EP0090268A2 - Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen - Google Patents

Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen Download PDF

Info

Publication number
EP0090268A2
EP0090268A2 EP83102616A EP83102616A EP0090268A2 EP 0090268 A2 EP0090268 A2 EP 0090268A2 EP 83102616 A EP83102616 A EP 83102616A EP 83102616 A EP83102616 A EP 83102616A EP 0090268 A2 EP0090268 A2 EP 0090268A2
Authority
EP
European Patent Office
Prior art keywords
aluminum
anodizing
bath
parts
per liter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83102616A
Other languages
English (en)
French (fr)
Other versions
EP0090268A3 (en
EP0090268B1 (de
Inventor
Siegfried Dr. Birkle
Klaus Stöger
Hans De Vries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT83102616T priority Critical patent/ATE28760T1/de
Publication of EP0090268A2 publication Critical patent/EP0090268A2/de
Publication of EP0090268A3 publication Critical patent/EP0090268A3/de
Application granted granted Critical
Publication of EP0090268B1 publication Critical patent/EP0090268B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon

Definitions

  • the invention relates to a method for anodizing aluminum materials and aluminized parts in aqueous alkaline, phosphate-containing, anodizing electrolytes.
  • Aluminum materials and aluminum-coated parts are not yet sufficiently stable for many applications, although self-passivation takes place in air, which is stable in the pH range from 5 to 9. However, this oxide layer is still too small for many technical applications. The layer is therefore reinforced in anodizing electrolytes.
  • an alkaline bath with sodium phosphate as the main constituent is used to produce shiny aluminum oxide layers with a maximum thickness of 4 ⁇ m.
  • a bath temperature of 20 to 90 ° C and a current density of 0.5 to 80 A / dm 2 aluminum or aluminum alloys are bright-galvanized.
  • these treatments (“glossy processes”) lead to glossy films, which are often undesirable.
  • the object of the invention is to provide aluminum materials and parts coated with aluminum, in particular iron materials, with hard abrasion-resistant and dyeable thicker aluminum oxide layers, in particular those of 10 to 20 ⁇ m, while avoiding the disadvantages mentioned above, even if the aluminum coating has any defects.
  • the flaws are e.g. the uncoated contact points in question, or in the case of profiled parts, the uncoated points, which may be present due to the limited spreadability of the aluminizing process.
  • Thick aluminum oxide layers are also to be produced on partially aluminized consumer metals, such as iron, nonferrous metal, nickel and zinc die-cast materials, without destroying the base material during anodization.
  • This object is achieved by the process of the invention in that on the aluminum material and aluminized parts in an anodizing bath which does not form any forming layers and contains 10 to 200 g of trisodium phosphate or tripotassium phosphate per liter at temperatures of 0 to 15 ° C. while passing C0 2 -free or low-CO 2 air, a preferably 10 to 20 ⁇ m thick matt anodizing layer is produced.
  • aluminum materials and aluminized parts in particular also partially aluminized parts made of iron, nickel and non-ferrous metal materials as well as zinc die-cast metals, even if they have flaws, can be anodically oxidized without technical disadvantages, so that hard, abrasion-resistant and dyeable oxide layers are formed.
  • the surfaces of aluminized parts are not shiny, but retain the appearance of the deposited aluminum layers.
  • the oxide layers produced are above all thicker than 4 ⁇ m. They are characterized by exceptional hardness and abrasion resistance.
  • the method according to the invention is also particularly suitable for achieving the aforementioned layer properties in the case of aluminum materials.
  • the bath can be operated with direct current and with impulse current.
  • Baths containing 50 to 150 g / l of trisodium phosphate or tripotassium phosphate are advantageously used to carry out the process according to the invention.
  • optically most uniform anodizing layers are obtained by adding 1 to 20 g of a complexing agent per liter of anodizing bath, for example alkali metal cyanide. Preferably 1 to 6 g of sodium cyanide are added to the bath per liter.
  • the method according to the invention is suitable for anodizing aluminum materials, aluminum flame spraying layers and roll-cladding layers, fire-aluminum layers, PVD-aluminum layers and in particular IVD and galvano-aluminum layers.
  • Galvano aluminum is an aluminum of high purity (> 99.99), good electrical conductivity and high ductility ⁇ 20 HV, which is obtained by deposition from organoaluminum electrolytes.
  • hollow bodies that are aluminized on the outside as well as workpieces with partially exposed surfaces, e.g. Parts of the apparatus with movable hinges (glasses), in which, in principle, no aluminum can be deposited at all points on the hinge, are provided according to the invention with hard, abrasion-resistant and dyeable aluminum oxide layers in thicknesses of 10 to 20 ⁇ m.
  • FIG shows in section an embodiment of a hinge 1 of an eyeglass frame made of nickel silver 4, which has an aluminum layer 2.
  • the aluminum oxide layer applied to this according to the invention is designated by 3.
  • Iron sheets 50 x 100 x 1mm were first galvanically coated in an aluminum electrolyte with the following composition with a matt galvano-aluminum layer.
  • the spectacle frames 1 to 3 were treated in an anodizing bath - as described in Example 1.
  • eyeglass frames 4 to 6 were treated after pickling in an electrolyte of the following composition, the anodizing conditions being chosen from 1 to 3:
  • the eyeglass frames 1 to 3 on the hinges looked more inconsistent after coloring the anodized layer
  • the eyeglass frames 4 to 6 gave a uniform visual appearance.
  • the complexing agent contributes to a more homogeneous oxide formation at the phase boundary with aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Forging (AREA)
  • Table Devices Or Equipment (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Abstract

