EP0342655B1 - Installation de grue pour conteneur - Google Patents

Installation de grue pour conteneur Download PDF

Info

Publication number
EP0342655B1
EP0342655B1 EP89108887A EP89108887A EP0342655B1 EP 0342655 B1 EP0342655 B1 EP 0342655B1 EP 89108887 A EP89108887 A EP 89108887A EP 89108887 A EP89108887 A EP 89108887A EP 0342655 B1 EP0342655 B1 EP 0342655B1
Authority
EP
European Patent Office
Prior art keywords
container
spreader
installation according
crane installation
container crane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89108887A
Other languages
German (de)
English (en)
Other versions
EP0342655A2 (fr
EP0342655A3 (en
Inventor
Hans Tax
Klaus Dr. Hösler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tax Ingenieurgesellschaft mbH
Original Assignee
Tax Ingenieurgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tax Ingenieurgesellschaft mbH filed Critical Tax Ingenieurgesellschaft mbH
Priority to DE8916221U priority Critical patent/DE8916221U1/de
Publication of EP0342655A2 publication Critical patent/EP0342655A2/fr
Publication of EP0342655A3 publication Critical patent/EP0342655A3/de
Application granted granted Critical
Publication of EP0342655B1 publication Critical patent/EP0342655B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/002Container cranes

