die Flüssigkeit durchströmt, um dann über den Ringraumauslass zum zweiten Kühlkanal des Antriebsgehäuses zu gelangen, der beispielsweise über eine Verbindungsleitung mit dem Saugeinlass in Strömungsverbindung steht. Die von der Pumpe zu fördernde Flüssigkeit durch- strömt somit den ersten Kühlkanal und den zweiten Kühlkanal, so dass eine besonders wirksame Wärmeübertragung sichergestellt ist. Günstig ist es, wenn die beiden Kühlkanäle parallel zueinander angeordnet sind. Insbesondere kann vorgesehen sein, dass die beiden Kühlkanäle parallel zur Motorwelle ausgerichtet sind.
Eine besonders effektive Kühlung des Antriebsgehäuses wird bei einer vorteilhaften Ausführungsform dadurch sichergestellt, dass das Antriebsgehäuse einschließlich des mindestens einen Kühlkanals aus Metall gefertigt ist, insbesondere aus einer Metalldruckgusslegierung, beispielsweise einer Aluminiumlegierung. Dies erlaubt eine besonders wirksame Wärmeübertragung von dem die Motorwelle lagernden Bereich des Antriebsgehäuses zu dem mindestens einen Kühlkanal, von dem aus die Wärme an die unter Druck zu setzende Flüssigkeit abgegeben werden kann.
Bei einer besonders bevorzugten Ausführungsform weist das Antriebsgehäuse einen Grundkörper auf, der über mindestens eine vom Grundkörper nach außen abstehende Wärmeleitrippe einstückig mit einem Kühlkanal verbunden ist. Es hat sich gezeigt, dass durch die Bereitstellung einer Wärmeleitrippe zwischen dem Grundkörper des Antriebsgehäuses und dem Kühlkanal ein besonders geringer Wärmewiderstand zwischen Grundkörper und Kühlkanal erzielt werden kann.
Insbesondere kann vorgesehen sein, dass das Antriebsgehäuse zwei parallel zueinander ausgerichtete Wärmeleitrippen aufweist, die jeweils zwischen einem Kühlkanal und dem Grundkörper angeordnet sind. Die beiden Wärme- leitrippen erhöhen nicht nur die mechanische Stabilität des Antriebsgehäuses, sondern sie ermöglichen einen besonders geringen Wärmewiderstand zwischen dem Grundkörper des Antriebsgehäuses und den Kühlkanälen.
Von Vorteil ist es, wenn das Antriebsgehäuse eine Lagerhülse aufweist, die über Lagerelemente die Motorwelle lagert und die unter Ausbildung eines ringförmigen Zwischenraumes von einem umlaufenden Wandabschnitt des Antriebsgehäuses umgeben ist, wobei in den Zwischenraum Wicklungsköpfe des Elektromotors hineinragen und außenseitig an den umlaufenden Wandabschnitt der mindestens eine Kühlkanal angeformt ist. Die dem Antriebsgehäuse zugewandten Wicklungsköpfe des Elektromotors sind somit radial innenseitig von der Lagerhülse und radial außenseitig von dem umlaufenden Wandabschnitt des Antriebsgehäuses umgeben. Außenseitig ist an den umlaufenden Wandabschnitt mindestens ein Kühlkanal angeformt. Dies erlaubt eine besonders wirksame Kühlung nicht nur der die Motorwelle lagernden Lagerhülse sondern auch der in den Zwischenraum eintauchenden Wicklungsköpfe, da von den Wicklungsköpfen ausgehende Wärme über einen großen Flächenbereich an das flüssigkeitsgekühlte Antriebsgehäuse abgegeben werden kann.
Günstig ist es, wenn das Antriebsgehäuse einen an der Motorwelle gehaltenen Taumeltrieb umgibt. Der Taumeltrieb kann einen drehfest mit der Motorwelle verbundenen Taumelkörper aufweisen, an dem eine Taumelscheibe drehbar gelagert ist. An der Taumelscheibe können in üblicher Weise Kolben der Pumpe anliegen, die von der Taumelscheibe zu einer hin- und hergehenden Bewegung angetrieben werden und jeweils in einen Pumpraum hineinragen, so dass aufgrund der hin- und hergehenden Bewegung der Kolben Flüssigkeit in den Pumpraum eingesaugt und anschließend unter Druck abgegeben werden kann. Durch die Bereitstellung des flüssigkeitsgekühlten Antriebsgehäuses kann auch im Bereich des Taumeltriebes entstehende Wärme wirkungsvoll an die von der Pumpe unter Druck zu setzende Flüssigkeit abgegeben werden.