Aluminiumwerkstoffe und aluminierte Teile werden bei 0 bis 15°C, vorzugsweise 0 bis 10°C Badtemperatur und Durchleiten von CO2-freier oder CO2-armer Luft anodisch mit einer 10 bis 20 µm dicken harten und abriebfesten sowie einfärbbaren Anodisierschicht versehen. Das eingesetzte Anodisierbad ist frei von Stoffen, die die Oxidschicht auf maximal 1µm Dicke begrenzen (Formierschicht) und enthält pro Liter 10 bis 500 g Trinatriumphosphat oder Trikaliumphosphat. Bei partiell aluminierten Teilen tritt während des Anodisierens keine Zerstörung des Grundwerkstoffes ein.

Description

  • Die Erfindung betrifft ein Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen in wässrig alkalischen,Phosphationen enthaltenden, Anodisierelektrolyten.
  • Aluminiumwerkstoffe und aluminiumbeschichtete Teile sind für viele Anwendungszwecke noch nicht hinreichend beständig, obwohl an Luft eine Selbstpassivierung erfolgt, die im PH-Bereich von 5 bis 9 beständig ist. Diese Oxidschicht ist aber für viele Anwendungszwecke in der Technik noch zu gering. Deshalb wird die Schicht in Anodisierelektrolyten verstärkt.
  • Es ist bekannt ("Die Praxis der anodischen Oxydation des Aluminiums" Aluminiumverlag GmbH Düsseldorf, 1961, insbesondere Seiten 37, 46 und 50) Aluminium unter Verwendung von verdünnter Schwefelsäure (Gleichstrom-Schwefelsäure-Verfahren), verdünnter Oxalsäure (Gleichstrom-Oxalsäure-Verfahren) oder auch in einem Schwefelsäure-Oxalsäure-Bad anodisch zu oxidieren.Diese Verfahren sind zwar für Aluminiumwerkstoffe einsetzbar, doch tritt bei aluminierten Teilen eine Zerstörung des Werkstoffs oder zumindest ein anwendungstechnisch nicht tolerierbares Anfressen der Materialoberfläche ein, wenn keine allseitige Aluminierbedeutung gegeben ist.
  • Aus der DE-OS 28 42 396 ist ein "Verfahren zur Glanzanodisierung von Aluminium" bekannt, das auf einer in "Werkstoff Aluminium und seine anodische Oxydation" von Max Schenk, 1948, Seite 801 zitierten Arbeit beruht. Das alkalische 80 °C + 1 °C warme wässrige Glänzbad enthält gemäß M. Schenk Natriumcarbonat und tertiäres Natriumphosphat..
  • Gemäß der DE-OS 28 42 396 wird zur Herstellung glänzender maximal 4 µm dicker Aluminiumoxidschichten ein alkalisches Bad mit Natriumphosphat als Hauptbestandteil verwendet. Bei einer Badtemperatur von 20 bis 90 °C und einer Stromdichte von 0,5 bis 80 A/dm2 werden Aluminium oder Aluminiumlegierungen glanzodisiert. Abgesehen davon, daß bei diesem Verfahren bei stark salzhaltigen Elektrolyten bei höheren Temperaturen gearbeitet wird, führen diese Behandlungen ("Glänzverfahren") zu glänzenden Filmen, die vielfach unerwünscht sind.
  • Da die Auflösung des Aluminiums schneller vonstatten geht als die Oxidbildung, kann bei dem in der DE-OS beschriebenen Verfahren selbst bei längerer Eloxierdauer nur eine Aluminiumoxidschicht von < 4 µm erzeugt werden. Außerdem entstehen bereits nach kurzer Badstandzeit wegen der zunehmenden Carbonatmenge infolge Absorption des CO2 aus der Luft nur noch sogenannte Formierschichten < 1 µm. Die Abtragsrate ist unter den hier angegebenen Eloxierbedingungen so hoch, daß bei aluminierten Teilen an dünner aluminierten Stellen das Aluminium statt anodisiert, abgelöst wird. Vor allem können keine nach DE-OS 28 42 396 beschriebenen Verfahren, Toleranzmaße des Aluminiumüberzuges, dessen Schichtdicke aus technisch wirtschaftlichen Gründen vorgegeben ist, eingehalten werden. Auch Aluminiumwerkstoffe können so nicht mit einer dickeren Oxidschicht versehen werden.
