EP1658390B1 - Procede de production d'un element constitutif en acier trempe - Google Patents

Procede de production d'un element constitutif en acier trempe Download PDF

Info

Publication number
EP1658390B1
EP1658390B1 EP04739755.9A EP04739755A EP1658390B1 EP 1658390 B1 EP1658390 B1 EP 1658390B1 EP 04739755 A EP04739755 A EP 04739755A EP 1658390 B1 EP1658390 B1 EP 1658390B1
Authority
EP
European Patent Office
Prior art keywords
zinc
coating
corrosion protection
sheet
high oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04739755.9A
Other languages
German (de)
English (en)
Other versions
EP1658390A1 (fr
Inventor
Martin Fleischanderl
Siegfried Kolnberger
Josef Faderl
Gerald Landl
Anna Elisabeth Raab
Werner BRANDSTÄTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34275147&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1658390(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AT12022003A external-priority patent/AT412403B/de
Priority claimed from AT0120303A external-priority patent/AT412878B/de
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP1658390A1 publication Critical patent/EP1658390A1/fr
Application granted granted Critical
Publication of EP1658390B1 publication Critical patent/EP1658390B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/04Stamping using rigid devices or tools for dimpling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for producing a hardened steel component with cathodic corrosion protection, as well as a corrosion protection for steel sheets, as well as components made of steel sheets with the corrosion protection.
  • Low alloy steel sheets are not resistant to corrosion after being produced by suitable forming steps, either by hot rolling or cold rolling. This means that after a relatively short time and due to the humidity at the surface, oxidation occurs.
  • a corrosion protection layer is a layer produced on a metal or in the near-surface region of a metal, which consists of one or more layers. Multi-layer coatings are also referred to as corrosion protection systems.
  • Possible corrosion protection layers are, for example, organic coatings, inorganic coatings and metallic coatings.
  • the purpose of metallic corrosion protection layers is to transfer the properties of the support material to the steel surface for as long as possible. Accordingly, the choice of an effective metallic corrosion protection requires the knowledge of the corrosion-chemical relationships in the system steel / coating metal / attacking medium.
  • the coating metals can be electrochemically nobler or electrochemically less noble than steel.
  • the respective coating metal protects the steel only through the formation of protective layers.
  • barrier protection As soon as the surface of the coating metal has pores or was injured, a "local element" forms in the presence of moisture, in which the base partner is attacked by the metal to be protected.
  • the more noble coating metals include tin, nickel and copper.
  • Metallic protective layers are applied by various methods. Depending on the metal and process, the connection of the steel surface is chemical, physical or mechanical and ranges from alloy formation and diffusion to adhesion and mere mechanical clamping.
  • the metallic coatings are said to have similar technological and mechanical properties to steel as they do to steel, and to behave similarly to steel in terms of mechanical stress or plastic deformation. Accordingly, the coatings should not be damaged during forming and should not be affected by forming operations.
  • the metal to be protected is immersed in molten metal melts.
  • corresponding alloy layers are formed at the phase boundary steel-coating metal.
  • An example of this is the hot dip galvanizing.
  • Hot-dip galvanized products have high corrosion resistance, good weldability and formability, and their main applications are the construction, automotive and household appliance industries.
  • a coating of a zinc-iron alloy is known.
  • these products are subjected to a diffusion annealing at temperatures above the zinc melting point, usually between 480 ° C and 550 ° C after hot-dip galvanizing.
  • the zinc-iron alloy layers grow and absorb the overlying zinc layer. This process is called "galvannealing".
  • the zinc-iron alloy thus produced also has a high corrosion resistance, good weldability and formability.
  • Main applications are the automotive and home appliance industry.
  • other coatings of aluminum, aluminum-silicon, zinc-aluminum and aluminum-zinc-silicon can be produced by hot dipping.
  • electrodeposited metal coatings i. the electrolytic, so under current passage deposition of metallic coatings of electrolytes.
  • electrolytic coating is also possible with such metals, which can not be applied by hot dip process.
  • Conventional layer thicknesses in electrolytic coatings are usually between 2.5 and 10 microns, they are thus generally lower than hot-dip coatings.
  • Some metals, e.g. Zinc, also allow thick film coatings with electrolytic coating.
  • Electrolytically galvanized sheets are mainly used in the automotive industry, because of the high surface quality, these sheets are used above all in the outer skin area. They have good formability, weldability and storability as well as good paintable and matt surfaces.
  • the sheet is scaled on the surface by the heating, so that after forming and hardening the sheet surface must be cleaned, for example by sandblasting. Then the sheet is trimmed and, if necessary, necessary holes are punched.
  • the sheets have a very high hardness in the mechanical processing and therefore the processing is complicated and in particular a high tool wear exists.
  • the US 6,564,604 B2 The object of the invention is to provide steel sheets which are subsequently subjected to a heat treatment, and a method for producing parts by press-hardening these coated steel sheets. In this case, it should be ensured despite the increase in temperature that the steel sheet is not decarburized and the O-surface of the steel sheet is not oxidized before, during and after the hot pressing or heat treatment.
  • an alloyed intermetallic mixture should be applied to the surface before or after punching, which should provide protection against corrosion and decarburization and also can provide a lubricating function.
  • this document proposes to use a conventional, apparently electrolytically applied zinc layer, wherein this zinc layer is to convert with the steel substrate in a subsequent Austenit atmosphere the sheet substrate in a homogeneous Zn Fe Fe alloy layer.
  • This homogeneous layer structure is confirmed by microscopic images. Contrary to previous assumptions, this coating is said to have a mechanical resistance that prevents it from melting. In practice, however, such an effect does not show.
  • the use of zinc or zinc alloys is said to provide cathodic protection of the edges when Cuts are available.
  • the US 6,564,604 B2 For example, a coating consisting of 50% to 55% aluminum and 45% to 50% zinc with possibly small amounts of silicon is specified. Such a coating is not new in itself and known under the brand name Galvalume®. It is stated that the coating metals zinc and aluminum with iron should form a homogeneous zinc-aluminum-iron alloy coating. In the case of this coating, it is disadvantageous that sufficient cathodic corrosion protection is no longer achieved here, but the predominant barrier protection which is achieved with this is not sufficient when used in the press hardening process, since partial surface damage to the surface is unavoidable.
  • the method described in this document is unable to solve the problem that, in general, zinc-based cathodic corrosion coatings are not suitable for protecting steel sheets which are to be subjected to a heat treatment after coating and may also be subjected to a further shaping or forming step.
  • a method for producing a sheet metal component wherein the sheet on the surface should have an aluminum layer or an aluminum alloy layer.
  • a sheet provided with such coatings is to be subjected to a press hardening process, wherein possible coating alloys are mentioned Alloy with 9-10% silicon, 2-3.5% iron, balance aluminum with impurities and a second alloy with 2-4% iron and the balance aluminum with impurities.
  • Such coatings are known per se and correspond to the coating of a hot-dip aluminized steel sheet. In such a coating is disadvantageous in that only a so-called barrier protection is achieved. The moment that such a barrier layer is damaged or cracked in the Fe-Al layer, the base material, in this case the steel, is attacked and corroded. A cathodic protective effect is absent.
  • DE 10039375 A1 discloses a method for producing a corrosion protected steel sheet comprising the steps of: applying to a steel sheet a zinc coating by hot dipping in a zinc 5% aluminum melt, heating, alloying and curing (eg 950 ° C) in an atmosphere, wherein Oxide layer is formed on the surface and hot pressing of the coated steel sheet.
  • the DE 102 46 614 A1 proposes, therefore, to apply a coating as a metal or a metal alloy by means of a galvanic coating method in organic, non-aqueous solution, a particularly suitable and therefore preferred coating material being aluminum or an aluminum alloy.
  • a particularly suitable and therefore preferred coating material being aluminum or an aluminum alloy.
  • zinc or zinc alloys would be suitable.
  • Such a coated sheet can then be cold preformed and hot finished molded.
  • this method has the disadvantage that an aluminum coating, even if it was applied electrolytically, no longer offers corrosion protection in case of damage to the surface of the finished component, since the protective barrier has been broken.
  • an electrodeposited zinc coating it is disadvantageous that during heating for hot forming, the zinc is largely oxidized and no longer available for cathodic protection. Under a protective gas atmosphere, the zinc evaporates.
  • the object of the invention is to provide a method for producing a component from hardened steel sheet with an improved cathodic corrosion protection.
  • Another object is to provide a cathodic corrosion protection for steel sheets, which are subjected to forming and hardening.
  • the inventive method provides, on a hardenable steel sheet, a coating of a mixture consisting essentially of zinc and one or more oxygen-affine elements, such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese with a content of 0.1 to 15
  • a coating of a mixture consisting essentially of zinc and one or more oxygen-affine elements, such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese with a content of 0.1 to 15
  • Apply wt .-% of the oxygen affinity element and to heat the coated steel sheet at least partially with the access of oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and before or subsequently reshape the sheet is cooled after sufficient heating and the cooling rate is measured in that hardening of the sheet metal alloy takes place.
  • a hardened component is obtained from a steel sheet having a good cathodic corrosion protection.
  • the corrosion protection according to the invention for steel sheets, which are first subjected to a heat treatment and then reformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc.
  • a cathodic corrosion protection which is essentially based on zinc.
  • 0.1% to 15% of one or more oxygen-containing elements such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese or any mixture or alloy thereof are added to the zinc forming the coating. It has been found that such small amounts of an oxygen affinity element as magnesium, silicon, titanium, calcium, aluminum, boron and manganese cause a surprising effect in this particular application.
  • At least Mg, Al, Ti, Si, Ca, B, Mn are suitable as oxygen-affine elements.
  • aluminum is mentioned below, this is representative of the other elements mentioned.
  • the application of the coating according to the invention on a steel sheet can be done, for example, by so-called hot-dip galvanizing, i. a hot dip coating is performed wherein a liquid mixture of zinc and the oxygen-affine element (s) is applied. Furthermore, it is possible to electrolytically apply the coating, i. to deposit the mixture of zinc and the oxygen-affine element (s) collectively on the sheet surface, or first to deposit a zinc layer and then to deposit on the zinc surface one or more oxygen-affine elements in succession or any mixture or alloy thereof, or by vapor deposition or other suitable method deposit.
  • hot-dip galvanizing i. a hot dip coating is performed wherein a liquid mixture of zinc and the oxygen-affine element (s) is applied.
  • electrolytically apply the coating i. to deposit the mixture of zinc and the oxygen-affine element (s) collectively on the sheet surface, or first to deposit a zinc layer and then to deposit on the zinc surface one or more oxygen-affine elements in succession or any mixture or alloy thereof, or
  • an oxygen-affine element in particular aluminum
  • an essentially of AL 2 O 3 or an oxide of the oxygen-affine element MgO, CaO, TiO, SiO 2 , B 2 O 3 , MnO
  • This very thin oxide layer protects the underlying Zn-containing corrosion protection layer from oxidation even at very high temperatures.
  • an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer, with a high proportion of zinc and a very thin oxidation protection layer of one or more oxides (AL 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO) to oxidation and Evaporation is protected.
  • a 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO oxides
  • the corrosion protection layer according to the invention for the press-hardening process also has such a high stability that a forming step following the austenitizing of the sheets does not destroy this layer. Even if microcracks occur on the cured component, however, the cathodic protection effect is at least significantly greater than the protective effect of the known corrosion protection layers for the press-hardening process.
  • a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel plate, in particular an alloyed steel sheet are applied, whereupon in a second step, parts of the coated sheet are machined and in particular cut out or punched out and heated on access of atmospheric oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and then cooled at an increased speed.
  • a transformation of the cut out of the sheet metal part (the board) can be carried out before or after the heating of the sheet to the Austenitmaschinestemperatur.
  • the sheet when coating the sheet to the sheet surface or in the proximal region of the layer, a thin barrier phase of, in particular Fe 2 Al 5 -x Zn x is formed, which impedes the Fe-Zn diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C.
  • the sheet in the first process step, is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having.
  • the metal layer on the sheet is liquefied for the time being.
  • the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the aluminum metal concentration, which causes a steady diffusion of aluminum towards depletion, that is to the distal region.
  • This Tonerdeanreichtation, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.
  • the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer.
  • the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.
  • Well suited is, for example, a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably greater than 0.26 but less than 2.5 wt .-%.
  • the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal barrier phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it also takes place to improve the thermoforming properties of the sheet material.