Bei einer vorteilhaften Ausführungsform der Erfindung ist das Kühlgehäuse in Form eines Zylindermantels ausgestaltet, der in axialer Richtung auf das Motorgehäuse aufschiebbar und mit dem Antriebsgehäuse lösbar verbindbar ist unter Herstellung einer flüssigkeitsdichten Verbindung zwischen dem mindestens einen Kühlkanal und dem Ringraumeinlass oder dem Ringraumaus- lass. Dies ermöglicht eine besonders einfache Montage der Motorpumpenein- heit.
Das Kühlgehäuse ist bevorzugt aus Kunststoff gefertigt und kann mit dem Antriebsgehäuse beispielsweise verschraubt sein. Das aus Kunststoff gefertigte Kühlgehäuse umgibt das Motorgehäuse lediglich in Umfangsrichtung. Dadurch kann die mechanische Belastung des Kühlgehäuses verringert werden. Letzteres ist insbesondere dann von Bedeutung, wenn die Pumpe von einem öffentlichen Wasserversorgungsnetz gespeist wird, in dem die zu fördernde Flüssigkeit bereits einem Flüssigkeitsdruck von beispielsweise 5 bar oder mehr unterliegt. Dieser Flüssigkeitsdruck herrscht dann auch in dem das Motorge- häuse umgebenden Ringraum und das aus Kunststoff gefertigte Kühlgehäuse muss diesem Druck standhalten. Eine zylindermantelförmige Ausgestaltung hat sich hierzu als besonders geeignet erwiesen.
Die nachfolgende Beschreibung einer bevorzugten Ausführungsform der Erfin- düng dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen: Figur 1 : eine Teilschnittansicht einer Motorpumpeneinheit;
Figur 2: eine Schnittansicht längs der Linie 2-2 in Figur 1; und
Figur 3: eine Schnittansicht längs der Linie 3-3 in Figur 1.
In der Zeichnung ist schematisch eine erfindungsgemäße Motorpumpeneinheit 10 dargestellt, die bei Hochdruckreinigungsgeräten zum Einsatz kommt. Sie weist einen Elektromotor 11 auf, der über einen Taumeltrieb 12 hin und her gehende Kolben 56 einer Pumpe 13 antreibt. Der Elektromotor 11 ist als Asynchronmotor ausgestaltet und weist in üblicher Weise einen Rotor 16 mit einer Motorwelle 17 und einen Stator 18 mit Statorwicklungen 19 auf. Die Statorwicklungen 19 bilden der Pumpe 13 zugewandte vordere Wicklungsköpfe 20 und der Pumpe 13 abgewandte hintere Wicklungsköpfe 21. Der Stator 18 ist von einem topfförmigen Motorgehäuse 24 umgeben, das unter Ausbildung eines Ringraumes 26 von einem zylindermantelförmigen, aus Kunststoff gefertigtem Kühlgehäuse 28 umgeben ist. Außenseitig bildet das Kühlgehäuse einen Ringraumeinlass 30 und einen Ringraumauslass 31. Über den Ringraum- einlass 30 kann dem Ringraum 26 Flüssigkeit zur Kühlung des Elektromotors 11 zugeführt werden. Die Flüssigkeit durchströmt den Ringraum 26 in Um- fangsrichtung und kann über den Ringraumauslass 31 abgeführt werden. Innerhalb des Ringraums 26 sind Strömungsleitelemente in Form von Führungsrippen 34 angeordnet, die an die Innenseite des Kühlgehäuses 28 angeformt sind und sich in axialer Richtung der Motorpumpeneinheit 10 erstrecken. Die Führungsrippen 34 weisen jeweils einen Durchlass 35 auf, durch den die dem Ringraum 26 zugeführte Flüssigkeit hindurchfließen kann. Die Durchlässe 35 benachbarter Führungsrippen 34 sind axial versetzt zueinander angeord- net, so dass die Führungsrippen 34 insgesamt einen labyrinthartigen, in Um- fangsrichtung um das Motorgehäuse 24 herumführenden Strömungsweg vom Ringraumeinlass 30 zum Ringraumauslass 31 definieren.
Die Pumpe 13 weist ein Antriebsgehäuse 38 auf, das aus Metall gefertigt ist, vorzugsweise aus einer Aluminiumlegierung. Es umfasst einen Grundkörper 39 mit einem motorseitigen Wandabschnitt 41, der am Motorgehäuse 24 stirnseitig anliegt, und einem pumpenseitigen Wandabschnitt 42, an den sich in axialer Richtung ein Pumpengehäuse 44 anschließt. Der motorseitige Wandab- schnitt 41 umgibt einen Zwischenraum 46, in den die vorderen Wicklungsköpfe 20 eintauchen und der innenseitig von einer Lagerhülse 47 begrenzt ist, die über eine Stufe 48 an den Grundkörper 39 angeformt ist.