  • Ein besonderes Problem - bei der Kombination von metallischen Werkstoffen mit Aluminium in Form eines schützenden Überzuges - ergibt sich insofern, weil in sauren den bekannten/Anodisierelektrolyten (bei anodischer Polung) an den ungenügend beschichteten Substratoberflächen, beispielsweise bei Eisen, Kupfer, Nickel und Zink und deren Legierungen diese sich anodisch auflösen. Bei solchen Materialien kommt es daher zu derart starken Korrosionserscheinungen, daß aluminiumbeschichtete Teile sowohl in dekorativer Hinsicht als auch in ihrer Funktion unbrauchbar bzw. zerstört werden.
  • Diese Tatsache schränkt die Anwendung der Aluminierung im dekorativen funktionellen Oberflächensektor stark ein, so daß beispielsweise die Applikation der einfärbbaren Galvano-Aluminium-Eloxal O -schichten, z.B. auf Brillengestellen, Feuerzeughülsen, Schreibgeräten usw. technisch gesehen bisher nur schwer oder überhaupt nicht realisiert werden konnte.
  • Zur Anodisierung von aluminierten Teilen mit ungenügender Bedeckung, die in sauren Eloxierbädern durchgeführt wird, ist es erforderlich, die freien Stellen vor dem Eloxieren mit einem sogenannten Abdecklack zu versehen. Nach dem Eloxieren sind derartige Lacke zu entfernen, indem man diese entweder abzieht oder mit einem geeigneten Lösungsmittel ablöst. Bei Hohlräumen oder Bohrungen, in denen sich kein Aluminium befindet, kann man sich dadurch helfen, indem diese mit Stopfen oder dergleichen abgedichtet werden. Diese prinzipiell zwar mögliche Verfahrensweise ist technisch aufwendig und unwirtschaftlich. Bei diversen Teilen, z.B. solchen mit Scharnieren (Brillen) , ist das genannte Abdeckverfahren jedoch aus dekorativen Gründen (Einfärben der Eloxal®-Schichten) unbrauchbar und damit ein Anodisieren prinzipiell nicht möglich.
  • Aufgabe der Erfindung ist es, Aluminiumwerkstoffe sowie mit Aluminium beschichtete Teile,insbesondere Eisen- werkstoffe,unter Vermeidung der oben angeführten Nachteile mit harten abriebfesten und einfärbbaren dickeren Aluminiumoxidschichten, insbesondere solchen von 10 bis 20 µm zu versehen, und zwar auch dann, wenn der Aluminiumüberzug irgendwelche Fehlstellen aufweist. Als Fehlstellen kommen z.B. die nicht beschichteten Kontaktstellen infrage, oder bei profilierten Teilen, die nicht überzogenen Stellen, die aufgrund der begrenzten Streufähigkeit Aluminierverfahren vorhanden sein können. Es sollen auch auf partiell aluminierten Gebrauchsmetallen, wie Eisen-, Buntmetall-, Nickel-und Zinkdruckgußwerkstoffen ohne Zerstörung des Grundwerkstoffes bei der Anodisierung dicke Aluminiumoxidschichten erzeugt werden.
  • Diese Aufgabe wird durch das Verfahren der Erfindung dadurch gelöst, daß auf dem Aluminiumwerkstoff und aluminierten Teilen in einem keine Formierschichten bildenden Anodisierbad, enthaltend pro Liter 10 bis 200g Trinatriumphosphat oder Trikaliumphosphat, bei Temperaturen von 0 bis 15 °C unter Durchleiten von C02-freier oder C02-armer Luft eine vorzugsweise 10 bis 20 um dicke matte Anodisierschicht erzeugt wird.
  • Mit dem erfindungsgemäßen Verfahren können Aluminiumwerkstoffe und aluminierte Teile, insbesondere auch partiell aluminierte Teile aus Eisen-, Nickel- und Buntmetallwerkstoffen sowie Zinkdruckgußmetalle, auch wenn sie Fehlstellen aufweisen, ohne anwendungstechnische Nachteile anodisch oxidiert werden, so daß und harte,abriebfeste und einfärbbare Oxidschichten entstehen. Die Oberflächen aluminierter Teile sind nicht glänzend, sondern behalten das Aussehen der abgeschiedenen Aluminiumschichten bei. Die erzeugten Oxidschichten sind vor allem dicker als 4 µm. Sie zeichnen sich durch außergewöhnliche Härte und Abriebfestigkeit aus. Das erfindungsgemäße Verfahren eignet sich insbesondere auch für die Erzielung vorgenannter Schichteigenschaften bei Aluminium-Werkstoffen.
  • Besonders günstige Effekte werden bei einem Badbetrieb von 0 bis 10 °C erreicht. Das Bad kann mit Gleichstrom und mit Impulsstrom betrieben werden.
