EP0545230B1 - Verfahren zur Erzeugung von ggf. modifizierten Oxidkeramikschichten auf sperrschichtbildenden Metallen und damit erhaltene Gegenstände - Google Patents

Verfahren zur Erzeugung von ggf. modifizierten Oxidkeramikschichten auf sperrschichtbildenden Metallen und damit erhaltene Gegenstände Download PDF

Info

Publication number
EP0545230B1
EP0545230B1 EP92120006A EP92120006A EP0545230B1 EP 0545230 B1 EP0545230 B1 EP 0545230B1 EP 92120006 A EP92120006 A EP 92120006A EP 92120006 A EP92120006 A EP 92120006A EP 0545230 B1 EP0545230 B1 EP 0545230B1
Authority
EP
European Patent Office
Prior art keywords
accordance
bath
plasma
oxide
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92120006A
Other languages
English (en)
French (fr)
Other versions
EP0545230A1 (de
EP0545230B2 (de
Inventor
Peter Prof. Dr. Kurze
Hans-Jürgen Kletke
Dora Banerjee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6445704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0545230(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Publication of EP0545230A1 publication Critical patent/EP0545230A1/de
Application granted granted Critical
Publication of EP0545230B1 publication Critical patent/EP0545230B1/de
Publication of EP0545230B2 publication Critical patent/EP0545230B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • the invention relates to a method for producing oxide ceramic layers on barrier layer-forming metals or their alloys by plasma-chemical anodic oxidation in aqueous organic electrolytes, wherein the oxide ceramic layer can also be modified for special applications.
  • this anodic oxidation is a gas-solid reaction under plasma conditions, in which the high energy input at the base of the discharge column produces liquid metal on the anode, which forms a briefly melted oxide with the activated oxygen.
  • the layer formation takes place via partial anodes.
  • the spark discharge is preceded by a formation area (P. Kurz; Dechema-Monographien Volume 121 - VCH Verlagsgesellschaft 1990, pages 167-180 with further references).
  • the electrolytes have been combined in such a way that their positive properties are combined and high-quality anodic oxide ceramic layers are created on aluminum. By combining different salts, higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved.
  • Such highly viscous electrolytes have a high heat capacity, stabilize the oxygen film formed on the anode and thus guarantee a uniform oxide layer formation (DD-WP 142 360).
  • the barrier layer grows by increasing the voltage of the anodically polarized metal.
  • An oxygen plasma then partially forms at the metal / gas / electrolyte phase boundary, through which the oxide ceramic layer is formed.
  • the metal ion in the oxide ceramic layer comes from the metal, the oxygen from the anodic reaction in the aqueous electrolyte used.
  • the oxide ceramic is liquid at the determined plasma temperatures of around 7,000 Kelvin. There is enough time on the side of the metal so that the melt of the oxide ceramic can contract well and thus form a sintered, low-pore oxide ceramic layer.
  • the melt of the oxide ceramic is quickly cooled by the electrolyte and the gases that migrate, in particular oxygen and water vapor, leave an oxide ceramic layer with a wide-meshed capillary system.
  • Pore diameters from 0.1 .mu.m to 30 .mu.m were determined from scanning electron microscopic examinations (CERAMIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991), in particular FIG. 12).
  • DE-A-2 902 162 describes a method in which, by using spark discharges during the anodization, porous layers on aluminum are produced which are intended for use in chromatography.
  • EP-A-280 886 describes the use of anodic oxidation under spark discharges on Al, Ti, Ta, Nb, Zr and their alloys for the production of decorative layers on these metals.
  • oxide ceramic layers on the aforementioned metals which have a substantially higher layer thickness up to 150 ⁇ m, are abrasion-resistant and corrosion-resistant and have a high flexural fatigue strength.
  • pure aluminum and, inter alia, aluminum and its alloys are AIMn alloys; AIMnCu; AIMgI; Almgl, 5; E-AIMgSi; AIMgSi0.5; AIZnMgCu0.5; AIZnMgCu1.5; G-AISi-12; G-AISi5Mg; G-AISi8Cu3; G-AICu4Ti; G-AICu4TiMg understood.
  • magnesium casting alloys of the ASTM designations AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22 are particularly suitable for the purposes of the invention.
  • TiA16V4 Pure titanium or titanium alloys such as TiA16V4; TiA15Fe2.5 and others deploy.
  • the chloride-free electrolyte bath can contain the inorganic anions customary in processes for plasma chemical anodic oxidation, namely phosphate, borate, silicate, aluminate, fluoride or anions of inorganic acids such as citrate, oxalate and acetate.
  • the electrolyte bath preferably contains phosphate, borate and fluoride ions in combination and in an amount of at least 0.1 mol / l of each of these anions up to a total of 2 mol / l.
  • the cations of the electrolyte bath are chosen so that they form salts which are as soluble as possible with the respective anions in order to enable high salt concentrations and viscosities. This is usually the case with alkali, ammonium, alkaline earth and aluminum ions up to 1 mol / I.
  • the electrolyte bath contains urea, hexamethylenediamine, hexamethylenetetramine, glycol or glycerin in an amount up to a total of 1.5 mol / l as a stabilizer.
  • very dilute electrolyte baths of the types described above can also be used Use a composition in which the concentration of the anions is only 0.01 to 0.1 mol / l.
  • the pH value is between 10 and 12, preferably 11. Due to the low conductivity of this electrolyte bath, the final voltage value can reach up to 2,000 V. The energy input caused by the plasma chemical reaction is accordingly very high.
  • the oxide ceramic layer that forms on the aluminum materials consists of corundum, as shown by X-ray diffraction studies. The oxide ceramic layer is hardened up to 2,000 HV. These oxide ceramic layers can be used in particular where extremely high abrasive wear protection is required.
  • the choice of the voltage and current form such as direct, alternating, three-phase, pulse and / or multiphase alternating current in frequencies up to 500 Hz, surprisingly has no influence on the layer formation process for producing the ceramic layer on the metals.
  • the power supply for plasma chemical anodizing to form the ceramic layer takes place in such a way that the required current density of at least 1 A / dm 2 is kept constant and that the voltage is brought to a final value which is established.
  • the final voltage value is between 50 and 400 volts and is determined by the metal used or by its alloy components, by the composition of the electrolyte bath and by its bath management.
  • the invention also relates to the objects made of barrier layer-forming metals or their alloys produced with the method according to the invention with plasma-chemically produced oxide ceramic layers with a thickness of 40 to 150 ⁇ m, preferably 50 to 120 ⁇ m.
  • a sample plate made of AIMgSi1 with a surface area of 2 dm 2 is degreased and then rinsed with distilled water.
  • the sample thus treated is in an aqueous / organic chloride-free electrolyte bath of the composition at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C ⁇ 2 ° C plasma-anodized. After a coating time of 60 minutes, the final voltage value of 250 V is reached.