Definitions

  • the invention relates to a container crane system which is intended to move containers between different stands, in particular between stands in the hull or on the deck of a container transport ship on the one hand and stands on the quay or on quay-moving means of transport on the other hand, and which is designed for this purpose with a lifting cable carrier which can be driven along at least one horizontal axis by means of a chassis and a container receiving frame which is suspended on lifting cables of the lifting cable carrier and is height-adjustable by means of a cable lifting mechanism, hereinafter referred to as spreader.
  • a lifting cable carrier which can be driven along at least one horizontal axis by means of a chassis and a container receiving frame which is suspended on lifting cables of the lifting cable carrier and is height-adjustable by means of a cable lifting mechanism, hereinafter referred to as spreader.
  • Such a container crane system is such. B. is known from US-PS 4,172,685.
  • a plurality of touch contact sensors are attached to the spreader in order to detect mutual contact of the spreader with another container or the like arranged below or next to it.
  • an optical remote detection system is arranged on the spreader of this container crane system, which in its operating position is essentially arranged below a container attached to the spreader and is capable of transmitting and receiving units to determine the vertical distance of the spreader relative to the ground or another Capture containers.
  • the optical remote detection system cannot be used to detect a lateral position of the spreader relative to the ground, so that this lateral position of the spreader is only detected by means of appropriate sensor devices when another container is touched.
  • a crane system is known from DE-A-34 45 830, in which a remote detection system is attached to a trolley, which detects a marking sign arranged on the floor below the trolley by means of laser beam scanning.
  • a remote detection system is attached to a trolley, which detects a marking sign arranged on the floor below the trolley by means of laser beam scanning.
  • the invention is based on the object of specifying a crane system which makes it easier for the crane operator to move the spreaders or containers into the respective parking space, in particular into a ship's cell.
  • a remote detection system with a pulsed directional beam transmitter for emitting radiation that can be reflected at the lateral position limitation, with a reflection radiation receiver and a transit time measuring device is provided for detecting information about the position of the spreader in order to detect a lateral position limitation of the position to be approached by the spreader or container or to receive the container in the horizontal direction relative to the profile of the position limit, and that this information is used to control the horizontal undercarriage and / or a spreader slewing gear, such that the spreader or container is lowered into the outline of the position limit meets.
  • the remote recognition system cannot be attached to the spreader on its underside, since the container is coupled there. This means that the remote detection system must be attached to the spreader outside the outline of the expected container.To allow the remote detection system a view that is not restricted by the respective container, the remote detection system must be attached outside the outline of the container and thus the spreader.
  • One of the problems for the crane operator is to reduce the lowering speed when the container or spreader approaches the upper end of the ship's cell or when it approaches the bottom of the ship's cell or the top of a container that has already been placed there, to enable a gentle belching or touching down.
  • This problem gets worse with increasing lowering speeds greater. It also cannot be solved by working at a high safety distance by switching on a creep speed, because this in turn reduces the sales performance.
  • the remote detection system be used to detect the spreader or container vertical distance from the mounting surface at the respective stand and / or to detect the distance of the spreader or container from the upper end of a stand limitation designed as a shaft. This provides a signal that can be used for direct control of the hoist.
  • the result of the distance measurement is displayed on a display device assigned to the crane operator, so that the crane operator can operate the hoist accordingly by hand.
  • so-called depth measuring devices are already in use for the crane operator to display the respective height of the spreader, which indicate the height of the spreader as a function of the haul-in condition of the hoist rope.
  • height dimensions can also be carried out when the container is already in the cell, that is, for the reason described above, the remote detection systems are in their retracted position and can therefore no longer be used for vertical distance measurement . It is therefore further proposed that, in the presence of a distance measuring device, hereinafter referred to as a depth measuring device, controlled by the retraction condition of a hoisting rope, it can be calibrated by the result of the distance measurement of the remote detection system.
  • the distance of the spreader is measured from the top of the cell and from the floor of the respective stand, be it the bottom of the cell or the top of a container already there. Then the depth measuring device is calibrated so that it displays the distance values at the time of measurement as determined by the remote detection system. After this calibration has been carried out once, the Teufen measuring system continues to display the actual distance values of the container or spreader from the critical altitude.
  • the work of the crane operator can be facilitated in that a scanner drive is assigned to the directional beam transmitter and that this scanner drive supplies a position coordinate over the respective position of the directional beam to a computer which at the same time receives runtime and thus distance information, this computer from these Information provides information about the position of the spreader or container in the horizontal direction relative to the profile of the position limit, which can be used to control the chassis drive.
  • the information obtained from the computer can be used directly to control the chassis drive.
  • the hoist cable carrier is then inevitably controlled in such a way that the spreader or container hits the stand exactly, in particular in the shaft of the ship's cell.
  • This control is carried out in such a way that the corrective movement of the hoist rope carrier is initiated and braked with the lowest possible accelerations, so as not to excite pendulum movements by means of the corrective movement, which would then have to be corrected again and could possibly no longer be corrected because of the relatively short available correction times.
  • the system used for remote detection according to the invention allows the use of various control measures. For example, the horizontal relative speed of the spreader relative to the stand, in particular the shaft entrance, can also be determined by a simple differentiating circuit and the control command can be corrected in advance taking this speed information into account.
  • the information obtained from the computer is used to control an imaging device at the location of the crane operator, which represents the position of the spreader or container relative to the profile of the location limit. It is possible, for example, to display the profile of the cell entrance and the container with its outline or at least one center point on a screen. If the container outline and the cell outline are displayed, the crane operator can use this display to carry out all translational movements in the horizontal direction in a target-oriented manner, for example a movement of the hoist rope carrier along a crane boom (1st coordinate axis) or a movement of the crane along a crane rail (2nd coordinate axis) .
  • the crane operator can also carry out rotation corrections in such a representation, provided that there is a possibility of rotation on the spreader or on the hoist rope carrier.
  • the above-mentioned displays about the height can also be displayed directly on the screen, which shows the profile of the cell and the container.