  • Zur Durchführung des erfindungsgemäßen Verfahrens werden mit Vorteil Bäder, enthaltend 50 bis 150g/1 Trinatriumphosphat oder Trikaliumphosphat, eingesetzt.
  • Die optisch einheitlichsten Anodisierschichten werden bei Zugabe von 1 bis 20g eines Komplexbildners pro Liter Anodisierbad, beispielsweise Alkalicyanid, erhalten. Vorzugsweise werden dem Bad pro Liter 1 bis 6g Natriumcyanid zugesetzt.
  • Das erfindungsgemäße Verfahren eignet sich zum Anodisieren von Aluminium-Werkstoffen, Aluminium-Flammspritzschichten und -Walzplattierschichten, Feuer-Aluminium- Schichten, PVD-Aluminium-Schichten und insbesondere IVD- und Galvano-Aluminium-Schichten.
  • "Galvano-Aluminium" ist ein Aluminium hoher Reinheit ( >99.99), guter elektrischer Leitfähigkeit und hoher Duktilität < 20 HV, das durch Abscheidung aus aluminiumorganischen Elektrolyten erhalten wird.
  • Es können mit Vorteil beispielsweise nur außen aluminierte Hohlkörper sowie Werkstücke mit partiell freigelassenen Flächen, z.B. Apparateteile mit beweglichen Scharnieren (Brillen), bei denen prinzipiell kein Aluminium an allen Stellen des Scharniers abgeschieden werden kann, erfindungsgemäß mit harten abriebfesten und einfärbbaren Aluminiumoxidschichten in Dicken von 10 bis 20 µm versehen werden.
  • Die Erfindung wird anhand der Beispiele und der FIG näher erläutert.
  • Die FIG zeigt im Schnitt ein Ausführungsbeispiel eines Scharniers 1 eines Brillengestells aus Neusilber 4, das eine Aluminiumschicht 2 aufweist. Die auf dieser gemäß der Erfindung aufgebrachte Aluminium-oxid-Schicht ist mit 3 bezeichnet.
  • Beispiel 1
  • Es wurden zuerst Eisenbleche (50 x 100 x 1mm) in einem Aluminiumelektrolyten nach folgender Zusammensetzung galvanisch mit einer matten Galvano-Aluminiumschicht versehen.
  • Figure imgb0001
    Nach kurzem Beizen werden sie in verdünnter Natronlauge in einen Eloxierelektrolyten zusammengesetzt aus
  • 30 1 entionisiertem Wasser
  • 1,5 kg Na3PO4 12 H2 0
  • getaucht und wie folgt anodisiert:
    Figure imgb0002
  • Elektrolytumwälzung mit CO2-freier Preßluft.
  • Man erhielt eine ca. 10 µm dicke, transparente Eloxalschicht. Die nicht aluminierten Kontaktstellen waren praktisch nicht angegriffen.
  • Ein im Vergleich hierzu gemäß der DE-OS 28 42 396 bei 20 °C eloxierte vorher matte Aluminiumoberfläche hatte ein glänzendes Aussehen. Die nicht aluminierten Kontaktstellen zeigen eine für die Anwendung nicht tolerierbare Korrosion. Außerdem konnten selbst bei dicken Aluminium-Schichten nur max. 3 bis 4 µm dicke Eloxalschichten erzeugt werden.
  • Beispiel 2
  • 6 Brillengestelle aus Neusilber wurden in einem Aluminier-Elektrolyten - wie in Beispiel 1 angegeben - ca. 1 1/2 Stunden aluminiert. Die mittlere Al-Schichtdicke am Brillenbügel und an der Brillenfassung betrug ca. 20 µm, dagegen im Zwickel an den Scharnieren 1 bis 3 µm.
  • Nach kurzem Beizen in verdünnter Natronlauge wurden die Brillengestelle 1 bis 3 in einem Anodisierbad - wie in Beispiel 1 beschrieben - behandelt.
  • Im Gegensatz dazu wurden die Brillengestelle 4 bis 6 nach dem Beizen in einem Elektrolyten folgender Zusammensetzung behandelt, wobei die Anodisierbedingungen von 1 bis 3 gewählt wurden:
    Figure imgb0003
  • In beiden Fällen wurde eine Eloxalschichtdicke von ca. 10 µm erreicht; die Brillen waren bis auf das Aussehen der Zwickel an den Scharnieren gleich.
  • Während die Brillengestelle 1 bis 3 an den Scharnieren nach dem Einfärben der Eloxalschicht uneinheitlicher aussahen, vermittelten die Brillengestelle 4 bis 6 ein einheitliches optisches Aussehen. Daraus resultiert, daß der Komplexbildner an der Phasengrenze zum Aluminium zu einer homogeneren Oxidbildung beiträgt.