  • An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of, for example, greater than 0.15 mm and a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon until 19, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0, 9, preferably 0.1 to 0.5 nickel to 0, 9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities is used.
  • the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.
  • the obtained samples were analyzed for optical and electrochemical differences.
  • Assessment criteria here were the appearance of the annealed steel sheets and the protection energy.
  • the protection energy is the measure for the electrochemical protection of the layer, determined by galvanostatic dissolution.
  • the electrochemical method of galvanostatic dissolution of the metallic surface coatings of a material allows to classify the mechanism of corrosion protection of the layer.
  • the potential-time behavior of a corrosion-protective layer is determined for a given constant current flow. For the measurements, a current density of 12.7 mA / cm 2 was specified.
  • the measuring arrangement is a three-electrode system.
  • the counterelectrode used was a platinum network, the reference electrode consisting of Ag / AgCl (3M).
  • the electrolyte consists of 100 g / l ZnSO 4 .5H 2 O and 200 g / l NaCl dissolved in deionized water.
  • the barrier protection is characterized by the fact that it separates the base material from the corrosive medium.
  • a hot-dip aluminized steel sheet is made by passing a steel sheet through a liquid aluminum bath. Annealing to 900 ° C produces an aluminum-iron surface layer due to the reaction of the steel with the aluminum coating. The corresponding annealed sheet shows a dark gray appearance, the surface is homogeneous and visually shows no defects.
  • a steel sheet was hot dip galvanized with an aluminum-zinc layer, the melt consisting of 55% aluminum, 44% zinc and about 1% silicon. After surface coating and subsequent annealing at 900 ° C, a gray-bluish surface appears without defects. A cross section is in FIG. 4 shown.
  • the annealed material is then subjected to galvanostatic dissolution.
  • the material shows a potential of about -0.92 V, which is necessary for the resolution, and is thus clearly below the steel potential.
  • This value is comparable to the potential needed to dissolve a hot dip galvanized coating prior to the annealing process.
  • this very zinc-rich phase ends after just about 350 seconds of measurement time. This is followed by a rapid increase to a potential that is now just below the steel potential lies.
  • the potential After breaking through this layer, the potential first drops to a value of about -0.54 V and then increases continuously to a value of about -0.35 V. Only then does it slowly sink to steel potential.
  • This material shows some cathodic corrosion protection due to the very negative potential at the beginning of the measurement, which is well below the steel potential, in addition to the barrier protection.
  • the part of the layer that provides cathodic protection against corrosion is used up after only about 350 seconds of measurement time.
  • the remaining layer can only offer a low cathodic corrosion protection, since the difference between the required potential for the layer dissolution and the steel potential now only less than 0.12 V. In a poorly conductive electrolyte, this part of the cathodic corrosion protection is no longer usable.
  • the potential-time diagram is in FIG. 5 shown.
  • a steel sheet is hot-dip galvanized with a melt consisting essentially of 95% zinc and 5% aluminum. After annealing, the sheet shows a silvery-gray surface with no defects.
  • FIG. 6 shows that the coating consists of a light phase and a dark phase, wherein the phases are Zn-Fe-Al-containing phases. The bright phases are more zinc-rich, the dark phases more iron-rich.
  • the galvanostatic dissolution shows a potential of about -0.7 V required for the resolution. This value is significantly below the potential of the steel. After a measuring time of approx. 1,000 seconds it turns a potential of about -0.6V. This potential is also clearly below the steel potential. After a measurement time of approximately 3,500 seconds, this part of the layer is used up and the necessary potential for dissolving the layer approaches the steel potential. This coating thus offers after the annealing in addition to the barrier protection a cathodic corrosion protection. The potential is up to a measuring time of 3,500 seconds at a value of ⁇ -0.6 V, so that a considerable cathodic protection is maintained over a long time, even if the sheet was fed to the austenitizing temperature.
  • the potential-time diagram is in FIG. 7 shown.
  • the sheet is passed through a melt or through a zinc bath, with a zinc content of 99.8% and an aluminum content of 0.2%.
  • Aluminum present in the zinc coating reacts with atmospheric oxygen during the calcination and forms a protective Al 2 O 3 skin. Through constant diffusion of the oxygen-affinity aluminum to the surface, this protective skin is maintained and expanded.
  • the sheet shows a silvery-gray surface without defects. From the originally about 15 microns thick zinc coating develops during the annealing due to diffusion, a about 20 to 25 microns thick layer, said layer ( FIG. 8 ) consists of a dark appearing phase with a composition Zn / Fe of about 30/70 and a bright area with the composition Zn / Fe of about 80/20.
  • the annealed material has a potential of approx. -0.75 V. After a measuring time of approx. 1,500 seconds, the potential required for the resolution increases to ⁇ -0.6 V. The phase lasts up to a measuring time of approx. 2,800 seconds. Then the required potential increases to steel potential. In this case too, in addition to barrier protection, there is cathodic corrosion protection. The potential is up to a measurement time of 2,800 seconds at a value of ⁇ -0.6 V. Thus, such a material has thus over a very long time a cathodic protection against corrosion.
  • the potential-time diagram is FIG. 9 refer to.
  • the sheet is heated to a temperature of about 500 ° C after exiting the metal strip from the molten zinc (about 450 ° C strip temperature).
  • the zinc layer is completely converted into Zn-Fe phases.
  • the zinc layer is thus wholly, i. converted to Zn-Fe phases to the surface.
  • This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.
  • a 1 mm thick steel sheet with said heat treated and fully converted coating is heated for 4 minutes and 30 seconds in a 900 ° C oven.
  • the result is a yellow-green surface.
  • the yellow-green surface indicates oxidation of the Zn-Fe phases during annealing.
  • An aluminum oxide protective layer is undetectable. The reason for the absence of an aluminum oxide protective layer can be explained by the fact that in the Annealing treatment due to solid Zn-Fe phases, aluminum can not migrate to the surface so rapidly and protect the Zn-Fe coating from oxidation. When heating this material at temperatures around 500 ° C is still no liquid zinc-rich phase, because this forms only at higher temperatures of 782 ° C. If 782 ° C are reached, thermodynamically there is a liquid zinc-rich phase in which the aluminum is freely available. Nevertheless, the surface layer is not protected against oxidation.
  • the corrosion protection layer is already partially oxidized before and it can no longer form opaque alumina skin.
  • the layer is wavy rugged in cross section and consists of Zn and Zn Fe oxides ( FIG. 11 ).
  • the surface of the said material is much larger due to the highly crystalline acicular surface formation of the surface, which could also be disadvantageous for the formation of a covering and thicker aluminum oxide protective layer.
  • the said non-inventive coating forms in the initial state, ie not in the thermally treated state, a brittle layer which is provided with numerous cracks, both transversely and longitudinally to the coating. ( FIG. 10 in comparison to the aforementioned inventive example (left in the picture)).
  • a sheet, as in the aforementioned example, is heat-treated immediately after hot-dip galvanizing at about 490 ° C to 550 ° C with the zinc layer only partially converted to Zn-Fe phases.
  • the process is carried out in such a way that the phase transformation is only partially carried out and therefore not yet converted zinc with aluminum on the surface is present and thus free aluminum as oxidation protection for the zinc layer is available.
  • a 1 mm thick steel sheet is rapidly inductively heated to 900 ° C with the inventive heat-treated and only partially converted into Zn-Fe phase coating.
  • the result is a surface that is gray and without defects.
  • a SEM / EDX examination of the cross section shows an approximately 20 microns thick surface layer, wherein from the originally about 15 microns thick zinc coating of the coating has formed in the inductive annealing due to diffusion, an about 20 microns Zn-Fe layer, said layer with the typical for the invention two-phase structure a "leopard pattern" shows, with a dark phase in the image with a composition Zn / Fe of about 30/70 and bright areas with the composition Zn / Fe of about 80/20. In addition, individual areas with zinc contents ⁇ 90% zinc are present. On the surface a protective layer of alumina is detectable.
  • a sheet is electrolytically galvanized by electrochemical deposition of zinc on steel. During annealing, the diffusion of the steel and the zinc layer creates a thin Zn-Fe layer. Most of the zinc oxidizes to zinc oxide, which appears green by the simultaneous formation of iron oxides. The surface shows a green appearance with local scale marks where the zinc oxide layer does not adhere to the steel.
  • a REM / EDX examination ( FIG. 15 ) of the sample sheet in transverse section confirms that a large part of the coating consists of zinc-iron-oxide deposits.
  • the potential required for the current flow is included about +1 V and thus well above the steel potential.
  • the potential fluctuates between +0.8 and -0.1 V, but is above the steel potential throughout the entire dissolution of the coating. It follows that the corrosion protection of a annealed, electrolytically galvanized sheet is a pure barrier protection, but which is less efficient than with fumed sheet, since the potential is lower at the beginning of the measurement with electrolytically coated sheet than with hot-dip aluminized sheet.
  • the potential required for the dissolution lies above the steel potential throughout the entire dissolution. Thus, even with a annealed, electrolytically coated metal sheet there is no cathodic corrosion protection at any time.
  • the potential-time diagram is FIG. 16 refer to.
  • the potential is fundamentally above steel potential, but varies in detail depending on the experiment under identical experimental conditions.
  • a sheet is made by electroplating zinc and nickel on the steel surface.
  • the weight ratio of zinc to nickel in the anticorrosion layer is about 90/10.
  • the deposited layer thickness is 5 ⁇ m.
  • the sheet is annealed with the coating for 4 minutes and 30 seconds at 900 ° C in the presence of atmospheric oxygen.
  • the diffusion of the steel and the zinc layer creates a thin diffusion layer of zinc, nickel and iron.
  • most of the zinc oxidizes again to zinc oxide.
  • the surface shows a scaled, green appearance with small local flaking to which the oxide layer does not adhere to the steel.
  • FIG. 17 A SEM / EDX examination of a cross section ( FIG. 17 ) shows that the majority of the coating has been oxidized and is therefore not available for cathodic corrosion protection.
  • the potential required for the resolution of the layer is 1.5 V, far above the steel potential. After approx. 250 seconds it sinks to approx. 0.04 V and oscillates between + 0.25 V. After approx. 1.700 seconds measuring time, it finally settles to a value of - 0.27 V and remains until the end of the Measurement at this value.
  • the potential required for the resolution of the layer is well above the steel potential throughout the entire measurement time. Consequently, this coating has a pure barrier protection after annealing, without any cathodic corrosion protection (Figure 18).
  • Example 4 steel sheet with a layer thickness of 15 microns was placed for 4 min 30 s in a 900 ° C hot air blast furnace, then rapidly cooled between two 5 cm thick steel plates and the surface with a GDOES measurement analyzed.
  • FIGS. 25 and 26 the GDOES analyzes of the coated sheet according to Example 4 are shown before and after the annealing. Before hardening ( Fig. 25 ) is reached after about 15 microns, the transition zinc layer steel, after curing, the layer is about 23 microns thick.
  • the cathodic corrosion protection is negligible with a voltage difference of 100 mV to the steel potential in poorly conducting electrolytes.
  • a smaller difference to the steel potential is in principle still a cathodic corrosion protection, if a current flow is detected when using a steel electrode, but this is negligible for practical aspects, since the corrosive medium must conduct very well, so this contribution to the cathodic corrosion protection can be used.
  • the area between the potential curve at the galvanostatic dissolution and the specified threshold value of 100 mV was set below the steel potential ( FIG. 20 ). Only the area below the threshold is taken into account. The overlying surface contributes negligibly little or not at all to the cathodic corrosion protection and is therefore not included in the evaluation.
  • the area thus obtained is multiplied by the current density, the protection energy per unit area with which the base material can be actively protected against corrosion. The greater this energy, the better the cathodic corrosion protection.
  • FIG. 21 the calculated protective energies per unit area are compared. While a sheet with the known aluminum-zinc layer of 55% aluminum and 44% zinc, as it is also known from the prior art, only a protection energy per unit area of about 1.8 J / cm 2 , which is Protection energy per unit area in accordance with the invention coated sheets 5.6 J / cm 2 and 5.9 J / cm 2 .
  • cathodic corrosion protection in the context of the invention, it is subsequently specified that coatings of 15 ⁇ m thickness are used and the illustrated process and experimental conditions at least a cathodic corrosion protection energy of 4 J / cm 2 is present.
  • a zinc layer which has been deposited electrolytically on the steel sheet surface is not in itself capable of providing a corrosion protection according to the invention, even after a heating step above the austenitizing temperature.
  • the invention can also be achieved with an electrodeposited coating.
  • the zinc can be deposited simultaneously with the oxygen-affine elements or elements in an electrolysis step on the sheet surface simultaneously, so that on the sheet surface, a coating with a homogeneous structure is formed containing both zinc and the oxygen-affine or the elements.
  • a coating behaves like a coating of the same composition applied to the sheet surface in the hot-dip galvanizing process.
  • a first electrolysis step only zinc is deposited on the sheet surface and in a second electrolysis step, the oxygen-affine element (s) is deposited on the zinc layer.
  • the second coating of the oxygen-affine elements may be significantly thinner than the zinc coating.
  • the outer layer located on the zinc layer oxidizes from the oxygen-affine element (s) and protects the underlying zinc with an oxide skin.
  • the oxygen affinity element or elements are selected so that they do not evaporate from the zinc layer or are oxidized in a manner that does not leave a protective oxide skin.
  • first a zinc layer is deposited electrolytically and then a layer of the oxygen-affine element (s) is applied by vapor deposition or other suitable non-electrolytic coating methods.