Über ein erstes Lager 50 ist die Motorwelle 17 an der Lagerhülse 47 drehbar gehalten. Ein zweites Lager 51 für die Motorwelle 17 ist am Boden 54 des topfförmigen Motorgehäuses 24 gehalten.
An dem der Pumpe 13 zugewandten Ende der Motorwelle 17 ist ein Taumeltrieb 52 gehalten, der vom pumpenseitigen Wandabschnitt 42 umgeben ist und einen Taumelkörper 53 aufweist, an dem eine Taumelscheibe 54 drehbar gehalten ist. An der Taumelscheibe 54 liegen stirnseitig mehrere Kolben 56 der Pumpe 13 an, die von der Taumelscheibe 54 zu einer hin- und hergehenden Bewegung angetrieben werden. Lediglich zur Erzielung einer besseren Übersicht sind die Kolben 56 in der Zeichnung im Abstand zur Taumelscheibe 54 dargestellt. Die Kolben 56 tauchen mit ihrem der Taumelscheibe 54 abgewandten Ende in an sich bekannter und deshalb in der Zeichnung nicht dargestellter Weise jeweils in einen Pumpraum ein, der mit einem Saugeinlass 58 zum Ansaugen von unter Druck zu setzender Flüssigkeit und mit einem Druckauslass 60 zum Abgeben der unter Druck gesetzten Flüssigkeit in Strömungsverbindung steht.
An den motorseitigen Wandabschnitt 41 des Antriebsgehäuses 38 sind außenseitig ein erster Kühlkanal 61 und ein zweiter Kühlkanal 62 angeformt, die parallel zur Motorwelle 17 ausgerichtet sind. Der erste Kühlkanal 61 ist über eine erste Wärmeleitrippe 64 mit dem pumpenseitigen Wandabschnitt 42 verbunden, und der zweite Kühlkanal 62 ist über eine zweite Wärmeleitrippe 65 mit dem pumpenseitigen Wandabschnitt 42 verbunden. In die beiden Kühlkanäle 61 und 62 ragt jeweils ein einstückig mit dem Kühlgehäuse 28 verbundener Anschlussnippel 66, der fluchtend zum jeweiligen Kühlkanal 61 bzw. 62 ausgerichtet und von einem O-Ring 67 umgeben ist. Der erste Kühlkanal 61 ist über den zugeordneten Anschlussnippel 66 mit dem Ringraumeinlass 30 strömungsdicht verbunden, und der zweite Kühlkanal 62 ist über den zugeordneten Anschlussnippel 66 strömungsdicht mit dem Ringraumauslass 31 verbunden.
An die beiden Kühlkanäle 61 und 62 und an den Saugeinlass 58 ist eine aus Kunststoff gefertigte Leitungsanordnung 70 angeschlossen, die eine in den ersten Kühlkanal 61 einmündende Zuleitung 71 und eine den zweiten Kühlkanal 62 mit dem Saugeinlass 58 verbindende Verbindungsleitung 72 aufweist. An die Zuleitung 71 ist ein Rohrstutzen 74 angeschlossen, an den wiederum ein in der Zeichnung nicht dargestellter Zuleitungsschlauch anschließbar ist. Über den Rohrstutzen 74 und die Zuleitung 71 kann dem ersten Kühlkanal 61 Flüssigkeit zugeführt werden, die dann über den Ringraumeinlass 30 in den das Motorgehäuse 24 umgebenden Ringraum 26 einströmt, von dem aus sie über den Ringraumauslass 31, den zweiten Kühlkanal 62 und die Verbindungsleitung 72 dem Saugeinlass 58 zugeführt werden kann, um dann anschließend von der Pumpe 13 unter Druck gesetzt und über den Druckaus- lass 60 abgegeben zu werden.
Die von der Pumpe unter Druck zu setzende Flüssigkeit dient also auch der Kühlung des Antriebsgehäuses 38 und des Elektromotors 11. Wärme, die im Bereich des ersten Lagers 50 und des Taumeltriebs 52 erzeugt wird, kann über den Grundkörper 30 und die Wärmeleitrippen 64 und 65 den Kühlkanälen 61 und 62 zugeführt werden, von denen die Wärme dann an die die die Kühlkanäle 61, 62 durchströmende Flüssigkeit abgegeben wird. Durch die Bereitstellung der Wärmeleitrippen 64 und 65 wird eine besonders widerstandsarme Wärmeleitung vom Grundkörper 39 zu den Kühlkanälen 61 und 62 sichergestellt. Auch Abwärme, die im Bereich der vorderen Wicklungsköpfe 20 entsteht, kann vom Antriebsgehäuse 38 aufgenommen und an die von der Pumpe unter Druck zu setzende Flüssigkeit abgegeben werden.
Das flüssigkeitsgekühlte Antriebsgehäuse 38 verhindert somit eine Überhitzung insbesondere des ersten Lagers 50 und des Taumeltriebes 52 und auch der Pumpe 13, insbesondere einer Kolbenführung, in der die Kolben 56 verschiebbar gelagert sind.