  • the respective lifting speed and / or the driving speed can also be shown on the screen.
  • the directional beam swivel For scanning it is advisable to let the directional beam swivel. This can be done, for example, in such a way that the scanner drive serves to pivot a deflecting mirror lying in the directional beam path. The scanning movement can take place in one plane. In this case, two remote detection systems are required to display a profile corner of the stand.
  • the system can be further refined in that a position detection system with a pulsed directional beam transmitter for emitting radiation that can be reflected on the hoist rope carrier, a reflection beam receiver and a transit time measuring device for determining information about at least one spatial coordinate of the spreader position are attached to the spreader position relative to the hoist cable carrier the hoist cable carrier, this location information also being used to control the hoist or the undercarriage.
  • a position detection system with a pulsed directional beam transmitter for emitting radiation that can be reflected on the hoist rope carrier, a reflection beam receiver and a transit time measuring device for determining information about at least one spatial coordinate of the spreader position are attached to the spreader position relative to the hoist cable carrier the hoist cable carrier, this location information also being used to control the hoist or the undercarriage.
  • the influence of the wind can be determined, namely from the respective position of the spreader in relation to the hoist cable carrier.
  • the position detection system can also be used to produce information about the horizontal relative speed between the spreader and the hoist rope carrier. Then you can determine the rolling movement of the ship by subtractive superimposition with the relative horizontal movement speed of the spreader to the profile of the position and thus feed this rolling movement as a further control variable into the computer, always with the aim of correcting the lifting cable carrier, especially in the final phase of the approach to be kept as low as possible to the respective critical point and to be able to carry out with the lowest possible accelerations and speeds.
  • a switching step control for the undercarriage for carrying out driving steps along the horizontal axis of the hoist rope carrier is provided in accordance with the position coordinate difference of positions to be approached one after the other, the switching step corresponding to the respective position coordinate difference taking place in each case from the position of the hoisting cable carrier which occurs at the implementation of a previous switching step, taking into account the prevailing wind conditions at that time and assumed to be constant, resulted in a spreader position appropriate for the position.
  • interacting pendulum damping means can be attached to the hoist cable carrier and to the spreader, which interact when the spreader approaches the hoist cable carrier.
  • Such a design of the crane system allows an operating method of the type that before the lowering movement of the spreader is started, the hoisting cable carrier is brought into the position that corresponds to the position to be approached, and that pendulum movements of the spreader are suppressed before the lowering movement begins.
  • the lifting cable carrier is set at the start of the lowering movement so that, under ideal lowering conditions, the spreader or container hits the position, ie in particular the ship's cell entrance, in the correct position. Since, in addition, the oscillation has been suppressed at the beginning of the lowering process by the engagement of the pendulum damping means on the spreader and hoist cable carrier, it can be expected that no significant pendulum movements will occur during the lowering process.
  • the spreader or container is then only subject to any wind pressure. The crane operator is largely relieved when he only has to watch out for wind pressure dislocations.
  • FIG. 1 shows a quay 10 of a port facility on which a container ship 12 is moored.
  • a container crane 14 which can be moved on rails parallel to the longitudinal direction of the quay, ie perpendicular to the plane of the drawing.
  • the crane 14 carries a crane bridge 16.
  • Two trolleys 18 and 20 can be moved on this crane bridge 16, which trolleys are also to be understood as hoisting rope carriers.
  • the trolley 18 is intended for removing containers from the ship 12 and for inserting containers into the ship 12.
  • a transfer trolley 25 can be moved on a separate pair of rails, which can be made to coincide with each of the trolleys 18 and 20 in the plane of the drawing.
  • the trolley 18 with the associated spreader takes over the transport from the transfer trolley 25 to the ship and back.
  • the trolley 20 with its associated spreader takes over the transport of the containers between the transfer trolley 25 and the quay system 10 or the transport means 26 which can be moved on the quay system 10.
  • the transfer trolley 25 takes over the transport along the bridge beam 16 between the two trolleys 18 and 20.
  • FIG. 2 furthermore shows that the container 30 is to be inserted into a container receiving shaft 34 of a ship's cell.
  • the width b of this container receiving shaft corresponds to the width b 'of the container.
  • the length of the container receiving shaft 34 is divided by profile ribs 36 so that a container can be inserted between two successive pairs of ribs 36.
  • a plurality of containers 30 are located one above the other.
  • the trolley 18 moves to the respective container receiving shaft.
  • the entire crane 14 in FIG. 1 is moved perpendicular to the drawing plane.
  • the trolley 18 is first brought into the position which corresponds to this container receiving shaft. During this travel movement, lifting movements can be superimposed take place so that the driving and lifting times do not necessarily overlap additively but overlap. It is essential, however, that at the start of the lowering of the spreader 24 in the direction of the container receiving shaft, pendulum movements are suppressed by engagement of the pendulum damping surfaces 31 of the spreader and 32 of the trolley 18. The lowering movement of the spreader 24 may therefore only begin after the trolley 18 has finished has reached the position corresponding to the shaft to be approached in each case.
  • the pendulum damping surfaces 31 must have come into contact with the pendulum damping surfaces 32. Then, when the spreader is subsequently lowered, there is little or no oscillation of the spreader 24, and there is a good chance that the container 30 will pass the upper edges of the container receiving shaft 34 without jolts.
  • the trolley 18 becomes corresponding to the division distance t between the successive ones Moving container receiving shafts 34, specifically from the position of the trolley 18 which, in the prevailing wind conditions and assumed to be constant, led to a precise alignment of the container 30 with the upper edge of the first container receiving shaft 34. In this way, there is a chance that after moving the trolley 18 by the pitch t, the container 30 will again find its way exactly into the new container receiving shaft 34.
  • guide surfaces 38 are provided at the upper ends of the container receiving shafts, but for which only limited space is available.
  • Figure 1a differs from Figure 1 only in that the transfer cat 25 has been omitted.
  • the two trolleys 118 and 120 here take over the container transport from the ship to container receiving platforms 140, which are attached to the crane frame 114 in the form of a buffer store.
  • the trolley 120 takes care of the container transport between the platforms 140 and the parking spaces on the quay site.
  • the method described above can also be used.
  • This method can also be modified in such a way that the crane operator does not necessarily have to pull the spreader up to the stop on the trolley with every repositioning operation, but only when pendulum movements actually occur that cannot be controlled. There is therefore the possibility, under favorable conditions, of moving a container on the next way from a location A to a location B, possibly with the superimposition of the travel movement and the lowering or lifting movement.
  • FIG. 3 a container 230 can again be seen on a spreader 224, which is suspended on the trolley 218 via lifting ropes 222.