Claims (39)

  1. Procédé pour produire un composant en acier trempé avec une protection anticorrosion cathodique, dans lequel :
    a) dans un processus de revêtement continu, on applique un revêtement sur une tôle en alliage d'acier capable d'être trempé, et
    b) le revêtement est essentiellement constitué de zinc, et
    c) le revêtement contient en outre un ou plusieurs éléments présentant une affinité à l'oxygène, dans une quantité totale de 0,1 % en poids jusqu'à 15 % en poids, par référence à la totalité de revêtement, et
    d) la tôle d'acier revêtue est amenée ensuite au moins sur des zones partielles et avec apport d'oxygène atmosphérique jusqu'à une température d'austénitisation nécessaire pour la trempe, et est chauffée jusqu'à une modification de structure nécessaire pour la trempe,
    e) on forme sur le revêtement une peau de surface en un oxyde du ou des élément(s) présentant une affinité à l'oxygène, et
    f) la tôle est déformée avant ou après le chauffage,
    g) après un échauffement suffisant, la tôle est refroidie et la vitesse de refroidissement est choisie de telle façon que l'on obtient une trempe de l'alliage de la tôle, et
    h) on utilise dans le mélange à titre d'éléments présentant une affinité à l'oxygène du magnésium et/ou du silicium et/ou du titane et/ou du calcium et/ou de l'aluminium et/ou du manganèse et/ou du bore, et
    i) le mélange de revêtement est sélectionné de telle façon que la couche forme pendant le chauffage une peau superficielle en oxyde formée d'oxyde(s) du ou des éléments présentant une affinité à l'oxygène, et le revêtement forme au moins deux phases, de manière à former une phase riche en zinc et une phase riche en fer.
  2. Procédé selon la revendication 1, caractérisé en ce que le revêtement est appliqué selon une procédure de plongée dans un bain en fusion, dans laquelle on utilise un mélange formé essentiellement de zinc avec le ou les éléments présentant une affinité à l'oxygène.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'on utilise 0,2 % en poids à 5 % en poids des éléments présentant une affinité à l'oxygène.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on utilise 0,26 % en poids jusqu'à 2,5 % en poids des éléments présentant une affinité à l'oxygène.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la phase riche en fer présente un rapport zinc/fer au maximum de 0,95 (Zn/Fe ≤ 0,95), de préférence de 0,20 à 0,80 (Zn/Fe = 0,20 à 0,80) et la phase riche en zinc présent un rapport zinc/fer d'au moins 2,0 (Zn/Fo ≥2,0), de préférence de 2,3 à 19,0 (Zn/Fe = 2,3 à 19,0).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la phase riche en fer possède un rapport zinc/fer d'environ 30:70, et la phase riche en zinc est réalisée avec un rapport zinc/fer d'environ 80:20.
  7. Procédé selon l'une des revendications précédentes, caractérisée en ce que la couche contient en outre des zones individuelles avec des parts de zinc > 90 %.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le revêtement est réalisé de telle façon que, pour l'épaisseur de départ de 15 µm après le processus de trempe, il développe un effet de protection cathodique d'au moins 4 J/cm2.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le revêtement avec le mélange de zinc et du ou des éléments présentant une affinité à l'oxygène, a lieu à la traversée d'un bain de métal liquide à une température de 425° C à 690° C, avec un refroidissement successif de la tôle revêtue.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le revêtement avec le mélange de zinc et des éléments présentant une affinité à l'oxygène a lieu à la traversée d'un bain de métal liquide à une température de 440° C à 495° C, avec un refroidissement successif de la tôle revêtue.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la tôle est chauffée par induction.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la tôle est chauffée par induction dans l'outil.
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que la tôle est chauffée dans un four à rayonnement.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement a lieu dans l'outil de mise en forme.
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement est exécuté lors de la mise en forme au moyen d'outils de mise en forme refroidis.
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement a lieu après la mise en forme dans l'outil de mise en forme.
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement a lieu dans un outil de trempe et de moulage, dans lequel la tôle mise en forme est posée après le chauffage, et dans lequel on établit une coopération de formes entre la tôle déformée et les outils de trempe et de moulage refroidis présentant une forme correspondante.
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce que le chauffage et le refroidissement a lieu dans l'outil de trempe et de moulage, et le chauffage a lieu par induction et le moule est refroidi après le chauffage inductif.
  19. Procédé selon l'une des revendications précédentes, caractérisé en ce que la mise en forme et la trempe du composant un lieu avec un appareil de mise en forme par laminage, dans lequel la tôle revêtue est chauffée au moins partiellement à la température d'austénitisation et est mise en forme par laminage avant, pendant et/ou après et, à la suite de la mise en forme par laminage elle est refroidie à une vitesse de refroidissement qui provoque une trempe de l'alliage de la tôle.
  20. Procédé de production d'un composant en acier trempé avec une protection anticorrosion cathodique, dans lequel :
    a) dans un processus de revêtement continu, on applique un revêtement sur une tôle en alliage d'acier capable d'être trempé, et
    b) le revêtement est essentiellement constitué de zinc, et
    c) le revêtement contient en outre un ou plusieurs éléments présentant une affinité à l'oxygène, dans une quantité totale de 0,1 % en poids jusqu'à 15 % en poids, par référence à la totalité de revêtement, et
    d) la tôle d'acier revêtue est amenée ensuite au moins sur des zones partielles et avec apport d'oxygène atmosphérique jusqu'à une température d'austénitisation nécessaire pour la trempe, et est chauffée jusqu'à une modification de structure nécessaire pour la trempe,
    e) on forme sur le revêtement une peau de surface en un oxyde du ou des élément(s) présentant une affinité à l'oxygène, et
    f) la tôle est déformée avant ou après le chauffage,
    g) après un échauffement suffisant, la tôle est refroidie et la vitesse de refroidissement est choisie de telle façon que l'on obtient une trempe de l'alliage de la tôle, et
    h) on utilise dans le mélange à titre d'éléments présentant une affinité à l'oxygène du magnésium et/ou du silicium et/ou du titane et/ou du calcium et/ou de l'aluminium et/ou du manganèse et/ou du bore, et
    i) le mélange de revêtement est sélectionné de telle façon que la couche forme pendant le chauffage une peau superficielle en oxyde formée d'oxyde(s) du ou des éléments présentant une affinité à l'oxygène, et le revêtement forme au moins deux phases, de manière à former une phase riche en zinc et une phase riche en fer, et
    j) le revêtement est appliqué par voie électronique.
  21. Procédé selon la revendication 20, caractérisé en ce que lors du revêtement électrolytique, on dépose tout d'abord une couche de zinc et on dépose à la suite en une seconde passe sur la couche de zinc déposée le ou les éléments présentant une affinité à l'oxygène.
  22. Procédé selon la revendication 20 ou 21, caractérisé en ce que l'on dépose tout d'abord une couche de zinc par voie électrolytique sur la surface de la tôle, et l'on applique ensuite sur la surface du zinc un revêtement du ou des éléments présentant une affinité à l'oxygène.
  23. Procédé selon l'une des revendications 20 à 22, caractérisé en ce que le ou les éléments présentant une affinité à l'oxygène sont appliqués par vaporisation pour par d'autres procédures appropriées.
  24. Procédé selon l'une des revendications 20 à 23, caractérisé en ce que l'on utilise 0,26 % en poids à 2,5 % en poids des éléments présentant une affinité à l'oxygène.
  25. Couche de protection anticorrosion sur des tôles d'acier qui sont soumises à une étape de trempe, dans laquelle la couche de protection anticorrosion est soumise après l'application sur la tôle d'acier à un traitement thermique sous apport d'oxygène, dans laquelle le revêtement est essentiellement constitué de zinc et contient en outre un ou plusieurs éléments présentant une affinité à l'oxygène dans une quantité totale de 0,1 % en poids à 15,0 % en poids par référence à la totalité de revêtement, ladite couche de protection anticorrosion possédant en surface une peau d'oxyde formée des oxydes du ou des éléments présentant une affinité à l'oxygène, et le revêtement forme au moins deux phases, c'est-à-dire une phase riche en zinc et une phase riche en fer.
  26. Couche de protection anticorrosion sur des tôles d'acier qui sont soumises à une étape de trempe, dans laquelle la couche de protection anticorrosion est soumise après l'application sur la tôle d'acier à un traitement thermique sous apport d'oxygène, dans laquelle le revêtement est essentiellement constitué de zinc et contient en outre un ou plusieurs éléments présentant une affinité à l'oxygène dans une quantité totale de 0,1 % en poids à 15,0 % en poids par référence à la totalité de revêtement, ladite couche de protection anticorrosion possédant en surface une peau d'oxyde formée des oxydes du ou des éléments présentant une affinité à l'oxygène et le revêtement forme au moins deux phases, à savoir une phase riche en zinc et une phase riche en fer, ladite couche de protection anticorrosion étant une couche de protection anticorrosion appliquée par un procédé de déposition électrolytique dans lequel la couche de protection anticorrosion a été formée par déposition électrolytique essentiellement de zinc et simultanément d'un ou plusieurs éléments présentant une affinité à l'oxygène, ou dans lequel la couche de protection anticorrosion a été formée tout d'abord par déposition électrolytique essentiellement de zinc et par vaporisation successive ou application avec d'autres procédures appropriées d'un ou plusieurs éléments présentant une affinité à l'oxygène.
  27. Couche de protection anticorrosion selon la revendication 25 ou 26, caractérisée en ce que la couche de protection anticorrosion contient dans le mélange à titre d'éléments présentant une affinité à l'oxygène du magnésium et/ou du silicium et/ou du titane et/ou du calcium et/ou de l'aluminium et/ou du bore et/ou du manganèse.
  28. Couche de protection anticorrosion selon la revendication 25 ou 27, caractérisée en ce que la couche de protection anticorrosion est une couche de protection anticorrosion appliquée par une procédure de plongée dans un bain en fusion.
  29. Couche de protection anticorrosion selon l'une des revendications 25 à 28, caractérisée en ce que le revêtement est constitué d'un mélange composé essentiellement de zinc et le mélange contient en outre un ou plusieurs éléments présentant une affinité à l'oxygène.
  30. Couche de protection anticorrosion selon l'une des revendications 25 à 29, caractérisée en ce que les éléments présentant une affinité à l'oxygène sont contenus dans une quantité totale de 0,1 à 15,0 % en poids par référence à la totalité du revêtement.
  31. Couche de protection anticorrosion selon l'une des revendications 25 à 30, caractérisée en ce que lesdits éléments présentant une affinité à l'oxygène sont contenus dans une quantité totale de 0,02 à 0,5 % en poids par référence à la totalité du revêtement.
  32. Couche de protection des corrosions selon l'une des revendications 25 à 31, caractérisée en ce que les éléments présentant une affinité à l'oxygène sont contenus dans une quantité totale de 0,6 à 2,5 % en poids par référence à la totalité du revêtement.
  33. Couche de protection anticorrosion selon l'une des revendications 25 à 32, caractérisée en ce qu'elle contient essentiellement de l'aluminium à titre d'éléments présentant une affinité à l'oxygène.
  34. Couche de protection anticorrosion selon l'une des revendications 25 à 32, caractérisée en ce que la phase riche en fer présente un rapport zinc/fer au maximum de 0,95 (Zn/Fe ≤ 0,95), de préférence de 0,20 à 0,80 (Zn/Fe = 0,20 à 0,80) et la phase riche en zinc présent un rapport zinc/fer d'au moins 2,0 (Zn/Fe ≥ 2,0), de préférence de 2,3 à 19,0 (Zn/Fe = 2,3 à 19,0).
  35. Couche de protection anticorrosion selon l'une des revendications 25 à 34, caractérisée en ce que la phase riche en fer possède un rapport zinc/fer d'environ 30:70, et la phase riche en zinc présente un rapport zinc/fer d'environ 80:20.
  36. Couche de protection anticorrosion selon l'une des revendications 25 à 35, caractérisée en ce que la couche de protection anticorrosion contient en outre des zones individuelles avec des parts de zinc ≥ 90 % en poids.
  37. Couche de protection anticorrosion selon l'une des revendications 25 à 36, caractérisée en ce que la couche de protection anticorrosion possède, pour une épaisseur de départ de 15 µm, une énergie de protection cathodique d'au moins 4 J/cm2.
  38. Composant en acier trempé avec protection anticorrosion cathodique réalisé à partir d'un ruban d'acier laminé à chaud ou à froid avec une épaisseur ≥ 0,15 mm, dans lequel la trempe a été obtenue par chauffage à une température d'austénitisation nécessaire pour la trempe et jusqu'à une modification de structure nécessaire pour la trempe, et par un refroidissement exécuté après le chauffage suffisant, dans lequel la vitesse de refroidissement est choisie de telle façon que l'on obtient une trempe de l'alliage de la tôle, dans lequel un revêtement constitué essentiellement de zinc est présent sur la surface, le revêtement contenant un ou plusieurs éléments présentant une affinité à l'oxygène dans une quantité totale de 0,1 % en poids à 15 % en poids, le refroidissement étant obtenu lors de la mise en forme au moyen d'outils de mise en forme refroidis, en particulier composant en tôle trempée obtenu avec un procédé selon l'une des revendications 1 à 24 et présentant une couche de protection anticorrosion selon l'une des revendications 25 à 37.
  39. Composant en acier trempé selon la revendication 38, caractérisé en ce que le composant est réalisé avec des éléments d'alliage dans des plages de concentration présentant les limites suivantes, en pourcentage en poids : carbone jusqu'à 0,4 de préférence 0,15 à 0,3 silicium jusqu'à 1,9 de préférence 0,11 à 1,5 manganèse jusqu'à 3,0 de préférence 0,8 à 2,5 chrome jusqu'à 1,5 de préférence 0,1 à 0,9 molybdène jusqu'à 0,9 de préférence 0,1 à 0,5 nickel jusqu'à 0,9, titane jusqu'à 0,2 de préférence 0,02 à 0,1 vanadium jusqu'à 0,2 tungstène jusqu'à 0,2 aluminium jusqu'à 0,2 de préférence 0,02 à 0,07 bore jusqu'à 0,01 de préférence 0,0005 à 0,005 soufre maximum 0,41 de préférence maximum 0,008 phosphore maximum 0,0 25 de préférence maximum 0,01
    le reste étant du fer et des impuretés.
EP04739755.9A 2003-07-29 2004-06-09 Procede de production d'un element constitutif en acier trempe Active EP1658390B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT12022003A AT412403B (de) 2003-07-29 2003-07-29 Korrosionsgeschütztes stahlblech
AT0120303A AT412878B (de) 2003-07-29 2003-07-29 Korrosionsgeschütztes stahlblechteil mit hoher festigkeit
PCT/EP2004/006251 WO2005021822A1 (fr) 2003-07-29 2004-06-09 Procede de production d'un element constitutif en acier trempe

