EA016412B1 - Способы крекинга сырого продукта с целью получения дополнительных сырых продуктов и способ получения транспортного топлива - Google Patents

Способы крекинга сырого продукта с целью получения дополнительных сырых продуктов и способ получения транспортного топлива Download PDF

Info

Publication number
EA016412B1
EA016412B1 EA200801157A EA200801157A EA016412B1 EA 016412 B1 EA016412 B1 EA 016412B1 EA 200801157 A EA200801157 A EA 200801157A EA 200801157 A EA200801157 A EA 200801157A EA 016412 B1 EA016412 B1 EA 016412B1
Authority
EA
Eurasian Patent Office
Prior art keywords
stream
hydrocarbons
catalytic cracking
fluid
cracking catalyst
Prior art date
Application number
EA200801157A
Other languages
English (en)
Other versions
EA200801157A1 (ru
EA016412B9 (ru
Inventor
Вайджиэн Мо
Виджай Наир
Августинус Вильхельмус Мария Рос
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of EA200801157A1 publication Critical patent/EA200801157A1/ru
Publication of EA016412B1 publication Critical patent/EA016412B1/ru
Publication of EA016412B9 publication Critical patent/EA016412B9/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/24Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by heating with electrical means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

Изобретение предоставляет способ получения сырых продуктов, который включает добычу флюида месторождения из-под земли в процессе термической обработки in situ; разделение флюида месторождения с целью получения жидкого потока и первого газового потока; фракционирование жидкого потока с целью получения одного или нескольких сырых продуктов, и каталитический крекинг сырого продукта, имеющего температуру кипения выше 343°С с целью получения одного или нескольких дополнительных сырых продуктов. Первый газовый поток может содержать олефины. По меньшей мере один из полученных сырых продуктов имеет температуру кипения выше 343°С и по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток. Первый газовый поток может содержать олефины. По меньшей мере один из сырых продуктов имеет температуру кипения выше 343°С и/или по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток.

Description

(57) Изобретение предоставляет способ получения сырых продуктов, который включает добычу флюида месторождения из-под земли в процессе термической обработки ίη §йи; разделение флюида месторождения с целью получения жидкого потока и первого газового потока; фракционирование жидкого потока с целью получения одного или нескольких сырых продуктов, и каталитический крекинг сырого продукта, имеющего температуру кипения выше 343 °С с целью получения одного или нескольких дополнительных сырых продуктов. Первый газовый поток может содержать олефины. По меньшей мере один из полученных сырых продуктов имеет температуру кипения выше 343°С и по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток. Первый газовый поток может содержать олефины. По меньшей мере один из сырых продуктов имеет температуру кипения выше 343°С и/или по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток.
Область техники, к которой относится изобретение
Изобретение относится, главным образом, к способам и системам для получения углеводородов, водорода, и/или других продуктов из различных подземных месторождений, таких как месторождения, содержащие углеводороды.
Уровень техники
Углеводороды, полученные из подземных месторождений, часто используются в качестве энергетических ресурсов как сырье и в качестве потребительских товаров. Проблемы истощения доступных углеводородных ресурсов и озабоченность в связи с общим ухудшением качества полученных углеводородов стимулировали разработку способов для более эффективного извлечения, переработки и/или применения имеющихся углеводородных ресурсов. С целью удаления углеводородов из подземных месторождений могут быть использованы процессы ίη βίΐιι. Могут потребоваться изменения химических и/или физических характеристик углеводородного материала в подземных месторождениях с целью обеспечения более легкого удаления углеводородного материала из подземного месторождения. Химические и физические изменения могут включать процессы ίη βίΐιι. в которых образуются удаляемые флюиды, изменения состава, изменения растворимости, изменения плотности, фазовые изменения, и/или изменения вязкости углеводородного материала в месторождении. Флюид может представлять собой (но не ограничивается указанным), газ, жидкость, эмульсию, суспензию, и/или поток твердых частиц, который имеет характеристики течения, аналогичные потоку жидкости.
Флюиды месторождения, полученные из подземных формаций с использованием способа термической обработки ίη вйи, можно продавать и/или перерабатывать с целью получения промышленных продуктов. Флюиды месторождения, полученные способом термической обработки ίη вйи, могут иметь свойства и/или состав, отличающиеся от показателей флюидов месторождений, полученных в традиционных способах добычи. Флюиды месторождения, полученные из подземных месторождений с использованием способа термической обработки ίη вйи, могут не соответствовать промышленным стандартам на транспортировку и/или на промышленное применение. Таким образом, существует потребность в улучшенных способах и системах для обработки флюидов месторождений, полученных из различных формаций, содержащих углеводороды.
Краткое изложение изобретения
Описанные здесь варианты осуществления относятся, главным образом, к способам обработки флюидов месторождений, полученных из подземных формаций.
В некоторых вариантах осуществления это изобретение предоставляет: добычу флюида месторождения из-под земли в процессе пиролиза ίη βίΐιι при термической обработке; разделение флюида месторождения с целью получения жидкого потока и первого газового потока, в котором первый газовый поток содержит олефины; фракционирование жидкого потока с целью получения одного или нескольких сырых продуктов, при котором по меньшей мере один из сырых продуктов имеет распределение температур кипения от 38 до 343 °С; и каталитический крекинг сырого продукта, имеющего распределение температур кипения от 38 до 343°С с целью получения одного или нескольких дополнительных сырых продуктов, в котором по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток, причем этот газовый поток имеет температуру кипения самое большее 38°С, и распределение температур кипения определяется по методу Л8ТМ Ό5307.
В некоторых вариантах осуществления это изобретение обеспечивает способ получения одного или нескольких сырых продуктов, который включает в себя добычу флюида подземного месторождения с использованием способа термической обработки ίη βίΐιι; разделение флюида месторождения с целью получения жидкого потока; каталитический крекинг жидкого потока в первой системе каталитического крекинга путем контактирования жидкого потока с катализатором крекинга с целью получения потока сырого продукта и отработанного катализатора крекинга; регенерацию отработанного катализатора крекинга с целью получения регенерированного катализатора крекинга; каталитический крекинг углеводородного потока бензина во второй системе каталитического крекинга путем контактирования углеводородного потока бензина с регенерированным катализатором крекинга для того, чтобы получить сырой поток олефинов, содержащий углеводороды с числом атомов углерода по меньшей мере два, и использованный регенерированный катализатор крекинга; и выделение олефинов из сырого потока олефинов, в котором олефины имеют число атомов углерода от 2 до 5; и доставку использованного регенерированного катализатора крекинга из второй системы каталитического крекинга в первую систему каталитического крекинга.
В дополнительных вариантах осуществления признаки конкретных вариантов могут быть объединены с признаками из других вариантов осуществления. Например, признаки одного варианта осуществления могут быть объединены с признаками из любых других вариантов.
В дополнительных вариантах осуществления обработку подземного месторождения проводят с использованием любых способов, систем или нагревателей, которые описаны в этом изобретении.
В дополнительных вариантах осуществления к описанным здесь конкретным вариантам могут быть добавлены дополнительные признаки.
- 1 016412
Краткое описание чертежей
Преимущества настоящего изобретения могут стать очевидными для специалистов в этой области техники с помощью следующего подробного описания и со ссылкой на сопроводительные чертежи, в которых на фиг. 1 представлен схематичный чертеж осуществления части системы термической обработки ίη 8Йи для обработки месторождения, содержащего углеводороды;
на фиг. 2 дано схематическое представление осуществления системы для обработки смеси, полученной в способе термической обработки ίη δίΐιι;
на фиг. 3 дано схематическое представление осуществления системы для обработки жидкого потока, полученного в способе термической обработки ίη δίΐιι.
Хотя в этом изобретении допускаются различные модификации и альтернативные формы, его конкретные варианты осуществления продемонстрированы с помощью примеров на чертежах и могут быть подробно описаны в этом изобретении. Чертежи могут быть выполнены не в масштабе. Однако следует понимать, что эти чертежи и подробное описание изобретения не предназначены для ограничения изобретения какой-либо его конкретной описанной формой, напротив, намерением является защита всех модификаций, эквивалентов и альтернатив, входящих в замысел и объем настоящего изобретения, которое определено в прилагаемой формуле изобретения.
Подробное описание
Следующее ниже описание, в общем, относится к системам и способам обработки углеводородов в месторождениях. Такие месторождения можно обрабатывать для того, чтобы получить углеводородные продукты, водород и другие продукты.
Следующее ниже описание, в общем, относится к системам и способам обработки флюида месторождения, добытого из месторождения, содержащего углеводороды, с использованием способа термической обработки ίη δίΐιι. Месторождения, содержащие углеводороды, можно обрабатывать для того, чтобы получить углеводородные продукты, водород, метан и другие продукты.
Термин углеводороды обычно определяется как молекулы, состоящие, главным образом, из атомов углерода и водорода. Кроме того, углеводороды могут включать в себя другие элементы, такие как галогены, металлические элементы, азот, кислород и/или серу (но не ограничиваются указанным). Углеводороды могут представлять собой кероген, битум, пиробитум, нефти, природные минеральные воски и асфальтиты (но не ограничиваются указанным). Углеводороды могут быть расположены в минеральных матрицах земли или вблизи них. Матрицы могут включать в себя (но не ограничиваются указанным) осадочные горные породы, песчаники, силицилиты, карбонаты, диатомиты и другие пористые среды. Углеводородные флюиды представляют собой флюиды, которые включают углеводороды. Углеводородные флюиды могут включать, охватывать или быть увлечёнными в неуглеводородные флюиды, такие как водород, азот, монооксид углерода, диоксид углерода, сероводород, вода и аммиак.