  • the ceramicized sample plate is rinsed and dried.
  • the layer thickness of the ceramic layer is 100 ⁇ m.
  • the hardness of the ceramic layer was determined to be 750 (HV 0.015).
  • a die-cast housing made of GD-AISi12 with a surface area of 1 dm 2 is treated in a stain, half of which consists of 40% HF and 65% HN0 3 , for 1 minute at room temperature and then rinsed with distilled water.
  • the die-cast housing thus pickled is oxidized in the aqueous / organic chloride-free electrolyte bath from Example 1 at a current density of 8 A / dm2 and an electrolyte temperature of 10 ° C. ⁇ 2 ° C. in a plasma-chemical-anodic manner. After a coating time of 30 minutes, a final voltage value of 216 volts is registered.
  • the ceramic die-cast housing is rinsed and dried.
  • the layer thickness of the ceramic layer is 40 ⁇ m.
  • a sample plate made of a magnesium alloy of type AZ 91 with a surface area of 1 dm 2 is pickled in 40% hydrofluoric acid at room temperature for 1 minute.
  • the sample treated in this way is oxidized in an aqueous / organic chloride-free electrolyte bath according to Example 1 at a current density of 4 A / dm 2 and an electrolyte temperature of 12 ° C. ⁇ 2 ° C. in a plasma-chemical-anodic manner.
  • the ceramic layer has a layer thickness of 50 ⁇ m.
  • a rod made of pure titanium (length: 30 mm, diameter: 5 mm) is pickled in a pickle as in Example 2 and then rinsed with distilled water.
  • the sample treated in this way is in an aqueous chloride-free electrolyte bath of the composition: at a current density of 18 A / dm2 and an electrolyte temperature of 10 ° C ⁇ 2 ° C plasma-chemical-anodized.
  • the ceramicized rod is rinsed with distilled water and dried.
  • the layer thickness is 40 ⁇ m.
  • a gear wheel made of AIMgSi1 with a surface area of 6 dm 2 is degreased and rinsed with distilled water.
  • An aqueous / organic chloride-free electrolyte bath is an electrolyte bath from Example 1 diluted 100 times with water, which additionally contains 0.1 mol / l sodium aluminate and sodium silicate.
  • the gearwheel is oxidized at a current density of 10 A / dm 2 by plasma chemical anodizing. After a coating time of 120 minutes, a final voltage value of 800 volts is reached.
  • the ceramized gear is rinsed and dried.
  • the layer thickness of the oxide ceramic layer is 130 ⁇ m.
  • the hardness of the ceramic layer was determined to be 1900 HV (0.1).
  • the service life of the gear coated in this way increases fourfold compared to the conventional anodized gear of the same size.
  • An ultrasonic sonotrode made of AlZnMgCu1.5 with a surface area of 6.4 dm 2 is degreased and then rinsed with distilled water.
  • the ultrasound sonotrode treated in this way is oxidized in an aqueous / organic chloride-free electrolyte bath, as described in Example 1, at a current density of 3.5 A / dm 2 and an electrolyte temperature of 15 ° C. in a plasma-chemical-anodic manner. After a coating time of 25 minutes, the chip rated value of 250 volts reached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Laminated Bodies (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen oder deren Legierungen durch plasmachemische anodische Oxidation in wäßrig organischen Elektrolyten, wobei die Oxidkeramikschicht für spezielle Anwendungen auch noch modifiziert werden kann.
  • Diese anodische Oxidation ist in wäßrigen Elektrolyten eine Gas-Festkörper-Reaktion unter Plasmabedingungen, bei der der hohe Energieeintrag am Fußpunkt der Entladungssäule auf der Anode flüssiges Metall erzeugt, das mit dem aktivierten Sauerstoff ein kurzzeiterschmolzenes Oxid bildet. Die Schichtbildung erfolgt über Partialanoden. Der Funkenentladung ist ein Formierbereich vorgelagert (P. Kurze; Dechema-Monographien Band 121 - VCH Verlagsgesellschaft 1990, Seite 167-180 mit weiteren Literaturhinweisen). Die Elektrolyte wurden so kombiniert, daß ihre positiven Eigenschaften vereint werden und qualitativ hochwertige anodisch erzeugte Oxidkeramikschichten auf Aluminium entstehen. Durch Kombination verschiedener Salze können höhere Salzkonzentrationen im Elektrolytbad und damit höhere Viskositäten erreicht werden. Solche hochviskosen Elektrolyte haben eine hohe Wärmekapazität, stabilisieren den ausgebildeten Sauerstoffilm auf der Anode und garantieren damit eine gleichmäßige Oxidschichtausbildung (DD-WP 142 360).
  • Aufgrund des Verlaufs der Stromdichte-Potential-Kurven (SPK) für die anodische Funkenentladung lassen sich drei markante Bereiche unterscheiden, der Faraday-, Funkenentladungs-, und Bogenentladungsbereich (s.P. Kurze loc.cit).
  • Auf dem Metall oder der Metallegierung befindet sich natürlicherweise eine Sperrschicht. Durch Erhöhung der Spannung des anodisch gepolten Metalls wächst die Sperrschicht. Dann entsteht an der Phasengrenze Metall/Gas/Elektrolyt partiell ein Sauerstoffplasma, durch das sich die Oxidkeramikschicht bildet. Das Metallion in der Oxidkeramikschicht stammt aus dem Metall, der Sauerstoff aus der anodischen Reaktion in dem verwendeten wäßrigen Elektrolyten. Die Oxidkeramik ist bei den ermittelten Plasmatemperaturen von etwa 7.000 Kelvin flüssig. Zur Seite des Metalls hin ist die Zeit ausreichend, damit sich die Schmelze der Oxidkeramik gut zusammenziehen kann und so eine aufgesinterte porenarme Oxidkeramikschicht bildet. Zur Seite des Elektrolyten hin wird die Schmelze der Oxidkeramik schnell durch den Elektrolyten abgekühlt und die noch abwandernden Gase, insbesondere Sauerstoff und Wasserdampf hinterlassen eine Oxidkeramikschicht mit einem weitmaschig verknüpften Kapillarsystem. Aus rasterelektronenmikroskopischen Untersuchungen wurden Porendurchmesser von 0,1 um bis 30 um bestimmt (CERAMIC COATINGS BY ANODIC SPARK DEPOSITION G.P. Wirtz et al, MATERIALS & MANUFACTURING PROCESSES 6 (1), 87-115 (1991), insbesondere Figur 12).
  • In der DE-A-2 902 162 wird ein Verfahren beschrieben, in dem durch Nutzung von Funkenentladungen während der Anodisation poröse Schichten auf Aluminium hergestellt werden, die für den Einsatz in der Chromatographie bestimmt sind.
  • Die EP-A-280 886 beschreibt die Nutzung der anodischen Oxidation unter Funkenentladungen auf Al, Ti, Ta, Nb, Zr und deren Legierungen zur Herstellung dekorativer Schichten auf diesen Metallen.
  • Mit den vorbekannten Verfahren lassen sich nur Keramikschichten mit verhältnismäßig geringen Stärken bis maximal 30 um herstellen, die für den Einsatz als Verschleiß- und Korrosionsschutzschichten unzureichend sind.
  • Es ist deshalb Aufgabe der Erfindung, auf den zuvor genannten Metallen Oxidkeramikschichten zu erzeugen, die eine wesentlich höhere Schichtdicke bis zu 150 um haben, abriebfest und korrosionsbeständig sind und eine hohe Biegewechselfestigkeit aufweisen.
  • Erfindungsgemäß werden Oxidkeramikschichten auf Aluminium, Magnesium, Titan, Tantal, Zirkon, Niob, Hafnium, Antimon, Wolfram, Molybdän, Vanadium, Wismut oder deren Legierungen durch plasmachemische anodische Oxidation bei Einhaltung der folgenden Parameter erzeugt:
    • 1. Das Elektrolytbad soll chloridfrei sein, was bedeutet, daß es weniger als 5 x 10-3 mol/I Chloridionen enthält.
    • 2. Das Elektrolytbad wird auf einen pH-Wert von 2 bis 8 eingestellt.
    • 3. Die Badtemperatur liegt im Bereich von -30 bis + 15 ° C und vorzugsweise zwischen -10 und + 15 ° C.
    • 4. Die Badtemperatur wird in den Grenzen von ± 2 ° C konstant gehalten.
    • 5. Die Stromdichte von mindestens 1 A/dm2 wird konstant gehalten bis sich die Spannung auf einen Endwert einstellt.