Publications (2)

Publication Number Publication Date
EP1658390A1 EP1658390A1 (fr) 2006-05-24
EP1658390B1 true EP1658390B1 (fr) 2014-09-17

Family

ID=34275147

Family Applications (4)

Application Number Title Priority Date Filing Date
EP20040739756 Active EP1651789B1 (fr) 2003-07-29 2004-06-09 Procede de production d'elements constitutifs en tole d'acier trempe
EP20090015813 Active EP2177641B1 (fr) 2003-07-29 2004-06-09 Tôle d'acier comprenant une revetement contre la corrosion a base de zinc
EP04736386.6A Active EP1660693B1 (fr) 2003-07-29 2004-06-09 Procede de production d'un element constitutif profile trempe
EP04739755.9A Active EP1658390B1 (fr) 2003-07-29 2004-06-09 Procede de production d'un element constitutif en acier trempe

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP20040739756 Active EP1651789B1 (fr) 2003-07-29 2004-06-09 Procede de production d'elements constitutifs en tole d'acier trempe
EP20090015813 Active EP2177641B1 (fr) 2003-07-29 2004-06-09 Tôle d'acier comprenant une revetement contre la corrosion a base de zinc
EP04736386.6A Active EP1660693B1 (fr) 2003-07-29 2004-06-09 Procede de production d'un element constitutif profile trempe

Country Status (14)