  • a shaft 234 is again to be loaded or unloaded, as shown in FIG. 3.
  • Remote detection systems 244 are now arranged on the spreader 224.
  • Each of these remote detection systems 244 includes a pulse laser 244a, a deflecting mirror 244b and a reflective beam receiver 244c.
  • the deflecting mirror 244b is pivoted about two mutually perpendicular axes of rotation 244d and 244e by swivel motors (not shown).
  • the laser pulses strike in the form of a directional beam 246 on the boundary edges 248 of the container receiving shaft 234, on the upper side 230a of a container 230 which is already in the shaft 234 and, in the absence of such a container, on the bottom 234a of the container receiving shaft 234.
  • the laser pulses are reflected at these impingement points and then strike the reflection beam receiver 244c.
  • the respective travel path of the laser pulse can be measured by a transit time measurement. In this way, the vertical distance of the spreader 224 from the surfaces 248, 230a and 234a can be determined.
  • the profile of the upper edge 248 of the container receiving shaft 234 can be scanned as a result of the pivoting movement of the deflecting mirror 244b. If a runtime jump occurs, this means that the edge between the upper end surface 248 and the shaft 234 is run over. At this point in time, the respectively shorter transit time and thus the shorter transit time path must be recorded according to the distance between the remote detection system 244 and the surface 248. At the same time, the angular position of the deflecting mirror 244 b must be recorded at this time. From this angle information and the runtime information, a computer can then determine the relative position of the spreader 224 to the upper boundary profile 248 of the container receiving shaft 234.
  • FIG. 5 again shows the pulse laser 244a, the reflection beam receiver 244b and a transit time meter 244f.
  • the transit time meter 244 f provides transit time and thus travel information to a computer 250.
  • a scanner drive 244g for the deflecting mirror 244b can also be seen in FIG.
  • This scanner drive 244g is assigned a protractor 244h, which supplies information about the respective angular position of the mirror 244b to the computer 250.
  • runtime information and angle information are supplied to the computer 250, which then determines the location coordinate of the edge that has been passed.
  • the profile in a corner can be determined from a plurality of such location coordinates.
  • FIG. 5 shows two remote detection systems I and II so that two corners of the profile of the container receiving shaft can be determined. Basically, this is sufficient to determine the real location of the spreader or container in relation to the profile of the container receiving shaft. For example, one assigns a remote detection system to two diagonally opposite corners.
  • a screen 252 on which four corners of the profile of the container receiving shaft are shown. These four corners are labeled 234w, 234x, 234y and 234z. At the same time you can see the center of the spreader, which is indicated by a cross hair 254. From the translational displacements of the corners 234w to 234z it can now be determined which corrective movements have to be given to the crane trolley and the trolley trolley.
  • the crane operator has in front of him a control panel 256 on which there are manual control elements for the various driving and lifting processes, namely a manual control element 258 which controls a crane trolley 260, namely a trolley for moving the crane frame 14 perpendicular to the plane of the figure 1.
  • a manual actuating element 262 for controlling a trolley carriage 264, which ensures the movement of the trolley 18 in FIG. 1 along the crane bridge 16.
  • the crane operator actuates the two manual actuators 258 and 262 so that the four corners 234w to 234z come into a position in which the center of the cross hair 254 coincides with the center of the four corners 234w to 234z.
  • a manual actuator 266 is provided which controls a rotating mechanism 268 of the trolley 50 so that the container can also be rotated into the correct angular position with respect to the entrance of the container receiving shaft.
  • the rotational movement can also be tracked on the screen 252.
  • the correct angular position is reached when the two corners 234w and 234x appear horizontally on the screen with their connecting line.
  • the computer 250 provides a further output, which is located on a height indicator 270.
  • a height indicator 270 In this height indicator, the relative height of the spreader 224 is displayed in relation to the surfaces 248 and 230a, so that the crane operator knows when, when approaching these surfaces, he has to reduce the lowering speed to the creeping speed by actuating an actuating member 274.
  • the manual actuator 274 is connected to the cable hoist 276.
  • the remote recognition systems 244 protrude beyond the outline of the spreader 224 and the outline of the container 230. Before the container is sunk into the container receiving shaft 234, the remote detection systems 244 must be withdrawn from the position shown in FIG. 3 to a position in which they lie within the spreader outline so that they do not collide with the edges 248. Then there is but no longer the possibility of determining the distance of the container 230 from the surface 230a of another container 230 that has already been sunk into the shaft by the remote detection system 244.
  • the remote detection system 244 transmits the height distance values recognized at this point in time to the depth measuring device 278 and carries out a calibration there on to the values previously determined by laser. This calibration is retained so that from now on the depth measuring device 278 controls the height distance display device 270 and this can continue to display the height distances of the container relative to the edge 248 of surface 230a or surface 234a.
  • the crane operator also has the option of pressing 290 different buttons on a switchboard that correspond to the existing container receiving shafts.
  • a feedback line 292, 294 leads from the crane undercarriage and the trolley undercarriage to a memory 296 and 298, respectively.
  • the information about the wind force prevailing during the last lowering operation is stored in this memory, so that when the control signals are formed in the unit 290 for the Running gear 260 and 264 the wind force is taken into account, ie That is, the offset by the pitch length starts from the location which the trolley or the crane scaffold occupied in the previous lowering process when the container had just hit the container receiving shaft 234.
  • the circuit according to FIG. 6 largely corresponds to that according to FIG. 5. Analog parts are provided with the same reference numerals as in FIG. 5, each increased by the number 100.
  • a position detection system 399 can be seen, which is arranged on a carrier that is movable relative to the spreader, as the remote detection systems 244, and is intended to determine the position of the spreader 224 relative to the trolley 218.
  • this position detection system is composed of a directional beam transmitter 399a, a reflection beam receiver 399b, a scanner drive 399g and a protractor 399h as well as a transit time measuring device 399f.
  • the output signals of the transit time measuring device 399f and the protractor 399h are additionally at the computer 350 the hoist 368 and the spreader slewing gear 376.
  • the coordinate generator 390 is also located at the input of the computer 350.
  • the computer 350 includes sub-units 397 and 395 which are designed to determine the shuttle speed of the spreader and the rolling speed of the ship.
  • the pendulum speed is obtained in subunit 397 simply by a differentiation operation, in that the first derivative of the relative position of the spreader relative to the entrance of the container receiving shaft is formed over time.
  • the rolling speed is obtained in subunit 395 using the signal obtained in subunit 397, by additionally differentiating the relative location of the spreader position with respect to the trolley over time and then superimposing the two derivatives obtained in 397 and 395 over time .
  • the wind speed can in turn be determined on the basis of the information obtained at the position detection unit 399 and used for control purposes.
  • the roll speed of the ship can also be taken into account in the chassis control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (15)