  • Unter Aluminium und dessen Legierungen werden im Rahmen der vorliegenden Erfindung Reinstaluminium und u.a. die Legierungen AIMn; AIMnCu; AIMgI; Almgl,5; E-AIMgSi; AIMgSi0,5; AIZnMgCu0,5; AIZnMgCu1,5; G-AISi-12; G-AISi5Mg; G-AISi8Cu3; G-AICu4Ti; G-AICu4TiMg verstanden.
  • Für die Zwecke der Erfindung eignen sich ferner außer Reinmagnesium insbesondere die Magnesiumgußlegierungen der ASTM-Bezeichnungen AS41, AM60, AZ61, AZ63, AZ81, AZ91, AZ92, HK31, QE22, ZE41, ZH62, ZK51, ZK61, EZ33, HZ32 sowie die Knetlegierungen AZ31, AZ61, AZ 80, M1, ZK60, ZK40.
  • Des weiteren lassen sich Reintitan oder auch Titanlegierungen wie TiA16V4; TiA15Fe2,5 u.a. einsetzen.
  • Das chloridfreie Elektrolytbad kann die in Verfahren für die plasmachemische anodische Oxidation üblichen anorganischen Anionen, nämlich Phosphat, Borat, Silicat, Aluminat, Fluorid oder Anionen anorganischer Säuren wie Citrat, Oxalat und Acetat enthalten.
  • Vorzugsweise enthält das Elektrolytbad Phosphat-, Borat- und Fluoridionen in Kombination und in einer Menge von wenigstens 0,1 mol/I von jedem einzelnen dieser Anionen bis insgesamt 2 mol/I.
  • Die Kationen des Elektrolytbads werden so gewählt, daß sie mit den jeweiligen Anionen möglichst gut lösliche Salze bilden, um hohe Salzkonzentrationen und Viskositäten zu ermöglichen. Das ist in der Regel bei Alkali-, Ammonium-, Erdalkali und Aluminiumionen bis 1 mol/I der Fall.
  • Darüber hinaus enthält das Elektrolytbad Harnstoff, Hexamethylendiamin, Hexamethylentetramin, Glykol oder Glycerin in einer Menge bis insgesamt 1,5 mol/I als Stabilisator.
  • Zur Erzeugung von besonders verschleißfesten Oxidkeramikschichten auf Aluminium oder deren Legierungen durch plasmachemische anodische Oxidation bei einer Stromdichte von mindestens 5 A/dm2, die konstant gehalten wird, bis sich die Spannung auf einen Endwert einstellt, lassen sich auch sehr stark verdünnte Elektrolytbäder der oben beschriebenen Zusammensetzung einsetzen, in denen die Konzentration der Anionen nur 0,01 bis 0,1 mol/I beträgt. In diesen stark verdünnten Bädern liegt der PH-Wert zwischen 10 und 12, vorzugsweise bei 11. Aufgrund der geringen Leitfähigkeit dieses Elektrolytbades kann sich der Spannungsendwert bis auf 2.000 V einstellen. Der durch die plasmachemische Reaktion verursachte Energieeintrag ist dementsprechend sehr hoch. Die sich bildende Oxidkeramikschicht auf den Aluminiumwerkstoffen besteht aus Korund, wie Röntgenbeugungsuntersuchungen zeigen. Es werden Härten der Oxidkeramikschicht bis 2.000 HV erreicht. Diese Oxidkeramikschichten sind insbesondere dort einsetzbar, wo ein extrem hoher abrasiver Verschleißschutz gefordert ist.
  • Die Wahl der Spannungs- und Stromform, wie Gleich-, Wechsel-, Dreh-, Impuls- und/oder mehrphasig verketteter Wechselstrom in den Frequenzen bis 500 Hz hat überraschenderweise auf den Schichtbildungsprozeß zur Erzeugung der Keramikschicht auf den Metallen keinen Einfluß.
  • Die Stromversorgung zum plasmachemischen Anodisieren zur Bildung der Keramikschicht erfolgt in der Weise, daß die erforderliche Stromdichte von mindestens 1 A/dm2 konstant gehalten und daß die Spannung auf einen sich einstellenden Endwert gefahren wird. Der Spannungsendwert liegt zwischen 50 und 400 Volt und wird durch das verwendete Metall, bzw. durch dessen Legierungsbestandteile, durch die Zusammensetzung des Elektrolytbades und durch seine Badführung bestimmt.
  • Gegenstand der Erfindung sind auch die mit dem erfindungsgemäßen Verfahren erzeugten Gegenstände aus sperrschichtbildenden Metallen oder deren Legierungen mit plasmachemisch erzeugten Oxidkeramikschichten einer Dicke von 40 bis 150 um, vorzugsweise 50 bis 120 um.
  • Die folgenden Beispiele erläutern die Erfindung, ohne sie zu beschränken.
  • Beispiel 1
  • Eine Probeplatte aus AIMgSi1 mit einer Oberfläche von 2 dm2 wird entfettet und anschließend mit destilliertem Wasser gespült.
  • Die so behandelte Probe wird in einem wäßrig/organischen chloridfreien Elektrolytbad der Zusammensetzung
    Figure imgb0001
    bei einer Stromdichte von 4 A/dm2 und einer Elektrolyttemperatur von 12°C ± 2°C plasmachemisch anodisch oxidiert. Nach einer Beschichtungszeit von 60 Minuten wird der Spannungsendwert von 250 V erreicht.
  • Die keramisierte Probeplatte wird gespült und getrocknet. Die Schichtdicke der Keramikschicht beträgt 100 um. Die Härte der Keramikschicht wurde mit 750 (HV 0.015) bestimmt.
  • Beispiel 2
  • Ein Druckgußgehäuse aus GD-AISi12 mit einer Oberfläche von 1 dm2 wird in einer Beize, die jeweils zur Hälfte aus 40%iger HF und 65%iger HN03 besteht, 1 Minute bei Raumtemperatur behandelt und anschließend mit destilliertem Wasser gespült.
  • Das so gebeizte Druckgußgehäuse wird in dem wäßrig/organischen chloridfreien Elektrolytbad aus Beispiel 1 bei einer Stromdichte von 8 A/dm2 und einer Elektrolyttemperatur von 10 ° C ± 2 ° C plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 30 Minuten wird ein Spannungsendwert von 216 Volt registriert.
  • Das keramisierte Druckgußgehäuse wird gespült und getrocknet.
  • Die Schichtdicke der Keramikschicht beträgt 40 um.
  • Beispiel 3
  • Eine Probeplatte aus einer Magnesiumlegierung des Typs AZ 91 mit einer Oberfläche von 1 dm2 wird 1 Minute in einer 40%igen Flußsäure bei Raumtemperatur gebeizt.
  • Die so behandelte Probe wird in einem wäßrig/organischen chloridfreien Elektrolytbad nach Beispiel 1 bei einer Stromdichte von 4 A/dm2 und einer Elektrolyttemperatur von 12°C ± 2°C plasmachemisch-anodisch oxidiert.
  • Nach 17 Minuten wird der Spannungswert von 252 Volt erreicht.
  • Die Keramikschicht hat eine Schichtdicke von 50 um.
  • Beispiel 4
  • Ein Stab aus Reintitan (Länge: 30 mm, Durchmesser: 5 mm) wird in einer Beize wie in Beispiel 2 gebeizt und anschließend mit destilliertem Wasser gespült.
  • Die so behandelte Probe wird in einem wäßrigen chloridfreien Elektrolytbad der Zusammensetzung:
    Figure imgb0002
    bei einer Stromdichte von 18 A/dm2 und einer Elektrolyttemperatur von 10 ° C ± 2 ° C plasmachemisch-anodisch oxidiert.
  • Nach einer Beschichtungszeit von 10 Minuten wird der Spannungsendwert von 210 Volt erreicht. Der keramisierte Stab wird mit destilliertem Wasser gespült und getrocknet. Die Schichtdicke beträgt 40 um.
  • Beispiel 5
  • Ein Zahnrad aus AIMgSi1 mit einer Oberfläche von 6 dm2 wird entfettet und mit destilliertem Wasser gespült. Als wäßrig/organisches chloridfreies Elektrolytbad wird ein in 100-facher mit Wasser verdünntes Elektrolytbad aus Beispiel 1 eingesetzt, daß zusätzlich je 0,1 mol/I Natriumaluminat und Natriumsilikat enthält.
  • Das Zahnrad wird bei einer Stromdichte von 10 A/dm2 plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 120 Minuten wird ein Spannungsendwert von 800 Volt erreicht.
  • Das keramisierte Zahnrad wird gespült und getrocknet. Die Schichtdicke der Oxidkeramikschicht beträgt 130 um. Die Härte der Keramikschicht wurde mit 1900 HV (0,1) bestimmt. Die Standzeit des so beschichteten Zahnrades erhöht sich auf das Vierfache im Vergleich mit dem konventionell eloxierten Zahnrad gleicher Abmessung.
  • Beispiel 6
  • Eine Ultraschallsonotrode aus AlZnMgCu1,5 mit einer Oberfläche von 6,4 dm2 wird entfettet und anschließend mit destilliertem Wasser gespült.
  • Die so behandelte Ultraschallsonotrode wird in einem wäßrig/organischen chloridfreien Elektrolytbad, wie im Beispiel 1 beschrieben, bei einer Stromdichte von 3,5 A/dm2 und einer Elektrolyttemperatur von 15 ° C plasmachemisch-anodisch oxidiert. Nach einer Beschichtungszeit von 25 Minuten wird der Spannungswert von 250 Volt erreicht.