Claims

PATENTANSPRÜCHE
1. Motorpumpeneinheit für ein Hochdruckreinigungsgerät mit einem Elektromotor und einer Pumpe, wobei der Elektromotor ein Motorgehäuse aufweist, das unter Ausbildung eines Ringraumes mit einem Ringraumeinlass und einem Ringraumauslass von einem Kühlgehäuse umgeben ist, und wobei die Pumpe ein Antriebsgehäuse, an dem eine Motorwelle des Elektromotors gelagert ist, sowie einen Saugeinlass zum Ansaugen von Flüssigkeit und einen Druckauslass zum Abgeben von unter Druck gesetzter Flüssigkeit aufweist, und wobei der Ringraumauslass mit dem Saugeinlass in Strömungsverbindung steht und von der Pumpe unter Druck zu setzende Flüssigkeit dem Ringraumeinlass zuführbar ist, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) mindestens einen Kühlkanal (61, 62) aufweist, der stromaufwärts des Saugeinlasses (58) angeordnet ist und von der unter Druck zu setzenden Flüssigkeit durchströmbar ist.
2. Motorpumpeneinheit nach Anspruch 1, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) einen ersten Kühlkanal (61) und einen zweiten Kühlkanal (62) aufweist, wobei der erste Kühlkanal (61) an den Ringraumeinlass (30) und der zweite Kühlkanal (62) an den Ringraumauslass (31) angeschlossen ist.
3. Motorpumpeneinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) einschließlich des mindestens einen Kühlkanals (61, 62) aus Metall gefertigt ist.
4. Motorpumpeneinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) einen Grundkörper (39) aufweist, der über mindestens eine vom Grundkörper (39) nach außen abstehende Wärmeleitrippe (64, 65) einstückig mit einem Kühlkanal (61, 62) verbunden ist.
5. Motorpumpeneinheit nach Anspruch 4, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) zwei parallel zueinander ausgerichtete Wärmeleitrippen (64, 65) aufweist, die jeweils zwischen einem Kühlkanal (61, 62) und dem Grundkörper (39) angeordnet sind.
6. Motorpumpeneinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) eine Lagerhülse (47) aufweist, an der die Motorwelle (17) drehbar gelagert ist und die unter Ausbildung eines ringförmigen Zwischenraumes (46) von einem umlaufenden Wandabschnitt (41) des Antriebsgehäuses (38) umgeben ist, wobei in den Zwischenraum (46) Wicklungsköpfe (20) des Elektromotors (11) hineinragen und außenseitig an den Wandabschnitt (41) der mindestens eine Kühlkanal (61, 62) angeformt ist.
7. Motorpumpeneinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Antriebsgehäuse (38) einen an der Motorwelle (17) gehaltenen Taumeltrieb (52) umgibt.
8. Motorpumpeneinheit nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kühlgehäuse (28) in Form eines Zylindermantels ausgestaltet ist, der auf das Motorgehäuse (24) in axialer Richtung aufschiebbar und mit dem Antriebsgehäuse (38) lösbar verbindbar ist unter Herstellung einer flüssigkeitsdichten Verbindung zwischen dem mindestens einen Kühlkanal (61, 62) und dem Ringraumeinlass (30) oder dem Ringraumauslass (31).
EP09776376A 2009-02-13 2009-02-13 Motorpumpeneinheit Withdrawn EP2396545A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/001026 WO2010091698A1 (de) 2009-02-13 2009-02-13 Motorpumpeneinheit

Publications (1)

Publication Number Publication Date
EP2396545A1 true EP2396545A1 (de) 2011-12-21

Family

ID=40672172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09776376A Withdrawn EP2396545A1 (de) 2009-02-13 2009-02-13 Motorpumpeneinheit

Country Status (5)

Country Link
US (1) US8920138B2 (de)
EP (1) EP2396545A1 (de)
CN (1) CN102292543B (de)
AU (1) AU2009339812B2 (de)
WO (1) WO2010091698A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013014738B1 (pt) 2010-12-14 2019-12-10 Kaercher Gmbh & Co Kg Alfred aparelho de limpeza a alta pressão
WO2012119640A2 (de) 2011-03-07 2012-09-13 Alfred Kärcher Gmbh & Co. Kg Fahrbares hochdruckreinigungsgerät
JP5805133B2 (ja) * 2013-04-30 2015-11-04 リョービ株式会社 高圧洗浄機
US9476416B2 (en) * 2013-11-22 2016-10-25 Chi-Wen Chen Air compressor
ITRE20150032A1 (it) * 2015-04-16 2016-10-16 Annovi Reverberi Spa Gruppo motopompa per idropulitrici
US10408201B2 (en) * 2015-09-01 2019-09-10 PSC Engineering, LLC Positive displacement pump
CN109861458B (zh) 2019-02-19 2024-03-12 格力博(江苏)股份有限公司 高压泵
CN111608924A (zh) * 2020-06-10 2020-09-01 重庆万力联兴实业(集团)有限公司 新型液体自冷循环式大功率无刷电子水泵