Country Link
US (4) US8181331B2 (fr)
EP (4) EP1651789B1 (fr)
JP (2) JP5113385B2 (fr)
KR (2) KR100825975B1 (fr)
CN (3) CN1829817B (fr)
AT (1) ATE478971T1 (fr)
BR (2) BRPI0412601B1 (fr)
CA (2) CA2533327C (fr)
DE (1) DE502004011583D1 (fr)
ES (4) ES2350931T3 (fr)
MX (2) MXPA06000826A (fr)
PL (2) PL1651789T3 (fr)
PT (2) PT1651789E (fr)
WO (3) WO2005021821A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110864B3 (de) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlblechbauteile mit unterschiedlichen Blechdicken
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333165A1 (de) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
US8181331B2 (en) * 2003-07-29 2012-05-22 Voestalpine Automotive Gmbh Method for producing hardened parts from sheet steel
US20100199738A1 (en) * 2004-08-13 2010-08-12 Vip Tooling, Inc., (An Indiana Corporation) Modular extrusion die tools
US7685907B2 (en) * 2004-08-13 2010-03-30 Vip Tooling, Inc. Method for manufacturing extrusion die tools
DE102005041741B4 (de) * 2005-09-02 2010-03-18 Daimler Ag Verfahren zum Herstellen eines pressgehärteten Bauteils
JP4690848B2 (ja) * 2005-10-13 2011-06-01 新日本製鐵株式会社 外観、加工性、溶接性に優れた高張力溶融Znめっき鋼材及びその製造方法
WO2007048883A1 (fr) * 2005-10-27 2007-05-03 Usinor Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
US20100057254A1 (en) * 2006-11-13 2010-03-04 Salamanca Hugo P Methods for using robotics in mining and post-mining processing
DE102005059614A1 (de) * 2005-12-12 2007-06-14 Nano-X Gmbh Beschichtungsmaterial zum Schutz von Metallen, insbesondere Stahl, vor Korrosion und/oder Verzunderung, Verfahren zum Beschichten von Metallen und Metallelement
SE531379C2 (sv) * 2006-06-08 2009-03-17 Nord Lock Ab Metod för att härda och belägga stålbrickor för låsning samt stållåsbricka
ES2656070T3 (es) 2007-02-23 2018-02-23 Tata Steel Ijmuiden Bv Procedimiento de conformación termomecánica de un producto final con muy alta resistencia y un producto producido por el mismo
DE102007013739B3 (de) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Verfahren zum flexiblen Walzen von beschichteten Stahlbändern
DE102007022174B3 (de) 2007-05-11 2008-09-18 Voestalpine Stahl Gmbh Verfahren zum Erzeugen und Entfernen einer temporären Schutzschicht für eine kathodische Beschichtung
HUE037930T2 (hu) * 2007-07-19 2018-09-28 Muhr & Bender Kg Hosszirányban változó vastagságú acélszalag lágyítására szolgáló eljárás
EP2171102B1 (fr) * 2007-07-19 2017-09-13 Muhr und Bender KG Bande métallique d'épaisseur variable à la longueur
DE102007038214A1 (de) 2007-08-13 2009-02-19 Volkswagen Ag Verfahren zum Korrosionsschutz von Karosserie-, Fahrwerks-, Motorbauteilen oder Abgasanlagen
DE102007038215A1 (de) 2007-08-13 2009-02-19 Nano-X Gmbh Verfahren zur Herstellung einer aktiven Korrosionsschutzbeschichtung auf Bauteilen aus Stahl
EP2025771A1 (fr) * 2007-08-15 2009-02-18 Corus Staal BV Procédé de production de bande d'acier revêtu pour produire des éléments taylorisés adaptés à la mise en forme thermomécanique, bande produite, et utilisation d'une telle bande revêtue
JP2009061473A (ja) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd 高強度部品の製造方法
DE102007043154B4 (de) * 2007-09-11 2017-01-26 Voestalpine Krems Gmbh Verfahren und Vorrichtung zum Härten von Profilen
DE102007048504B4 (de) * 2007-10-10 2013-11-07 Voestalpine Stahl Gmbh Korrosionsschutzbeschichtung für Stahlbleche und Verfahren zum Konditionieren einer Korrosionsschutzbeschichtung
DE102007050907A1 (de) * 2007-10-23 2009-04-30 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines gehärteten Blechprofils
SE531689C2 (sv) * 2007-11-26 2009-07-07 Gestamp Hardtech Ab Sätt att framställa en lackerad höghållfast produkt
DE102007061489A1 (de) 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl und härtbares Stahlband hierfür
WO2009086362A1 (fr) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Compositions de coke de pétrole pour gazéification catalytique
ES2702819T3 (es) * 2008-04-22 2019-03-05 Nippon Steel & Sumitomo Metal Corp Lámina de acero chapado y método de estampación en caliente de una lámina de acero chapado
DE102008037442B3 (de) * 2008-10-13 2010-02-25 Thyssenkrupp Steel Ag Verfahren zur Bestimmung von Formänderungen eines Werkstücks
KR20110118621A (ko) 2008-12-19 2011-10-31 타타 스틸 이즈무이덴 베.뷔. 열간 성형 기술을 사용하는 코팅된 부품의 제조 방법
JP4825882B2 (ja) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 高強度焼き入れ成形体及びその製造方法
DE102009007909A1 (de) 2009-02-06 2010-08-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines Stahlbauteils durch Warmformen und durch Warmformen hergestelltes Stahlbauteil
DE102009016852A1 (de) * 2009-04-08 2010-10-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung wärmebehandelter Blechformteile aus einem Stahlblechmaterial mit einer Korrosionsschutzbeschichtung und derartiges Blechformteil
CN101985199B (zh) * 2009-07-29 2012-09-05 比亚迪股份有限公司 一种电子产品外壳的制备方法
ES2384135T3 (es) 2009-08-25 2012-06-29 Thyssenkrupp Steel Europe Ag Procedimiento para fabricar un componente de acero provisto de un recubrimiento metálico de protección contra la corrosión y componente de acero
DE102009051673B3 (de) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Herstellung von Galvannealed-Blechen durch Wärmebehandlung elektrolytisch veredelter Bleche
CN101935789B (zh) * 2009-11-19 2012-03-07 江苏麟龙新材料股份有限公司 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法
DE102009056443A1 (de) * 2009-12-02 2011-06-09 Benteler Automobiltechnik Gmbh Crashbox und Verfahren zu deren Herstellung
KR101171450B1 (ko) 2009-12-29 2012-08-06 주식회사 포스코 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품
DE102010004823B4 (de) * 2010-01-15 2013-05-16 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines metallischen Formbauteils für Kraftfahrzeugkomponenten
JP5784637B2 (ja) 2010-02-19 2015-09-24 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv 熱間成形に適したストリップ、シートまたはブランク、およびこれらの製造方法
DE102010017354A1 (de) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt
DE102010037077B4 (de) 2010-08-19 2014-03-13 Voestalpine Stahl Gmbh Verfahren zum Konditionieren der Oberfläche gehärteter korrosionsgeschützter Bauteile aus Stahlblech
KR20130099042A (ko) 2010-08-31 2013-09-05 타타 스틸 이즈무이덴 베.뷔. 코팅된 금속 부품과 성형된 부품의 열간 성형 방법
US9315876B2 (en) 2010-09-30 2016-04-19 Kobe Steel, Ltd. Press-formed product and method for producing same
HUE053150T2 (hu) 2010-12-24 2021-06-28 Voestalpine Stahl Gmbh Módszer különbözõ keménységû és/vagy hajlékonyságú régiókkal ellátott edzett alkatrészek elõállítására
DE102011053941B4 (de) 2011-09-26 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
DE102011053939B4 (de) 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Verfahren zum Erzeugen gehärteter Bauteile
DE102011001140A1 (de) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
MX360240B (es) * 2011-03-18 2018-10-26 Nippon Steel & Sumitomo Metal Corp Lámina de acero para miembro estampado en caliente y método para producirla.
ES2389188B1 (es) * 2011-03-29 2013-09-02 Rovalma Sa Proteccion catodica mediante recubrimiento para circuitos de refrigeracion u otros agujeros o canales.
DE202011107125U1 (de) 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Warmformbares Band, Blech oder Zuschnitt und warmgeformtes Produkt
EP2703511B1 (fr) * 2011-04-27 2018-05-30 Nippon Steel & Sumitomo Metal Corporation Tôle d'acier pour éléments d'estampage à chaud et son procédé de production