Claims (10)

1. Verfahren zur Erzeugung von Oxidkeramikschichten auf Al, Mg, Ti, Ta, Zr, Nb, Hf, Sb, W, Mo, V, Bi oder deren Legierungen durch plasmachemische anodische Oxidation, dadurch gekennzeichnet, daß in einem chloridfreien Elektrolytbad mit einem pH-Wert von 2 bis 8 bei konstanter Badtemperatur von -30 bis + 15 ° C eine Stromdichte von mindestens 1 A/dm2 konstant gehalten wird bis sich die Spannung auf einen Endwert einstellt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Badtemperatur -10 bis + 15 ° C beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Badtemperatur in den Grenzen ± 2 ° C konstant gehalten wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Bad weniger als 5 x 10-3 mol/I Chloridionen enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Elektrolytbad Phosphat-, Borat- und Fluoridionen bis insgesamt 2 mol/I enthält.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Elektrolytbad einen Stabilisator aus der Gruppe von Harnstoff, Hexamethylendiamin und Hexamethylentetramin, Glykol und Glycerin bis 1,5 mol/I enthält.
7. Verfahren zur Erzeugung von besonders verschleißfesten Oxidkeramikschichten auf Aluminium oder deren Legierungen durch plasmachemische anodische Oxidation bei einer Stromdichte von mindestens 5 a/dm2, die konstant gehalten wird bis sich die Spannung auf einen Endwert einstellt, unter Verwendung des Elektrolyten nach einem der Ansprüche 1 bis 6 nach Verdünnung auf eine Konzentration von 0,01 bis 0,1 mol/I und Anheben des pH-Wertes auf 10 bis 12, vorzugsweise 11.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Spannung Frequenzen bis 500 Hz hat.
9. Gegenstand aus Aluminium, Magnesium, Titanium oder deren Legierungen mit einer plasmachemisch erzeugten Oxidkeramikschicht, dadurch gekennzeichnet, daß die Oxidkeramikschicht eine Dicke von 40 bis 150 um, vorzugsweise 50 bis 120 um hat.
10. Gegenstand aus Aluminium oder Aluminiumlegierungen nach Anspruch 9, dadurch gekennzeichnet, daß die plasmachemisch erzeugte Oxidkeramikschicht aus Korund besteht.
EP92120006A 1991-11-27 1992-11-25 Verfahren zur Erzeugung von ggf. modifizierten Oxidkeramikschichten auf sperrschichtbildenden Metallen. Expired - Lifetime EP0545230B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4139006A DE4139006C3 (de) 1991-11-27 1991-11-27 Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht
DE4139006 1991-11-27