Claims (6)

1. Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen in wässrig, alkalischen Phosphationen enthaltenden, Anodisierelektrolyten, pdadurch gekennzeichnet , daß auf den Aluminiumwerkstoff und aluminierten Teilen in einem keine Formierschichten bildenden Anodisierbad,enthaltend pro Liter 10 bis 200g Trinatriumphosphat oder Trikaliumphosphat,bei Temperaturen von 0 bis 15 °C unter Durchleiten von CO2-freier oder CO2-armer Luft eine 10 bis 20 µm dicke Aluminiumoxidschicht ohne Glanzeffekt erzeugt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß das Anodisierbad mit Gleichstrom oder Impulsstrom betrieben wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet , daß bei 0 bis 10 °C anodisiert wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet , daß das Anodisierbad pro Liter 50 bis 150g Na3PO4 . 12 H20 oder K3PO4 . 7 H 2 0 enthält.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet , daß das Bad außerdem pro Liter 1 bis 20g eines Komplexbildners enthält.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet , daß das Bad pro Liter 1 bis 6g Natriumcyanid enthält.
EP83102616A 1982-03-30 1983-03-16 Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen Expired EP0090268B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83102616T ATE28760T1 (de) 1982-03-30 1983-03-16 Verfahren zum anodisieren von aluminiumwerkstoffen und aluminierten teilen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823211759 DE3211759A1 (de) 1982-03-30 1982-03-30 Verfahren zum anodisieren von aluminiumwerkstoffen und aluminierten teilen
DE3211759 1982-03-30

Publications (3)

Publication Number Publication Date
EP0090268A2 true EP0090268A2 (de) 1983-10-05
EP0090268A3 EP0090268A3 (en) 1985-05-15
EP0090268B1 EP0090268B1 (de) 1987-08-05