  1. Grue pour conteneur, qui est destinée à transférer un conteneur (230) entre différents emplacements, en particulier entre des emplacements dans la cale ou sur le pont d'un navire porteconteneurs (12) d'une part, et des emplacements sur le quai (10) ou sur des moyens de transport (26) présents sur le quai d'autre part, et qui est construite dans ce but avec un chariot (218) pouvant se déplacer le long d'au moins un axe horizontal (16) au moyen d'un mécanisme de déplacement horizontal (260, 264) et un agrippeur (224) suspendu à des câbles de levage (222) du chariot (218) et pouvant se déplacer en hauteur au moyen d'un dispositif de levage par câble (268), caractérisée en ce que, pour reconnaître une limite latérale d'emplacement (248) de l'emplacement auquel arrive l'agrippeur (224) ou le conteneur (230), un système de reconnaissance à distance (244) est prévu sur l'agrippeur (224), avec un émetteur directif à impulsions (244a) destiné à émettre un faisceau (246) se réfléchissant sur la limite latérale d'emplacement (248), avec un récepteur de faisceau réfléchi (244c) et un dispositif de mesure de temps de parcours (244f), afin d'obtenir des informations sur la position de l'agrippeur (224) ou du conteneur (230) dans une direction horizontale par rapport au profil de la limite d'emplacement (248), et en que ces informations sont utilisées pour piloter le mécanisme de déplacement horizontal (260, 264) et/ou un dispositif de rotation de l'agrippeur (268), de telle manière que l'agrippeur (224) ou le conteneur (230), lors de l'abaissement, parvienne à l'intérieur du pourtour de la limite d'emplacement (248).
  2. Grue pour conteneur selon la revendication 1, caractérisée en ce que le système de reconnaissance à distance (244) prévu sur l'agrippeur (224) est réglable entre une position de reconnaissance à l'extérieur du pourtour du conteneur et une position rentrée, laquelle permet l'entrée de l'agrippeur (224) ou du conteneur (230) dans une limite d'emplacement (248, 230a) ou un puits de réception (234) de conteneurs d'un navire (12).
  3. Grue pour conteneur selon l'une des revendications 1 et 2, caractérisée en ce que le système de reconnaissance à distance (244) sert à la reconnaissance de la distance verticale de l'agrippeur ou du conteneur depuis la surface de pose (230a) sur l'emplacement respectif et/ou à la reconnaissance de la distance verticale de l'agrippeur (224) ou du conteneur (230) depuis l'extrémité supérieure (248) d'une limite d'emplacement (248, 230a) conformée en puits (234).
  4. Grue pour conteneur selon la revendication 3, caractérisée en ce que le résultat de la mesure verticale est utilisé pour le pilotage direct du mécanisme de levage (268).
  5. Grue pour conteneur selon la revendication 3, caractérisée en ce que le résultat de la mesure de distance est représenté sur un appareil d'affichage (270) affecté au conducteur de grue.
  6. Grue pour conteneur selon l'une des revendications 3 à 5, caractérisée en ce que, en cas de présence d'un appareil de mesure de distance (278) piloté par l'état de raccourcissement d'un câble de levage (222), appelé ci-dessous appareil de mesure de profondeur, celui-ci peut être étalonné avec le résultat de la mesure de distance du système de reconnaissance à distance (244).
  7. Grue pour conteneur selon l'une des revendications 1 à 6, caractérisée en ce qu'un entraînement de balayage (244g) est assigné à l'émetteur directif (244a) et en ce que cet entraînement de balayage (244g) fournit des coordonnées de position sur la position respective du faisceau directif (246) à un ordinateur (250), lequel reçoit en même temps des informations de temps de parcours et donc d'éloignement (depuis 244f), cet ordinateur (250) fournissant à partir de ces informations (de 244f et 244h) une information sur la position de l'agrippeur (224) ou du conteneur (230) dans une direction horizontale par rapport au profil (248) de la limite d'emplacement (248, 230a), laquelle information est utilisable pour piloter l'entraînement du mécanisme de déplacement (264).
  8. Grue pour conteneur selon la revendication 7, caractérisée en ce que l'information obtenue de l'ordinateur (250) sert directement au pilotage de l'entraînement du mécanisme de déplacement (264).
  9. Grue pour conteneur selon la revendication 7, caractérisée en ce que l'information obtenue de l'ordinateur (350) sert au pilotage d'un appareil de représentation (252) sur le lieu du conducteur de grue, lequel représente la position de l'agrippeur (224) ou du conteneur (230) par rapport au profil (248) de la limite d'emplacement (248, 230a).
  10. Grue pour conteneur selon l'une des revendications 7 à 9, caractérisée en ce que l'entraînement de balayage (244g) sert au pivotement du faisceau directif (246).
  11. Grue pour conteneur selon la revendication 10, caractérisée en ce que l'entraînement de balayage (244g) sert au pivotement d'un miroir de déviation (244b) situé sur le trajet du faisceau directif (246).
  12. Grue pour conteneur selon l'une des revendications 1 à 11, caractérisée en ce que, pour reconnaître la position de l'agrippeur par rapport au chariot (218), un autre système optoélectronique de reconnaissance de position (399) est prévu, qui est utilisé pour déterminer une information sur au moins une coordonnée locale de la position de l'agrippeur par rapport au chariot (218), cette information locale servant au pilotage du mécanisme de levage (368) ou du mécanisme de déplacement (264).
  13. Grue pour conteneur selon la revendication 12, caractérisée en ce que l'autre système optoélectronique de reconnaissance de position (399) est muni d'un émetteur de faisceau directif (399a) pour émettre un faisceau se réfléchissant sur le chariot (218), d'un émetteur de faisceau réfléchi (399g) et d'un appareil de mesure du temps de parcours (399f).
  14. Grue pour conteneur selon l'une des revendications 1 à 13, caractérisée par une commande à pas de commutation (290) pour le mécanisme de déplacement (264), afin d'effectuer des pas de déplacement le long de l'axe horizontal (16) du chariot (18) en correspondance avec la différence de coordonnées locales d'emplacements devant être atteints successivement, le pas de commutation (t) correspondant à la différence de coordonnées locales respective réalisée chaque fois depuis la position du chariot (18), et qui a donné, lors de la réalisation d'un pas de commutation précédent, en tenant compte des conditions de vent régnant à ce moment-là, une position d'agrippeur appropriée à l'emplacement.
  15. Grue pour conteneur selon l'une des revendications 1 à 14, caractérisée en ce que, sur le chariot (18) et sur l'agrippeur (24), sont placés des amortisseurs d'oscillations (31, 32) agissant en coopération, qui s'engagent mutuellement en cas de rapprochement de l'agrippeur (24) et du chariot (18).
EP89108887A 1988-05-18 1989-05-17 Installation de grue pour conteneur Expired - Lifetime EP0342655B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8916221U DE8916221U1 (de) 1988-05-18 1989-05-17 Containerkrananlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3816988 1988-05-18
DE3816988A DE3816988A1 (de) 1988-05-18 1988-05-18 Containerkrananlage