Publications (3)

Publication Number Publication Date
EP0545230A1 EP0545230A1 (de) 1993-06-09
EP0545230B1 true EP0545230B1 (de) 1995-06-28
EP0545230B2 EP0545230B2 (de) 2003-03-12

Family

ID=6445704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120006A Expired - Lifetime EP0545230B2 (de) 1991-11-27 1992-11-25 Verfahren zur Erzeugung von ggf. modifizierten Oxidkeramikschichten auf sperrschichtbildenden Metallen.

Country Status (5)

Country Link
US (2) US5385662A (de)
EP (1) EP0545230B2 (de)
JP (1) JP2912101B2 (de)
AT (1) ATE124472T1 (de)
DE (2) DE4139006C3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516815A1 (de) * 1995-05-08 1996-11-14 Electro Chem Eng Gmbh Keramisierter Leichtmetallkolben für Verbrennungsmotoren
DE102006051709A1 (de) * 2006-10-30 2008-05-08 AHC-Oberflächentechnik GmbH Erzeugung von Verschleißschutzschichten auf Werkstoffen aus sperrschichtbildenden Metallen oder deren Legierungen mittels Laserbehandlung
DE202008010896U1 (de) 2008-08-05 2008-10-23 AHC Oberflächentechnik GmbH Werkstoff, insbesondere Bauteile, mit verbesserten Verschleißschutzschichten
DE102014219819A1 (de) * 2014-09-30 2016-03-31 Volkswagen Aktiengesellschaft Verfahren zur thermischen Isolierung eines Brennraums und/oder einer Abgasführung einer Brennkraftmaschine