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734459A (en) 1956-02-14 zimsky
US1431907A (en) 1919-08-21 1922-10-10 Stanley S Cramer Pneumatic power generator
US1614091A (en) 1925-01-12 1927-01-11 Ernest Van Toff Fan and fan blower
US2037245A (en) 1934-11-07 1936-04-14 Frank J Leifheit Fluid separator
US2301063A (en) 1941-07-12 1942-11-03 Ingersoll Rand Co Pumping mechanism
DE926676C (de) 1950-06-15 1955-04-21 Alwin Karl Dipl-Ing Borchers Elektrische Maschine
US2763214A (en) * 1953-12-17 1956-09-18 Howard T White Motor driven pumps
US2784672A (en) * 1954-03-15 1957-03-12 Us Electrical Motors Inc Fluid pump drive
US2782720A (en) 1954-10-29 1957-02-26 Gen Electric Submersible pump-motor
US2913988A (en) * 1956-04-06 1959-11-24 Fostoria Corp Motor driven pumps
US2914253A (en) 1956-05-25 1959-11-24 Continental Can Co Means for maintaining constant delivery from a fluid circuit
US2854595A (en) 1957-08-08 1958-09-30 Reda Pump Company Motor protector and cooling system for submergible pumping assembly
US2993449A (en) * 1959-03-09 1961-07-25 Hydratomic Engineering Corp Motor-pump
US3135213A (en) * 1962-10-30 1964-06-02 Watt V Smith Immersible motor-pump unit
SE367465B (de) 1965-04-30 1974-05-27 Stenberg Flygt Ab
US3426691A (en) 1967-04-04 1969-02-11 Du Pont Pump expansion chamber
US3434656A (en) * 1967-09-14 1969-03-25 Worthington Corp Lubrication system for rotary vane compressors
US3525001A (en) * 1968-09-23 1970-08-18 Preco Inc Liquid cooled electric motor
DE1964474A1 (de) 1969-12-23 1971-07-15 Siemen & Hinsch Gmbh Pumpe zur Foerderung von Medien mit hoher Temperatur
US3667870A (en) 1971-01-04 1972-06-06 Matsushita Electric Ind Co Ltd Motor driven pump
US3744935A (en) 1971-10-07 1973-07-10 Crane Co Cooling systems for motor driven pumps and the like
DE2413691B2 (de) 1974-03-21 1976-04-29 Druckoelpumpe
JPS5131103A (en) 1974-09-10 1976-03-17 Kiichi Sekiguchi Kaarajioryodoraibuinshiataonkyo no zatsuonboshisochi
GB1547393A (en) 1976-04-15 1979-06-20 Sabev T Squrrel cage rotor electrical machines
DE2920883A1 (de) 1979-05-23 1980-12-04 Heinz Dipl Phys Bohn Waermefalle zur nutzung der verlustwaerme an feldwicklungen von elektromaschinen, insbesondere verdichtermotore fuer waermepumpenbetrieb
DE3001571C2 (de) 1980-01-17 1982-10-28 Alfred Kärcher GmbH & Co, 7057 Winnenden Hochdruckreinigungsgerät
DE3017117A1 (de) 1980-05-03 1981-11-19 Alfred Kärcher GmbH & Co, 7057 Winnenden Hochdruckreinigungsgeraet
DE8111792U1 (de) 1981-04-18 1981-08-27 Alfred Kärcher GmbH & Co, 7057 Winnenden "motorpumpeneinheit fuer ein hochdruckreinigungsgeraet"
DE3115698C1 (de) 1981-04-18 1982-12-16 Alfred Kärcher GmbH & Co, 7057 Winnenden Motorpumpeneinheit fuer ein Hochdruckreinigungsgeraet
JPS5958197A (ja) 1982-09-28 1984-04-03 Nikkiso Co Ltd キヤンドモ−タポンプ
DE3312828A1 (de) 1983-04-09 1984-10-11 Flutec Fluidtechnische Geräte GmbH, 6603 Sulzbach Vorrichtung zum foerdern eines druckmittels, insbesondere oel
US4516044A (en) 1984-05-31 1985-05-07 Cincinnati Milacron Inc. Heat exchange apparatus for electric motor and electric motor equipped therewith
JPS619566A (ja) 1984-06-21 1986-01-17 Yanmar Diesel Engine Co Ltd 有底円筒体への線爆溶射法
DK481284A (da) 1984-10-08 1986-04-09 Knud Erik Westergaard Motorpumpeenhed til et hoejtryksrenseapparat
JPS61110877A (ja) 1984-11-02 1986-05-29 Hitachi Ltd 復水器真空ポンプ装置
IT209469Z2 (it) 1985-07-09 1988-10-10 Lafert Srl Motore elettrico a raffreddamento forzato con liquido.
US4958988A (en) 1985-09-26 1990-09-25 Ormat Turbines, Ltd. Motor driven pump for pumping viscous solutions