Publications (3)

Publication Number Publication Date
EP0342655A2 EP0342655A2 (fr) 1989-11-23
EP0342655A3 EP0342655A3 (en) 1990-02-28
EP0342655B1 true EP0342655B1 (fr) 1994-12-21

Family

ID=6354648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89108887A Expired - Lifetime EP0342655B1 (fr) 1988-05-18 1989-05-17 Installation de grue pour conteneur

Country Status (5)

Country Link
US (1) US5048703A (fr)
EP (1) EP0342655B1 (fr)
JP (1) JPH0218295A (fr)
DE (2) DE3816988A1 (fr)
HK (1) HK123095A (fr)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8900568D0 (sv) * 1989-02-17 1989-02-17 Bromma Conquip Ab Avkaenningsarrangemang vid lyftok
FI90923C (fi) * 1989-12-08 1994-04-11 Kone Oy Menetelmä ja laite kontin paikallistamiseksi nostamista varten
SE502609C2 (sv) * 1990-03-28 1995-11-20 Asea Brown Boveri Förflyttning av gods med containerkranar
FI85971C (fi) * 1990-06-29 1992-06-25 Kone Oy Anordning foer daempning av ett lastningsorgans svaengning.
FR2669317A1 (fr) * 1990-11-16 1992-05-22 Yvonne Rouzier Mouvements automatiques de levage synchronises guides par capteurs.
DE4102795C2 (de) * 1991-01-31 1998-02-26 Dudik Kuebelbahnen Und Transpo Betontransportwagen einer Schienenhängebahn
SE470018B (sv) * 1991-05-06 1993-10-25 Bromma Conquip Ab Optiskt avkännings- och styrningssystem
EP0656868B1 (fr) * 1992-08-28 1997-01-22 HIPP, Johann F. Procede et dispositif de commande d'un pont dechargeur pour conteneurs
EP0596330B1 (fr) * 1992-11-03 1997-05-28 Siemens Aktiengesellschaft Arrangement pour mesurer les oscillations d'une charge de grue
US5456560A (en) * 1993-01-26 1995-10-10 Virginia International Terminals, Inc. Method and apparatus for moving containers between a ship and a dock
WO1994016978A1 (fr) * 1993-01-26 1994-08-04 Virginia International Terminals, Inc. Dechargeur de navire porte-conteneurs a dispositif antiroulis
IL104723A0 (en) * 1993-02-14 1993-06-10 Lepek Alexander Crane system including distance measurement and collision control
DE4307254A1 (de) * 1993-03-08 1994-09-15 Tax Ingenieurgesellschaft Mbh Lastenverladekran
FR2703347B1 (fr) * 1993-04-02 1995-05-05 Telemecanique Dispositif de transfert d'une charge suspendue.
US5343739A (en) * 1993-08-06 1994-09-06 Curry John R Gantry crane collision avoidance device
DE4342522A1 (de) * 1993-09-01 1995-06-22 Krupp Foerdertechnik Gmbh Umschlaggerät für Großbehälter
EP0668236B1 (fr) * 1994-02-18 1999-05-19 Siemens Aktiengesellschaft Arrangement pour positioner des charges de grue
DE4405683A1 (de) * 1994-02-22 1995-08-24 Siemens Ag Verfahren zur Förderung einer Last mittels eines Krans
DE4405525C2 (de) * 1994-02-22 1997-01-23 Siemens Ag Kran mit einem Fahrantrieb zum horizontalen Verfahren einer an einem Seil hängenden Last
FI111243B (fi) * 1994-03-30 2003-06-30 Samsung Heavy Ind Menetelmä nosturin käyttämiseksi
US5515982A (en) * 1994-04-11 1996-05-14 Paceco Corp. Telescoping shuttle for a cargo container handling crane
DE4416707A1 (de) * 1994-05-11 1995-11-16 Tax Ingenieurgesellschaft Mbh Verfahren zur Zielwegkorrektur eines Lastträgers und Lastentransportanlage
US5443566A (en) * 1994-05-23 1995-08-22 General Electric Company Electronic antisway control
DE4423797C2 (de) * 1994-07-01 2001-03-15 Noell Stahl Und Maschb Gmbh Vorrichtung zum zielgenauen Positionieren und Stapeln von Behältern
DE4427138A1 (de) * 1994-07-30 1996-02-01 Alfred Dipl Ing Spitzley Einrichtung zur vollautomatischen Sensorführung von elektronisch gesteuerten Transportkranen zum Stapeln und Verladen von Containern
DE19502421C2 (de) * 1995-01-26 1997-03-27 Siemens Ag Verfahren und Vorrichtung zum Transport einer Last
DE19519741A1 (de) * 1995-06-02 1996-12-05 Siemens Ag Sensorik für einen Kran, insbesondere einen schienengebundenen Stapelkran oder Brückenkran
US6124932A (en) * 1996-04-10 2000-09-26 Tax; Hans Method for target-path correction of a load carrier and target-detection device and directional beam-emitting unit for performance of said method
DE19614248A1 (de) * 1996-04-10 1997-10-16 Tax Ingenieurgesellschaft Mbh Verfahren zur Zielwegkorrektur eines Lastträgers sowie Zieldetektionseinrichtung und Richtstrahl-Aussendeeinheit zur Durchführung dieses Verfahrens
FR2751628A1 (fr) * 1996-07-24 1998-01-30 Framatome Sa Procedes et dispositif pour la manutention d'unites de transport intermodal
JP3150637B2 (ja) * 1996-12-06 2001-03-26 三菱重工業株式会社 クレーンの巻き下げ衝突防止装置
JP3150636B2 (ja) * 1996-12-06 2001-03-26 三菱重工業株式会社 クレーンの巻き下げ衝突防止装置
DE19703287A1 (de) * 1997-01-30 1998-08-06 Estebanez Eva Garcia Seilführung und Kanzelaufhängung
WO1998037002A1 (fr) * 1997-02-19 1998-08-27 Coste Lee A Systeme a electroaimants de positionnement de conteneurs pour le transport de marchandises
DE19725315C2 (de) * 1997-06-09 2001-03-22 Mannesmann Ag Kran, insbesondere Hüttenwerkskran
WO1999037572A1 (fr) * 1998-01-23 1999-07-29 Hitachi, Ltd. Portique a containers
DE19803202A1 (de) * 1998-01-28 1999-07-29 Tax Technical Consultancy Gmbh Zieldetektionseinrichtung
US6021911A (en) * 1998-03-02 2000-02-08 Mi-Jack Products Grappler sway stabilizing system for a gantry crane
US6081292A (en) * 1998-05-06 2000-06-27 Mi-Jack Products, Inc. Grappler guidance system for a gantry crane
DE19822496A1 (de) * 1998-05-19 1999-11-25 Still Wagner Gmbh & Co Kg Videovorrichtung für ein Flurförderzeug
KR100306296B1 (ko) * 1999-02-20 2001-09-24 한만엽 순환식 트롤리를 갖는 갠트리크레인
DE19918449C2 (de) * 1999-04-23 2001-09-13 Noell Stahl Und Maschb Gmbh Lasthebesystem zur Feinpositionierung und aktiven Schwingungsdämpfung
US7845087B2 (en) * 1999-12-14 2010-12-07 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US7121012B2 (en) * 1999-12-14 2006-10-17 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
WO2001081232A1 (fr) * 2000-04-24 2001-11-01 Natsteel Engineering Pte Ltd. Palonnier automatique
EP1283813B1 (fr) 2000-04-24 2006-06-21 NSL Engineering Pte Ltd Cadre de levage de conteneur
US20040074903A1 (en) * 2002-06-21 2004-04-22 American Marine Rail, Llc. Waste transfer system
US20050173364A1 (en) * 2002-07-25 2005-08-11 Siemens Aktiengesellschaft Method for operating a container crane
DE10233873B4 (de) * 2002-07-25 2006-05-24 Siemens Ag Steuerung für eine Krananlage, insbesondere einen Containerkran
KR100717910B1 (ko) * 2002-10-23 2007-05-11 엔에스엘 엔지니어링 피티이 리미티드 스프레더, 스프레더의 진단 작동 실행 방법
JP4224784B2 (ja) * 2003-07-18 2009-02-18 株式会社ダイフク 把持部昇降式搬送装置
US7150366B1 (en) 2004-07-29 2006-12-19 Mi-Jack Products, Inc. Hanger chain anti-sway device for gantry crane
JP4508904B2 (ja) * 2005-02-25 2010-07-21 三菱重工業株式会社 クレーンの巻下げ衝突防止装置
JP2006273532A (ja) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd コンテナ荷役用クレーン
KR100743561B1 (ko) 2005-04-25 2007-07-30 동아대학교 산학협력단 화물 하역 및 선적장치
US7287740B2 (en) * 2005-11-01 2007-10-30 International Business Machines Corporation Hoisting apparatus
WO2007087317A2 (fr) * 2006-01-23 2007-08-02 Wickhart John C Procede et dispositif pour effectuer un releve d’alignement de rail de pont roulant
DE102007046287B4 (de) * 2007-09-27 2009-07-30 Siemens Ag Verfahren zur Kalibrierung einer Sensoranordnung
WO2011137402A1 (fr) * 2010-04-30 2011-11-03 David Alba Système pour le transfert, le stockage et la distribution de conteneurs multimodaux
DE102012213604A1 (de) * 2012-08-01 2014-02-06 Ge Energy Power Conversion Gmbh Verladevorrichtung für Container sowie Verfahren zu deren Betrieb
KR20140056593A (ko) * 2012-10-30 2014-05-12 한국전자통신연구원 3차원 정보 기반의 화물 이동 경로 탐색 장치 및 방법
DE102013011718A1 (de) * 2013-07-15 2015-01-15 Isam Ag Verfahren zur Steuerung einer Containerbrücke zum Be- oder Entladen, insbesondere des Laderaumes, eines Schiffes bzw. Steuersystem zur Steuerung einer Containerbrücke bzw. Containerbrücke mit Steuersystem
EP3033293B1 (fr) * 2013-08-12 2017-10-11 ABB Schweiz AG Procédé et système pour déposer automatiquement des conteneurs sur une cible de déposition à l'aide d'une grue à conteneurs
SG10201403334XA (en) * 2014-06-17 2016-01-28 Nsl Engineering Pte Ltd Detection system and method
CN104129712B (zh) * 2014-07-10 2015-11-25 浙江工业大学 一种增强抗摆的桥式吊车调节控制方法
DE102016219522A1 (de) * 2016-10-07 2018-04-26 Siemens Aktiengesellschaft Verfahren und Anordnung zum Platzieren von stapelbaren Lagerungsvorrichtungen
CN108483208A (zh) * 2018-06-04 2018-09-04 太仓秦风广告传媒有限公司 一种基于柱坐标的智能集装箱起重机
CN109179197A (zh) * 2018-10-29 2019-01-11 黄安伦 集装箱装卸系统
GB2597987A (en) * 2020-08-13 2022-02-16 Ocado Innovation Ltd Freight barge
CN112629408B (zh) * 2020-11-30 2022-11-22 三一海洋重工有限公司 对位装置和对位方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172685A (en) * 1976-10-22 1979-10-30 Hitachi, Ltd. Method and apparatus for automatic operation of container crane