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139006C3 (de) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht
DE19506656B4 (de) * 1995-02-25 2007-04-19 Audi Ag Verfahren zur Keramisierung von Leichtmetalloberflächen
DE19507532C2 (de) 1995-03-03 2000-01-05 Henkel Ecolab Gmbh & Co Ohg Pastenförmiges Reinigungsmittel
DE19507472C2 (de) * 1995-03-03 1999-09-02 Electro Chem Eng Gmbh Gas- oder Stromdüse einer Schutzgasschweißanlage
US5792335A (en) * 1995-03-13 1998-08-11 Magnesium Technology Limited Anodization of magnesium and magnesium based alloys
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
JP3557868B2 (ja) * 1997-01-14 2004-08-25 セイコーエプソン株式会社 装飾品の表面処理方法、装飾品および電子機器
US6800326B1 (en) 1997-01-14 2004-10-05 Seiko Epson Corporation Method of treating a surface of a surface of a substrate containing titanium for an ornament
WO1998040541A1 (en) * 1997-03-11 1998-09-17 Almag Al Process and apparatus for coating metals
ATE193735T1 (de) * 1997-03-11 2000-06-15 Almag Al Verfahren und gegenstand für die beschichtung von metallen
US5837121A (en) * 1997-10-10 1998-11-17 Kemet Electronics Corporation Method for anodizing valve metals
DE69913049D1 (de) * 1998-02-23 2004-01-08 Mitsui Mining & Smelting Co Produkt auf magnesiumbasis mit erhöhtem glanz des basismetalls und korrosionsbeständigkeit und verfahren zu dessen herstellung
US6149793A (en) * 1998-06-04 2000-11-21 Kemet Electronics Corporation Method and electrolyte for anodizing valve metals
DE19983543T1 (de) * 1998-08-28 2001-10-18 Kemet Electronics Corp Phosphateloxierelektrolyt und dessen Verwendung zur Herstellung von Kondensatoren aus aus sehr feinen Metallpulvern hergestellten Ventilmetallanoden
US6183618B1 (en) 1999-02-02 2001-02-06 Kemet Electronics Corporation Process for treating impregnated electrolytic capacitor anodes
US6245436B1 (en) 1999-02-08 2001-06-12 David Boyle Surfacing of aluminum bodies by anodic spark deposition
US6235181B1 (en) 1999-03-10 2001-05-22 Kemet Electronics Corporation Method of operating process for anodizing valve metals
US6197178B1 (en) 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals
US6290834B1 (en) 2000-04-12 2001-09-18 Ceramic Coatings Technologies, Inc. Ceramic coated liquid transfer rolls and methods of making them
DE10022074A1 (de) * 2000-05-06 2001-11-08 Henkel Kgaa Elektrochemisch erzeugte Schichten zum Korrosionsschutz oder als Haftgrund
US6436268B1 (en) 2000-08-02 2002-08-20 Kemet Electronics Corporation Non-aqueous electrolytes for anodizing
US6740059B2 (en) * 2000-09-08 2004-05-25 Insulet Corporation Devices, systems and methods for patient infusion
AU2001219047A1 (en) * 2000-09-18 2002-03-26 Nikolai Alexandrovich Belov Construction material based on aluminium and method for producing parts from said material
US6267861B1 (en) 2000-10-02 2001-07-31 Kemet Electronics Corporation Method of anodizing valve metals
AU2002211117A1 (en) * 2000-10-11 2002-04-22 Industrial Research Limited Method for anodising magnesium and magnesium alloy components or elements
JP4430266B2 (ja) * 2001-05-25 2010-03-10 東京エレクトロン株式会社 プラズマ処理容器内部材及びプラズマ処理装置
WO2003016596A1 (en) * 2001-08-14 2003-02-27 Magnesium Technology Limited Magnesium anodisation system and methods
US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US6495267B1 (en) 2001-10-04 2002-12-17 Briggs & Stratton Corporation Anodized magnesium or magnesium alloy piston and method for manufacturing the same
DE10163864A1 (de) 2001-12-22 2003-07-10 Leybold Vakuum Gmbh Beschichtung von Gegenständen
CN100503899C (zh) * 2002-03-27 2009-06-24 岛屿涂层有限公司 用于在金属和合金上形成陶瓷涂层的方法和装置及由此方法制得的涂层
US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
ITMI20021377A1 (it) * 2002-06-21 2003-12-22 Milano Politecnico Interfaccia ostointegrativa per protesi impiantabili e metodo per il trattamento di detta interfaccia ostointegrativa
US7740481B2 (en) * 2002-06-21 2010-06-22 Politecnico Di Milano Osteointegrative interface for implantable prostheses and a method for the treatment of the osteointegrative interface
US7018360B2 (en) * 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
US6919012B1 (en) 2003-03-25 2005-07-19 Olimex Group, Inc. Method of making a composite article comprising a ceramic coating
EP1622761A2 (de) * 2003-04-16 2006-02-08 AHC Oberflächentechnik GmbH & Co. OHG Stromlos metallisierte kunststoffsubstrate
US20050182366A1 (en) * 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
DE112004001263D2 (de) * 2003-07-17 2006-03-23 Ksg Leiterplatten Gmbh Schichtanordnung für ein mit elektronischen Bauelementen bestückbaren Trägerbauteil und Verfahren zur Herstellung
DE202004010821U1 (de) * 2003-07-23 2004-12-23 The Boc Group Plc, Windlesham Vakuumpumpenbauteil
US7780838B2 (en) 2004-02-18 2010-08-24 Chemetall Gmbh Method of anodizing metallic surfaces
JP4753112B2 (ja) * 2004-03-22 2011-08-24 電化皮膜工業株式会社 抗菌活性表面を有するマグネシウム金属材料及びその製造法
US7338529B1 (en) 2004-03-30 2008-03-04 Biomet Manufacturing Corp. Methods and apparatuses for enhancing prosthetic implant durability
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
FR2877018B1 (fr) * 2004-10-25 2007-09-21 Snecma Moteurs Sa Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation
DE102004057403B4 (de) * 2004-11-26 2007-09-06 Frank Fischer Crimp-Stempel, Crimp-Vorrichtung und ein Verfahren zur Herstellung hierfür
US20060178633A1 (en) * 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US20060207884A1 (en) * 2005-03-17 2006-09-21 Volodymyr Shpakovsky Method of producing corundum layer on metal parts
US7229523B2 (en) * 2005-03-31 2007-06-12 Xerox Corporation Treatment for ultrasonic welding
CN100465355C (zh) * 2005-05-20 2009-03-04 中国科学院物理研究所 管件表面陶瓷化处理工艺
US7552240B2 (en) * 2005-05-23 2009-06-23 International Business Machines Corporation Method for user space operations for direct I/O between an application instance and an I/O adapter
JP4697629B2 (ja) * 2005-06-30 2011-06-08 国立大学法人北海道大学 内燃機関用のバルブスプリングおよびその製造方法、並びに陽極酸化皮膜形成チタン製部材の製造方法
DE102005040648A1 (de) 2005-08-27 2007-03-01 Leybold Vacuum Gmbh Beschichtete Gegenstände
US7910221B2 (en) * 2006-02-08 2011-03-22 La Jolla Bioengineering Institute Biocompatible titanium alloys
US20080014421A1 (en) * 2006-07-13 2008-01-17 Aharon Inspektor Coated cutting tool with anodized top layer and method of making the same
DE102006039679B4 (de) * 2006-08-24 2011-02-10 Audi Ag Verfahren zur Bearbeitung von Zylinderlaufflächen eines Zylinderkurbelgehäuses oder von Zylinderbuchsen
EP2097118B1 (de) 2006-12-21 2013-09-18 Thommen Medical Ag Bioaktive implantatbeschichtung
DE102007046775A1 (de) * 2007-09-27 2009-04-02 Friedrich-Schiller-Universität Jena Verfahren zur Generierung von nanokristallinen oder nanokristallinhaltigen Metalloxid- und Metallmischoxidschichten auf sperrschichtbildenden Metallen
DE102008026557A1 (de) * 2008-06-03 2009-12-17 Königsee Implantate und Instrumente zur Osteosynthese GmbH Elektrochemisch hergestellte, biologisch degradationsstabile, duktile und haftfeste Titanoxid-Oberflächenschicht auf Titan oder Titanbasislegierungen
KR101015462B1 (ko) * 2008-07-01 2011-02-22 한국산업기술대학교산학협력단 임플란트용 이산화티타늄 세라믹스 및 그 제조방법
IT1390847B1 (it) 2008-07-29 2011-10-19 Milano Politecnico Trattamento biomimetico a base silicio per l'osteointegrazione di substrati in metallo.
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
EP2273181B1 (de) * 2009-07-07 2014-05-07 Siteco Beleuchtungstechnik GmbH Außen- oder Innenraumleuchte
SI2454099T1 (sl) * 2009-07-14 2014-12-31 Felix Boettcher Gmbh & Co. Kg Valji vlaĹľilnega sistema
NL2003250C2 (en) * 2009-07-20 2011-01-24 Metal Membranes Com B V Method for producing a membrane and such membrane.
KR101642832B1 (ko) * 2009-09-14 2016-07-27 삼성전자주식회사 펠리클 프레임, 펠리클, 리소그래피 장치 및 펠리클 프레임의 제조방법
CN102071448A (zh) * 2009-11-20 2011-05-25 莱尔德电子材料(深圳)有限公司 物理气相沉积(pvd)及冷阳极氧化金属着色
US9267218B2 (en) * 2011-09-02 2016-02-23 General Electric Company Protective coating for titanium last stage buckets
EP2776083B1 (de) * 2011-11-07 2017-07-26 Synthes GmbH Magerelektrolyt für biokompatible plasmaelektrolytische beschichtungen auf magnesiumimplantatmaterial
US9353453B2 (en) 2012-07-19 2016-05-31 Politecnico Di Milano Metal substrate modified with silicon based biomimetic treatment having antibacterial property for the osteointegration thereof
DE102013110660A1 (de) 2013-09-26 2015-03-26 AHC Oberflächentechnik GmbH Plasmachemisches Verfahren zur Herstellung schwarzer Oxidkeramikschichten und entsprechend beschichteter Gegenstand
CN103556204B (zh) * 2013-11-04 2016-01-13 佳木斯大学 镁表面超声微弧氧化-hf-硅烷偶联剂多级复合生物活性涂层制备方法
KR20150092778A (ko) * 2014-02-05 2015-08-17 연세대학교 산학협력단 보호피막을 갖는 금속 재료 및 그 제조 방법
EP3227474B1 (de) * 2014-12-04 2019-11-06 Meotec GmbH & Co. KG Bauteil einer turboeinrichtung, brennkraftmaschine mit einer turboeinrichtung und verfahren zum herstellen eines turboeinrichtungsbauteils
CN104532324B (zh) * 2014-12-25 2017-06-20 哈尔滨工业大学 一种利用微弧氧化在镁合金表面制备低太阳吸收率高发射率涂层的方法
DE102015212325A1 (de) * 2015-07-01 2017-01-05 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verfahren zum Herstellen eines Gehäuseteils für eine Turbine eines Abgasturboladers
DE102015212330A1 (de) * 2015-07-01 2017-01-19 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verfahren zum Beschichten eines Laufrades, insbesondere eines Turbinenrads und/oder Verdichterrads, eines Abgasturboladers
CN109097808B (zh) * 2017-06-20 2020-07-28 佳木斯大学 具有生物活性的含氮氧化镁涂层的制备方法
EP3421645A1 (de) 2017-06-28 2019-01-02 Pratt & Whitney Rzeszow S.A. Verfahren zur herstellung von korrosionsbeständigen beschichtungen und zugehörige vorrichtung
CN114016108B (zh) * 2021-12-20 2022-11-25 哈尔滨三泳金属表面技术有限公司 一种高硅高铜压铸铝合金的表面氧化膜及其制备工艺