Формация включает в себя один или несколько слоев, содержащих углеводороды, один или несколько неуглеводородных слоев, перекрывающие породы и/или подстилающие породы. Перекрывающие породы и/или подстилающие породы включают в себя один или несколько различных типов непроницаемых материалов. Например, перекрывающие породы и/или подстилающие породы могут включать горную породу, сланец, глинистую породу или влажный/водонепроницаемый карбонат. В некоторых вариантах осуществления способа термической обработки ίη δίΐιι перекрывающие породы и/или подстилающие породы могут включать углеводородсодержащий слой или углеводородсодержащие слои, которые являются относительно непроницаемыми и не подвергаются нагреванию в ходе способа термической обработки ίη δίΐιι. что приводит к значительным изменениям характеристик углеводородсодержащих слоев перекрывающих пород и/или подстилающих пород. Например, подстилающие породы могут содержать сланец или глинистую породу, но подстилающие породы препятствуют нагреванию до температур пиролиза в ходе способа термической обработки ίη 8Йи. В некоторых случаях перекрывающие породы и/или подстилающие породы в некоторой степени могут обладать проницаемостью.
Термин флюиды месторождения относится к флюидам, находящимся в формации, и они могут включать в себя пиролизный флюид, синтез-газ, мобилизованный флюид, флюид висбрекинга и воду (водяной пар). Флюиды месторождения могут включать в себя углеводородные флюиды, а также неуглеводородные флюиды. Термин мобилизованный флюид относится к флюидам в месторождении, содержащем углеводороды, которые обладают текучестью в результате термической обработки формации. Термин флюид висбрекинга относится к флюиду, который имеет пониженную вязкость в результате термической обработки формации.
Термин добытые флюиды относится к флюидам месторождения, удаленным из формации.
Термин способ превращения ίη Чю относится к способу нагрева формации, содержащей углеводороды, с помощью источников тепла с целью повышения температуры по меньшей мере части месторождения, выше температуры пиролиза с тем, чтобы пиролизный флюид образовался в формации.
Термин число атомов углерода относится к числу атомов углерода в молекуле. Углеводородный флюид может включать в себя разнообразные углеводороды с различным числом атомов углерода. Углеводородный флюид может быть описан с помощью распределения атомов углерода. Число атомов угле
- 2 016412 рода и/или распределение атомов углерода можно определить с помощью распределения истинных температур кипения и/или газожидкостной хроматографии.
Термин источник тепла означает любую систему доставки тепла по меньшей мере к части формации, главным образом, за счет теплопроводности и/или радиационной теплопередачи. Например, источник тепла может включать электрические нагреватели, такие как изолированный проводник, удлиненный элемент и/или проводник, расположенный в трубопроводе. Кроме того, источник тепла может включать системы, которые генерируют тепло за счет сжигания топлива снаружи или внутри формации. Эти системы могут быть поверхностными горелками, скважинными газовыми горелками, беспламенными распределенными камерами сгорания и камерами сгорания естественного распределения. В некоторых вариантах осуществления тепло, подведенное (или генерированное) к одному или нескольким источникам тепла, может поступать из других источников энергии. Другие источники энергии могут нагревать месторождение непосредственно, или энергия может быть приложена к теплопередающей среде, которая непосредственно или косвенно нагревает формацию. Следует понимать, что в одном или нескольких источниках тепла, которые передают тепло в формацию, могут применяться различные источники энергии. Таким образом, например, для данной формации некоторые источники тепла могут подавать тепло от нагревателей электрического сопротивления, некоторые источники тепла могут обеспечивать тепло за счет горения, и некоторые источники тепла могут обеспечивать тепло от одного или нескольких других источников энергии (например, химические реакции, солнечная энергия, ветровая энергия, биомасса или другие возобновляемые источники энергии). Химическая реакция может включать экзотермические реакции (например, реакция окисления). Кроме того, источник тепла может включать нагреватель, который предоставляет тепло в зону, ближайшую и/или окружающую местонахождение нагревания, такое как нагревающая скважина.
Нагреватель представляет собой любую систему или источник тепла для генерирования тепла в скважине вблизи от области ствола скважины. Нагреватели могут быть (но не ограничиваются указанным) электрическими нагревателями, горелками, камерами сгорания, где происходит взаимодействие с внутренним материалом или с добытым из месторождения, и/или их сочетания.
Термин способ термической обработки ίη δίΐιι относится к способу нагревания формации, содержащей углеводороды, источниками тепла для того, чтобы повысить температуру по меньшей мере в части формации выше той температуры, при которой углеводородсодержащий материал дает мобилизованный флюид, подвергается висбрекингу и/или пиролизу таким образом, что в формации образуются мобилизованные флюиды, флюиды висбрекинга и/или пиролизные флюиды.
Термин ствол скважины относится к отверстию в формации, полученному путем бурения или внедрения трубопровода в формацию. Ствол скважины может иметь практически круглое поперечное сечение или другую форму поперечного сечения. Используемые здесь термины скважина и отверстие, при рассмотрении отверстия в формации, могут быть использованы попеременно с термином ствол скважины.
Пиролиз представляет собой разрыв химических связей благодаря приложению тепла. Например, пиролиз может включать превращение соединения в одно или несколько других соединений под действием одного тепла. Это тепло может быть подведено к участку формации для того, чтобы вызвать пиролиз. В некоторых месторождениях части формации и/или другие материалы в месторождении могут способствовать пиролизу за счет их каталитической активности.
Пиролизные флюиды или продукты пиролиза относятся к флюидам, добытым существенно в процессе пиролиза углеводородов. Флюиды, добытые с помощью реакций пиролиза, могут смешиваться с другими флюидами в месторождении. Эта смесь может рассматриваться как пиролизный флюид или пиролизный продукт. Используемый здесь термин зона пиролиза относится к объему формации (например, относительно проницаемые месторождения, такие как формации битуминозных песчаников), в которой происходят реакции с образованием пиролизного флюида.
Крекинг относится к процессу, который включает в себя разложение и молекулярную рекомбинацию органических соединений с образованием большего числа молекул, чем в начале процесса. При крекинге происходит ряд реакций, сопровождающихся переносом атомов водорода между молекулами. Например, нафта может подвергаться реакции термического крекинга с образованием этилена и Н2.
Термин висбрекинг относится к распутыванию молекул во флюиде в ходе термической обработки и/или к разрушению больших молекул на меньшие молекулы в ходе термической обработки, что приводит к снижению вязкости флюида.
Конденсируемые углеводороды представляют собой углеводороды, которые конденсируются при 25°С и абсолютном давлении одна атмосфера. Конденсируемые углеводороды могут включать смеси углеводородов, имеющих число атомов больше чем 4. Неконденсируемые углеводороды представляют собой углеводороды, которые не конденсируются при 25°С и абсолютном давлении одна атмосфера. Неконденсируемые углеводороды могут включать углеводороды с числом атомов углерода меньше чем 5.
Термин закупоривание относится к затруднению и/или ингибированию потока одной или нескольких композиций через технологический резервуар или трубопровод.
Олефины представляют собой молекулы, которые включают ненасыщенные углеводороды, со
- 3 016412 держащие одну или несколько неароматических углерод-углеродных двойных связей.
Термин углеводороды бензина относится к углеводородам, имеющим температуру кипения в диапазоне от 32°С (90°Т) до приблизительно 204°С (400°Т). Углеводороды бензина включают (но не ограничиваются указанным) прямогонный бензин, нафту, бензин термического или каталитического флюидизированного крекинга, бензин процессов висбрекинга и коксования. Содержание углеводородов бензина определяется стандартным методом Л8ТМ Ό2887.
Термин нафта относится к углеводородным компонентам с распределением температур кипения между 38 и 200°С при давлении 0,101 МПа. Содержание нафты определяется по американскому стандарту испытаний и материалов (Л8ТМ), метод Ό5307.
Керосин относится к углеводородам с распределением температур кипения между 204 и 260°С при 0,101 МПа. Содержание керосина определяется стандартным методом Л8ТМ Ό2887.
Дизельная фракция относится к углеводородам с распределением температур кипения между 260°С и 343°С (500-650°Т) при 0,101 МПа. Содержание углеводородов дизельной фракции определяется стандартным методом Л8ТМ Ό2887.
Термин УСО или вакуумный газойль относится к углеводородам с распределением температур кипения между 343 и 538°С при 0,101 МПа. Содержание УСО определяется стандартным методом Л8ТМ Ό5307.
Облагораживание относится к улучшению качества углеводородов. Например, облагораживание тяжелых углеводородов может привести к снижению удельного веса (в градусах ΑΡΙ) тяжелых углеводородов.
Удельный вес в градусах ΑΡΙ относится к показателю ΑΡΙ при температуре 15,5°С (60°Р). Показатель ΑΡΙ определяется стандартным методом А8ТМ Ό6822.
Термин Периодическая таблица относится к Периодической системе элементов, которая определена согласно Международной организации чистой и прикладной химии (ИЮПАК), в октябре 2005.
Металл столбца X или металлы столбца X относятся к одному или нескольким металлам столбца X Периодической системы элементов и/или одному или нескольким соединениям одного или нескольких металлов из столбца X Периодической системы элементов, где X соответствует номеру столбца (например, 1-12) периодической системы элементов. Например, металлы столбца 6 относятся к металлам из столбца 6 Периодической системы элементов и/или соединениям одного или нескольких металлов из столбца 6 Периодической системы элементов.
Элемент столбца X или элементы столбца относится к одному или нескольким элементам столбца X Периодической системы элементов, и/или одному или нескольким соединениям одного или нескольких элементов столбца X Периодической системы элементов, где X соответствует номеру столбца (например, 13-18) Периодической системы элементов. Например, элементы столбца 15 относятся к элементам из столбца 15 Периодической системы элементов и/или соединениям одного или нескольких элементов из столбца 15 Периодической системы элементов.
В рамках этого изобретения масса металла из Периодической системы элементов, масса соединения металла из Периодической системы элементов, масса элемента из Периодической системы элементов, или масса соединения элемента из Периодической системы элементов рассчитывается как масса металла или масса элемента. Например, если используется 0,1 г МоО3 в 1 г катализатора, то расчетная масса металлического молибдена в катализаторе составляет 0,067 г на 1 г катализатора.
Термин облагораживание относится к улучшению качества углеводородов. Например, облагораживание тяжелых углеводородов может привести к снижению удельного веса (в градусах ΑΡΙ) тяжелых углеводородов.
Термин рецикловый газойль относится к смеси легкого рециклового газойля и тяжелого рециклового газойля. Легкий рецикловый газойль относится к углеводородам, имеющим распределение температур кипения между 430°Р (221°С) и 650°Р (343°С), которые образуются в флюидизированной системе каталитического крекинга. Содержание легкого рециклового газойля определяется по методу Α§ТМ Ό5307. Тяжелый рецикловый газойль относится к углеводородам, имеющим распределение температур кипения между 650°Р (343°С) и 800°Р (427°С), которые образуется в флюидизированной системе каталитического крекинга. Содержание тяжелого рециклового газойля определяется по методу Α§ТМ Ό5307.
Октановое число представляет собой рассчитанный численный показатель антидетонационных свойств моторного топлива по сравнению со стандартным образцом топлива. Рассчитанное октановое число определяется по методу Α§ТМ Ό6730.
Термин ценосферы относится к полым частицам, которые образуются в термических процессах при высокой температуре, когда расплавленные компоненты раздуваются, подобно воздушному шару, за счет испарения органических компонентов.
Термин физическая устойчивость относится к способности флюида формации транспортироваться без проявления фазового разделения или флокуляции. Физическая устойчивость определяется по методу Α§ТМ Ό7060.
Химическая устойчивость означает способность флюида формации транспортироваться без взаимодействия компонентов флюида формации с образованием полимеров и/или композиций, которые за
- 4 016412 купоривают трубопроводы, клапаны и/или сосуды.
На фиг. 1 представлен схематичный чертеж осуществления части системы термической обработки ίη Ши для обработки месторождения, содержащего углеводороды. Система термической обработки ίη Ши может включать барьерные скважины 200. Барьерные скважины используются с целью формирования барьера вокруг участка обработки. Этот барьер препятствует поступлению и/или вытеканию флюида внутрь и/или из участка обработки. Барьерные скважины включают (но не ограничиваются указанным) обезвоживающие скважины, вакуумные скважины, захватывающие скважины, нагнетательные скважины, скважины с цементным раствором, замораживаемые скважины или их сочетания. В некоторых вариантах осуществления барьерные скважины 200 представляют собой обезвоживающие скважины. Обезвоживающие скважины могут удалять жидкую воду и/или предотвращать поступление жидкой воды в часть месторождения, которая будет нагреваться, или в нагреваемую формацию. В варианте осуществления, изображенном на фиг. 1, показаны барьерные скважины 200, тянущиеся только вдоль одной стороны источников тепла 202, однако обычно барьерные скважины окружают все используемые источники тепла 202 или источники, которые будут использоваться для нагревания участка обработки месторождения.
Источники тепла 202 расположены по меньшей мере в части месторождения. Источники тепла 202 могут включать нагреватели, такие как изолированные проводники, нагреватели типа проводник в трубке, поверхностные горелки, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники тепла 202 могут включать другие типы нагревателей. Источники тепла 202 обеспечивают теплом по меньшей мере часть месторождения с целью нагревания углеводородов в формации. Энергия может поступать в источники тепла 202 по линиям питания 204. Линии питания 204 могут быть структурно различными в зависимости от типа источника тепла или источников тепла, применяемых для нагревания формации. Линии питания 204 для источников тепла могут проводить электричество для электрических нагревателей, могут транспортировать топливо для камер сгорания или могут транспортировать теплообменный флюид, который циркулирует в формации.
Когда формация нагревается, тепло, подведенное в формацию, может вызвать расширение и геомеханическое движение формации. Компьютерное моделирование может имитировать реакцию формации на нагревание. Компьютерное моделирование может быть использовано для разработки системы размещения и временной последовательности для активации источников тепла в формации таким образом, чтобы геомеханическое движение формации не оказало отрицательного влияния на функционирование источников тепла, продуктивных скважин и другого оборудования в формации.
Нагревание формации может вызвать увеличение проницаемости и/или пористости формации. Увеличение проницаемости и/или пористости может быть результатом уменьшения массы формации из-за испарения и удаления воды, удаления углеводородов и/или создания трещин. Флюид может свободнее протекать в нагретой части месторождения благодаря повышенной проницаемости и/или пористости формации. Флюид в нагретой части формации может передвигаться на значительное расстояние через месторождение по причине повышенной проницаемости и/или пористости. Это значительное расстояние может превышать 1000 м в зависимости от различных факторов, таких как проницаемость формации, свойства флюида, температура формации и градиент давления, обеспечивающий передвижение флюида. Способность флюида преодолевать значительное расстояние в месторождении позволяет размещать продуктивные скважины 206 в относительном удалении от месторождения.
Продуктивные скважины 206 применяются для удаления флюида месторождения из формации. В некоторых вариантах осуществления продуктивная скважина 206 включает в себя источник тепла. Источник тепла в продуктивной скважине может нагревать одну или несколько частей месторождения в продуктивной скважине или вблизи нее. В некоторых вариантах осуществления способа термической обработки ίη Ши количество тепла, подведенного в формацию из продуктивных скважин на метр продуктивной скважины, меньше количества тепла, подведенного в формацию из источника тепла, который нагревает формацию, на метр источника тепла. Тепло, подведенное в формацию из продуктивных скважин, может повысить проницаемость формации, близлежащей к продуктивной скважине, за счет испарения и удаления жидкой фазы флюида в смежной продуктивной скважине и/или за счет повышения проницаемости формации, близлежащей к продуктивной скважине за счет образования макротрещин и/или микротрещин.
В продуктивной скважине может быть расположено несколько источников тепла. Источник тепла в нижней части продуктивной скважины может быть отключен, когда наложение тепла из соседних источников тепла обеспечивает достаточный нагрев формации, чтобы противодействовать преимуществам, предоставляемым при нагревании формации с помощью продуктивной скважины. В некоторых вариантах осуществления источник тепла в верхней части продуктивной скважины может оставаться после дезактивации источника тепла в нижней части продуктивной скважины. Источник тепла в верхней части скважины может предотвращать конденсацию и дефлегмацию флюида формации.
В некоторых вариантах осуществления источник тепла в продуктивной скважине 206 позволяет удалять паровую фазу флюида формации из месторождения. За счет предоставления нагрева по всей продуктивной скважине возможно: (1) предотвращение конденсации и/или дефлегмации полученного
- 5 016412 флюида, когда такой полученный флюид перемещается в продуктивной скважине ближайшей к перекрывающей породе, (2) повышение подвода тепла внутрь формации, (3) увеличение производительности продуктивной скважины по сравнению с такой же скважиной без источника тепла, (4) предотвращение конденсации соединений с повышенным числом атомов углерода (С6 и выше) в продуктивной скважине, и/или (5) увеличение проницаемости формации в продуктивной скважине или вблизи нее.
Давление под землей в формации может соответствовать давлению флюида, генерируемому в месторождении. Когда температура нагретой части формации повышается, давление в этой нагретой части может увеличиваться в результате повышенной генерации флюида и испарения воды. Удаление флюида из формации с контролируемой скоростью может позволить регулировать давление в месторождении. Давление в месторождении можно определять в ряде различных мест, таких как вблизи или внутри продуктивной скважины, вблизи или внутри источников тепла или в контрольной скважине.
В некоторых месторождениях, содержащих углеводороды, добыча углеводородов из месторождения задерживается, пока по меньшей мере часть углеводородов в формации не подвергнется пиролизу. Флюид месторождения может добываться из формации, когда флюид месторождения имеет заданное качество. В некоторых вариантах осуществления это заданное качество включает удельный вес в градусах ΑΡΙ, по меньшей мере приблизительно 20°, 30° или 40° (т.е. 0,934; 0,8762 или 0,8251). Задержка добычи до момента, когда по меньшей мере часть углеводородов пиролизуется, может повысить степень превращения тяжелых углеводородов в легкие углеводороды. Задержка начальной добычи может свести к минимуму добычу тяжелых углеводородов из месторождения. При добыче значительного количества тяжелых углеводородов может потребоваться дорогостоящее оборудование и/или снижается срок службы производственного оборудования.
В некоторых месторождениях, содержащих углеводороды, углеводороды в формации могут нагреваться до температуры пиролиза до генерирования существенной проницаемости в нагретой части формации. Начальное отсутствие проницаемости может задерживать транспорт генерированных флюидов к продуктивным скважинам 206. В ходе начального нагрева может повыситься давление флюида в формации, ближайшей к источникам тепла 202. Повышенное давление флюида может сбрасываться, контролироваться, изменяться и/или регулироваться вследствие одного или нескольких источников тепла 202. Например, выбранные источники тепла 202 или отдельные скважины для выпуска давления могут включать предохранительные клапаны по давлению, которые обеспечивают удаление некоторой части флюида из месторождения.
В некоторых вариантах осуществления можно допустить повышение давления, генерированного за счет расширения пиролизных флюидов или других флюидов, генерированных в месторождении, несмотря на то что еще не образовался открытый проход к продуктивным скважинам 206 или любым другим колодцам для сброса давления в месторождении. Можно допустить повышение давления до литостатического давления. Трещины в формации, содержащей углеводороды, могут образоваться, когда давление флюида приближается к литостатическому. Например, трещины могут образоваться от источников тепла 202 к продуктивным скважинам 206 в нагретой части формации. За счет генерации трещин в нагретой части может произойти частичный сброс давления в части формации. Давление в месторождении следует поддерживать ниже заданного давления для того, чтобы задержать нежелательную добычу, образование трещин в перекрывающей породе или в подстилающей породе, и/или коксование углеводородов в месторождении.
После достижения температуры пиролиза и обеспечения добычи из месторождения давление в формации можно варьировать с целью изменения и/или регулирования состава добываемого флюида месторождения для того, чтобы контролировать процентную долю конденсируемого флюида по сравнению с неконденсируемым флюидом во флюиде месторождения, и/или для регулирования удельного веса (в градусах ΑΡΙ) добываемого флюида месторождения. Например, снижение давления может привести к увеличению добычи конденсируемых компонентов флюида. Конденсируемые компоненты флюида могут содержать повышенный процент олефинов.
В некоторых вариантах способа термической обработки ίη δίΐιι можно поддерживать достаточно высокое давление в формации для того, чтобы способствовать добыче флюида месторождения с удельным вес больше чем 20° ΑΡΙ (т.е. меньше чем 0,934). Поддерживание повышенного давления в формации может задерживать оседание формации в ходе термической обработки ίη δίΐιι. Поддерживание повышенного давления может облегчать добычу парообразной фазы флюидов из месторождения. Добыча парообразной фазы может способствовать уменьшению размера коллекторных трубопроводов, используемых для транспорта флюидов, добытых из месторождения. Поддерживание повышенного давления может снизить или исключить потребность сжатия флюидов месторождения на поверхности с целью транспортирования флюидов по коллекторным трубопроводам к установкам для переработки.
Поддерживание повышенного давления в нагретой части месторождения может обеспечить неожиданное увеличение добычи углеводородов повышенного качества, имеющих относительно небольшую молекулярную массу. Можно поддерживать давление таким образом, чтобы добытый флюид месторождения содержал минимальное количество соединений с числом атомов углерода, выше заданного. Заданное число атомов углерода может составлять самое большее 25, самое большее 20, самое большее 12 или
- 6 016412 самое большее 8. Некоторые соединения с большим числом атомов углерода могут увлекаться с паровой фазой формации и могут удаляться из формации вместе с парами. Поддерживание повышенного давления в формации может задерживать унос соединений с большим числом атомов углерода и/или соединений полициклических углеводородов вместе с парами. Соединения с большим числом атомов углерода и/или соединения полициклических углеводородов могут оставаться в жидкой фазе месторождения в течение длительных периодов времени. Эти длительные периоды времени могут обеспечить достаточную степень пиролиза таких соединений с образованием соединений с меньшим числом атомов углерода.
Полагают, что генерация углеводородов с относительно низкой молекулярной массой протекает, отчасти, благодаря автогенной генерации водорода и его реакциям в части месторождения, содержащей углеводороды. Например, поддерживание повышенного давления может форсировать генерирование водорода в процессе пиролиза в жидкой фазе внутри месторождения. Нагревание части формации до температуры, соответствующей пиролизу, может вызвать пиролиз углеводородов в месторождении с генерацией жидкофазных флюидов пиролиза. Генерированные жидкофазные компоненты флюидов пиролиза могут включать двойные связи и/или радикалы. Водород (Н2) в жидкой фазе может уменьшать содержание двойных связей в генерированных пиролизных флюидах, таким образом, снижается вероятность полимеризации или образования соединений с длинной цепочкой из генерированных пиролизных флюидов. Кроме того, Н2 также может нейтрализовать радикалы в генерированных пиролизных флюидах. Следовательно, Н2 в жидкой фазе может задерживать взаимодействие генерированных пиролизных флюидов между собой и/или с другими соединениями в месторождении.
Флюиды месторождения, добытые из продуктивных скважин 206, могут транспортироваться по коллекторным трубопроводам 208 к установкам для переработки 210. Кроме того, флюиды месторождения могут добываться из источников тепла 202. Например, флюиды могут добываться из источников тепла 202 с целью регулирования давления в месторождении, расположенном вблизи источников тепла. Флюиды, добытые из источников тепла 202, могут транспортироваться по системе труб или сети трубопроводов в коллекторный трубопровод 208, или добытые флюиды могут транспортироваться по системе труб или сети трубопроводов непосредственно в установки для переработки 210. Установки для переработки 210 могут включать в себя блоки сепарирования, технологические установки, установки облагораживания, топливные элементы, турбины, контейнеры для хранения и/или другие системы и установки для переработки добытых флюидов месторождения. В установках для переработки может быть получено транспортное топливо по меньшей мере из части углеводородов, добытых из месторождения.
В некоторых вариантах осуществления, флюиды месторождения, добытые по способу термической обработки ίη 8Йи, направляются в сепаратор для расщепления флюида месторождения на один или несколько жидких потоков способа термической обработки ίη δίΐιι и/или на один или несколько газовых потоков способа термической обработки ίη δίΐιι. Эти жидкие потоки и газовые потоки в дальнейшем могут перерабатываться с целью получения желательных продуктов.
Нагревание части подземного месторождения может вызвать изменения минеральной структуры месторождения и образование частиц. Эти частицы могут быть диспергированы и/или могут частично раствориться во флюиде месторождения. Эти частицы могут включать металлы и/или соединения металлов из столбцов 1-2 и столбцов 4-13 Периодической системы элементов (например, алюминий, кремний, магний, кальций, калий, натрий, бериллий, литий, хром, магний, медь, цирконий и так далее). В некоторых вариантах осуществления частицы включают ценосферы. В некоторых вариантах осуществления частицы покрыты, например, углеводородами из флюида месторождения. В некоторых вариантах эти частицы включают цеолиты.
Концентрация частиц во флюидах месторождения может изменяться от 1 до 3000 ч./млн, от 50 до 2000 ч./млн, или от 100 до 1000 ч./млн. Размер частиц может изменяться от 0,5 до 200 микрометров (мкм), от 5 до 150 мкм, от 10 до 100 мкм или от 20 до 50 мкм.
В некоторых вариантах флюиды месторождения могут содержать распределенные частицы. Эти распределенные частицы могут иметь тримодальное или бимодальное распределение (но не ограничиваются указанным). Например, частицы с тримодальным распределением могут содержать от 1 до 50 ч,/млн частиц с размером от 5 до 10 мкм, от 2 до 2000 ч./млн частиц с размером от 50 до 80 мкм, и от 1 до 100 ч./млн частиц с размером между 100 и 200 мкм. Частицы с бимодальным распределением могут содержать от 1 до 60 ч./млн частиц с размером между 50 и 60 мкм и от 2 до 2000 ч./млн частиц с размером между 100 и 200 мкм.
В некоторых вариантах осуществления частицы могут контактировать с флюидом месторождения и катализировать образование соединений, имеющих число атомов углерода самое большее 25, самое большее 20, самое большее 12 или самое большее 8. В некоторых вариантах частицы цеолита могут способствовать окислению и/или восстановлению флюидов месторождения с образованием соединений, которые обычно не встречаются во флюидах, добытых с использованием традиционных способов добычи. Контакт флюида месторождения с водородом в присутствии частиц цеолита может катализировать гидрирование соединений с двойными связями во флюиде месторождения.
В некоторых вариантах осуществления все частицы (или их часть) в добытом флюиде могут быть
- 7 016412 удалены из добытого флюида. Эти частицы могут быть удалены с использованием центрифуги, путем промывки, путем кислотной промывки, с помощью фильтрации, за счет электростатического осаждения, путем пенной флотации и/или с помощью способов сепарирования другого типа.
Флюиды месторождения, добытые по способу термической обработки ίη 8Йи, могут направляться в сепаратор для расщепления потока на жидкий поток способа термической обработки ίη δίΐιι и газовый поток способа термической обработки ίη δίΐιι. Этот жидкий поток и газовый поток в дальнейшем могут перерабатываться с целью получения желательных продуктов. Когда жидкий поток обрабатывают с использованием общеизвестных условий с целью получения промышленных продуктов, технологическому оборудованию может быть нанесён ущерб. Например, технологическое оборудование может засориться. Примеры процессов для получения промышленных продуктов включают (но не ограничиваются указанным) алкилирование, дистилляцию, каталитический риформинг, гидрокрекинг, гидроочистку, гидрогенизацию, гидрообессеривание, каталитический крекинг, замедленное коксование, газификацию или их сочетания. Процессы для получения промышленных продуктов описаны в книге Кейшпд Ргосс55С5 2000, НукгосагЬоп Ргосеззшд, Си1Г РиЫщЫпд Со., стр. 87-142, которая включена в изобретение в качестве ссылки. Примеры промышленных продуктов включают (но не ограничиваются указанным) дизельную фракцию, бензин, газообразные углеводороды, топливо для реактивных двигателей, керосин, нафту, вакуумный газойль (УСО) или их смеси.
Технологическое оборудование может быть закупорено или загрязнено под действием композиций в способе термической обработки жидкости. Закупоривающие композиции могут включать (но не ограничиваются указанным) углеводороды и/или твердые вещества, добытые в способе термической обработки ίη δίΐιι. Композиции, которые вызывают закупоривание, могут образоваться в ходе нагревания жидкости в способе термической обработки ίη δίΐιι. Эти композиции могут прилипать к деталям оборудования и задерживать течение жидкого потока через установки переработки.
Твердые вещества, которые вызывают закупоривание, могут включать (но не ограничиваются указанным) металлоорганические соединения, неорганические соединения, минералы, минеральные соединения, ценосферы, кокс, полукокс и/или их смеси. Частицы твердых веществ могут иметь такой размер, что традиционными способами фильтрации нельзя удалить эти твердые вещества из жидкого потока. Углеводороды, которые вызывают закупоривание, могут включать (но не ограничиваются указанным) углеводороды, которые содержат гетероатомы, ароматические углеводороды, циклические углеводороды, циклические диолефины и/или ациклические диолефины. В некоторых вариантах осуществления твердые вещества и/или углеводороды, присутствующие в жидкости способа термической обработки ίη 811и, которые вызывают закупоривание, обладают частичной растворимостью или нерастворимы в жидкости способа термической обработки ίη зйи. В некоторых вариантах осуществления традиционная фильтрация жидкого потока до нагревания или в ходе нагревания является недостаточной и/или неэффективной для удаления всех или части композиций, которые вызывают закупоривание технологического оборудования.
В некоторых вариантах осуществления, закупоривающие композиции, по меньшей мере, частично удаляются из жидкого потока путем промывки и/или обессоливания жидкого потока. В некоторых вариантах осуществления закупоривание технологического оборудования предотвращается с помощью фильтрации по меньшей мере части жидкого потока через нанофильтрационную систему. В некоторых вариантах осуществления закупоривание технологического оборудования предотвращается путем гидроочистки по меньшей мере части жидкого потока. В некоторых вариантах осуществления по меньшей мере часть жидкого потока подвергается нанофильтрации и затем подвергается гидроочистке с целью удаления композиций, которые могут вызывать закупоривание и/или загрязнение технологического оборудования. Жидкий поток после гидроочистки и/или нанофильтрации может быть обработан дополнительно для того, чтобы получить промышленные продукты. В некоторых вариантах осуществления в жидкий поток добавляются очищающие добавки, которые предотвращают закупоривание технологического оборудования. Эти очищающие добавки описаны в патентах США №: 5648305 (выдан Ман^ПеМ и др.); 5282957 (ОТи§Ш и др.); 5173213 (МШсг и др.); 4840720 (Ке1к); 4810397 (Эуогасек); и 4551226 (Рет), которые все включены в изобретение в качестве ссылки. Примеры промышленно доступных добавок включают (но не ограничиваются указанным) Сшшес КО 303, Сшшес КО 304, С1пшсс КО 305, Сшшес КО 306, С1пшсс КО 307, Сшшес КО 308, (доступны на фирме С1пшсс, Рим, Италия), СЕ-Ве1х Тйегша1 Р1о\г 7К29, СЕ-Ве1х РгоСйеш 3Р28, СЕ Ве1х РгоСйеш 3Р18 (доступны на фирме СЕ ОТа1ег аок Ргосезз Тесйηо1од^е8, Тгеуозе, РА, И.8.Л.).
На фиг. 2 дано схематическое представление осуществления системы для добычи сырых продуктов и/или промышленных продуктов по способу термической обработки ίη δίΐιι жидкого потока и/или способа термической обработки ίη зйи газового потока. Флюид месторождения 212 поступает в блок 214 сепарирования флюида и разделяется на жидкий поток 216 способа термической обработки ίη зйи, газовый 218 и водный потоки 220 способа термической обработки ίη δίΐιι. В некоторых вариантах осуществления блок 214 сепарирования флюида включает в себя зону быстрого охлаждения. Когда добытый флюид месторождения поступает в зону быстрого охлаждения, к флюиду месторождения может быть добавлен охлаждающий флюид, такой как вода, непитьевая вода и/или другие компоненты с целью быстрого ох
- 8 016412 лаждения и/или охлаждения флюида месторождения до температуры, подходящей для обработки в расположенном ниже технологическом оборудовании. Быстрое охлаждение флюида месторождения может задерживать образование соединений, которые дают вклад в физическую и/или химическую неустойчивость флюида (например, задерживается образование соединений, которые могут осаждаться из раствора, давать вклад в коррозию, и/или загрязнение расположенных ниже оборудования и/или трубопроводов). Охлаждающий флюид может быть введен во флюид месторождения в виде распыляемого материала и/или жидкого потока. В некоторых вариантах осуществления флюид месторождения вводится в охлаждающий флюид. В некоторых вариантах осуществления флюид месторождения охлаждается путем пропускания флюида через теплообменник для того, чтобы отвести часть тепла из флюида месторождения. Флюид быстрого охлаждения может быть добавлен к охлажденному флюиду месторождения, когда температура флюида месторождения близка или равна точке росы флюида быстрого охлаждения. Быстрое охлаждение флюида месторождения до точки росы (или близкой к ней температуры) флюида быстрого охлаждения может повысить солюбилизацию солей, что может привести к химической и/или физической неустойчивости флюида быстрого охлаждения (например, соли аммония). В некоторых вариантах осуществления количество воды, использованной при быстром охлаждении, является минимальным, так что соли неорганических соединений и/или другие компоненты не выделяются из смеси. В блоке сепарирования 214 по меньшей мере часть флюида быстрого охлаждения может быть выделена из смеси быстрого охлаждения, и ее рециркулируют в зону быстрого охлаждения при минимальном числе операций обработки. Тепло, полученное при быстром охлаждении, можно улавливать и использовать в других установках. В некоторых вариантах осуществления при быстром охлаждении можно производить пар. Произведенный пар может быть направлен в блок сепарирования 222 газов и/или в другие установки для переработки.
Газ 218 способа термической обработки ίη 8Йи может быть направлен в блок сепарирования 222 газов с целью разделения потока газообразных углеводородов 224 из газа способа термической обработки ίη 8Йи. В некоторых вариантах осуществления блок сепарирования газов представляет собой блок ректификационной адсорбции и фракционирования при высоком давлении. Поток газообразных углеводородов 224 включает в себя углеводороды с числом атомов углерода по меньшей мере 3.
Жидкий поток 216 способа термической обработки ίη δίΐιι поступает в блок 226 сепарирования жидкости. В некоторых вариантах осуществления отпадает необходимость в блоке 226 сепарирования жидкости. В блоке 226 сепарирования жидкости при сепарировании жидкого потока 216 способа термической обработки ίη 811и образуется поток газообразных углеводородов 228 и солесодержащий жидкий технологический поток 230. Поток газообразных углеводородов 228 может включать углеводороды, содержащие максимум 5 атомов углерода. Часть потока 228 газообразных углеводородов может объединяться с потоком 224 газообразных углеводородов. Солесодержащий жидкий технологический поток 230 может быть обработан в блоке обессоливания 232 с целью получения жидкого потока 234. В блоке обессоливания 232 из солесодержащего жидкого технологического потока 230 удаляются минеральные соли и/или вода с использованием известных способов обессоливания и удаления воды. В некоторых вариантах изобретения блок обессоливания 232 находится выше (по потоку), чем блок 226 сепарирования жидкости.
Жидкий поток 234 включает в себя (но не ограничивается указанным) углеводороды, содержащие самое большее 5 атомов углерода, и/или углеводороды, содержащие гетероатомы (например, углеводороды, содержащие азот, кислород, серу и фосфор). Жидкий поток 234 может включать в себя по меньшей мере 0,001 г, по меньшей мере 0,005 г или по меньшей мере 0,01 г углеводородов с распределением температур кипения между 95 и 200°С при давлении 0,101 МПа; по меньшей мере 0,01 г, по меньшей мере 0,005 г или по меньшей мере 0,001 г углеводородов с распределением температур кипения между 200 и 300°С при 0,101 МПа; по меньшей мере 0,001 г, по меньшей мере 0,005 г или по меньшей мере 0,01 г углеводородов с распределением температур кипения между 300 и 400°С при 0,101 МПа; и по меньшей мере 0,001 г, по меньшей мере 0,005 г или по меньшей мере 0,01 г углеводородов с распределением температур кипения между 400 и 650°С при 0,101 МПа. В некоторых вариантах осуществления жидкий поток 234 содержит самое большее 10 мас.% воды, самое большее 5 мас.%, самое большее 1 мас.% воды или самое большее 0,1 мас.% воды.
После выхода из блока обессоливания 232 жидкий поток 234 поступает в систему фильтрации 236. В некоторых вариантах осуществления система фильтрации 236 соединяется с выходом из блока обессоливания. В системе фильтрации 236 из жидкого потока 234 выделяется по меньшей мере часть закупоривающих соединений. В некоторых вариантах осуществления система фильтрации 236 монтируется на салазках. Монтаж системы фильтрации 236 на салазках позволяет перемещать систему фильтрации из одного блока переработки в другие. В некоторых вариантах осуществления система фильтрации 236 содержит один или несколько мембранных сепараторов, например одну или несколько мембран нанофильтрации или одну или несколько мембран обратного осмоса.
Мембрана может быть керамической мембраной и/или полимерной мембраной. Керамическая мембрана может представлять собой керамическую мембрану, которая имеет отсечку по молекулярной массе самое большее 2000 единиц Дальтона (еД), самое большее 1000 еД, или самое большее 500 еД. Керамические мембраны не должны подвергаться набуханию с целью обеспечения работы в оптимальных усло
- 9 016412 виях для того, чтобы удалить желательные материалы из субстрата (например, закупоривающие композиции из жидкого потока). Кроме того, керамические мембраны могут быть использованы при повышенных температурах. Примеры керамических мембран включают (но не ограничиваются указанным) мезопористый диоксид титана, мезопористый гамма оксид алюминия, мезопористый диоксид циркония, мезопористый диоксид кремния и их сочетания.
Полимерная мембрана содержит верхний слой, выполненный из плотной мембраны, и основной слой (носитель), выполненный из пористой мембраны. Полимерная мембрана может быть скомпонована таким образом, чтобы обеспечить протекание проникающего жидкого потока (пермеат) сначала через верхний слой плотной мембраны и затем через основной слой, таким образом, чтобы перепад давления на мембране выталкивал верхний слой на основной слой. Полимерная мембрана представляет собой органофильную или гидрофобную мембрану, и таким образом, вода, присутствующая в жидком потоке, удерживается или практически сохраняется в удерживаемом материале.
Слой плотной мембраны может отделять о меньшей мере часть или практически все закупоривающие композиции из жидкого потока 234. В некоторых вариантах осуществления плотная полимерная мембрана обладает такими свойствами, что жидкий поток 234 проходит через мембрану за счет растворения в ней и диффузии через структуру мембраны. По меньшей мере часть закупоривающих частиц не может растворяться и/или диффундировать сквозь плотную мембран, и таким образом, они удаляются. Закупоривающие частицы не могут растворяться, и/или диффундировать через плотную мембрану по причине сложной структуры закупоривающих частиц и/или они обладают высокой молекулярной массой. Слой плотной мембраны может включать в себя сшитую структуру, которую описали δοϊιιηίάΐ и др. в документе XV О 96/27430, который включен в изобретение в качестве ссылки. Толщина слоя плотной мембраны может изменяться от 1 до 15 мкм, от 2 до 10 мкм или от 3 до 5 мкм.
Плотная мембрана может быть изготовлена из полисилоксана, поли-диметилсилоксана, полиоктилметилсилоксана, полиимида, полиарамида, поли-триметилсилилпропина или их смесей. Пористый основной слой может быть выполнен из материалов, которые обеспечивают мембране механическую прочность и могут представлять собой любую пористую мембрану, использованную для ультрафильтрации, нанофильтрации или обратного осмоса. Примерами таких материалов являются полиакрилонитрил, полиамидимид в сочетании с оксидом титана, поли(простой)эфиримид, поливинилидендифторид, политетрафторэтилен или их сочетания.
В ходе сепарирования закупоривающих композиций из жидкого потока 234, перепад давления на мембране может изменяться от 5 до 60 бар, от 10 до 50 бар или от 20 до 40 бар (4МПа). Температура сепарирования может изменяться от температуры потери текучести жидкого потока до 10°С, приблизительно от -20 до 100°С, от 10 до 90°С или от 20 до 85°С. Во время непрерывной работы скорость потока пермеата может составлять самое большее 50% от начального потока, самое большее 70% от начального потока или самое большее 90% от начального потока. Извлеченная масса пермеата в расчете на сырье может изменяться между 50 до 97 мас.%, от 60 до 90 мас.% или от 70 до 80 мас.%.
Система фильтрации 236 может содержать один или несколько мембранных сепараторов. Мембранные сепараторы могут включать один или несколько мембранных модулей. В случае использования двух или более мембранных сепараторов они могут быть расположены в параллельной конфигурации с целью обеспечения потока сырья (ретентат) из первого мембранного сепаратора во второй мембранный сепаратор. Примеры мембранных модулей включают (но не ограничиваются указанным) скрученные спиралью модули, пластинчатые и рамочные модули, полые волокна и трубчатые модули. Мембранные модули описаны в Энциклопедии химической технологии (Епсус1ореб1а о£ С11еииса1 Епдтеегтд), 4е изд., 1995, Ιοίιη \νίγ· & 8оп§ 1пс., том 16, стр. 158-164. Примеры скрученных спиралью модулей описаны, например, ВоеЧеП и др. в документе ν0/2006/040307, в патентах США №№ 5102551 (Райегпак); 5093002 (Райегпак); 5275726 (Ееипег и др.; 5458774 (Маппаррегита); и в № 5150118 (Ипк1е и др.), которые все включены в изобретение в качестве ссылки.
В некоторых вариантах осуществления скрученный спиралью модуль используется, когда в системе фильтрации 236 применяется плотная мембрана. Скрученный спиралью модуль может включать мембранный комплект из двух мембранных листов, между которыми расположена распорная втулка для пермеата, причем этот мембранный комплект герметизирован с трех сторон. Четвертая сторона соединяется с трубопроводом для выхода пермеата таким образом, что флюид в области между мембранами сообщается с внутренней частью трубопровода. Сверху одной из мембран расположена распорная втулка для сырья, и этот комплект с распорной втулкой для сырья наматывается вокруг трубопровода для выхода пермеата, образуя, по существу, цилиндрический мембранный модуль, скрученный спиралью. Распорная втулка для сырья может иметь толщину по меньшей мере 0,6 мм, по меньшей мере 1 мм или по меньшей мере 3 мм с целью обеспечения достаточной поверхности мембраны, которая может быть упакована в скрученном спиралью модуле. В некоторых вариантах осуществления распорная втулка для сырья представляет собой тканую втулку. В ходе эксплуатации можно пропускать сырьевую смесь из одного конца цилиндрического модуля между мембранными комплектами вдоль распорной втулки для сырья, которая расположена между подводящими сторонами мембран. Часть сырьевой смеси проходит через каждый из мембранных листов на сторону пермеата. Полученный пермеат проходит вдоль распор
- 10 016412 ной втулки для пермеата в трубопровод для выхода пермеата.
В некоторых вариантах осуществления мембранное сепарирование представляет собой непрерывный процесс. Жидкий поток 234 проходит через мембрану под действием перепада давления с получением отфильтрованного жидкого потока 238 (пермеат) и/или рециркулирующего жидкого потока 240 (ретентат). В некоторых вариантах осуществления отфильтрованный жидкий поток 238 может иметь пониженную концентрацию композиций и/или частиц, которые вызывают закупоривание в расположенных ниже системах переработки. Непрерывная циркуляция рециркулирующего жидкого потока 240 через систему нанофильтрации может увеличить производство отфильтрованного жидкого потока 238 вплоть до 95% от исходного объема жидкого потока 234. Рециркулирующий жидкий поток 240 может непрерывно циркулировать через скрученный спиралью мембранный модуль, по меньшей мере, в течение 10 ч, по меньшей мере, в течение одного дня или, по меньшей мере, в течение одной недели, без очистки подводящей стороны мембраны. По окончании фильтрации поток 242 отходов (ретентат) может содержать высокую концентрацию композиций и/или частиц, которые вызывают закупоривание. Поток 242 отходов покидает систему фильтрации 236 и транспортируется на другие установки переработки, такие как, например, установка замедленного коксования и/или установка газификации.
Отфильтрованный жидкий поток 238 может покидать систему фильтрации 236 и поступать в один или несколько технологических блоков. Описанные здесь технологические блоки для производства сырых продуктов и/или промышленных продуктов могут эксплуатироваться при следующих параметрах температуры, давления, потока источника водорода, жидкого потока или их сочетаний, или эксплуатироваться другим способом, известным из уровня техники. Температура может изменяться приблизительно от 200 до 900°С, приблизительно от 300 до 800°С или приблизительно от 400 до 700°С. Давление может изменяться приблизительно от 0,1 до 20 МПа, приблизительно от 1 до 12 МПа, приблизительно от 4 до 10 МПа или приблизительно от 6 до 8 МПа. Объемная скорость подачи жидкого потока может изменяться приблизительно от 0,1 до 30 ч-1, приблизительно от 0,5 до 25 ч-1, приблизительно от 1 до 20 ч-1, приблизительно от 1,5 до 15 ч-1 или приблизительно от 2 до 10 ч-1.
На фиг. 2 отфильтрованный жидкий поток 238 и источник водорода 244 входят в установку гидроочистки 248. В некоторых вариантах осуществления к отфильтрованному жидкому потоку 238, до входа в установку гидроочистки 248, может быть добавлен источник водорода 244. В некоторых вариантах изобретения в жидком потоке 234 присутствует достаточное количество водорода, и источник водорода 244 не требуется. В установке гидроочистки 248 отфильтрованный жидкий поток 238 контактирует с источником водорода 244 в присутствии одного или нескольких катализаторов с образованием жидкого потока 250. Установка гидроочистки 248 может эксплуатироваться таким образом, что весь жидкий поток или по меньшей мере часть потока 250 изменяется в достаточной степени, чтобы удалить композиции и/или задерживать образование композиций, которые могут закупоривать оборудование, расположенное ниже (по потоку) установки гидроочистки 248. Катализатор, использованный в установке гидроочистки 248, может быть промышленно доступным катализатором. В некоторых вариантах осуществления гидроочистка жидкого потока 234 не является необходимой.
В некоторых вариантах осуществления жидкий поток 234 контактирует с водородом в присутствии одного или нескольких катализаторов с целью изменения одного или нескольких желательных свойств сырого сырья для того, чтобы соответствовать требованиям транспорта и/или нефтепереработки. Способы изменения одного или нескольких желательных свойств сырого сырья описаны в опубликованных заявках на патент США №№. 20050133414 (ВЬаи и др.); 20050133405 (№ο11ίη§1οη и др.); и в заявках на патент США порядковые №№: 11/400542 под названием Системы, способы и катализаторы для получения сырого продукта, зарегистрирована 7 апреля, 2006; 11/425979 (ВЬаи) под названием Системы, способы и катализаторы для получения сырого продукта, зарегистрирована 6 июня, 2006; и 11/425992 (№с11ίη§1οη и др.), под названием Системы, способы и катализаторы для получения сырого продукта, зарегистрирована 6 июня, 2006, которые все включены в изобретение в качестве ссылки.
В некоторых вариантах осуществления установка гидроочистки 248 представляет собой установку селективного гидрирования. В установке гидроочистки 248 жидкий поток 234 и/или отфильтрованный жидкий поток 238 селективно гидрируются таким образом, что диолефины превращаются в моноолефины. Например, жидкий поток 234 и/или отфильтрованный жидкий поток 238 контактирует с водородом в присутствии катализатора ΌΝ-200 (фирма Сгйегюи Са1а1ув1в & ТесЬио1од1е5, ΗοιιβΙοη Техав, И.8.А.) при температуре в диапазоне от 100 до 200°С и суммарном давлении от 0,1 МПа до 40 МПа, с целью получения жидкого потока 250. Жидкий поток 250 содержит меньшее количество диолефинов и имеет повышенное содержание моноолефинов, относительно содержания диолефинов и моноолефинов в жидком потоке 234. В некоторых вариантах изобретения превращение диолефинов в моноолефины в этих условиях составляет по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 80% или по меньшей мере 90%. Жидкий поток 250 выходит из установки гидроочистки 248 и поступает в один или несколько блоков переработки, расположенных ниже (по потоку) установки гидроочистки 248. Блоки, расположенные ниже установки гидроочистки 248, могут включать в себя блоки дистилляции, установки каталитического риформинга, установки гидрокрекинга, установки гидроочистки, установки гидрогенизации, установки гидрообессеривания, установки каталитического крекинга, установки замедленного коксова
- 11 016412 ния, установки газификации или их сочетания.
Жидкий поток 250 может выходить из установки гидроочистки 248 и поступать в блок фракционирования 252. В блоке фракционирования 252 получается один или несколько сырых продуктов. Фракционирование может включать в себя (но не ограничивается указанным) процесс атмосферной дистилляции и/или процесс вакуумной дистилляции. Сырые продукты включают в себя (но не ограничиваются указанным) поток 254 углеводородов С35, поток нафты 256, поток керосина 258, поток дизельной фракции 262 и кубовый поток 264. Кубовый поток 264 обычно включает в себя углеводороды, имеющие распределение температур кипения, начиная с 340°С при давлении 0,101 МПа. В некоторых вариантах осуществления кубовый поток 264 представляет собой вакуумный газойль. В других вариантах осуществления кубовый поток включает в себя углеводороды с распределением температур кипения, начиная с 537°С. Один или несколько сырых продуктов может быть продан и/или подвергнут дальнейшей переработке в бензин или другие промышленные продукты.
С целью увеличения степени использования потоков, добытых из флюида месторождения, углеводороды, полученные в процессе фракционирования жидкого потока, и углеводородные газы, полученные в процессе выделения технологического газа, могут быть объединены для того, чтобы получить углеводороды, с большим числом атомов углерода. Полученный углеводородный газовый поток может содержать приемлемое количество олефинов для реакций алкилирования.
В некоторых вариантах осуществления гидроочищенные жидкие потоки и/или потоки, полученные из фракций (например, дистиллятов и/или нафты), смешиваются с жидкостью способа термической обработки ίη 811и и/или с флюидом месторождения для того, чтобы получить смешанный флюид. Физическая и химическая устойчивость смешанного флюида может быть повышена по сравнению с флюидом месторождения. Смешанный флюид может содержать пониженное количество реакционноспособных частиц (например, диолефинов, других олефинов и/или соединений, содержащих кислород, серу и/или азот) по сравнению с флюидом месторождения, таким образом, повышается химическая устойчивость смешанного флюида. Смешанный флюид может содержать пониженное количество асфальтенов по сравнению с флюидом месторождения, таким образом, повышается физическая устойчивость смешанного флюида. Смешанный флюид может представлять собой сырье с лучшей взаимозаменяемостью, чем флюид месторождения и/или жидкий поток, добытый с помощью способа термической обработки ίη δίΐιι. Смешанное сырье может быть более приемлемым для транспорта, для использования в установках химической переработки и/или для использования в блоках перегонки, чем флюид месторождения.
В некоторых вариантах осуществления флюид, добытый описанными здесь способами из месторождения нефтяного сланца, может смешиваться с флюидом, полученным в процессе термической обработки ίη 811и (ΙΗΤΡ) тяжелой нефти/битуминозного песчаника. Поскольку жидкость нефтяного сланца, главным образом, является парафиновой, а флюид процесса ШТР тяжелой нефти/битуминозного песчаника в основном является ароматическим, смешанный флюид обладает повышенной устойчивостью. В некоторых вариантах флюид способа термической обработки ίη δίΐιι можно смешивать с битумом с целью получения сырья, подходящего для использования в блоках очистки. Смешивание флюида ΙΗΤΡ и/или битума с добытым флюидом может повышать химическую и/или физическую устойчивость смешанного продукта, таким образом, смесь может транспортироваться и/или распределяться по установкам переработки.
Поток 254 углеводородов С35, полученный в блоке фракционирования 252, и поток 224 газообразных углеводородов поступает в установку 266 алкилирования. В установке 266 алкилирования при взаимодействии олефинов в потоке 224 газообразных углеводородов (например, пропилен, бутилены, амилены или их сочетания) с изопарафиновыми углеводородами С35 в потоке 254 образуется углеводородный поток 268. В некоторых вариантах осуществления содержание олефинов в потоке 224 газообразных углеводородов является подходящим, и не требуется дополнительный источник олефинов. Углеводородный поток 268 включает в себя углеводороды, имеющие по меньшей мере 4 атома углерода. Углеводороды, имеющие по меньшей мере 4 атома углерода, включают (но не ограничиваются указанным) бутаны, пентаны, гексаны, гептаны и октаны. В некоторых вариантах углеводороды, полученные в установке 266 алкилирования, имеют октановое число выше чем 70, выше чем 80 или выше чем 90. В некоторых вариантах осуществления углеводородный поток 268 является подходящим для использования в качестве бензина без дополнительной переработки.
В некоторых вариантах осуществления кубовый поток 264 может быть подвергнут гидрокрекингу для того, чтобы получить нафту и/или другие продукты. Однако может быть необходимым подвергнуть полученную нафту реформингу с целью изменения октанового числа для того, чтобы этот продукт можно было поставлять на рынок в качестве бензина. Альтернативно, кубовый поток 264 может быть обработан в реакторе каталитического крекинга с целью получения нафты и/или сырья для установки алкилирования. В некоторых вариантах осуществления в потоке нафты 256, потоке керосина 258 и в потоке дизельной фракции 262 не сбалансировано содержание парафиновых углеводородов, олефиновых углеводородов и/или ароматических углеводородов. В этих потоках может присутствовать недостаточное количество олефиновых и/или ароматических углеводородов для использования в промышленных продуктах. Этот дисбаланс может быть устранен путем сочетания по меньшей мере части потоков с получе
- 12 016412 нием объединенного потока 266, который имеет распределение температур кипения приблизительно от 38 до 343°С. При каталитическом крекинге объединенного потока 266 могут быть получены олефины и/или другие потоки, подходящие для использования в установке алкилирования и/или других установках переработки. В некоторых вариантах осуществления поток нафты 256 подвергается гидрокрекингу с получением олефинов.
На фиг. 2 объединенный поток 266 и кубовый поток 264 из блока фракционирования 252 поступает в установку каталитического крекинга 270. В регулируемых условиях крекинга (например, регулируемая температура и давление), в установке каталитического крекинга 270 образуются дополнительные потоки С35 углеводородов 254', поток углеводородов бензина 272 и дополнительный поток керосина 258'.
Дополнительный поток С35 углеводородов 254' может быть направлен в установку алкилирования 266, может быть объединен с потоком С35 углеводородов 254, и/или объединен с потоком газообразных углеводородов 224, чтобы получить товарный бензин. В некоторых вариантах осуществления содержание олефинов в потоке газообразных углеводородов 224 является соответствующим, и дополнительный источник олефинов не требуется.
В некоторых вариантах осуществления количество полученного кубового потока (например, УСО) является слишком малым, чтобы поддерживать рабочий режим установки гидрокрекинга или установки каталитического крекинга, и концентрация олефинов в полученных газовых потоках из блока фракционирования и/или установки каталитического крекинга (например, из блока фракционирования 252 и/или из установки каталитического крекинга 270 на фиг. 2), может быть слишком низкой, чтобы поддерживать рабочий режим алкилирования. Нафту, полученную из блока фракционирования, можно перерабатывать с целью получения олефинов для дальнейшей переработки, например, в установке алкилирования. Реформулированный бензин, полученный с помощью традиционных процессов риформинга нафты, может не соответствовать техническим условиям, таким как, например, норма, предписанная СаШогша Л1г Рс5оигсс5 Воагб, когда жидкий поток, полученный по способу термической обработки жидкости ίη 811и, используется в качестве сырьевого потока. Находящиеся в нафте олефины могут быть насыщены в процессе традиционной гидроочистки, до процесса риформинга нафты. Таким образом, риформинг всей гидроочищенной нафты может привести к нежелательно большому содержанию ароматических углеводородов в бензиновой смеси для получения реформулированного бензина. Дисбаланс по содержанию олефиновых и ароматических углеводородов в нафте риформинга может быть устранен путем получения достаточного количества алкилата в установке алкилирования, чтобы получить реформулированный бензин. Олефины, например пропилен и бутилены, полученные при фракционировании и/или крекинге нафты, могут быть объединены с изобутаном, чтобы получить бензин. Кроме того, было установлено, что для каталитического крекинга нафты и/или других фракционированных потоков, полученных в блоке фракционирования, требуется дополнительное тепло, поскольку в установке каталитического крекинга образуется пониженное количество кокса, по сравнению с другими видами сырья, используемыми в каталитическом крекинге.
На фиг. 3 изображена схема переработки жидких потоков, полученных в способе термической обработки ίη 8Йи, с целью получения олефинов и/или жидких потоков. Аналогичные способы получения среднего дистиллята и олефинов описаны в опубликованной международной заявке \¥О 2006/020547 и в опубликованных заявках на патент США №№ 20060191820 и 20060178546 (Мо и др.), которые все включены в изобретение в качестве ссылки. Жидкий поток 274 поступает в систему каталитического крекинга 278. Жидкий поток 274 может включать в себя (но не ограничивается указанным), жидкий поток 234, гидроочищенный жидкий поток 250, отфильтрованный жидкий поток 238, поток нафты 256, поток керосина 258, поток дизельной фракции 262, и кубовый поток 264 из системы, показанной на фиг. 2, любой углеводородный поток, имеющий распределение температур кипения между 65 и 800°С, или их смеси. В некоторых вариантах осуществления в систему каталитического крекинга 278 поступает водяной пар 276, который может распылять и/или поднимать жидкий поток 274 с целью улучшения контакта жидкого потока с катализатором крекинга. Отношение пара, который распыляет жидкий поток 274, к сырью может изменяться от 0,01 до 2 мас.% или от 0,1 до 1 мас.%.
В системе каталитического крекинга 278 жидкий поток 274 контактирует с катализатором крекинга с целью получения одного или нескольких сырых продуктов. Катализатор крекинга включает выбранный катализатор крекинга, по меньшей мере часть потока 280 использованного регенерированного катализатора крекинга, по меньшей мере часть потока 282 регенерированного катализатора крекинга или их смесь. Использованный регенерированный катализатор крекинга 280 включает регенерированный катализатор крекинга, который был использован во второй системе каталитического крекинга 284. Вторая система каталитического крекинга 284 может быть использована для того, чтобы крекировать углеводороды с целью получения олефинов и/или других сырых продуктов. Углеводороды, предоставляемые во вторую систему каталитического крекинга 284, могут включать С3-С5 углеводороды, добываемые из продуктивных скважин, углеводороды бензина, гидрированный воск, углеводороды, полученные в синтезе Фишера-Тропша, биотопливо, или их сочетания. Применение смеси углеводородного сырья различных типов во второй системе каталитического крекинга может повышать выход С35 олефинов для того, чтобы удовлетворить спрос на алкилаты. Таким образом, может быть усилена интеграция этих продуктов
- 13 016412 с процессами нефтепереработки. Вторая система каталитического крекинга 284 может быть установкой с плотной фазой, установкой с неподвижным флюидизированным слоем, вертикальной трубой, сочетанием указанных выше установок, или любой установкой или конфигурацией установок, которые известны из уровня техники крекинга углеводородов.