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1975094A (en) * 1932-03-26 1934-10-02 Motor Terminals Co Traveling crane
US2620075A (en) * 1949-01-13 1952-12-02 Lake Shore Engineering Company Crane
US3945503A (en) * 1970-10-02 1976-03-23 Fruehauf Corporation Crane with a variable center rope suspension system
DE2053590A1 (de) * 1970-10-31 1972-05-04 Siemens Ag Ladevorrichtung für Container
SE361869B (fr) * 1972-04-14 1973-11-19 Asea Ab
US3883859A (en) * 1972-12-29 1975-05-13 Edward F Ancheta Load height indication
FR2265664A1 (en) * 1974-03-29 1975-10-24 Stimec Bernard Crane load anti-gyratory mechanism - has articulated link between upper frame and lower one engaging with load
JPS5251652A (en) * 1975-10-20 1977-04-25 Kobe Steel Ltd Device for hanging and carrying article
JPS538954A (en) * 1976-07-12 1978-01-26 Hitachi Ltd Container handling device
JPS5417256A (en) * 1977-07-01 1979-02-08 Hitachi Ltd Container handling method and apparatus therefor
JPS54113153A (en) * 1978-02-21 1979-09-04 Mitsubishi Electric Corp Monitoring apparatus
US4363585A (en) * 1979-09-25 1982-12-14 Automatic Material Handling, Inc. Bale level control system for mechanical hopper feeder
JPS5670289A (en) * 1979-11-07 1981-06-12 Kawasaki Steel Co Method of stopping vibration of hung load
US4385028A (en) * 1980-03-20 1983-05-24 Lord Electric Company, Inc. System for controlling position and movement of manipulator device from absolute distance data standard
GB2099255B (en) * 1981-05-15 1985-09-04 Atomic Energy Authority Uk A system and a method for detecting the position of an object
FR2546303B1 (fr) * 1983-05-20 1985-07-05 Thomson Csf Capteur de forces a ondes elastiques de surface
DE3513007A1 (de) * 1984-04-11 1985-12-19 Hitachi, Ltd., Tokio/Tokyo Verfahren und anordnung zur automatischen steuerung eines krans
JPS61101389A (ja) * 1984-10-22 1986-05-20 三井造船株式会社 コンテナクレ−ン
DE3445830A1 (de) * 1984-12-15 1986-06-19 Dürr Anlagenbau GmbH, 7000 Stuttgart Foerderanlage mit positioniervorrichtung
US4610594A (en) * 1985-01-07 1986-09-09 Dominion Chain Inc. Container conveyor system
SE457337B (sv) * 1985-10-15 1988-12-19 Arne Froederberg Medelst automatik styrd lastanordning
DD244120A1 (de) * 1985-12-10 1987-03-25 Stassfurt Veb Chemieanlagenbau Einrichtung fuer automatischen, positionierten transport flacher lasten
DE3606363C2 (de) * 1986-02-27 1995-04-13 Vulkan Kocks Gmbh Einrichtung zur Bestimmung der Lage eines Fahrzeugs relativ zu einer Container-Hebevorrichtung
JP2540309B2 (ja) * 1986-08-25 1996-10-02 三井造船株式会社 コンテナクレ−ン