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828953A (en) * 1956-06-27 1960-02-24 Exxon Research Engineering Co Polymerization process
CH497891A (de) * 1968-09-03 1970-10-31 Straumann Inst Ag Für die operative Knochenbehandlung dienendes Implantat aus Titan oder einer Legierung auf Titanbasis
CH505210A (de) * 1968-12-13 1971-03-31 Matsushita Electric Ind Co Ltd Verfahren zur Erzeugung eines Filmes mit hervorragenden elektrisch isolierenden Eigenschaften auf der Oberfläche von Aluminium und Aluminiumlegierungen
DE1905896C3 (de) * 1969-02-06 1974-08-01 Behrens, Albert, 2081 Hasloh Verfahren zur elektrolytischen Herstellung von schwer schmelzbaren, abriebfesten und biegeunempfindlichen Schichten aus alpha-Aluminiumoxid auf metallischen Werkstücken in einem wässrigen Bad unter Funkenentladung
US3834999A (en) * 1971-04-15 1974-09-10 Atlas Technology Corp Electrolytic production of glassy layers on metals
AT309942B (de) * 1971-05-18 1973-09-10 Isovolta Verfahren zum anodischen Oxydieren von Gegenständen aus Aluminium oder seinen Legierungen
DE2203445A1 (de) * 1972-01-25 1973-08-02 Max Planck Gesellschaft Aluminiumformgegenstand mit oxidoberflaeche
US3954512A (en) * 1972-08-11 1976-05-04 Kanter Jerome J Protective coating of ferrous base metal articles
US3956080A (en) * 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
US4111763A (en) * 1977-07-18 1978-09-05 Swiss Aluminium Ltd. Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
DD156003A1 (de) * 1980-09-23 1982-07-21 Peter Kurze Verfahren zur oberflaechenbehandlung von titanium und-legierungen
DD160749A3 (de) * 1981-04-22 1984-02-29 Peter Kurze Verfahren zur anodischen oxidation von tantal und -legierungen
JPS5928637B2 (ja) * 1981-06-24 1984-07-14 デイツプソ−ル株式会社 マグネシウム材表面に保護皮膜を形成する方法
DD203079A1 (de) * 1982-01-27 1983-10-12 Peter Kurze Verfahren zur oberflaechenbehandlung von zirkonium oder -legierungen
US4481083A (en) * 1983-08-31 1984-11-06 Sprague Electric Company Process for anodizing aluminum foil
JPS60181295A (ja) * 1984-02-27 1985-09-14 Pentel Kk 酸化皮膜を有するアルミニウムまたはアルミニウム合金基体の製造方法
JPS61149472A (ja) * 1984-12-25 1986-07-08 Kyocera Corp フイルム
DD257274B1 (de) * 1987-02-02 1991-05-29 Karl Marx Stadt Tech Hochschul Verfahren zur herstellung dekorativer oberflaechen auf metallen
DE3870925D1 (de) * 1987-02-02 1992-06-17 Friebe & Reininghaus Ahc Verfahren zur herstellung dekorativer ueberzuege auf metallen.
US4898651A (en) * 1988-01-15 1990-02-06 International Business Machines Corporation Anodic coatings on aluminum for circuit packaging
DE3808610A1 (de) * 1988-03-15 1989-09-28 Electro Chem Eng Gmbh Verfahren zur oberflaechenveredelung von magnesium und magnesiumlegierungen
DD278850A1 (de) * 1988-12-28 1990-05-16 Komplette Chemieanlaen Dresden Verfahren zur erzeugung kapillarporoeser oberflaechenschichten auf waermeuebertragungsflaechen
US5035781A (en) * 1989-07-19 1991-07-30 Jenoptik Jena Gmbh Electrolyte for the production of black surface layers on light metals
DD289065A5 (de) * 1989-08-09 1991-04-18 Carl Zeiss Gmbh Werk Entwicklung Wiss.-Techn. Ausruestungen Patentbuero,De Verfahren zur erzeugung einer dielektrischen schicht auf leichtmetallen oder deren legierungen
DE4037393A1 (de) * 1990-11-22 1992-07-30 Jenoptik Jena Gmbh Elektrolyt zur erzeugung thermoschockbestaendiger haftfester oxidkeramischer oberflaechenschichten
DE4116910A1 (de) * 1991-05-21 1992-11-26 Jenoptik Jena Gmbh Verfahren zur erzeugung oxidkeramischer oberflaechenschichten auf leichtmetall-gusslegierungen
US5266412A (en) * 1991-07-15 1993-11-30 Technology Applications Group, Inc. Coated magnesium alloys
DE4139006C3 (de) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516815A1 (de) * 1995-05-08 1996-11-14 Electro Chem Eng Gmbh Keramisierter Leichtmetallkolben für Verbrennungsmotoren
DE102006051709A1 (de) * 2006-10-30 2008-05-08 AHC-Oberflächentechnik GmbH Erzeugung von Verschleißschutzschichten auf Werkstoffen aus sperrschichtbildenden Metallen oder deren Legierungen mittels Laserbehandlung
DE202008010896U1 (de) 2008-08-05 2008-10-23 AHC Oberflächentechnik GmbH Werkstoff, insbesondere Bauteile, mit verbesserten Verschleißschutzschichten
DE102014219819A1 (de) * 2014-09-30 2016-03-31 Volkswagen Aktiengesellschaft Verfahren zur thermischen Isolierung eines Brennraums und/oder einer Abgasführung einer Brennkraftmaschine

Also Published As

Publication number Publication date
US5385662A (en) 1995-01-31
DE4139006A1 (de) 1993-06-03
US5811194A (en) 1998-09-22
ATE124472T1 (de) 1995-07-15
DE4139006C2 (de) 1996-10-24
EP0545230A1 (de) 1993-06-09
DE4139006C3 (de) 2003-07-10
JPH05239692A (ja) 1993-09-17
JP2912101B2 (ja) 1999-06-28
DE59202722D1 (de) 1995-08-03
EP0545230B2 (de) 2003-03-12

Similar Documents

Publication Publication Date Title
EP0545230B1 (de) Verfahren zur Erzeugung von ggf. modifizierten Oxidkeramikschichten auf sperrschichtbildenden Metallen und damit erhaltene Gegenstände
EP0333048B1 (de) Verfahren zur Erzeugung von korrosions- und verschleissbeständigen Schutzschichten auf Magnesium und Magnesiumlegierungen
EP2260127B1 (de) Strukturierte chrom-feststoffpartikel-schicht und verfahren zu deren herstellung
EP2857560B1 (de) Plasmachemisches verfahren zur herstellung schwarzer oxidkeramikschichten und entsprechend beschichteter gegenstand
EP0333049A1 (de) Verfahren zur Oberflächenveredelung von Magnesium und Magnesiumlegierungen
DE69722680T2 (de) Verfahren zur herstellung von harten schutzbeschichtungen auf artikel, die aus aluminiumlegierungen hergestellt sind
DE3048083C2 (de) Verfahren zur chemischen Entfernung von Oxidschichten von Gegenständen aus Titan oder Titanlegierungen
DE102005039614B4 (de) Verfahren zur Anodisierung und dadurch hergestellte anodische Oxidschicht sowie ein Aluminium- oder Aluminiumlegierungs-Element
DE60012597T2 (de) Oberflächenbehandlung von Aluminium-Körpern mit anodischer Oxidadation unter Funkenentladung
WO2021116318A1 (de) Verfahren zum herstellen eines stahlflachprodukts mit einer metallischen schutzschicht auf basis von zink und einer auf einer oberfläche der metallischen schutzschicht erzeugten phosphatierschicht und derartiges stahlflachprodukt
EP0514661A2 (de) Verfahren zur Erzeugung oxidkeramischer Oberflächenschichten auf siliziumhaltigen Leichtmetall-Gusslegierungen
EP0090268A2 (de) Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen
EP1700934A2 (de) Verfahren zur Herstellung von Oxyd- und Silikatschichten auf Metalloberflächen
DE4209733A1 (de) Verfahren zur elektrolytischen Beschichtung von Substraten und dergleichen
EP0090266A2 (de) Bad und Verfahren zum Anodisieren von aluminierten Teilen
DE2917019C2 (de) Verfahren zur Metallisierung von Verbundmaterial und dazu geeignete Badzusammensetzung
EP0648863B2 (de) Emaillierbare Oxidschicht
DE102011055644B4 (de) Verfahren zur Erzeugung einer schwarzen oxidkeramischen Oberflächenschicht auf einem Bauteil aus einer Leichtmetalllegierung
EP0462073B1 (de) Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen
EP2723923B1 (de) Konversionsschichtfreie bauteile von vakuumpumpen
EP1273679A1 (de) Metallisches Bauteil mit äusserer Funktionsschicht und Verfahren zu seiner Herstellung
EP2955250B1 (de) Verfahren zur beschichtung eines substrats
DE3442591C2 (de)
DE4037393A1 (de) Elektrolyt zur erzeugung thermoschockbestaendiger haftfester oxidkeramischer oberflaechenschichten
DE2216432C3 (de) Werkstück aus Titan oder einer Titanlegierung mit Titanoxiddeckschicht, Bad und Verfahren zur Herstellung sowie Verwendung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930930

17Q First examination report despatched

Effective date: 19941031

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 124472

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59202722

Country of ref document: DE

Date of ref document: 19950803

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950719

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950928

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: NUSSBAUM OBERFLAECHENTECHNIKGMBH

Effective date: 19960327

NLR1 Nl: opposition has been filed with the epo

Opponent name: NUSSBAUM OBERFLAECHENTECHNIKGMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RTI2 Title (correction)

Free format text: PROCESS FOR PREPARING MODIFIED OXIDE CERAMIC COATINGS ON BARRIER-LAYER METALS.

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20030312

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20030312

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 20030502

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081127

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100527

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100527

Year of fee payment: 18

Ref country code: CH

Payment date: 20100528

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091125

BERE Be: lapsed

Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

Effective date: 20101130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: BK

Free format text: ONTERECHT VERVALLEN OP 01.06.2011PUBLICATIE VERVAL I.E. 2011/24UITGEGEVEN 15.06.2011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110531

Year of fee payment: 19

Ref country code: GB

Payment date: 20110531

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110702

Year of fee payment: 19

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59202722

Country of ref document: DE

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 124472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601