Family

ID=6159748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102616A Expired EP0090268B1 (de) 1982-03-30 1983-03-16 Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen

Country Status (5)

Country Link
US (1) US4439287A (de)
EP (1) EP0090268B1 (de)
JP (1) JPS58177493A (de)
AT (1) ATE28760T1 (de)
DE (2) DE3211759A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3328049A1 (de) * 1983-08-03 1985-02-21 Hoechst Ag, 6230 Frankfurt Verfahren zur einstufigen anodischen oxidation von traegermaterialien aus aluminium fuer offsetdruckplatten
US4898651A (en) * 1988-01-15 1990-02-06 International Business Machines Corporation Anodic coatings on aluminum for circuit packaging
US4894126A (en) * 1988-01-15 1990-01-16 Mahmoud Issa S Anodic coatings on aluminum for circuit packaging
US5097109A (en) * 1990-02-20 1992-03-17 General Motors Corporation Insulated aluminum weld fixture and a method of making same
JP4417106B2 (ja) * 2001-08-14 2010-02-17 ケロナイト・インターナショナル・リミテッド マグネシウム陽極酸化システム及び方法
US6591954B2 (en) 2001-09-28 2003-07-15 Eaton Corporation Clutch brake
US7578921B2 (en) * 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US6916414B2 (en) 2001-10-02 2005-07-12 Henkel Kommanditgesellschaft Auf Aktien Light metal anodization
US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US7569132B2 (en) * 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
JP5334445B2 (ja) * 2008-04-07 2013-11-06 本田技研工業株式会社 アルミニウム合金製部材及びその製造方法
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
US8609254B2 (en) 2010-05-19 2013-12-17 Sanford Process Corporation Microcrystalline anodic coatings and related methods therefor
US8512872B2 (en) 2010-05-19 2013-08-20 Dupalectpa-CHN, LLC Sealed anodic coatings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2187937A1 (de) * 1972-06-03 1974-01-18 Fuji Photo Film Co Ltd
JPS5431741A (en) * 1977-08-16 1979-03-08 Fuji Xerox Co Ltd Paper conveying apparatus for copying in electronic copier
US4188270A (en) * 1978-09-08 1980-02-12 Akiyoshi Kataoka Process for electrolytically forming glossy film on articles of aluminum or alloy thereof
JPS56169794A (en) * 1980-05-31 1981-12-26 Anritsu Corp Production of name plate
JPS5757890A (en) * 1980-09-19 1982-04-07 Shiyoukoushiya:Kk Surface treatment of hoop of composite material consisting of aluminum or its alloy and different metal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451936A (en) * 1977-09-30 1979-04-24 Shokosha Kk Electropolishing of aluminum and alloy thereof
JPS5576093A (en) * 1978-11-30 1980-06-07 Shiyoukoushiya:Kk Bright electrolysis method of aluminum or its alloy
JPS568118A (en) * 1979-11-14 1981-01-27 Minolta Camera Co Ltd T.t.l. metering automatic aperture control type single- lens reflex camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2187937A1 (de) * 1972-06-03 1974-01-18 Fuji Photo Film Co Ltd
JPS5431741A (en) * 1977-08-16 1979-03-08 Fuji Xerox Co Ltd Paper conveying apparatus for copying in electronic copier
US4188270A (en) * 1978-09-08 1980-02-12 Akiyoshi Kataoka Process for electrolytically forming glossy film on articles of aluminum or alloy thereof
JPS56169794A (en) * 1980-05-31 1981-12-26 Anritsu Corp Production of name plate
JPS5757890A (en) * 1980-09-19 1982-04-07 Shiyoukoushiya:Kk Surface treatment of hoop of composite material consisting of aluminum or its alloy and different metal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 92, Nr.6, 11-02-1980, Seite 491, Nr.49414b; COLUMBUS, OHIO (US); & JP-A-54 031 741 (SHOKOSHA K.K.) 09-10-1979 *
CHEMICAL ABSTRACTS, Band 96, Nr.16, April 1982, Seite 641, Nr.132165z; COLUMBUS, OHIO (US); & JP-A-56 169 794 (ANRITSU ELECTRIC CO. LTD.) 26-12-1981 *
CHEMICAL ABSTRACTS, Band 97, Nr.10, September 1982, Seite 628, Nr.81763d; COLUMBUS,OHIO (US); & JP-A-57 057 890 (SHOKOSHA K.K.) 07-04-1982 *