DE3545665A1 (de) 1985-12-21 1987-07-02 Kaercher Gmbh & Co Alfred Fluessigkeitsgekuehlter elektromotor
DE8536175U1 (de) 1986-02-05 1987-07-02 Alfred Kärcher GmbH & Co, 7057 Winnenden Flüssigkeitsgekühlter Elektromotor
JPS63257434A (ja) 1987-04-13 1988-10-25 Mitsubishi Electric Corp 車両用交流発電機
US4934914A (en) 1987-07-30 1990-06-19 Ebara Corporation Portable motor pump
ATE62325T1 (de) 1987-09-15 1991-04-15 Bieri Pumpenbau Ag Umwaelzpumpe insbesondere fuer warmwasseranlagen.
DE3736159C3 (de) 1987-10-26 1993-09-30 Abs Pumpen Ag Elektromotor
DE3738592C1 (en) 1987-11-13 1989-05-24 Licentia Gmbh Electric motor for driving a liquid pump, and a method for its production
US4844701A (en) 1987-12-02 1989-07-04 The Gorman-Rupp Company Mobile pump apparatus
JPH0810974B2 (ja) 1988-04-25 1996-01-31 三菱電機株式会社 車両用交流発電機
DE3817641A1 (de) 1988-05-25 1989-11-30 Kaercher Gmbh & Co Alfred Hochdruckreinigungsgeraet
JPH0213135A (ja) 1988-06-30 1990-01-17 Sony Corp ディジタル信号伝送装置
US5040950A (en) * 1989-08-07 1991-08-20 Northland Aluminum Products, Inc. Power washing apparatus
JP2522835B2 (ja) 1989-08-31 1996-08-07 富士写真フイルム株式会社 感光材料処理装置
JP2820463B2 (ja) 1989-11-02 1998-11-05 松下電器産業株式会社 スクロール圧縮機の始動方法
DE3941474A1 (de) * 1989-12-15 1991-06-20 Bosch Gmbh Robert Fluessigkeitsgekuehlter elektrischer generator
DE4017193A1 (de) 1990-05-29 1991-12-05 Leybold Ag Geraeuscharme vakuumpumpe
DE4105349A1 (de) 1991-02-21 1992-08-27 Swf Auto Electric Gmbh Elektromotor mit angesetzter pumpe
DE4121430C1 (de) * 1991-06-28 1992-11-05 Grundfos International A/S, Bjerringbro, Dk
SE9102517L (sv) 1991-09-03 1992-09-07 Flygt Ab Itt Anordning foer aastadkommande av kylning av en vaetsketaett kapslad elmotor
US5240391A (en) 1992-05-21 1993-08-31 Carrier Corporation Compressor suction inlet duct
JP3207253B2 (ja) 1992-06-30 2001-09-10 三信工業株式会社 船舶推進機用カウリング構造
US5283915A (en) 1992-08-10 1994-02-08 Softub, Inc. Power package for spa apparatus
DE4301666A1 (de) 1993-01-22 1994-07-28 Pierburg Gmbh Elektrisch angetriebene Luftpumpe
US5350281A (en) 1993-01-26 1994-09-27 Sundstrand Corporation Fan with secondary air passage for motor cooling
IT229678Y1 (it) 1993-02-26 1999-01-29 Gallone Cesare Dispositivo di protezione contro spruzzi d'acqua per interruttori elet trici e simili
US5363674A (en) 1993-05-04 1994-11-15 Ecoair Corp. Zero superheat refrigeration compression system
US5354182A (en) 1993-05-17 1994-10-11 Vickers, Incorporated Unitary electric-motor/hydraulic-pump assembly with noise reduction features
IT231077Y1 (it) 1993-12-22 1999-07-12 Pavarini Srl Idropulitrice.
JP3014909B2 (ja) 1993-12-27 2000-02-28 株式会社デンソー スクロール型圧縮機
US5616973A (en) 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
DE4445521C1 (de) 1994-12-20 1995-12-07 Kaercher Gmbh & Co Alfred Pumpe für ein Hochdruckreinigungsgerät
JP3281752B2 (ja) 1995-03-30 2002-05-13 三菱重工業株式会社 スクロール型流体機械
US5533875A (en) 1995-04-07 1996-07-09 American Standard Inc. Scroll compressor having a frame and open sleeve for controlling gas and lubricant flow
JPH0914199A (ja) 1995-06-30 1997-01-14 Sugino Mach Ltd 高圧水発生装置
JPH11509902A (ja) 1995-07-31 1999-08-31 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング 特にレール車両用の圧縮空気発生に使用されるスクロール形コンプレッサ
DE19604447C2 (de) 1995-07-31 2002-03-21 Knorr Bremse Systeme Spiralverdichter
ATE196533T1 (de) * 1995-12-22 2000-10-15 Mannesmann Rexroth Aktiengesel Hydraulisches kompaktaggregat
JP3737198B2 (ja) 1996-04-25 2006-01-18 株式会社荏原製作所 防音装置付き給液装置
DE19628781A1 (de) * 1996-07-17 1998-01-22 Voith Turbo Kg Pumpaggregat mit einer Antriebskühlung mittels der zu fördernden Flüssigkeit
US5938389A (en) 1996-08-02 1999-08-17 Crown Cork & Seal Technologies Corporation Metal can and method of making
US5930852A (en) * 1997-03-21 1999-08-03 Aqua-Flo, Incorporated Heat exchanging pump motor for usage within a recirculating water system
DE19716758C2 (de) 1997-04-12 2002-01-10 System Antriebstechnik Dresden Gehäuselose elektrische Maschine mit mehreren unmittelbar fluiddurchströmten axialen Kühlkanälen
JPH10317964A (ja) 1997-05-15 1998-12-02 Hitachi Constr Mach Co Ltd 建設機械のエンジン冷却装置
JP3957365B2 (ja) 1997-07-03 2007-08-15 北越工業株式会社 作業機の防音構造
JP3800374B2 (ja) 1997-08-07 2006-07-26 本田技研工業株式会社 エンジン発電機
US5997261A (en) 1997-10-31 1999-12-07 Siemens Canada Limited Pump motor having fluid cooling system
US6000917A (en) 1997-11-06 1999-12-14 American Standard Inc. Control of suction gas and lubricant flow in a scroll compressor
US6068459A (en) 1998-02-19 2000-05-30 Varian, Inc. Tip seal for scroll-type vacuum pump
DE19808602C1 (de) 1998-02-28 1999-09-02 Grundfos As Vorrichtung zum äußeren Kühlen des elektrischen Antriebsmotors eines Kreiselpumpenaggregates
JPH11270885A (ja) 1998-03-24 1999-10-05 Mitsubishi Electric Corp 換気装置
DE59908003D1 (de) 1998-09-15 2004-01-22 Wilo Ag Rohrpumpe
EP0989658A1 (de) 1998-09-28 2000-03-29 The Swatch Group Management Services AG Flussigkeitsgekühlter elektrischen Asynchronmaschine
JP2000130800A (ja) 1998-10-29 2000-05-12 Sharp Corp 空気調和機の室外機
US6132183A (en) 1998-11-23 2000-10-17 Carrier Corporation Compressor mounting
US6074185A (en) 1998-11-27 2000-06-13 General Motors Corporation Scroll compressor with improved tip seal
US6300693B1 (en) 1999-03-05 2001-10-09 Emerson Electric Co. Electric motor cooling jacket assembly and method of manufacture
DE19910460A1 (de) 1999-03-10 2000-09-21 Bitzer Kuehlmaschinenbau Gmbh Kompressor
DE10045424A1 (de) 2000-09-14 2002-03-28 Va Tech Elin Ebg Motoren Gmbh Flüssigkeitsgekühlter Elektromotor
US6439861B1 (en) * 2000-11-22 2002-08-27 Sen-Yuan Shieh Blower machine with an inherent air flow heat dissipation structure
DE10065821A1 (de) 2000-12-22 2002-07-11 Bitzer Kuehlmaschinenbau Gmbh Kompressor
JP2003193837A (ja) 2001-12-25 2003-07-09 Yanmar Co Ltd 発電装置
JP4099335B2 (ja) 2002-02-12 2008-06-11 シスメックス株式会社 エアポンプ装置
CN2538970Y (zh) * 2002-03-25 2003-03-05 何备荒 一种新型液压传动高压注剂泵
US7063519B2 (en) 2002-07-02 2006-06-20 R & D Dynamics Corporation Motor driven centrifugal compressor/blower
DE10247310A1 (de) 2002-10-10 2004-04-22 Siemens Ag Belüftung einer elektrischen Maschine
JP2004183605A (ja) * 2002-12-05 2004-07-02 Sanden Corp 電動圧縮機
DE10305812A1 (de) 2003-02-12 2004-09-02 DMT GmbH Feinwerktechnische Komplettlösungen Fördervorrichtung zum Fördern eines Fluids
DE10307813B4 (de) 2003-02-24 2006-05-24 Siemens Ag Elektrische Maschine
CN1554869A (zh) * 2003-12-26 2004-12-15 浙江大学 全水润滑端面配流的纯水液压轴向柱塞泵或马达
US7182583B2 (en) * 2004-02-06 2007-02-27 Sauer-Danfoss Inc. Electro-hydraulic power unit with a rotary cam hydraulic power unit
JP2005306153A (ja) 2004-04-20 2005-11-04 Shin Caterpillar Mitsubishi Ltd 建設機械のエンジンルームの構造
JP2006291744A (ja) 2005-04-06 2006-10-26 Denyo Co Ltd エンジン駆動作業機
JP4359265B2 (ja) 2005-06-23 2009-11-04 本田技研工業株式会社 汎用エンジンのマフラカバー構造
DE102005046120A1 (de) 2005-09-26 2007-03-29 Wilo Ag Gehäuse eines Elektromotors
US7591147B2 (en) 2006-11-01 2009-09-22 Honeywell International Inc. Electric motor cooling jacket resistor
JP4967510B2 (ja) 2006-08-03 2012-07-04 パナソニック株式会社 冷蔵庫
DE102007009394A1 (de) 2007-02-21 2008-08-28 Alfred Kärcher Gmbh & Co. Kg Motorpumpeneinheit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010091698A1 *

Also Published As

Publication number Publication date
CN102292543B (zh) 2015-02-18
WO2010091698A8 (de) 2010-10-07
AU2009339812B2 (en) 2014-01-23
AU2009339812A1 (en) 2011-09-01
WO2010091698A1 (de) 2010-08-19
CN102292543A (zh) 2011-12-21
US8920138B2 (en) 2014-12-30
US20120195772A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
EP2396545A1 (de) Motorpumpeneinheit
EP2396546A1 (de) Motorpumpeneinheit
EP2122166B1 (de) Motorpumpeneinheit insbesondere für ein hochdruckreinigungsgerät
DE112009003640B4 (de) Verbesserte Tauchpumpenkühlung durch externe Ölzirkulation
EP3504433B1 (de) Motor-pumpenvorrichtung
DE1703783B2 (de) Motorpumpenaggregat
WO2007042154A1 (de) Hochdruckreinigungsgerät
DE3931665C1 (en) Split-ring electric motor for pump - has feeder coupled to pump chamber at point exhibiting high pressure
EP2244845B1 (de) Hochdruckreinigungsgerät
EP2396550B1 (de) Motorpumpeneinheit
WO2014090314A1 (de) Motorpumpeneinheit
EP2745011B1 (de) Motorpumpeneinheit
DE102016225196B4 (de) Elektromotorische Ölpumpe
DE102014109625A1 (de) Pumpenanordnung
EP0873199B1 (de) Hochdruckreinigungsgerät
EP2766603B1 (de) Kolbenpumpe für ein hochdruckreinigungsgerät
DE202005021232U1 (de) Hochdruckreinigungsgerät
WO2024028034A1 (de) Motorpumpeneinheit für ein hochdruckreinigungsgerät
DE1628156A1 (de) Gekapselter Motorverdichter,insbesondere fuer Kleinkaeltemaschinen
DE102012110326B3 (de) Wasserfilter und Drucklufterzeugungsvorrichtung
EP0893601B1 (de) Pumpenanordnung mit einer Kolbenpumpe und einer Boosterpumpe
DE102004055360B4 (de) Motor-Verdichter-Anordnung
DE949250C (de) Luftgekuehlter Kompressor
DE102010038767A1 (de) Nebenstromfilteraggregat
EP2725230A1 (de) Gehäuseanordnung für eine Kolbenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170810

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 53/08 20060101ALI20180207BHEP

Ipc: F04B 1/14 20060101AFI20180207BHEP

Ipc: F04B 1/12 20060101ALI20180207BHEP

Ipc: H02K 5/20 20060101ALI20180207BHEP

Ipc: F04B 17/03 20060101ALI20180207BHEP

Ipc: H02K 7/14 20060101ALI20180207BHEP

Ipc: F04B 39/06 20060101ALI20180207BHEP

Ipc: F04B 35/04 20060101ALI20180207BHEP

Ipc: H02K 9/19 20060101ALI20180207BHEP

INTG Intention to grant announced

Effective date: 20180223

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALFRED KAERCHER SE & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180706