EP2718027A1 (fr) * 2011-06-07 2014-04-16 Tata Steel IJmuiden BV Bande, feuille ou ébauche thermoformable, procédé pour sa production, procédé pour thermoformer un produit et produit thermoformé
DE102011108162B4 (de) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
DE102011056444C5 (de) 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen
JP2015504005A (ja) * 2011-12-20 2015-02-05 アクティエボラゲット・エスコーエッフ フラッシュバット溶接によって鋼構成要素を製造する方法、および本方法を用いて作成された構成要素
DE102012101018B3 (de) 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
JP5965344B2 (ja) 2012-03-30 2016-08-03 株式会社神戸製鋼所 冷間加工性、金型焼入れ性および表面性状に優れたプレス成形用溶融亜鉛めっき鋼板並びにその製造方法
DE102012024616A1 (de) * 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Stahlblech und Formteil daraus
DE102013100682B3 (de) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
DE102013204449A1 (de) * 2013-03-14 2014-09-18 Zf Friedrichshafen Ag Verfahren zur Herstellung eines korrosionsgeschützten Blechteils
RU2018134251A (ru) 2013-05-17 2019-03-20 Ак Стил Пропертиз, Инк. Сталь с цинковым покрытием для упрочнения под прессом, применения и способ изготовления
CN103320745B (zh) * 2013-07-08 2014-01-08 湖北交投四优钢科技有限公司 一种渗铝钢及制备方法
CN103342012B (zh) * 2013-07-08 2015-12-02 湖北交投四优钢科技有限公司 一种渗铝钢板网及制备方法
DE102013108046A1 (de) 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum partiellen Härten von Halbzeugen
CN105018923B (zh) * 2014-04-29 2018-10-02 宝山钢铁股份有限公司 一种覆钛低碳钢复合板制备方法
DE102014210008A1 (de) * 2014-05-26 2015-11-26 Muhr Und Bender Kg Verfahren und Anlage zum Herstellen eines gehärteten Formteils
DE102014109315C5 (de) 2014-07-03 2022-02-24 Thyssenkrupp Ag Verfahren zum Herstellen von Profilen aus Metall
DE102014109553A1 (de) * 2014-07-08 2016-01-14 Thyssenkrupp Ag Härtewerkzeug und Verfahren zum Herstellen gehärteter Profilformteile
US9850553B2 (en) 2014-07-22 2017-12-26 Roll Forming Corporation System and method for producing a hardened and tempered structural member
DE102014110415B4 (de) 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Verfahren zum Aufheizen von Stahlblechen und Vorrichtung zur Durchführung des Verfahrens
DE102014110564B4 (de) * 2014-07-25 2016-12-22 Thyssenkrupp Ag Verfahren zum Herstellen eines Profils und eine Fertigungsanlage zur Herstellung eines Profils
DE102015118869A1 (de) * 2014-11-04 2016-05-04 Voestalpine Stahl Gmbh Verfahren zum Herstellen einer Korrosionsschutzbeschichtung für härtbare Stahlbleche und Korrosionsschutzschicht für härtbare Stahlbleche
CN104635748B (zh) * 2014-12-18 2017-11-17 温州泓呈祥科技有限公司 冲压式太阳能发电跟踪转盘
CN104651728A (zh) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 一种用于仓储设备的抗腐蚀钢板及其制备方法
CN105296862A (zh) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 一种用于穿梭车货架的高强度防腐钢板及其加工工艺
CN108136464B (zh) 2015-05-29 2020-08-28 奥钢联钢铁有限责任公司 待控温的非无尽表面的均匀非接触温度控制方法及其装置
DE102015113056B4 (de) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Verfahren zum kontaktlosen Kühlen von Stahlblechen und Vorrichtung hierfür
CN107690483A (zh) 2015-06-03 2018-02-13 德国沙士基达板材有限公司 由镀锌钢制成的变形‑硬化部件,其生产方法以及生产适用于部件变形‑硬化的钢带的方法
WO2017017483A1 (fr) 2015-07-30 2017-02-02 Arcelormittal Tôle d'acier revêtue d'un revêtement métallique à base d'aluminium
WO2017017484A1 (fr) 2015-07-30 2017-02-02 Arcelormittal Procédé pour la fabrication d'une pièce durcie qui ne présente pas de problèmes lme (liquide metal embrittlement - fragilité par les métaux liquides)
WO2017017485A1 (fr) 2015-07-30 2017-02-02 Arcelormittal Procédé de fabrication d'une pièce phosphatable à partir d'une tôle d'acier revêtue d'un revêtement métallique à base d'aluminium
EP3159419B1 (fr) 2015-10-21 2018-12-12 Voestalpine Krems Gmbh Procédé de fabrication des profiles laminés partiellement durcis
EP3162558A1 (fr) 2015-10-30 2017-05-03 Outokumpu Oyj Composant constitué d'un matériau composite métallique et procédé pour la fabrication du composant par formage à chaud
DE102015016656A1 (de) 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Herstellung eines beschichteten, durch Warmumformung gehärteten Körpers sowie ein nach dem Verfahren hergestellter Körper
DE102016102504A1 (de) 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder und Verfahren zur Herstellung hierzu
DE102016102344B4 (de) * 2016-02-10 2020-09-24 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
DE102016102324B4 (de) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
DE102016102322B4 (de) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
TWI601849B (zh) * 2016-06-08 2017-10-11 China Steel Corp Method for manufacturing thermoformed zinc-based plated steel sheet and hot stamping method thereof
US10837072B2 (en) 2016-08-29 2020-11-17 Magna Powertrain Inc. Splined power transmission components made using heat-assisted calibration process and method of forming such splined power transmission components
DE102017214561B4 (de) 2016-08-29 2019-05-16 Magna Powertrain Inc. Verfahren zum Bilden einer Keilverzahnung in einer Komponente unter Verwendung von ultrahochfestem Stahl
US10371646B2 (en) * 2016-09-19 2019-08-06 The Boeing Company Method and system for automated data collection and part validation
DE102016122323A1 (de) 2016-11-21 2018-05-24 Illinois Tool Works Inc. Schweißbare Gewindeplatte
ES2824461T3 (es) 2017-02-10 2021-05-12 Outokumpu Oy Componente de acero fabricado por conformado en caliente, método de fabricación y uso del componente
EP3758889A4 (fr) * 2018-03-01 2021-11-17 Nucor Corporation Aciers durcissables par pression revêtus d'alliage de zinc et leur procédé de fabrication
US10481052B2 (en) 2018-03-28 2019-11-19 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts
US11084169B2 (en) * 2018-05-23 2021-08-10 General Electric Company System and method for controlling a robotic arm
KR102176342B1 (ko) * 2018-09-28 2020-11-09 주식회사 포스코 전기강판 제품의 제조 방법
EP3726206B1 (fr) 2019-03-26 2022-11-02 FEI Company Procédés et systèmes d'analyse d'inclusion
EP4077741A1 (fr) * 2019-12-20 2022-10-26 Autotech Engineering S.L. Procédé et chaîne de production pour la formation d'objets
US20230066303A1 (en) * 2020-01-29 2023-03-02 Nucor Corporation Zinc alloy coating layer of press-hardenable steel
TWI741613B (zh) * 2020-05-21 2021-10-01 元大興企業有限公司 耐候性型鋼成型設備及耐候性型鋼
CN112011752B (zh) * 2020-08-20 2022-06-21 马鞍山钢铁股份有限公司 一种高耐蚀热成形钢零部件及其制造方法
CN112846665A (zh) * 2021-01-06 2021-05-28 王志刚 轴向金属密封环的生产方法
EP4029964A1 (fr) 2021-01-14 2022-07-20 Hilti Aktiengesellschaft Durcissement d'un corps de vis revêtu de zinc
DE102021123279A1 (de) 2021-09-08 2023-03-09 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen von gehärteten Stahlblechbauteilen
DE102022107131A1 (de) 2022-03-25 2023-09-28 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlblechbauteile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630792A (en) * 1969-04-28 1971-12-28 Cominco Ltd Process for the production of colored coatings
JPH05148606A (ja) * 1991-11-28 1993-06-15 Nkk Corp プレス成形性およびスポツト溶接性に優れた合金化溶融亜鉛メツキ鋼板の製造方法
EP0269005B1 (fr) * 1986-11-21 1993-09-08 NIPPON MINING & METALS COMPANY, LIMITED Revêtement coloré à base de zinc
EP0508479B1 (fr) * 1991-04-10 1995-10-25 Kawasaki Steel Corporation Tôle d'acier entièrement ou partiellement revêtue de zinc ainsi que procédé pour sa fabrication
EP1288325A1 (fr) * 2000-04-24 2003-03-05 Nkk Corporation Tole d'acier recuit apres galvanisation et procede de production correspondant
WO2003035922A1 (fr) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Procede de travail a la presse, produit en acier plaque destine a ce procede et procede de production de ce produit en acier

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791801A (en) * 1971-07-23 1974-02-12 Toyo Kohan Co Ltd Electroplated steel sheet
SE435527B (sv) * 1973-11-06 1984-10-01 Plannja Ab Forfarande for framstellning av en detalj av herdat stal
JPS52120252A (en) * 1976-04-02 1977-10-08 Honda Motor Co Ltd Method and device for forging thin plate member
JPS55110783A (en) * 1979-02-15 1980-08-26 Sumitomo Metal Ind Ltd Surface treated steel plate with excellent spot weldability
JPS569386A (en) * 1979-07-02 1981-01-30 Nippon Kokan Kk <Nkk> Production of electro-zinc plated steel plate
JPS58189363A (ja) * 1982-04-26 1983-11-05 Nisshin Steel Co Ltd 合金化亜鉛めつき鋼板の製造方法
FR2534161B1 (fr) 1982-10-06 1985-08-30 Maubeuge Fer Procede et dispositif de production en continu d'une bande metallique galvanisee et profilee
JPS61119693A (ja) * 1984-11-14 1986-06-06 Sumitomo Metal Ind Ltd 積層メツキ鋼板
JPS62142755A (ja) * 1985-12-17 1987-06-26 Nippon Steel Corp 合金化溶融亜鉛めつき鋼板およびその製造方法
JPS6362855A (ja) * 1986-09-03 1988-03-19 Toyota Motor Corp 差厚合金化溶融亜鉛めつき鋼板の製造方法
US4830683A (en) * 1987-03-27 1989-05-16 Mre Corporation Apparatus for forming variable strength materials through rapid deformation and methods for use therein
BE1001029A3 (nl) * 1987-10-22 1989-06-13 Bekaert Sa Nv Staalsubstraat met metaaldeklagen ter versterking van vulkaniseerbare elastomeren.
JPH01242714A (ja) * 1988-03-25 1989-09-27 Mitsubishi Heavy Ind Ltd 鉄鋼部品の熱処理方法
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
JPH02190483A (ja) * 1989-01-19 1990-07-26 Nippon Steel Corp プレス成形性に優れた亜鉛めっき鋼板
JPH042758A (ja) 1990-04-18 1992-01-07 Nippon Steel Corp プレス成形性及び塗装耐食性に優れた溶融系合金亜鉛めっき鋼板の製造方法
JPH05214544A (ja) * 1991-04-10 1993-08-24 Kawasaki Steel Corp 高耐食性亜鉛系めっき鋼板およびその製造方法
AT402032B (de) * 1991-07-17 1997-01-27 Evg Entwicklung Verwert Ges Maschine zum bearbeiten von gittermatten aus miteinander verschweissten längs- und querdrähten
JPH05171491A (ja) * 1991-12-26 1993-07-09 Sumitomo Metal Ind Ltd 塗装後耐食性に優れた2層めっき鋼材
AT397815B (de) * 1992-03-31 1994-07-25 Voest Alpine Ind Anlagen Verfahren zum verzinken eines bandes sowie anlage zur durchführung des verfahrens
JPH06256925A (ja) 1993-03-08 1994-09-13 Nippon Steel Corp プレス成形性に優れた亜鉛−鉄合金化溶融亜鉛めっき鋼板
JP2962973B2 (ja) * 1993-08-09 1999-10-12 滲透工業株式会社 溶融亜鉛めっき装置材料
JPH08325689A (ja) 1995-05-30 1996-12-10 Nippon Steel Corp 潤滑性、化成処理性に優れた溶融亜鉛系めっき熱延鋼板の製造設備
JP3345219B2 (ja) 1995-06-15 2002-11-18 酒井医療株式会社 起立訓練ベッド
SE9602257L (sv) * 1996-06-07 1997-12-08 Plannja Hardtech Ab Sätt att framställa ståldetalj
JP3400289B2 (ja) * 1997-03-26 2003-04-28 川崎製鉄株式会社 めっき密着性に優れた合金化溶融亜鉛めっき鋼板の製造方法
IT1291883B1 (it) * 1997-04-18 1999-01-21 Sviluppo Materiali Spa Procedimento per la produzione in continuo, tramite deposizione fisica da fase vapore, di nastri metallici rivestiti con elevata
US6178800B1 (en) * 1998-07-14 2001-01-30 Msp Industries Corporation Zone heating methods and apparatuses for metal workpieces for forging
FR2787735B1 (fr) 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
JP2000336467A (ja) * 1999-03-24 2000-12-05 Kawasaki Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP3675313B2 (ja) * 1999-07-15 2005-07-27 Jfeスチール株式会社 摺動性に優れた合金化溶融亜鉛めっき鋼板の製造方法
JP2001109121A (ja) 1999-10-06 2001-04-20 Konica Corp ハロゲン化銀写真感光材料用自動現像装置
KR20010039405A (ko) * 1999-10-30 2001-05-15 이계안 아연-철 합금 도금 강판의 제조방법
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
JP2001295015A (ja) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd 高Al含有溶融Zn−Al−Mg系めっき鋼板
JP2001264591A (ja) 2000-03-22 2001-09-26 Yasuhiro Koike 光通信用発光複合部品
FR2807447B1 (fr) * 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
DE10023312C1 (de) * 2000-05-15 2001-08-23 Thyssenkrupp Stahl Ag Galvannealed-Feinblech und Verfahren zum Herstellen von derartigem Feinblech
JP2001329352A (ja) * 2000-05-19 2001-11-27 Sumitomo Metal Ind Ltd 摺動性に優れた合金化溶融亜鉛めっき鋼板
DE10039375A1 (de) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Korrosionsgeschütztes Stahlblech und Verfahren zu seiner Herstellung
JP4489273B2 (ja) * 2000-10-02 2010-06-23 本田技研工業株式会社 車体パネルの製造方法
DE10049660B4 (de) 2000-10-07 2005-02-24 Daimlerchrysler Ag Verfahren zum Herstellen lokal verstärkter Blechumformteile
US6773803B2 (en) * 2000-12-19 2004-08-10 Posco Far-infrared emission powder with antibacterial activity and bio-wave steel plate coated with resin containing same
KR100455083B1 (ko) * 2000-12-22 2004-11-08 주식회사 포스코 내식성 및 용접성이 우수한 아연-코발트-텅스텐 합금전기도금강판 및 그 도금용액
DE10065495C2 (de) 2000-12-28 2002-11-14 Semikron Elektronik Gmbh Leistungshalbleitermodul
DE10120063C2 (de) 2001-04-24 2003-03-27 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von metallischen Profilbauteilen für Kraftfahrzeuge
DE10120919A1 (de) * 2001-04-27 2002-10-31 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines gehärteten Blechprofils
JP3582504B2 (ja) * 2001-08-31 2004-10-27 住友金属工業株式会社 熱間プレス用めっき鋼板
JP3582512B2 (ja) * 2001-11-07 2004-10-27 住友金属工業株式会社 熱間プレス用鋼板およびその製造方法
DE10209264B4 (de) * 2002-03-01 2005-06-02 Ab Skf Verfahren zum Herstellen eines Bauteils aus Metall
DE10254695B3 (de) 2002-09-13 2004-04-15 Daimlerchrysler Ag Verfahren zur Herstellung eines metallischen Formbauteils
DE10246614A1 (de) 2002-10-07 2004-04-15 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines beschichteten Strukturbauteils für den Fahrzeugbau
DE10257737B3 (de) * 2002-12-10 2004-02-26 Thyssenkrupp Stahl Ag Verfahren zur elektrolytischen Magnesium-Abscheidung auf verzinktem Blech
US8181331B2 (en) * 2003-07-29 2012-05-22 Voestalpine Automotive Gmbh Method for producing hardened parts from sheet steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630792A (en) * 1969-04-28 1971-12-28 Cominco Ltd Process for the production of colored coatings
EP0269005B1 (fr) * 1986-11-21 1993-09-08 NIPPON MINING &amp; METALS COMPANY, LIMITED Revêtement coloré à base de zinc
EP0508479B1 (fr) * 1991-04-10 1995-10-25 Kawasaki Steel Corporation Tôle d'acier entièrement ou partiellement revêtue de zinc ainsi que procédé pour sa fabrication
JPH05148606A (ja) * 1991-11-28 1993-06-15 Nkk Corp プレス成形性およびスポツト溶接性に優れた合金化溶融亜鉛メツキ鋼板の製造方法
EP1288325A1 (fr) * 2000-04-24 2003-03-05 Nkk Corporation Tole d'acier recuit apres galvanisation et procede de production correspondant
WO2003035922A1 (fr) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Procede de travail a la presse, produit en acier plaque destine a ce procede et procede de production de ce produit en acier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIH H C ET AL: "The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 150, 1 February 2002 (2002-02-01), pages 70 - 75, XP002569257, ISSN: 0257-8972, DOI: 10.1016/S0257-8972(01)01508-0 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110864B3 (de) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlblechbauteile mit unterschiedlichen Blechdicken
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes

Also Published As

Publication number Publication date
CA2533633A1 (fr) 2005-03-10
PT1660693E (pt) 2015-01-05
EP1658390A1 (fr) 2006-05-24
CA2533327A1 (fr) 2005-03-10
EP2177641A1 (fr) 2010-04-21
ES2350931T3 (es) 2011-01-28
US7938949B2 (en) 2011-05-10
KR20060036111A (ko) 2006-04-27
US20070000117A1 (en) 2007-01-04
MXPA06000826A (es) 2006-08-23
ES2524324T3 (es) 2014-12-05
CN104372278A (zh) 2015-02-25
PL2177641T3 (pl) 2013-09-30
BRPI0412599B1 (pt) 2016-05-17
US20070271978A1 (en) 2007-11-29
JP2007500285A (ja) 2007-01-11
JP2007505211A (ja) 2007-03-08
EP1660693B1 (fr) 2014-09-17
CN1829816A (zh) 2006-09-06
US8021497B2 (en) 2011-09-20
US8181331B2 (en) 2012-05-22
MXPA06000825A (es) 2006-08-23
BRPI0412601A (pt) 2006-09-19
BRPI0412599A (pt) 2006-09-19
US20110045316A1 (en) 2011-02-24
WO2005021821A1 (fr) 2005-03-10
CA2533327C (fr) 2009-08-18
CA2533633C (fr) 2009-08-25
CN1829817B (zh) 2015-01-07
WO2005021822A1 (fr) 2005-03-10
JP5113385B2 (ja) 2013-01-09
PT1651789E (pt) 2010-11-05
US7832242B2 (en) 2010-11-16
EP1651789A1 (fr) 2006-05-03
EP1660693A1 (fr) 2006-05-31
KR100825975B1 (ko) 2008-04-28
US20070256808A1 (en) 2007-11-08
KR100834555B1 (ko) 2008-06-02
JP5054378B2 (ja) 2012-10-24
EP1651789B1 (fr) 2010-08-25
WO2005021820A1 (fr) 2005-03-10
ES2525731T3 (es) 2014-12-29
DE502004011583D1 (de) 2010-10-07
ATE478971T1 (de) 2010-09-15
BRPI0412601B1 (pt) 2013-07-23
KR20060033921A (ko) 2006-04-20
PL1651789T3 (pl) 2011-03-31
CN1829817A (zh) 2006-09-06
ES2421182T3 (es) 2013-08-29
EP2177641B1 (fr) 2013-04-24

Similar Documents

Publication Publication Date Title
EP1658390B1 (fr) Procede de production d&#39;un element constitutif en acier trempe
EP2848709B1 (fr) Procédé de fabrication d&#39;un composant en acier revêtu d&#39;une coiffe métallique protégeant de la corrosion et composant en acier
DE202004021264U1 (de) Korrosionsschicht und gehärtetes Stahlbauteil
DE60006068T2 (de) Feuerverzinktes galvanisiertes stahlblech mit hervorragendem gleichgewicht zwischen festigkeit und dehnbarkeit und adhäsion zwischen stahl und beschichtung
EP2054536B1 (fr) Procédé de recouvrement d&#39;un feuillard d&#39;acier laminé à chaud ou à froid et contenant de 6 à 30 % en poids de mn par une couche métallique de protection
EP2235229B9 (fr) Procédé pour appliquer une couche de protection métallique sur un produit plat en acier laminé à chaud ou à froid contenant 6 - 30% en poids de mn
EP2393953B1 (fr) Procédé de production d&#39;un composant en acier revêtu par formage à chaud et composant en acier produit par formage à chaud
DE60220191T2 (de) Hochfestes feuerverzinktes galvanisiertes stahlblech und feuerverzinktes geglühtes stahlblech mit ermüdungsfestigkeit,korrosionsbeständigkeit,duktilität und plattierungshaftung,nach starker verformung und verfahren zu dessen herstellung
EP3215656B1 (fr) Procédé de production d&#39;un revêtement anti-corrosion pour tôles d&#39;acier trempables et revêtement anti-corrosion pour tôles d&#39;acier trempables
DE2922790C2 (de) Mit Mangan beschichteter Stahl und Verfahren zu seiner Herstellung
WO2009047183A1 (fr) Procédé de production d&#39;un composant en acier par façonnage à chaud, et composant en acier obtenu par façonnage à chaud
DE69919660T2 (de) Geglühtes Stahlblech und Verfahren zu dessen Herstellung
EP3877555B1 (fr) Procédé de production d&#39;une pièce en tôle à partir d&#39;un produit plat en acier pourvu d&#39;un revêtement de protection contre la corrosion
DE102018102624A1 (de) Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
WO2016026885A1 (fr) Tôle en acier traitée en surface et procédé de production de celle-ci
WO2022269021A1 (fr) Procédé de production d&#39;un produit plat en acier à revêtement métallique à base de zinc ou d&#39;aluminium et produit plat en acier correspondant
DE69728389T2 (de) Heissgetauchtes galvanisiertes stahlblech mit verminderten defekten, entstanden durch fehlbeschichtung, mit hervorragender kontaktbeschichtungshaftung und verfahren zu dessen herstellung
EP3947753B1 (fr) Procédé de production d&#39;une tôle d&#39;acier avec une adhérence améliorée de revêtements métalliques à chaud
EP3872230A1 (fr) Procédé de fabrication de composants en acier durci doté d&#39;une couche de protection contre la corrosion en alliage de zinc conditionnée
EP3947754B1 (fr) Procédé de production d&#39;une tôle d&#39;acier avec une adhérence améliorée de revêtements métalliques à chaud
EP4110972B1 (fr) Procédé de fabrication de composants en acier durci doté d&#39;une couche de protection contre la corrosion en alliage de zinc conditionnée
EP4093896A1 (fr) Composant en acier comprenant une couche anti-corrosion contenant du manganèse
EP3872231A1 (fr) Procédé de conditionnement de la surface d&#39;un bande métallique revêtu d&#39;une couche de protection contre la corrosion en alliage de zinc
DE102020203421A1 (de) Stahlflachprodukt mit einem ZnCu-Schichtsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAAB, ANNA, ELISABETH

Inventor name: FADERL, JOSEF

Inventor name: FLEISCHANDERL, MARTIN

Inventor name: LANDL, GERALD

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: BRANDSTAETTER, WERNER

17Q First examination report despatched

Effective date: 20090402

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 687754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014720

Country of ref document: DE

Effective date: 20141030

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2525731

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141229

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004014720

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TATA STEEL IJMUIDEN BV

Effective date: 20150616

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024039

Country of ref document: HU

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150609

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150609

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502004014720

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20161023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230626

Year of fee payment: 20

Ref country code: FR

Payment date: 20230626

Year of fee payment: 20

Ref country code: DE

Payment date: 20230626

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230526

Year of fee payment: 20

Ref country code: SE

Payment date: 20230627

Year of fee payment: 20

Ref country code: HU

Payment date: 20230525

Year of fee payment: 20

Ref country code: AT

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230627

Year of fee payment: 20

Ref country code: ES

Payment date: 20230703

Year of fee payment: 20

Ref country code: CH

Payment date: 20230702

Year of fee payment: 20