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172685A (en) * 1976-10-22 1979-10-30 Hitachi, Ltd. Method and apparatus for automatic operation of container crane

Also Published As

Publication number Publication date
US5048703A (en) 1991-09-17
DE3816988A1 (de) 1989-11-30
EP0342655A2 (fr) 1989-11-23
DE58908789D1 (de) 1995-02-02
JPH0218295A (ja) 1990-01-22
HK123095A (en) 1995-08-04
EP0342655A3 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
EP0342655B1 (fr) Installation de grue pour conteneur
EP0759006B1 (fr) Procede et dispositif de correction du trajet cible d'un porte-charge pendant
EP0656868B1 (fr) Procede et dispositif de commande d'un pont dechargeur pour conteneurs
EP1641704B1 (fr) Dispositif de detection mobile fixe au moyen de charge d'un chariot elevateur a fourche
EP0596330B1 (fr) Arrangement pour mesurer les oscillations d'une charge de grue
EP1278918B1 (fr) Appareil mobile a roues a godets avec systeme de commande et procede de commande automatique d'un appareil mobile a roues a godets
EP3000762B1 (fr) Procédé de détermination optique, automatique d'une position cible pour un palonnier de conteneur
DE3137194A1 (de) Gleisverfahrbare einrichtung zur lage-ermittlung zum nachbargleis
WO2004041707A1 (fr) Grue de transport de conteneurs
EP2910512A1 (fr) Procédé d'étalonnage de scanners laser sur une grue de manutention de conteneurs
DE4423797C2 (de) Vorrichtung zum zielgenauen Positionieren und Stapeln von Behältern
DE4329174A1 (de) Steuerungssystem für einen Kabelkran
WO2020001963A1 (fr) Procédé et système permettant de déterminer une pose relative entre un objet cible et un véhicule
DE102017112661A1 (de) Automatisch geführtes Portalhubgerät für Container und Verfahren zum Betrieb eines solchen Portalhubgeräts
EP0668236B1 (fr) Arrangement pour positioner des charges de grue
DE102020105804A1 (de) System zur Inspektion eines Lagers
DE102012213604A1 (de) Verladevorrichtung für Container sowie Verfahren zu deren Betrieb
DE19841570C2 (de) Kaikran zum Be- und Entladen von Containern
DE19916999A1 (de) Verfahren zur Bestimmung der Lage eines Fahrzeuges
EP2017574A2 (fr) Procédé de surveillance géodésique de rails
WO2001087762A1 (fr) Procede de correction de l'etat d'un systeme de port de charge
DE102022103283A1 (de) Kran
DE10202399A1 (de) Einrichtung und Verfahren zur Positionierung von Transportfahrzeugen
DE2947955A1 (de) Laserstrahl-positionierungseinrichtung zur positionierung von in einer richtung sich bewegenden objekten, insbesondere eisenbahnfahrzeugen zum umsetzen von behaeltern, wie containern, auf seitlich des fahrzeuges befindliche abstellflaechen, insbesondere unterhalb der oberleitungen fuer elektrische triebfahrzeuge, in bezug auf feststehende objekte und mit der laserstrahl-positionierungseinrichtung ausgeruestetes behaelterumsetzfahrzeug
DE3315051C2 (de) Verfahren zum selbsttätigen führerlosen Betrieb von Fahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19900725

17Q First examination report despatched

Effective date: 19911204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 58908789

Country of ref document: DE

Date of ref document: 19950202

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950118

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970604

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: TAX INGENIEURGESELLSCHAFT M.B.H.

Effective date: 19980531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010419

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010521

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020517

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050517