Also Published As

Publication number Publication date
EP0090268A3 (en) 1985-05-15
EP0090268B1 (de) 1987-08-05
JPH0359149B2 (de) 1991-09-09
DE3211759A1 (de) 1983-10-06
DE3372871D1 (en) 1987-09-10
JPS58177493A (ja) 1983-10-18
ATE28760T1 (de) 1987-08-15
US4439287A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
EP0090268B1 (de) Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen
DE10033435A1 (de) Verfahren zur Oberflächenbehandlung von Aluminium oder Aluminium-Legierungen mittels alkansulfonsäurehaltigen Formulierungen
DE10393234T5 (de) Oberflächenbehandlung von Magnesium und seinen Legierungen
DE2041728A1 (de) Verfahren zum Elektroplattieren der Oberflaechen von leicht oxydierbaren Metallen und Metallegierungen
DE10149928C1 (de) Verfahren zum Glänzen von Aluminium und dessen Verwendung
DE3706711A1 (de) Verfahren zum reinigen von oberflaechen eines aluminiumgegenstandes
DE2239255C3 (de) Wäßrige alkalische Losung zum Aufbringen eines korrosions- und wärmebeständigen, beschichtbaren und leicht einf ärbbaren Oxidüberzuges auf ein Substrat aus Aluminium oder einer Aluminiumlegierung
EP0090266A2 (de) Bad und Verfahren zum Anodisieren von aluminierten Teilen
DE1236898B (de) Verfahren zur elektrochemischen Erzeugung von Schutzueberzuegen auf Metallen
DE2917019C2 (de) Verfahren zur Metallisierung von Verbundmaterial und dazu geeignete Badzusammensetzung
DE2166843A1 (de) Druckstrahler
DE2254857B2 (de) Verfahren zur Herstellung von abnutzungsfesten Nickeldispersionsüberzügen
DE4240903C2 (de) Verfahren zum elektrolytischen Färben eines mit Zink beschichteten Stahlgegenstandes
DE10025643B4 (de) Verfahren zum Beschichten von Aluminium- und Magnesium-Druckgusskörpern mit einer kataphoretischen Elektrotauchlackierungsschicht und mit diesem Verfahren hergestellte Aluminium- und Magnesium-Druckgusskörper
DE2310638C2 (de) Verfahren zum Umwandeln hydrophober Oberflächen aus Aluminium, Aluminiumlegierungen, Kupfer oder Kupferlegierungen in hydrophile Oberflächen
DE2844406C2 (de) Nachverdichtungsbad und Verfahren zur Verhinderung von Belägen bei der Nachverdichtung anodisch oxidierter * Aluminiumoberflächen
DE718252C (de) Verfahren zur Erzeugung schwefelwasserstoffbestaendiger galvanischer Silberueberzuege
EP0462073B1 (de) Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen
DE2842396A1 (de) Verfahren zur glanzanodisierung von aluminium
DE19751256C2 (de) Aluminiumdruckgußteil mit einer Aluminiumoxid-Konversionsschicht und Verfahren zu seiner Herstellung
EP0351680B1 (de) Verwendung von p-Toluolsulfonsäure zum elektrolytischen Färben anodisch erzeugter Oberflächen von Aluminium
DE2263038C3 (de) Verfahren zum Beschichten von Aluminiumoder Alminiumlegierungsmaterial
DE663910C (de) Herstellung von Schutzueberzuegen auf mit Aluminium oder Aluminiumlegierungen plattierten Gegenstaenden
DE692124C (de) Verfahren zur elektrolytischen Oxydation von Eisen und Stahl
EP1141449B1 (de) Verfahren zum abdunkeln einer oberflächenschicht eines materialstückes, die zink enthält

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19841217

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE FR GB NL

17Q First examination report despatched

Effective date: 19860604

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB NL

REF Corresponds to:

Ref document number: 28760

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3372871

Country of ref document: DE

Date of ref document: 19870910

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920521

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930316

Ref country code: AT

Effective date: 19930316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930316

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST