EP0759006B1 - Procede et dispositif de correction du trajet cible d'un porte-charge pendant - Google Patents

Procede et dispositif de correction du trajet cible d'un porte-charge pendant Download PDF

Info

Publication number
EP0759006B1
EP0759006B1 EP95921743A EP95921743A EP0759006B1 EP 0759006 B1 EP0759006 B1 EP 0759006B1 EP 95921743 A EP95921743 A EP 95921743A EP 95921743 A EP95921743 A EP 95921743A EP 0759006 B1 EP0759006 B1 EP 0759006B1
Authority
EP
European Patent Office
Prior art keywords
cable
target
load carrier
carrier
target area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95921743A
Other languages
German (de)
English (en)
Other versions
EP0759006A1 (fr
Inventor
Hans Tax
Dieter Bauer
Klaus HÖSLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tax Ingenieurgesellschaft mbH
Original Assignee
Tax Ingenieurgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tax Ingenieurgesellschaft mbH filed Critical Tax Ingenieurgesellschaft mbH
Publication of EP0759006A1 publication Critical patent/EP0759006A1/fr
Application granted granted Critical
Publication of EP0759006B1 publication Critical patent/EP0759006B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/30Circuits for braking, traversing, or slewing motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • B66C13/44Electrical transmitters

Definitions

  • the invention relates to a method for correcting the target path load carrier approaching a target position, which on a horizontally movable hoist rope carrier via a hoist rope system height adjustable is suspended, while approaching the target a correction of the target approach path in accordance with a target deviation is made in that the course at least one running between the hoist rope carrier and the load carrier Rope elements of the hoist rope system in a near the hoist rope carrier Area opposite the hoist rope carrier essentially horizontal is shifted.
  • the target position can be a specific one Parking space on the deck of a ship or the entrance of a container shaft in which the respective container is lowered shall be.
  • the high conversion speeds are over Economic considerations are required: the dwell times of a Ships in a port facility cost expensive fees. The faster the less a ship can be loaded and unloaded the necessary dwell times of the respective ship. It is therefore essential that the container not only with high transport speed implemented from the starting point to the target position become; it is rather crucial that in the Final approach phase of the container the exact positioning of the Containers can be done in no time.
  • the containers on the deck of a ship are exactly predetermined Stands must be set up according to location and orientation. It is also understandable that those for storage in container receiving shafts a container determines the entrance of the respective container receiving shaft in precise geometric Have to achieve coverage to this. This means that the actual position of the container represented, for example, by the Actual position of the geometric center of the container at Reach the entrance to the container shaft exactly with the Center point of the cross-sectional area of the container shaft entrance must be aligned in the vertical direction and that the actual angular position continues of the container outline around its vertical axis exactly with the Match the angular position of the outline of the container shaft entrance got to. Only if these matches are guaranteed the respective container can move up to his target position will be moved. Only if these matches can be met, for example, a container with high Lowering speed through the entrance of the container shaft through to its respective location within the container shaft be lowered.
  • the lowering paths that a container has when loading one Ship has to go through are very large, for example in of the order of up to 50 m. These are large descents predefined on the one hand by the considerable height of the container receiving shafts, on the other hand and in particular also through the great height of the superstructure of ships with which the containers and in particular the crane constructions on which the Load carriers carry out their transport movements, not in a collision allowed to kick.
  • Such crane constructions usually a quai edge that can be moved, have tower-like crane undercarriage and that on this tower-like crane chassis a bridge girder is arranged, which is essentially orthogonal to the quai edge.
  • a transport system in which on a trolley crossing a horizontal bridge as Lifting cable carrier using a lifting cable system a container-carrying Spreader is hung.
  • the trolley In addition to the hoisting rope system the trolley with a position correction rope.
  • This attitude correction rope runs over pulleys in the direction of travel of the trolley are arranged outside the trolley area.
  • the position correction rope runs with deflection pulleys strong inclination towards the most distant vertical Ends of the spreader.
  • the position correction rope is through a permanently loadable motor always kept under tension.
  • the two Deflection pulleys are for joint movement in relation to the trolley connected to each other in the direction of travel of the trolley and can be moved together by a slide drive.
  • the sliding drive is controlled by a control unit and this in turn receives its control commands from force sensors. These force sensors determine the at the pulleys through the each deflected sections of the position correction rope exercised Powers. In this way, the elongation of a Deflection rope section are compensated for by a results in increased wind power impact on the container.
  • the invention has for its object in a method of Simplify the target path correction at the beginning, those to be installed to carry out the target path correction To reduce performance and the acceleration effects on the To reduce operating personnel.
  • a target correction at the end of the target path by a Creeping movement of the intermediate carrier is made based on the Invention on the idea of a dynamic correction force already during the approach to the target by shifting the rope generate and this correction force according to the target error detection to be dimensioned so that they overlap with the state of motion of the load carrier for a correction of the rest Approach of approach in the sense of achieving a goal is suitable.
  • the trolley does not need in the method according to the invention as a whole a movement to perform target correction to be subjected and in particular not the entire crane system, consisting of tower-like crane chassis and bridge girder to be subjected to a target correction movement, but only one or more between hoisting rope carrier, for example Trolley and load carrier rope element. It has it has been shown that for relocating one or more hoisting rope elements necessary actuating forces are relatively low in Comparison to the correction forces on the trolley or the tower-shaped crane undercarriage would have to be created. The one to carry out from corrective movements to installed drive powers can therefore be reduced. The drive power, the one for moving an upper end of one between the hoist rope carrier and load carrying rope element are necessary, have proven to be relatively insignificant.
  • the method according to the invention can be further developed such that the displacement of the at least one rope element as required the target error detection in different directions can be. This means that regardless of the Direction of the target path deviation of a sinking load the target path correction can make.
  • Rope element can mean that only a single rope, for example from one Cable drum of the hoist cable carrier down to the load carrier running.
  • Rope element is also a piece of rope, for example within a pulley block between pulleys of the Hoist cable carrier and deflection rollers of the load carrier runs.
  • a Pulley thus includes in the terminology provided here several rope elements.
  • target error detection by optical and electronic Observation means must be included; but they are all too other known types of observation means conceivable and it it is also possible, in particular, for a trolley, So the hoist rope carrier, operator positioned the target error monitored and evaluated with the eye and accordingly his assessment of the displacement of the respective rope element opposite the hoist rope carrier.
  • Another significant advantage of the method according to the invention is the following: While one is correcting movements tower-like crane undercarriage has great difficulty, the drive power for necessary correction accelerations over the to transfer conventional rail wheels of the crane undercarriage and often slipping of the rail wheels when appropriate Must experience drive power can be with the inventive method, the drive power to the Relocation of a rope element in relation to the hoist rope carrier (Trolley) to move cable path influencing elements positively transferred to these ropeway influencing elements, for example by gear drives or also by hydraulic Strength equipment, so that there is no fear of "slipping".
  • Partial relocation should, for example mean that a rope element opposite the hoist rope carrier both in the longitudinal direction of the container (first partial shift) as well as in the transverse direction of the container (second partial shift) is shifted. This way you can simultaneously or a target path correction in different directions one after the other be made.
  • the procedure is that to correct the target path only proportionally small masses have to be moved, small in relation to the Total mass of the hoist rope carrier.
  • they can be used for Rope path influencing used rope course influencing units be kept relatively low in mass.
  • the mass of those to be moved to influence the cable route Rope course influencing unit usually less than 30%, preferably less than 20%, most preferably less than 10% the total mass of the hoist rope girder, even if to influence a corresponding one of the rope paths of several rope elements
  • a plurality of rope course influencing units is provided.
  • the method according to the invention can basically be used if the load carrier hangs on the hoist cable carrier via a single rope. This situation can arise, for example, when bags or round baskets are to be loaded, the angular position of which respective vertical axis is irrelevant for the loading process.
  • the rope elements or rope element groups can be parallel to be shifted in the same direction to one another if you have a translational Wants to bring about destination correction. Furthermore you can in this case also a rotary, i.e. an orientation correction by making at least two along each other rope elements opposite a diagonal of the rectangle or Rope element groups crossing antiparallel in the diagonal Direction shifted towards the hoist rope carrier. It is next to it at least with a correspondingly sophisticated design of the control system also possible translatory corrections at the same time and orientation corrections by appropriate dimensioning changes in the course of the rope for individual rope elements to reach.
  • the load carrier to an in horizontal plane extended target field by an approach movement is approximated, which results from a horizontal approach movement and one of these horizontal approach movements superimposed vertical approach movement it is possible for target field monitoring to be initiated before the load carrier has an overlap in the course of its approach movement with the goal field reached and that the further approach movement henceforth corrected according to the target field observation becomes.
  • the method of target path correction is that the correction the approach movement according to the target field observation is initiated at a time when the Target field observation only one in the course of the approach movement in advance Part of the target field accessible by the load carrier is detected becomes. It is then possible that the previously available Characteristic target field observation capturing partial area of the target field Features of this sub-area are recorded, which conclude that the subarea belongs to the target field to let. In particular, it is possible that through target field observation Edge structures of a previously reached part of the Target field are detected, which is transverse to the direction of the horizontal approach movement are spaced.
  • target field observation carried out by means of at least one elementary observation device which is attached to the load carrier and which only one surface element of the Can observe the target field and different ones one after the other Target surface elements of the target field.
  • at least one Elementary observation device moved relative to the load carrier is used to successively different surface elements of the target field to aim, and in particular in such a way that the at least an elementary observation device successively along each other parallel search tracks is moved.
  • the target field observation can also be carried out using a bundle of Target field observation elements are carried out, which on about Load carriers are distributed over an area and on Load carriers can be arranged immovably.
  • the size of the in Excerpt from the observed The total field can then be determined by the number and distribution of the Determine target field observation elements, which in turn elementary observation devices are, are suitable, individually to observe only a small image field element.
  • the laser beam source one Laser beam towards a variety of one after the other arranged deflecting mirrors, which one after the other of Permeability can be switched to reflectivity.
  • Man then comes with a greatly reduced number of laser beam transmitters and laser beam receivers.
  • the target field observation is reduced and the resolving power improved according to the target field observation becomes. It can be done in a known manner that during the reduction of the coverage of the target field observation for remaining the discovered feature within the scaled down the detection area of the target field observation is taken care of.
  • the different options are not just that in the event of interest that the approach movement in the Direction of a horizontal movement path leading the load carrier takes place. Rather, it is also possible that when performing the horizontal approach movement by moving the Hoist rope carrier along two in a horizontal plane against each other inclined, especially inclined at right angles, trajectories the further approach movement in the direction of both trajectories is corrected.
  • a target field Through the target field observation, structural features of a target field can be recorded. Such structural features can in the case one defined by a shaft entrance or exit Target field, e.g. from the corners of the shaft entrance or exit, be educated. When it comes to placing a container on land or capture, it is also conceivable to on the storage area Country characteristic features of the respective target field through Make color differentiation recognizable. Color differentiation should here of course also capture a differentiation in black and white. If you want a container on an already deposited container to land on or on the deck of a ship, so as characteristic singularities of the target field in particular the corner fittings of the container that has already been set down serve.
  • This Fittings are usually with keyhole-like slots provided which a transit time measurement by means of laser beam transmitter-laser beam receiver combinations are accessible.
  • the spacing of these fittings is specified in the container dimensions. These distances can therefore be used as electrical comparison values save in the data processing and then from Case by case, the distance between two singularities recorded simultaneously measure electronically and compare with the saved measurement. If equality is established, this is a verification for the fact that the two initially only identified on suspicion Singularities the corner fittings of a container correspond on which another container in vertical flight should be discontinued.
  • the invention further relates to a device for target path correction a load carrier approaching a target position, which is attached to a horizontally movable hoist rope carrier Lifting rope system is suspended adjustable in height, comprising detector means to determine a target deviation and means for Correction of the rope course.
  • the solution formulated above is used to solve the problem Task suggested that during a target approach Repeatable influencing of the rope course at least one between the hoist rope carrier and the load carrier extending rope element by a in the vicinity of the hoist rope carrier provided and coupled with rope moving means, horizontally moving rope course influencing unit data processing means are provided, which to correct the Corrective force required as a function of the load carrier's target path of time, these data processing means in Data transmission connection with the location and movement status of the load carrier-determining detector means and conversion means to bring about the generation of the corrective force required travel path of the rope course influencing unit include through the weight machine.
  • the roadway girder can be a horizontal bridge girder be the one that can be moved in the longitudinal direction of a quai edge tower-like crane undercarriage is suspended and extending transversely extends to the quai edge.
  • the hoist rope carrier can again be a trolley that can be moved along the bridge girder.
  • Transport drive means can be formed, for example, by ropes, which extend over the length of the bridge girder and through appropriate rope drum rotation in the longitudinal direction of the bridge girder be moved to the trolley in the longitudinal direction of the To drive the bridge girder.
  • the Trolley i.e.
  • rope course influencing unit should be as low as possible in the Comparison to the total mass of the hoist rope carrier.
  • the rope course influencing unit can be in different ways for relocating the respective rope element in relation to the hoist rope carrier be trained.
  • the rope course influencing unit with a rope anchor point or with a rope pulley or with a rope drum or with a Rope pass eyelet.
  • the smallest mass has that Rope routing influencing unit if it is only the Relocation of a rope anchoring point is used.
  • the mass to be shifted is relatively large when the rope course influencing unit includes a rope drum. But also in In this case there is still a substantial reduction in the accelerating masses compared to systems in which the Position correction of a load carrier relocated the entire trolley had to become.
  • the rope course influencing unit is preferably at least two moving units with different directions of movement and variable movement in the drive connection.
  • the rope course influencing unit by means of two intersecting sledges on the hoist cable carrier is stored, each of these sledges a special one Mover unit, e.g. a gear drive or a hydraulic Actuating cylinder is assigned. That way you can by superimposing the movements of both sledges Directions and sizes of the displacement movement of each Rope element received opposite the hoist rope carrier.
  • a cable path influencing unit is constructed according to the principle of a polar coordinate system.
  • the cable path influencing unit can prevent slippage with strong accelerations in a positive drive connection with the moving means supported on the hoist rope carrier stand.
  • location coordinates for example the location the geometric center of a container. It can also be an angular coordinate, which for example the angular position of a container with respect to a through its geometric center line vertical axis.
  • a port facility is drawn with a Quai edge; this is designated 10 and runs perpendicular to the plane of the drawing.
  • a harbor basin can be seen to the side of the quay edge 10 12, in which a ship 14 lies.
  • the ship 14 is on the Quai edge stowed and should be loaded with containers.
  • a driving surface 15 can be seen on the left side of the quai edge of the port area.
  • Rails 16 are on this running surface 15 relocated on which a crane gantry or crane tower 18 travels.
  • the Crane frame or crane tower 18 carries a bridge girder 20. This Bridge girder 20 extends orthogonally to the quai edge the ship 14.
  • a trolley 22 in Longitudinal direction of the bridge girder 20 can be moved by wheels 24.
  • the transport drive of the trolley 22 along the entire Bridge girder 20 is carried out by a pull rope 26, which is between extends two deflection rollers 28 and provided with a drive is.
  • the pull cable 26 is at 30 with the hoist cable carrier 22 drive connected, so that by longitudinal movement of the lower Runs of the traction cable 26 of the hoisting cable carrier 22 over the entire length of the bridge girder 20 can be moved.
  • On the hoist rope carrier hangs a load carrier in the form of a lifting rope system 32 so-called spreaders, which is designated 34.
  • a Conainer 36 which is within a stand of the ship 14 is to be supplied. You can tell by that Ship 14 the entrance of a container receiving shaft, in which a plurality of containers 36 stacked on top of each other can be.
  • the container receiving shaft 42 forms with its upper entrance 40 a target position for the container 36.
  • the Container 36 was from a container stack 44 in the area of Crane system taken up by spreader 34 and from left to right right by moving the trolley 22 into that in FIG Move the position shown. During this movement has already been controlled by appropriate movement of the Pull rope 26 worked so that the load carrier 34 approximately Aligned with the container shaft entrance.
  • FIG. 2 the trolley 22 on the bridge support 20 is enlarged shown.
  • a single hoist cable 50 is shown.
  • This hoist cable 50 runs from a fixed and rotatable on the trolley 22 mounted cable drum 52 via a cable pulley 54 on the Spreader 34 to a rope anchor point 56, which in turn on the trolley 22 is attached.
  • a total of four such hoist cables 50 can be, which each cooperate with a deflection roller 54.
  • the deflection rollers 54 can be in the four corners rectangular spreaders 34 may be arranged. For the A description of the problem to be dealt with here is sufficient first of the only hoist 50.
  • the force K described with reference to FIG. 2 in its history of origin can certainly be used as a correction force in order to move the load carrier 34 and the container 36 carried by it in the escape position relative to the target position 40 bring, which is determined by the entrance of the container receiving shaft 42.
  • the load carrier 34 at the point in time represented by FIG. 1 has a lowering speed v s and possibly also a horizontal speed v h , possibly also an acceleration in the direction of the arrow v h representing the horizontal speed .
  • the load carrier 34 and the container 36 may be subject to a wind force W.
  • FIG 3 is the hydraulic one already shown in FIG Power device shown and designated 60.
  • this hydraulic power device 60 can be the rope anchor point 56 be relocated.
  • a detachable detector device 64 is attached to the load carrier 34.
  • This detector device 64 comprises a laser transmitter 66 and a laser beam receiver 68.
  • the detector device 64 can be pivoted about a pivot point 70, the respective laser beam experiencing an angle change ⁇ .
  • the angular position is indicated in Figure 3 by the angle ⁇ and the associated double arrow.
  • the detector 64 periodically or continuously swings back and forth in the direction of the double rotation arrow ⁇ .
  • the laser transmitter 66 periodically emits laser pulses which are received by the laser receiver 68 after being reflected on the ship. In this way, a transit time measurement can be carried out in every angular position ⁇ , this transit time measurement reflects the travel distance.
  • the height ⁇ h is preferably determined by transit time measurement when the laser beam is just crossing the edge of the container shaft entrance. This point in time can be determined in that a significant extension of the measured transit time can be determined at this point in time. If the transit time is measured at the very moment when a transit time change in the sense of an extension of the transit time occurs, the detector 64 knows that it is measuring the travel path at the right place. The calculation of the height ⁇ h can then be carried out in a simple manner in the detector or the electronics connected downstream of this detector 64. The transit time which the laser beam needs on its way there and back between the detector device 64 and the edge of the container shaft entrance 40 is known.
  • the path of the laser beam can be determined therefrom and the size ⁇ h can be calculated by simply using trigonometric relationships from the length of the path and the respective value ⁇ of the angle setting of the detector device 64.
  • the size ⁇ x can be calculated in an analogous manner.
  • the detector device 64 and an angle sensor 72 can also be seen in FIG. 4.
  • a measuring element 74 which is connected downstream of the detector 64, the transit time ⁇ T of the laser beam and thus a measure of the path of the laser beam to the edge of the container shaft entrance 40 is calculated; the size of the angle ⁇ is processed in the measuring element 76.
  • the measuring elements 74 and 76 are both connected to converter elements 78 and 80, in which signals corresponding to the quantities ⁇ x and ⁇ h are formed.
  • the conversion element 80 is connected to a differentiating element 82, in which the change in the height ⁇ h, ie the size dh / dt, which corresponds to the lowering speed v s is calculated.
  • the conversion unit 78 is connected to a further differentiating element 84, in which the size dx / dt is determined, which corresponds to the horizontal speed v h .
  • the differentiating element 84 can be connected to a further differentiating element 86, in which the quantity d 2 x / dt 2 is formed, ie any acceleration of the load carrier 34 and the container 36 is determined.
  • a cable force measuring device 88 is provided in each case in the connection between the cable guide pulleys 54 on the load carrier side and the load carrier 34. Rope forces F1 and F2 are measured here and a measure for the mass of the load carrier 34 and the container 36, which is dependent on the loading of the container 36, is obtained from these rope forces in a conversion unit 90.
  • the position of the cable anchoring point 56 in the longitudinal direction of the carriage frame 22 ′ is determined in a length measuring device 92, while the height distance h of the carriage frame 22 ′ from the load carrier 34 is determined in a cable length measuring device 94 coupled to the cable drum 52.
  • a measuring device 96 is assigned to the measuring devices 92 and 94, in which the respective angle ⁇ can be determined.
  • the correction force is calculated in the computer module 98 which is necessary to position - as shown in Figure 3 to make a correction of the target path of the load carrier 34, which is necessary to reach target position 40, i.e. is necessary for the entry of the container 36 into the container receiving shaft 42.
  • This force is as shown by the diagram represented in computing unit 98 as a function of Time calculated.
  • To calculate the correction force K as a function the quantities ⁇ x, ⁇ h, dx / dt, d2x / dt ⁇ , ie / dt, M and ⁇ are used.
  • the computer unit 98 can Signal can be fed in from a wind determination unit 100, that for the calculation of the correction force K as a function of Time also takes the wind into account.
  • control process described above can in the course of further approach of the load carrier 34 to the target position 40 can be repeated several times.
  • the determination of the mass M is not mandatory, if only that Power device 60 is able to correct the position of the Load carrier 34 required travel path s (t) also in the to force largest occurring values of the mass. This results in from the fact that the travel path s (t) is independent of the respective mass is. If the mass is large, so is the rope force correspondingly large.
  • the correction force K on the The load carrier is the rope force in the respective rope element derived and is therefore necessarily proportional to the mass. Ignorance of the mass does not prevent the determination of the necessary movement of the rope anchoring point for the respective correction 56.
  • FIG 5 is a trolley, i.e. a cable carrier 22 in Detail shown.
  • the hoist rope winches are on the trolley frame 22 ' 52 stationary and each with a drive motor 53 connected, which is also firmly on the trolley frame is arranged.
  • Each of the rope anchor points 56 is one Assigned to slide 58.
  • the two slides 58 are through Guide rollers 59 guided on the trolley frame 22 '.
  • Farther are the two carriages 58 together by a rack 61 connected.
  • the rack 61 is engaged with a drive pinion 63, which is driven by a motor 65 is.
  • the motor 65 is again through the conversion unit 104 controlled according to Figure 4. This way you can simultaneously the two rope anchoring points 56 for generating the correction force K (t) can be adjusted.
  • the container 36 and the load carrier 34 so imagine that this has a long longitudinal axis u perpendicular to 5 have a short horizontal transverse axis v parallel to the plane of Figure 5 and a Vertical axis w, which is defined by the geometric centers of the Load carrier 34 and the container 36 runs.
  • the short transverse axis v extends parallel to the longitudinal direction of the bridge girder 20 while the long axis u is in the direction of Rails 16 of the crane undercarriage 18 extends.
  • FIG. 6a shows a trolley 22a, which in turn is a Lift cable carrier is formed. It includes a trolley frame 22'a with impellers 24a for movement along one not here drawn bridge girder. On the trolley frame 22'a are for a total of two hoist cables 50a of the type shown in FIG shown hoist 50 each a hoist drum 52a and a rope anchor point 56a is drawn.
  • a correction force K parallel to the transverse axis v Can generate transverse axis v.
  • FIG. 6b for the same embodiment of a hoist rope carrier, i.e. a trolley, shown that one can move the rope anchoring points 56a in two mutually orthogonal horizontal directions parallel to the longitudinal axis u and generate a resulting correction force K to the transverse axis v can, which both with respect to the longitudinal axis u and opposite the transverse axis v is inclined.
  • This corrective force can thus at the same time a correction movement in the illustration according to FIG. 3 in the direction x parallel to the drawing plane and / or in the y direction perpendicular to the plane of the drawing.
  • FIG. 6c is the same hoist rope carrier, which also in Figure 6a and 6b is shown, indicated that the rope anchoring points 56a antiparallel in the direction of the transverse axis v are adjustable.
  • a correction torque T be exercised on the associated load carrier, which the Load carrier 34 tries to turn clockwise, so that the angular position of the load carrier 34 corrected about the vertical axis w can and the load carrier 34 in the correct angular position about its vertical axis in the target position 40 according to FIG. 3 meets.
  • FIG. 6d is a hoist cable carrier with a total of four hoist cables 50b, only the rope anchoring points 56b two hoist cables 50b adjustable in the direction of the transverse axis v are. In addition, it is also possible to use the rope anchoring points the right hoist cables 50b adjustable in the direction of the transverse axis v close.
  • FIG 6e is for a hoist rope carrier 22b - as in Figure 6d - illustrates that the rope anchor points 56b of all four hoist cables 50b in synchronism with one another both in the direction of the longitudinal axis u and in the direction of Transverse axis v can be adjusted, which in turn leads to a inclined correction force K leads, which - based on the representation of Figure 3 - a correction both in the direction the axis x and the axis y can effect simultaneously.
  • the intermediate frame 112c is open in the direction of the transverse axis v the trolley frame 22'c slidable. By overlaying the Displacement of subframe 110c and intermediate frame 112c can generate translatory correction forces in any direction become.
  • individual platforms 114e are along rails 116e slidable on the trolley frame 22'e by means of one power unit 118e each.
  • a slide 120e can be displaced by means of rails 122e.
  • the respective rope anchor point is 56e in both directions, i.e. in the direction of the longitudinal axis u and slidable in the direction of the transverse axis v.
  • Power device 118e provided while shifting the Carriage 120e opposite platform 114e along the rails 122e, a power device 124e is provided.
  • the strength equipment for all four hoist cables 50e can be operated independently of one another.
  • the cable drums 52f are all four hoist cables 50f stationary on the trolley frame 22'f of the trolley 22f arranged.
  • the rope anchor points 56f are on turntables 130f arranged.
  • the turntables 130f are about axes of rotation 132f rotatable, e.g. by means of worm drives 134f.
  • the Rope anchor points 56f are more radial along the turntables 130f trained guide rails 136f in their distance compared to the axes of rotation 132f by a linear drive, e.g. a hydraulic actuator cylinder 138f, adjustable.
  • the trolley 22g is again by means of wheels 24g of her trolley frame 22'g along the track of the bridge girder Slidable 20g.
  • the hoist cable 50g again comprises - as in Figure 2 - rope elements 50'g and 50 "g.
  • the hoist cable 50g is formed by a rope which over Deflection rollers 140g is guided on the trolley frame 22'g.
  • This rope is labeled 142g and runs all over Length of the bridge girder 20g from a fixed point 144g at one End of the bridge girder 20g to a rope drum 146g on the other End of the bridge girder 20g.
  • the load carrier 134g can be lifted 142g on the cable drum 146g by unwinding the pull rope 142g from the rope drum 146g, the load carrier 34g can be lowered.
  • the rope deflection roller 140g is in the direction of the double arrow 148g adjustable so that the cable element also in this embodiment 50'g can be shifted, as in the embodiment of Figure 2 and thus also a correction force K can be generated. This is of course for all hoist cables 50g possible, of which only one is shown in FIG. 9 is.
  • the rope deflection roller 140g represents a rope course influencing unit while in the previously described Embodiments of the rope course influencing unit each was formed by an anchor point.
  • Figure 10 is yet another embodiment of a rope course influencing unit shown.
  • both are the rope anchoring point 56h as well as the hoisting rope drum 52h stationary on the trolley frame Arranged 22'h.
  • the rope element 50'h is one Passed through eyelet 150h.
  • This pass eyelet 150h is open a carriage 152h formed by a group of rope pulleys 154h.
  • the carriage 150h is on a platform 156h rails 158h by means of a hydraulic actuating cylinder 160h in Direction of the longitudinal axis u of the associated load carrier.
  • the platform 158h is by means of a hydraulic actuating cylinder 162h opposite a supporting frame 164h adjustable in the direction of the short transverse axis v; the supporting structure 164h is permanently attached to the trolley frame 22'h.
  • the platform 158h is by means of a hydraulic actuating cylinder 162h opposite a supporting frame 164h adjustable in the direction of the short transverse axis v; the supporting structure 164h is permanently attached to the trolley frame 22'h.
  • the platform 158h is by means of a hydraulic actuating cylinder 162h opposite a supporting frame 164h adjustable in the direction of the short transverse axis v; the supporting structure 164h is permanently attached to the trolley frame 22'h.
  • FIG. 11 shows a lifting cable carrier 22i in plan view, which can be designed and arranged similar to that in Fig. 1 shown.
  • a hoisting rope system (not shown, but accordingly 1) a load carrier 34i hung up.
  • a container 36 may again be on the load carrier 34i be coupled, as shown in Fig. 1.
  • This container is now to be inserted into a container receiving slot 42i whose upper output is labeled 40i.
  • corner angle 150i defined that approximates the outline of the load carrier 34i correspond.
  • the hoist rope carrier 22i runs similar to that in FIG 1 along a bridge girder 20i, the bridge girder 20i similar to FIG. 1 along rails 16i can.
  • detector units on the load carrier 34i 64i attached, which are intended and suitable to recognize the corner angles 150i and then corrective forces to be delivered in accordance with the correction force K in FIG. 2, which, acting on the load carrier 34i, its position correction opposite the shaft exit 40i.
  • Target measures regarding target field 40i are not sufficient, around this target field with sufficient accuracy to reach and to the load carrier 34i in a continuous Drive movement into the container receiving shaft 42i to let. Corrective measures are required, for example corrective measures such as those shown in FIGS. 1-10 drawn and described in the associated description section have been.
  • the detector units 64i can again be detector units in the manner of the detector unit 64 of FIG. 1. Indifferent, what type of detector units are used one has to reckon with the fact that these detector units are not can capture the entire field of motion within which the load carrier 34i moves. In particular, they can For example, not the entire surface of the ship in everyone Observe the time, i.e. neither their shaft exit nor their container parking spaces arranged approximately above deck.
  • the detector units 64i Only in the course of the approach of a load carrier 34i in the vicinity of the target field 40i (in the example of the shaft exit) do the detector units 64i reach positions in which they can detect the corner angles 150i. It is not necessary for this that the detector units 64i are already vertically above the corner angles 150i. Rather, it is assumed that the right detector units 64i, which advance in the direction of the arrow 151i according to FIG. 11, already get the corner angles 150i in their field of vision when they have reached the line 152i. Already at this point in time, according to the invention, observation of the target field 40 i is started by the detector units 64 i on the right.
  • the deck of the ship 14 is an area on which has a variety of detector-recognizable interference singularities which of the 40i characteristic target field characteristics, e.g. the corner angles 150i, must be distinguished. You can do this Make a distinction by looking at the detector units 64i in such a way that the geometric Recognize the special features of the corner bracket 150i.
  • the detector units 64i can also be used, for example the two detector units on the right in FIG. 11 64i, train them so that they are recognized after the two corner angles 150i with the mediation of the data processing system the distance between the corner brackets 150i transverse to the longitudinal direction of the bridge girder 20i and determine with a Compare stored distance measure, which is the distance corresponds to two corner angles of the target field 40i. Results then the position comparison of two by the two right-hand detector units 64i of detected singularities, that their distance transversely to the longitudinal direction of the Print carrier the actual distance between two corner angles 150i, there is a high probability for the fact that these two singularities are the Corner angle of a target field, i.e. in the example one Shaft exit.
  • the two detector units 64i on the right also the symmetry of the singularities they grasp examine and thus determine the symmetry Verify the statement that the singularities recorded actually about distinctive singularities of one Target field, for example the first two reached corner angle 150i of shaft exit 40i.
  • the corner angle 150i is detected in that a jump in maturity is determined when the each pulsed laser beam has an edge of a corner angle 150i runs over. This is a relative movement between the laser beam and the respective corner angle 150i required.
  • This relative movement can be determined by a scanning movement of the Laser beam can be obtained.
  • 12 is one Detector unit 64i is again shown schematically.
  • a laser beam transmitter-laser beam receiver combination can be recognized on this detector unit 155i, which through transit time measurements (see description of the Fig. 1 - 10) driving over e.g. according to an edge 156i Fig. 12 can determine.
  • the laser beam transmitter-laser beam receiver combination can be used for this purpose a swivel motion Execute in the direction of the swivel arrow 157i. It is also conceivable for the laser beam transmitter-laser beam receiver combination additionally a movement along the Subject arrow 158i so that the corner angle 150i is scanned line by line.
  • Target field observation is just one of the ways Target field observation. It is also conceivable for target field observation to switch on one or more television cameras and due to that received by the television cameras Light signals after implementation and further processing of these Light signals in electronic signals the corner angle 150i or recognize other singularities. It is analogous to the previous explanations, the singularities of a target field 40i distinguish other interference singularities, be it by Distance measurement, be it through symmetry studies.
  • FIG. 14 A detector unit 641 can be seen here. At this detector unit 641 is a laser beam transmitter-laser beam receiver combination Provided in 1551. The laser beam emitted is on a number of inclined deflecting mirrors 159l directed. This Deflecting mirrors are characterized by electrical signals from a Signaling unit 1601 selectively for laser light transmission or laser light reflection switchable so that, if the deflecting mirror 1591 successively by one electrical pulse are switched on one after the other different places laser beams are sent to the target field and thus larger areas of the target field can be quickly checked and evaluated.
  • a Signaling unit 1601 selectively for laser light transmission or laser light reflection switchable so that, if the deflecting mirror 1591 successively by one electrical pulse are switched on one after the other different places laser beams are sent to the target field and thus larger areas of the target field can be quickly checked and evaluated.
  • the detector units 64i can movable for this purpose with respect to the load carrier 34i be arranged so that they are still within the outline of the load carrier 34i can be withdrawn if the immersion in the container receiving shaft 42i immediately is imminent.
  • the detector units 64i to be matched to the corner fittings the top of containers to capture the clutch serve the container with the load carrier 34i.
  • the load carrier 34i can again structures and / or coloring of such Corner fittings are observed and evaluated, if necessary including symmetry observations, if necessary also by comparing the distance between those recorded Singularities with the distance of characteristic places the corner fittings in the longitudinal or / and in the transverse direction of the respective container.
  • the deflecting mirror for example, from fixed or Liquid crystals can be formed by applying of an electric field optionally for light transmission or reflection can be switched. Such crystals are for example visible in the watch industry known from digital displays.
  • the signals obtained by the detector units 64i can after conversion into electrical signals and conversion in the Data processing equipment used to be about 1 the rope path of a rope element 50 'by means of a Power unit 60 to shift and thereby a force on the Load carrier 34 in the desired, for the target approach correction generate necessary direction. But this is again just one of several options. It is with that The method shown in FIGS. 11 ff. is also possible Drive of the hoist rope girder 22 along the bridge girder 26 target correcting to influence or drive the crane tower 18 to influence along the rails 16 target correction.
  • Optoelectronic systems which use so-called “zooming" enable. This is to say that one and the same opto-electronic system initially a larger image field, for example on the surface of the ship 14, can grasp to within of this larger image field to determine singularities at all. Did one then determine singularities, the characteristic ones could be singularities of a targeted target field, e.g. two corner angles 150i, so you can zoom the image field reduce and thus the resolution of the respective optoelectronic Systems enlarge.
  • optical axis of the respective opto-electronic system to correct it, for example, by moving relative to the load carrier 34i, that even during the reduction of the field of view already captured and suspect of belonging to the singularity recognized in the target field in the reduced one Image field remains.
  • the improved resolving power allows it then, the suspicion of belonging to each To further verify the singularity of the targeted target field and after sufficient verification with the target path correction kick off.
  • the target path correction is the speed of the load carrier 34i in the direction of arrow 151i and possibly also the Lowering speed in order to correct the target path extend available time in advance.
  • the electronics for performing the target path correction can be similar be formed as above with reference to the figures 1-3.
  • the target path correction it is natural in the target path correction according to the invention desired, at the time of reaching the target field, e.g. of a container shaft entrance, vibrations reduced as far as possible to have.
  • the target field e.g. of a container shaft entrance
  • especially long periodic vibrations may also occur at the time of Can still reach the target field, namely, if the course of such long periodic vibrations at the Target path correction has been considered and the long periodic vibration then in the bearing of the destination as a Contribution has been included.
  • exists at Touching the container with the target field is still a kinetic Energys on the container, which are then destroyed, for example is that the container after entering the respective Shaft hits its boundary surfaces or when setting it down on a storage floor in rubbing contact with the container floor brought.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (50)

  1. Procédé permettant de réaliser une correction du parcours à effectuer pour atteindre le but, pour un porte-charge (34) s'approchant d'une position cible, qui est suspendu, de manière réglable en hauteur, à un treuil roulant (22) se déplaçant horizontalement à l'aide d'un système de câble de levage (32), à l'approche du but, une correction du parcours de rapprochement du but étant réalisée en fonction de la détermination d'une déviation par rapport au but, par le fait que la course d'au moins un élément de câble (50'), progressant entre le treuil roulant (22) et le porte-charge (34), du câble de levage (32) est décalée dans une zone (56) proche du treuil roulant (22) sensiblement horizontalement par rapport au treuil roulant (22),
    caractérisé en ce que dans un processus de réglage effectué à plusieurs reprises lors de l'approche du but, une force correctrice variable (K(t)) applicable au porte-charge (34), variant en fonction du temps et nécessaire afin d'effectuer la correction du parcours pour atteindre le but est calculé dans chaque cas en fonction de la détermination d'une erreur inhérente au but en prenant en considération l'état de déplacement respectif du porte-charge (34), que - afin générer la fonction d'évolution de la force correctrice ainsi calculée (K(t)) - un parcours de réglage (s(t)) pour une unité influençant la course du câble (56) et agissant sur l'élément de câble (50') est calculé et ce parcours de réglage variable (s(t)) est transmis à l'aide d'un dispositif à moteur (60) à l'unité influençant la course du câble (56).
  2. Procédé déterminant la correction d'un parcours à effectuer pour atteindre le but, pour un porte-charge (34) se rapprochant d'une position cible (40), lequel porte-charge est suspendu à un treuil roulant (22) se déplaçant horizontalement et de manière réglable en hauteur à l'aide d'un système de câble de levage (32), le positionnement du porte-charge (34) dans une position cible (40) avec une coordonnée de hauteur de position cible (h) et au moins une coordonnée horizontale de position cible (x) étant réalisé par un déplacement horizontal du porte-charge (34) que l'on peut obtenir d'après un déplacement de transport du treuil roulant (22) en utilisant des moyens de sollicitation du transport (26, 28) et par un déplacement vertical du porte-charge (34) déduit d'une variation de longueur du système de câble (32), et lors de l'approche du but, une correction du parcours de rapprochement du but étant réalisée d'après la détermination d'une déviation par rapport au but, par le fait que la course d'au moins un élément de câble (50'), se déplaçant entre le treuil roulant (22) et le porte-charge (34), du câble de levage (32) est décalée dans une zone (56) proche du treuil roulant (22) sensiblement horizontalement par rapport au treuil roulant (22),
    caractérisé par les mesures suivantes :
    a) dans une phase finale, lorsque le porte-charge (34) se rapproche de la position cible (40), à au moins un instant de détection avant d'atteindre la position cible (40), les valeurs instantanées d'une pluralité de variables d'état sont déterminées, cette pluralité de variables d'état comprenant au moins :
    la différence (Δh) entre une coordonnée de hauteur de position réelle (h) du porte-charge (34) et une coordonnée de hauteur de position cible du porte-charge (34),
    la différence (Δx) entre au moins une coordonnée horizontale de position réelle (x) du porte-charge (34) et une coordonnée horizontale de position cible correspondante, la vitesse de rapprochement verticale (vs) du porte-charge (34) vers la position cible (40),
    la fonction de variation
    Figure 00810001
    d'au moins une coordonnée horizontale de position réelle (x) par rapport à la coordonnée horizontale de position cible (en 40) ;
    b) sur la base des valeurs instantanées ainsi déterminées, on fixe la valeur et la direction d'une force correctrice (K) pour l'appliquer au porte-charge (34), cette force étant nécessaire pour atteindre la position cible (40) lors du déplacement suivant du porte-charge (34),
    c) on calcule une variation de la course du câble, au moins d'un élément de câble (50') situé entre le treuil roulant (22) et le porte-charge (34) nécessaire pour obtenir cette force correctrice (K) ;
    d) la variation nécessaire de la course du câble de cet élément de câble (50') est effectuée, en ce qu'une unité influençant la course de câble (56), disposée au niveau ou à proximité du treuil roulant (22), du au moins un élément de câble (50'), est décalée par rapport au treuil roulant (22) de manière sensiblement horizontale par des moyens de déplacement du câble (60), qui sont raccordés au treuil roulant (22) pour réaliser un déplacement d'ensemble.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le déport selon la détection d'erreur inhérente au but est réalisé sur l'au moins un élément de câble (50'), dans une direction différente (u, v).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on réalise, par le déport du au moins un élément de câble (50'), une correction du parcours à effectuer pour atteindre le but, horizontale, translatoire (dans la direction u ou dans la direction v ou dans une direction réalisée par une superposition de corrections dans les directions u et v) du porte-charge (34).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le déport du au moins un élément de câble (50') entraíne une correction rotatoire du parcours à effectuer par le porte-charge (34) pour atteindre le but par rapport à l'axe vertical (w) qui lui est affecté.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que plusieurs éléments de câble (50') sont décalés simultanément ou l'un après l'autre.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le déport du au moins un élément de câble (50') est induit par la superposition de déports partiels simultanés ou successifs dans différentes directions (u, v).
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le déport du au moins un élément de câble (50') est induit par le déplacement d'une unité influençant la course du câble (56) présentant une masse faible par rapport à la masse du treuil roulant (22).
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que, lors de l'utilisation de deux éléments de câble (50'a) ou groupes d'éléments de câble (50'a, 50"a) à l'intérieur du système de câble de levage, ceux-ci sont décalés dans le même sens dans la direction de leur ligne de jonction ou dans des directions parallèles l'une à l'autre, coupant la ligne de jonction.
  10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que, lors de l'utilisation de deux éléments de câble (50'a) ou groupes d'éléments de câble (50'a, 50"a) à l'intérieur du système de câble de levage, ceux-ci sont décalés dans des directions antiparallèles, coupant leur ligne de jonction.
  11. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que, lors de l'utilisation de quatre éléments de câble (50'b) ou groupes d'éléments de câble (50'b, 50"b), qui sont disposés dans les coins d'un rectangle horizontal, les éléments de câble (50'b) ou groupes d'éléments de câble(50'b, 50"b) sont décalés parallèlement les uns aux autres dans le même sens.
  12. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que lors de l'utilisation de quatre éléments de câble (50'b) ou groupes d'éléments de câble (50'b, 50"b), qui sont disposés dans les coins d'un rectangle horizontal, au moins deux éléments de câble (50'b) ou groupes d'éléments de câble (50'b, 50"b) le long d'une diagonale du rectangle sont décalés de manière antiparallèle dans la direction coupant ces diagonales.
  13. Procédé selon l'une des revendications 1 à 12, dans lequel le porte-charge (34i) se rapproche d'un champ cible (40i) s'étendant dans le plan horizontal par un déplacement de rapprochement, ce déplacement se composant d'un déplacement de rapprochement horizontal (151i) et d'un déplacement de rapprochement vertical superposé à ce déplacement de rapprochement horizontal (151), caractérisé en ce qu'on commence à réaliser une observation du champ cible avant que le porte-charge (151i), dans le cadre de son déplacement de rapprochement, parvienne à recouvrir le champ cible (40i) et en ce que le déplacement de rapprochement suivant est alors corrigé en fonction de l'observation du champ cible.
  14. Procédé selon la revendication 13, caractérisé en ce que la correction du déplacement de rapprochement est déjà entreprise en fonction de l'observation du champ cible à un moment (152) où, à partir de l'observation du champ cible, on peut tout d'abord repérer qu'une partie du champ cible (40i) peut être atteinte par le porte-charge dans le cadre du déplacement de rapprochement.
  15. Procédé selon la revendication 14, caractérisé en ce que grâce à l'observation du champ cible repérant la zone partielle (40i gauche) du champ cible (40i) pouvant déjà être atteinte, on peut repérer les caractéristiques (150i gauche) de cette zone partielle, qui permettent de déduire que la zone partielle (40i) fait partie du champ cible (40i).
  16. Procédé selon la revendication 15, caractérisé en ce que l'observation du champ cible permet de repérer des structures périphériques (150i gauche) d'une zone partielle tout d'abord atteinte (40i gauche) du champ cible (40i), qui sont situées à distance perpendiculairement à la direction (151i) du déplacement de rapprochement horizontal (151i).
  17. Procédé selon la revendication 15 ou 16, caractérisé en ce que l'observation du champ cible permet de repérer l'extension de la zone partielle (40i gauche) tout d'abord atteinte perpendiculairement à la direction du déplacement de rapprochement horizontal (152i).
  18. Procédé selon l'une des revendications 15 à 17, caractérisé en ce que l'observation du champ cible permet de repérer les caractéristiques de symétrie (150i gauche) du champ cible (40i).
  19. Procédé selon l'une des revendications 14 à 18, caractérisé en ce que le résultat de l'observation du champ cible de la zone partielle tout d'abord atteinte (40i gauche) du champ cible (40i) est vérifié au cours du déplacement de rapprochement ultérieur du porte-charge (34i) par rapport au champ cible en fonction de l'observation d'une zone partielle (40i droite) du champ cible (40i) atteinte ultérieurement au cours du déplacement de rapprochement ultérieur.
  20. Procédé selon l'une des revendications 14 à 18, caractérisé en ce que le résultat de l'observation du champ cible de la zone partielle tout d'abord atteinte (40i gauche) du champ cible est vérifié au cours du déplacement de rapprochement ultérieur du porte-charge (34i) par rapport au champ cible (40i) en fonction de l'observation de l'ensemble du champ cible.
  21. Procédé selon l'une des revendications 13 à 20, caractérisé en ce que l'observation du champ cible est réalisée au moins à l'aide d'un dispositif d'observation élémentaire (64i), qui est adapté au porte-charge et qui, à un moment donné, ne peut observer à chaque fois qu'un élément de surface du champ cible (40i) et localise, l'un après l'autre, différents éléments de surface (150i) du champ cible (40i).
  22. Procédé selon la revendication 21, caractérisé en ce que l'au moins un dispositif d'observation élémentaire (64i) se déplace par rapport au porte-charge (34i), afin de localiser les uns après les autres différents éléments de surface du champ cible (40i).
  23. Procédé selon la revendication 22, caractérisé en ce que l'au moins un dispositif d'observation élémentaire (64i) est déplacé le long de trajectoires d'exploration parallèles les unes aux autres, une après l'autre.
  24. Procédé selon la revendication 21, caractérisé en ce que la localisation de différents éléments de surface (150i) du champ cible (40i) est réalisée à l'aide du dispositif d'observation élémentaire (64i) dans le cadre d'une succession temporelle par le déplacement de rapprochement horizontal du porte-charge (34i) par rapport au champ cible.
  25. Procédé selon la revendication 21 ou 24, caractérisé en ce que la localisation de différents éléments de surface (150i) du champ cible est réalisée à l'aide du dispositif d'observation élémentaire (64i) dans le cadre d'une succession temporelle par des mouvements oscillants du porte-charge (34i).
  26. Procédé selon la revendication 25, caractérisé en ce que le porte-charge (34i) est excité pour osciller, ce qui entraíne la localisation successive dans le temps de différents éléments de surface (150i) du champ cible (40i) par le dispositif d'observation élémentaire (64i).
  27. Procédé selon l'une des revendications 13 à 19, caractérisé en ce que l'observation du champ cible est réalisée à l'aide d'un groupe d'éléments d'observation de champ cible (155k).
  28. Procédé selon l'une des revendications 13 à 20, caractérisé en ce que l'observation du champ cible est réalisée à l'aide d'une combinaison émetteur/récepteur de rayons laser, dont la source de rayons laser (1551) émet un rayon laser en direction d'une pluralité de miroirs de déviation (1591) disposés l'un derrière l'autre, qui peuvent passer l'un après l'autre de la transparence à la réflectivité.
  29. Procédé selon l'une des revendications 13 à 28, caractérisé en ce que, après avoir trouvé au moins une caractéristique (150i) laissant supposer l'appartenance à un champ cible dans un champ global contenant le champ cible, la zone de détection de l'observation de champ cible est réduite par l'observation du champ cible et la capacité de résolution de l'observation du champ cible est donc améliorée de façon correspondante.
  30. Procédé selon la revendication 29, caractérisé en ce que pendant la réduction de la zone de détection de l'observation de champ cible, on veille à ce que la caractéristique trouvée (150i) soit maintenue à l'intérieur de la zone de détection devenant de plus en plus petite de l'observation du champ cible.
  31. Procédé selon l'une des revendications 13 à 30, caractérisé en ce que par l'observation du champ cible, on repère des caractéristiques structurelles (150i) d'un champ cible.
  32. Procédé selon l'une des revendications 13 à 31, caractérisé en ce que par l'observation du champ cible, on repère les caractéristiques de couleurs d'un champ cible (42i).
  33. Procédé selon l'une des revendications 1 à 32, caractérisé en ce que par l'observation du champ cible, on repère l'arrivée (40i) d'une cage de réception de conteneur.
  34. Procédé selon l'une des revendications 1 à 32, caractérisé en ce que par l'observation du champ cible, on repère une aire de stationnement d'un dépôt de conteneurs à terre.
  35. Procédé selon l'une des revendications 1 à 32, caractérisé en ce que par l'observation du champ cible, on repère la face supérieure d'un conteneur déposé.
  36. Procédé selon l'une des revendications 1 à 35, caractérisé en ce qu'une détection d'erreur de but est réalisée à l'aide des moyens de détection (64) disposés sur le porte-charge (34), en particulier des systèmes d'observation optoélectroniques comme des caméras de télévision ou de combinaisons émetteurs/récepteurs de rayons laser, alors que le porte-charge (34) est à un endroit encore éloigné du but (40).
  37. Dispositif de correction du parcours à effectuer pour atteindre le but, pour un porte-charge se rapprochant d'une position cible, qui est suspendu de manière réglable en hauteur par un système de câble de levage (32) à un treuil roulant (22) se déplaçant horizontalement, comprenant des moyens de détection pour calculer une déviation par rapport au but et des moyens de correction de la course du câble, caractérisé en ce que, pour influencer de manière répétée à plusieurs reprises la course du câble, lors d'un trajet pour approcher du but, d'au moins un élément de câble (50') progressant entre le treuil roulant (22) et le porte-charge (34) par une unité influençant la course du câble (56), disposée à proximité (56) du treuil roulant (22), couplée à des moyens de déplacement du câble (60) et se déplaçant horizontalement des moyens de traitement de l'information (98,102,104) sont prévus, lesquels moyens de traitement des données calculent
    la force de correction nécessaire (K(t)) en fonction du temps afin corriger le trajet à effectuer par le porte-charge (34) pour atteindre le but, les moyens de traitement de l'information étant en liaison, par voie de transmission de l'information, avec des moyens de détection (64, 72, 74, 76, 78, 80, 82, 84, 86, 100) communiquant l'état de l'emplacement et du déplacement du porte-charge (34) et comprenant des moyens de conversion (104) pour déduire le parcours de réglage variable en fonction du temps (s(t)) nécessaire pour établir la force de correction (K(t)) de l'unité influençant la course du câble (56) par l'appareil moteur (60).
  38. Dispositif de correction du parcours pour arriver au but d'un porte-charge se rapprochant d'une position cible, qui est suspendu de manière réglable en hauteur par un système de câble de levage (32) à un treuil roulant (22) se déplaçant horizontalement, comprenant des moyens de détection pour calculer une déviation par rapport au but et des moyens de correction de la course du câble,
    ce dispositif étant utilisé dans le cadre d'une installation de transport de charge, qui présente un support de couloir de roulement (20) avec au moins un couloir de roulement horizontal (20), le treuil roulant (22) se déplaçant sur ce couloir de roulement horizontal (20), des moyens de sollicitation du transport (26, 28) pour répartir les déplacements sur le treuil roulant (22) le long du couloir de roulement (20) et le porte-charge (34) suspendu au treuil roulant (22) par un système de câble de levage (32) à longueur variable,
    et caractérisé en ce que
    les moyens de détection (premiers moyens de détection 64, 72, 74, 76, 80; deuxièmes moyens de détection 64, 72, 74, 76, 78; troisièmes moyens de détection 64, 72, 74, 76, 80, 82, quatrièmes moyens de détection 64, 72 74, 78, 84) sont conçus de manière à détecter des valeurs instantanées d'une pluralité de variables d'état, à savoir
    premièrement, la détermination de la différence de valeurs instantanées (Δh) entre une coordonnée de hauteur de position réelle (h) du porte-charge (34) et une coordonnée de hauteur de position cible (en 40) du porte-charge (34) ;
    deuxièmement, la détermination de la différence de valeurs instantanées (Δx) entre au moins une coordonnée horizontale de position réelle (x) du porte-charge (34) et une coordonnée horizontale de position cible correspondante (en 40),
    troisièmement, la détermination de la valeur instantanée d'une vitesse de rapprochement verticale (vs) du porte-charge (34) par rapport à la position cible (en 40),
    quatrièmement, la détermination de variations de la au moins une coordonnée horizontale de position réelle (x) par rapport à la coordonnée horizontale de position cible correspondante (en 40) ;
    en ce que les moyens de traitement de l'information (98, 102, 104) sont prévus de manière à être associés à ces moyens de détection (98, 102, 104) pour calculer une variation nécessaire de la course du câble d'au moins un élément de câble progressant entre le treuil roulant (22) et le porte-charge (34), variation qui est en effet nécessaire pour atteindre, lors la progression ultérieure du rapprochement du porte-charge (34) par rapport à la position cible (en 40), cette position cible de manière sensiblement exacte, en ce que, au niveau ou à proximité du treuil roulant (22) est disposée une unité influençant la course du câble (56) en association fonctionnelle avec une partie du au moins un élément de câble (50') proche du treuil roulant (22), pour décaler cette partie dans le plan horizontal par rapport au treuil roulant (22), et en ce que des moyens de déplacement du câble (60) sont prévus selon une relation d'entraínement avec l'unité influençant la course du câble (56), ces moyens de déplacement du câble (60) étant commandés par les moyens de traitement de l'information (98, 102, 104) de telle sorte, qu'ils induisent la variation nécessaire de la course de l'au moins un élément de câble (50').
  39. Dispositif selon la revendication 37 ou 38, caractérisé en ce que l'unité influençant la course du câble (56) présente une masse faible par rapport à la masse totale du treuil roulant (22).
  40. Dispositif selon l'une des revendications 37 à 39, caractérisé en ce que l'unité influençant la course du câble présente au moins l'un des composants suivants :
    point d'ancrage du câble (56)
    poulie de déviation du câble (140g)
    tambour à câble (52),
    anneau de passage du câble (150h).
  41. Dispositif selon l'une des revendications 37 à 40, caractérisé en ce qu'au moins une unité influençant la course du câble (56a) peut se déplacer dans une direction variable par rapport au treuil roulant (22a).
  42. Dispositif selon l'une des revendications 37 à 41, caractérisé en ce que l'unité influençant la course de câble (56 e) est en relation d'entraínement avec au moins deux unités de déplacement (118, 124 e) présentant une direction de déplacement différente et une course variable.
  43. Dispositif selon l'une des revendications 37 à 42, caractérisé en ce qu'une unité influençant la course du câble (56a) est affectée à chaque fois à une pluralité d'éléments de câble (50'a) ou groupes d'éléments de câble (50'a, 50"a).
  44. Dispositif selon la revendication 43, caractérisé en ce que les unités influençant la course du câble, qui sont affectées à différents éléments de câble (50'a) ou groupes d'éléments de câble (50'a, 50"a), peuvent voir leur direction de déplacement modifiée de telle sorte que, leur déplacement peut exercer sur le porte-charge (34) au choix des forces translatoires horizontales (K) de grandeur et de direction différente,
    des moments de couple (T) de grandeur différente et de sens de rotation différent et
    des combinaisons de forces translatoires (K) et de moments de couple (T).
  45. Dispositif selon l'une des revendications 37 à 44, caractérisé en ce que l'unité influençant la course du câble (56a) affectée à l'au moins un élément de câble (50'a) peut se déplacer dans la direction des axes d'un système de coordonnées cartésiennes par rapport au treuil roulant (22a).
  46. Dispositif selon l'une des revendications 37 à 44, caractérisé en ce qu'au moins une unité influençant la course du câble (56f) peut se déplacer selon le principe d'un système de coordonnées polaires (130f, 136f) par rapport au treuil roulant (22f).
  47. Dispositif selon l'une des revendications 37 à 46, caractérisé en ce que la au moins une unité influençant la course du câble (56f) peut se déplacer selon une relation d'entraínement par conjugaison de forme (61, 63) avec les moyens de déplacement (65) en appui sur le treuil roulant (22).
  48. Dispositif selon l'une des revendications 37 à 47, caractérisé en ce qu'au moins deux unités influençant la course du câble (56c) affectées à différents éléments de câble (50') sont associées selon une relation de déplacement mécanique ou par une commande.
  49. Dispositif selon l'une des revendications 37 à 48, caractérisé en ce que le support du couloir de circulation (20) est disposé sur un dispositif de roulement transversal (18), qui peut être déplacé le long d'un couloir de roulement horizontal (16) dans une direction coupant le couloir de roulement du support du couloir de roulement (20).
  50. Dispositif selon l'une des revendications 37 à 49, caractérisé par des moyens de détection (64) disposés sur le porte-charge (34) pour réaliser la détection d'erreurs inhérentes au but, en particulier des systèmes d'observation optoélectroniques comme des caméras de télévision ou des combinaisons émetteurs/récepteurs de rayons laser, pour observer un champ cible (42) dans une position du porte-charge (34) éloignée du but.
EP95921743A 1994-05-11 1995-05-10 Procede et dispositif de correction du trajet cible d'un porte-charge pendant Expired - Lifetime EP0759006B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4416707 1994-05-11
DE4416707A DE4416707A1 (de) 1994-05-11 1994-05-11 Verfahren zur Zielwegkorrektur eines Lastträgers und Lastentransportanlage
PCT/EP1995/001775 WO1995031395A1 (fr) 1994-05-11 1995-05-10 Procede de correction du trajet cible d'un porte-charge et installation de transport de charges

Publications (2)

Publication Number Publication Date
EP0759006A1 EP0759006A1 (fr) 1997-02-26
EP0759006B1 true EP0759006B1 (fr) 1999-11-24

Family

ID=6517919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95921743A Expired - Lifetime EP0759006B1 (fr) 1994-05-11 1995-05-10 Procede et dispositif de correction du trajet cible d'un porte-charge pendant

Country Status (6)

Country Link
US (1) US6182843B1 (fr)
EP (1) EP0759006B1 (fr)
JP (1) JPH10500091A (fr)
KR (1) KR970702816A (fr)
DE (2) DE4416707A1 (fr)
WO (1) WO1995031395A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087762A1 (fr) * 2000-05-15 2001-11-22 Tax Technical Consultancy Gmbh Procede de correction de l'etat d'un systeme de port de charge

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530112A1 (de) * 1995-08-16 1997-02-20 Siemens Ag Verfahren und Vorrichtung zum Be- oder Entladen eines Schiffes
DE19530113A1 (de) * 1995-08-16 1997-02-20 Siemens Ag Kontinuierlicher Schiffsentlader
US6124932A (en) * 1996-04-10 2000-09-26 Tax; Hans Method for target-path correction of a load carrier and target-detection device and directional beam-emitting unit for performance of said method
DE19614248A1 (de) * 1996-04-10 1997-10-16 Tax Ingenieurgesellschaft Mbh Verfahren zur Zielwegkorrektur eines Lastträgers sowie Zieldetektionseinrichtung und Richtstrahl-Aussendeeinheit zur Durchführung dieses Verfahrens
JP4598999B2 (ja) * 2001-07-18 2010-12-15 三菱重工業株式会社 クレーン及びクレーンの制御方法
DE19803202A1 (de) * 1998-01-28 1999-07-29 Tax Technical Consultancy Gmbh Zieldetektionseinrichtung
TW568879B (en) * 1998-04-01 2004-01-01 Asyst Shinko Inc Suspension type hoist
SE513174C2 (sv) * 1998-10-22 2000-07-24 Abb Ab Förfarande för hantering av containrar samt anordning för utförande av förfarandet
JP3375907B2 (ja) * 1998-12-02 2003-02-10 神鋼電機株式会社 天井走行搬送装置
DE19906320C2 (de) * 1999-02-16 2001-03-01 Man Takraf Foerdertechnik Gmbh Vorrichtung für einen Containerkran zur Positionierung seines Spreaders und zur Korrektur der Führung der Hubseilstränge
US6631816B1 (en) * 1999-03-18 2003-10-14 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Hoist
US7121012B2 (en) * 1999-12-14 2006-10-17 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US7845087B2 (en) * 1999-12-14 2010-12-07 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
WO2001081232A1 (fr) * 2000-04-24 2001-11-01 Natsteel Engineering Pte Ltd. Palonnier automatique
JP3785061B2 (ja) * 2000-10-27 2006-06-14 三菱重工業株式会社 荷役クレーンにおけるコンテナ位置検知方法及び装置並びにコンテナ着床、段積制御方法
US20050173364A1 (en) * 2002-07-25 2005-08-11 Siemens Aktiengesellschaft Method for operating a container crane
DE10245970B4 (de) * 2002-09-30 2008-08-21 Siemens Ag Verfahren bzw. Vorrichtung zur Erkennung einer Last eines Hebezeuges
FI117969B (fi) * 2004-09-01 2007-05-15 Kalmar Ind Oy Ab Laitteisto ja menetelmä kontin kiertoheilahdusliikkeen pysäyttämiseksi
KR101206312B1 (ko) * 2005-06-28 2012-11-29 에이비비 에이비 크레인용 화물 제어 장치
SE530490C2 (sv) * 2006-12-21 2008-06-24 Abb Ab Kalibreringsanordning, metod och system för en containerkran
EP2757065A1 (fr) 2010-04-01 2014-07-23 Par Systems, Inc. Mât en treillis de traction
KR101930557B1 (ko) * 2010-04-30 2019-03-11 데이비드 알바 인터모달 콘테이너들의 운송, 보관 및 인도 시스템
KR20110123928A (ko) * 2010-05-10 2011-11-16 한국과학기술원 컨테이너 크레인용 트롤리 어셈블리
TWI415785B (zh) * 2011-01-12 2013-11-21 Inotera Memories Inc 天車輸送系統與其操作方法
JP2014055037A (ja) * 2012-09-11 2014-03-27 International Business Maschines Corporation 積載操作方法、システム及びコンピュータ・プログラム。
WO2014047449A1 (fr) 2012-09-21 2014-03-27 Par Systems, Inc. Ensemble de déploiement de bateau et procédé
US10494233B2 (en) 2013-02-06 2019-12-03 Par Systems, Llc Relocatable fine motion positioner assembly on an overhead crane
JP5986030B2 (ja) * 2013-03-28 2016-09-06 三井造船株式会社 ロープトロリー式クレーンのグラブバケット振れ制御方法
DE102013011718A1 (de) * 2013-07-15 2015-01-15 Isam Ag Verfahren zur Steuerung einer Containerbrücke zum Be- oder Entladen, insbesondere des Laderaumes, eines Schiffes bzw. Steuersystem zur Steuerung einer Containerbrücke bzw. Containerbrücke mit Steuersystem
EP3033293B1 (fr) * 2013-08-12 2017-10-11 ABB Schweiz AG Procédé et système pour déposer automatiquement des conteneurs sur une cible de déposition à l'aide d'une grue à conteneurs
WO2016014001A1 (fr) * 2014-07-21 2016-01-28 Borçeli̇k Çeli̇k Sanayi Ti̇caret Anoni̇m Şi̇rketi̇ Accessoire pour grue comprenant un pointeur à laser
CA2956950A1 (fr) 2014-07-31 2016-02-04 Par Systems, Inc. Commande de deplacement de grue
EP3316844B1 (fr) * 2015-07-03 2022-05-18 Ecole Polytechnique Fédérale de Lausanne (EPFL) Appareil destiné à appliquer des forces dans un espace tridimensionnel
US10544012B2 (en) 2016-01-29 2020-01-28 Manitowoc Crane Companies, Llc Visual outrigger monitoring system
US10908580B2 (en) * 2016-09-09 2021-02-02 Accenture Global Solutions Limited Devices, systems, and methods for automated loading bridge positioning using shapes associated with a vehicle
US10717631B2 (en) 2016-11-22 2020-07-21 Manitowoc Crane Companies, Llc Optical detection and analysis of crane hoist and rope
WO2018160681A1 (fr) * 2017-02-28 2018-09-07 J. Ray Mcdermott, S.A. Levage navire-navire en mer avec assistance de suivi de cible
JP6981599B2 (ja) * 2017-05-31 2021-12-15 株式会社三井E&Sマシナリー 岸壁クレーン及び岸壁クレーンのモータ容量の決定方法
DE18205817T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Sensor in bekleidung von gliedmassen oder schuhwerk
DE102022111813A1 (de) 2022-02-17 2023-08-17 Liebherr-Werk Biberach Gmbh Hebezeug
CN116730200B (zh) * 2023-08-15 2023-10-13 贵州省公路工程集团有限公司 一种缆索吊装方法、系统、计算机设备及存储介质
CN117088150B (zh) * 2023-10-20 2024-01-12 龙合智能装备制造有限公司 一种托盘垛装货物的自动装车设备及其控制方法
CN117602396B (zh) * 2023-11-29 2024-04-30 中国农业大学 一种青饲料收获机自动跟车抛送填装方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE48008C (de) * A. VERBEEK in Dresden-A., Gärtnerg. 4 Sonnenlaufzeiger
US655367A (en) * 1899-07-01 1900-08-07 Morgan Engineering Co Crane.
NL7101224A (fr) * 1971-01-29 1972-08-01
US3825128A (en) * 1971-08-23 1974-07-23 Fruehauf Corp Sway-arrest system
DE2231819A1 (de) * 1972-06-29 1974-01-17 Krupp Gmbh Tiefenmesseinrichtung
DE2356904B2 (de) * 1973-11-14 1977-03-31 Kirchmayer, Hermann, 8000 München Auslegerdrehlaufkatze
US4172685A (en) * 1976-10-22 1979-10-30 Hitachi, Ltd. Method and apparatus for automatic operation of container crane
JPS546267A (en) * 1977-06-16 1979-01-18 Ishikawajima Harima Heavy Ind Co Ltd Load handling quaywall crane
US4281342A (en) * 1978-03-29 1981-07-28 Hitachi, Ltd. Mark detecting system using image pickup device
JPS54131244A (en) * 1978-03-31 1979-10-12 Hitachi Ltd Device for steadily resting hanging tool
DE2917588C2 (de) * 1979-04-30 1983-12-01 Tax, Hans, 8000 München Lasthubsystem
JPS5743279A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Method for detecting position of x-y symmetrical body
US4360304A (en) * 1980-09-26 1982-11-23 Amca International Corporation Extendable crane trolley and method
DE3109784A1 (de) * 1981-03-13 1982-10-14 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum betrieb eines greiferkrans einer verladebruecke zum be- oder entladen eines schiffes
DE3312174C2 (de) * 1983-04-02 1994-02-24 Vulkan Kocks Gmbh Laufkatzen-Seilhubwerk mit Pendeldämpfung
JPS60200385A (ja) * 1984-03-26 1985-10-09 Hitachi Ltd 姿勢判定方式
FI70556C (fi) * 1984-04-09 1986-09-24 Kone Oy Anordning foer vaendande av en last
DE3440013C2 (de) 1984-11-02 1995-10-05 Vulkan Kocks Gmbh Laufkatzenpendeldämpfung
US4753357A (en) * 1985-12-27 1988-06-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Container crane
DE3709514C1 (en) * 1987-03-23 1988-07-14 Ulf Prof Dr Claussen Method for positioning
DE3816988A1 (de) * 1988-05-18 1989-11-30 Tax Ingenieurgesellschaft Mbh Containerkrananlage
US5152408A (en) 1988-05-18 1992-10-06 Hans Tax Container crane installation
FI82435C (fi) * 1988-06-22 1991-03-11 Outokumpu Oy Automatiskt chargeringsorgan.
DE3830429C2 (de) * 1988-09-07 1996-05-30 Rexroth Mannesmann Gmbh Hubvorrichtung für eine an mehreren Hubseilen hängende Last, insbesondere Container-Kran
JP2683075B2 (ja) * 1988-12-23 1997-11-26 キヤノン株式会社 半導体製造装置及び方法
FI90923C (fi) * 1989-12-08 1994-04-11 Kone Oy Menetelmä ja laite kontin paikallistamiseksi nostamista varten
AT402519B (de) * 1990-02-06 1997-06-25 Plasser Bahnbaumasch Franz Kontinuierlich verfahrbare gleisbaumaschine zum verdichten der schotterbettung eines gleises
DE4005066C2 (de) * 1990-02-14 1995-12-07 Bremer Lagerhaus Ges Verfahren zum Steuern des Be- und Entladens eines Container-Fahrzeuges sowie Verwendung eines Vertikal-Entfernungsmessers an einem Spreader
SE470018B (sv) * 1991-05-06 1993-10-25 Bromma Conquip Ab Optiskt avkännings- och styrningssystem
IT1258006B (it) * 1992-01-13 1996-02-20 Gd Spa Sistema e metodo per il prelievo automatico di oggetti
US5202741A (en) * 1992-06-29 1993-04-13 The United States Of America As Represented By The Department Of Energy Active imaging system with Faraday filter
EP0596330B1 (fr) * 1992-11-03 1997-05-28 Siemens Aktiengesellschaft Arrangement pour mesurer les oscillations d'une charge de grue
FI111243B (fi) * 1994-03-30 2003-06-30 Samsung Heavy Ind Menetelmä nosturin käyttämiseksi
DE19615246A1 (de) * 1996-04-18 1997-10-23 Krupp Foerdertechnik Gmbh Photogrammetrie-Verfahren zur dreidimensionalen Verfolgung von bewegten Objekten
US5943476A (en) * 1996-06-13 1999-08-24 August Design, Inc. Method and apparatus for remotely sensing orientation and position of objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087762A1 (fr) * 2000-05-15 2001-11-22 Tax Technical Consultancy Gmbh Procede de correction de l'etat d'un systeme de port de charge

Also Published As

Publication number Publication date
US6182843B1 (en) 2001-02-06
EP0759006A1 (fr) 1997-02-26
WO1995031395A1 (fr) 1995-11-23
DE59507293D1 (de) 1999-12-30
DE4416707A1 (de) 1995-11-16
KR970702816A (ko) 1997-06-10
JPH10500091A (ja) 1998-01-06

Similar Documents

Publication Publication Date Title
EP0759006B1 (fr) Procede et dispositif de correction du trajet cible d'un porte-charge pendant
EP0342655B1 (fr) Installation de grue pour conteneur
EP3280674B1 (fr) Dispositif de transport
DE4329174A1 (de) Steuerungssystem für einen Kabelkran
DE60208952T2 (de) Krane und Verfahren zum Steuern des Kranes
DE102017112765A1 (de) Verfahren und Vorrichtung zum Heben einer Last
DE19807231A1 (de) Frachtladesystem
DE4423797C2 (de) Vorrichtung zum zielgenauen Positionieren und Stapeln von Behältern
EP1519890A1 (fr) Installation de transbordement et procede de chargement et de dechargement de conteneurs sur et hors de navires porte-conteneurs
EP1958915A2 (fr) Dispositif de chargement et/ou déchargement d'une soute ou d'un espace de stockage et procédé de chargement et/ou déchargement d'une soute ou d'un espace de stockage
DE112014003015T5 (de) Mobilkran
EP1390286B1 (fr) Systeme et procede pour mesurer la deviation horizontale d'un support de charge
WO2001087762A1 (fr) Procede de correction de l'etat d'un systeme de port de charge
DE3826274A1 (de) Einrichtung zum be- und entladen von containern an schiffen
DE102018104208A1 (de) Dämpfungsstation für ein Hängebahnsystem sowie Verfahren zum Dämpfen von Schwingungen von Lastgut eines Hängebahnsystems
DE2756931A1 (de) Kran mit wippsystem, geeignet sowohl fuer stueckgut- als auch fuer containerbehandlung
DE4025749A1 (de) Verfahren zum automatischen betreiben eines drehkrans
WO2023151967A1 (fr) Grue
DE2513541A1 (de) Teleskoplagerkran, insbesondere fuer schiffsladeraeume
DE2947955A1 (de) Laserstrahl-positionierungseinrichtung zur positionierung von in einer richtung sich bewegenden objekten, insbesondere eisenbahnfahrzeugen zum umsetzen von behaeltern, wie containern, auf seitlich des fahrzeuges befindliche abstellflaechen, insbesondere unterhalb der oberleitungen fuer elektrische triebfahrzeuge, in bezug auf feststehende objekte und mit der laserstrahl-positionierungseinrichtung ausgeruestetes behaelterumsetzfahrzeug
DE4427468A1 (de) Eine aus zwei Kränen bestehende Krananlage, die auf ein Straßen-, Schienen- oder Binnenwasserfahrzeug aufgebaut ist und die für das Fördern von Containern und Wechselbehältern geeignet ist
DE19713489A1 (de) Verladebrücke und Verfahren zum Umschlagen von Gütern, insbesondere an Schiffsanliegeplätzen
DE1926447A1 (de) Einrichtung zur Vermeidung von Pendel- und/oder Drehbewegungen von an einem Hubwerk haengenden Lasten
DE2213287C3 (de) Laufkatze mit Aufhängung des Lastaufnahmemittels zur Minderung des Lastpendeins
DE112018000580T5 (de) Bewegbare Hebevorrichtung, Anordnung und Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19970224

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 59507293

Country of ref document: DE

Date of ref document: 19991230

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010531

Year of fee payment: 7

Ref country code: DE

Payment date: 20010531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010601

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020510

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021201