При контакте катализатора крекинга и жидкого потока 274 в системе каталитического крекинга 278 образуется сырой продукт и отработанный катализатор крекинга. Этот сырой продукт может содержать (но не ограничивается указанным), углеводороды, имеющие распределение температур кипения, которое ниже распределения температур кипения жидкого потока 274, части жидкого потока 274, или их смесей. Сырой продукт и отработанный катализатор поступают в систему сепарирования 286. Система сепарирования 286 может включать, например, дистилляционный блок, отпарной аппарат, фильтрационную систему, центрифугу или любое устройство, известное из уровня техники, которое способно отделять сырой продукт от отработанного катализатора.
Поток 288 выделенного отработанного катализатора крекинга выходит из системы сепарирования 286 и поступает в блок регенерации 290. В блоке регенерации 290 отработанный катализатор крекинга контактирует с источником кислорода 292, таким как, например, кислород и/или воздух, в условиях горения углерода с целью получения потока 282 регенерированного катализатора крекинга и дымовых газов 294. Дымовые газы могут образоваться в качестве побочного продукта удаления углерода и/или других примесей, образовавшихся на катализаторе в ходе процесса каталитического крекинга.
Температура в блоке регенерации 290 может изменяться приблизительно от 621 до 760°С или от 677 до 715°С. Давление в блоке регенерации 290 может изменяться от атмосферного до 0,345 МПа или от 0,034 до 0,345 МПа. Время пребывания выделенного отработанного катализатора крекинга в блоке регенерации 290 изменяется приблизительно от 1 до 6 мин или приблизительно от 2 до 4 мин. Регенерированный катализатор крекинга имеет меньшее содержание кокса, чем выделенный отработанный катализатор крекинга. Это содержание кокса составляет меньше, чем 0,5 мас. %, причем массовый процент рассчитан на массу регенерированного катализатора крекинга, за исключением массы содержащегося кокса. Содержание кокса для регенерированного катализатора крекинга может изменяться от 0,01 до 0,5 мас.%, от 0,05 до 0,3 мас.% или от 0,1 до 0,4 мас.%.
В некоторых вариантах осуществления поток 282 регенерированного катализатора крекинга может быть разделен на два потока, причем по меньшей мере часть потока 282' регенерированного катализатора крекинга покидает блок регенерации 290 и поступает во вторую систему каталитического крекинга 284. По меньшей мере другая часть потока 282 регенерированного катализатора крекинга покидает регенератор 290 и поступает в систему каталитического крекинга 278. Отношение количества использованного регенерированного катализатора крекинга к регенерированному катализатору крекинга регулируют таким образом, чтобы обеспечить желательные условия крекинга в системе каталитического крекинга 278. Регулирование отношения использованного регенерированного катализатора крекинга к регенерированному катализатору крекинга может способствовать контролю условий крекинга в системе каталитического крекинга 278. Массовое отношение использованного регенерированного катализатора крекинга к регенерированному катализатору крекинга может изменяться от 0,1:1 до 100:1, от 0,5:1 до 20:1, или от 1:1 до 10:1. Для системы, функционирующей в стационарном состоянии, массовое отношение использованного регенерированного катализатора крекинга к регенерированному катализатору крекинга приблизительно равно массовому отношению по меньшей мере части регенерированного катализатора крекинга, проходящей во вторую систему каталитического крекинга 284, к оставшейся части регенерированного катализатора крекинга, которая смешивается с жидким потоком 274, введенным в систему каталитического крекинга 278, и, таким образом, указанные выше диапазоны также применимы для такого массового отношения.
Сырой продукт 296 выходит из системы сепарирования 286 и поступает в блок 298 сепарирования жидкости. Блок сепарирования 298 жидкости может представлять собой любую систему, известную специалистам в этой области техники, для извлечения и выделения сырого продукта из таких потоков продуктов, как например, газовый поток 228', углеводородный поток бензина 300, поток рециклового газойля 302 и кубовый поток 304. В некоторых вариантах осуществления кубовый поток 304 рециркулирует в систему каталитического крекинга 278. Блок сепарирования 298 жидкости может включать компоненты и/или блоки, например, такие как абсорберы и отпарные аппараты, аппараты для фракционирования, компрессоры и сепараторы или любое сочетание известных систем для доставки, извлечения и сепарирования продуктов из сырого продукта. В некоторых вариантах осуществления, по меньшей мере, часть потока 302 легкого рециклового газойля покидает блок сепарирования 298 жидкости и поступает во вторую систему каталитического крекинга 278. В некоторых вариантах осуществления поток легкого рециклового газойля не направляется во вторую систему каталитического крекинга. В некоторых вариантах осуществления по меньшей мере часть углеводородного потока бензина 300 покидает блок сепарирования 298 жидкости и поступает во вторую систему каталитического крекинга 284. В некоторых вариантах осуществления углеводородный поток бензина не направляется во вторую систему каталитического крекинга. В некоторых вариантах осуществления углеводородный поток бензина 300 представляет собой товарный продукт и/или используется в других процессах.
- 14 016412
Углеводородный поток газойля 306 (например, вакуумный газойль) и/или части углеводородного потока бензина 300 и потока легкого рециклового газойля 302 направляются в систему каталитического крекинга 284. Эти потоки подвергаются каталитическому крекингу в присутствии пара 276 для того, чтобы получить сырой поток олефинов 308. Сырой поток олефинов 308 может содержать углеводороды, имеющие по меньшей мере два атома углерода. В некоторых вариантах осуществления сырой поток олефинов 308 содержит по меньшей мере 30 мас.% С25 олефинов, 40 мас.% С25 олефинов, по меньшей мере 50 мас.% С25 олефинов, по меньшей мере 70 мас.% С25 олефинов или по меньшей мере 90 мас.% С25 олефинов. Рециркуляция углеводородного потока бензина 300 во вторую систему каталитического крекинга 284 может обеспечить дополнительное превращение по всей технологической схеме углеводородного потока 306 газойля в олефины С25.
В некоторых вариантах осуществления вторая система каталитического крекинга 284 включает в себя промежуточную реакционную зону и зону отпаривания, которые связаны между собой линиями перетока флюидов, причем зона отпаривания расположена ниже (по потоку) промежуточной реакционной зоны. С целью обеспечения высокой скорости потока водяного пара внутри зоны отпаривания, по сравнению со скоростью пара внутри промежуточной реакционной зоны, площадь поперечного сечения зоны отпаривания по величине меньше площади поперечного сечения промежуточной реакционной зоны. Отношение площади поперечного сечения зоны отпаривания к площади поперечного сечения промежуточной реакционной зоны может изменяться от 0,1:1 до 0,9:1; от 0,2:1 до 0,8:1; или от 0,3:1 до 0,7:1.
В некоторых вариантах осуществления вторая система каталитического крекинга имеет такую геометрию, что она в основном имеет цилиндрическую форму, причем отношение длины к диаметру зоны отпаривания является таким, чтобы обеспечить желательную высокую скорость потока пара внутри зоны отпаривания и обеспечить достаточное время контакта внутри зоны отпаривания для желательного отпаривания использованного регенерированного катализатора, который будет удаляться из второй системы каталитического крекинга. Таким образом, отношение длины к диаметру зоны отпаривания может изменяться от 1:1 до 25:1; от 2:1 до 15:1; или от 3:1 до 10:1.
В некоторых вариантах осуществления вторая система каталитического крекинга 284 эксплуатируется или регулируется независимо от работы или регулирования системы каталитического крекинга 278. Эта независимая эксплуатация или регулирование второй системы каталитического крекинга 284 может повысить суммарное превращение углеводородов бензина в желательные продукты, такие как этилен, пропилен и бутилены. При независимой эксплуатации второй системы каталитического крекинга 284 может быть снижена жесткость режима в установке каталитического крекинга 278 с целью улучшения выхода олефинов С2-С5. Температура во второй системе каталитического крекинга 284 может изменяться приблизительно от 482°С (900°Р) до 871°С (1600°Р), от 510°С (950°Р) до 871°С (1600°Р) или от 538°С (1000°Р) до 732°С (1350°Р). Рабочее давление во второй системе каталитического крекинга 284 может изменяться приблизительно от атмосферного до 0,345 МПа (50 фунт/кв. дюйм) или приблизительно от 0,034 до 0,345 МПа (от 5 до 50 фунт/кв. дюйм).
Добавление пара 276' во вторую систему каталитического крекинга 284 может облегчать технологическое регулирование второй установки каталитического крекинга. В некоторых вариантах осуществления добавление пара не требуется. В некоторых вариантах осуществления использование пара при заданной степени превращения углеводородов бензина по всей технологической системе, и при крекинге углеводородов бензина может обеспечить повышенную селективность в отношении С2-С5 олефинов с увеличением выхода пропилена и бутиленов по сравнению с другими процессами каталитического крекинга. Массовое отношение пара к углеводородам бензина, введенным во вторую систему каталитического крекинга 284, может изменяться приблизительно вплоть до 15:1; от 0,1:1 до 10:1; от 0,2:1 до 9:1; или от 0,5:1 до 8:1.
Сырой поток олефинов 308 поступает в систему сепарирования олефинов 310. Система сепарирования олефинов 310 может быть любой системой, известной специалистам в этой области техники, для извлечения и выделения сырого потока олефинов 308 в потоке олефиновых продуктов С25, например, поток этиленового продукта 312, поток пропиленового продукта 314 и поток бутиленовых продуктов 316. Система сепарирования олефинов 310 может включать в себя такие системы, как абсорберы и отпарные аппараты, фракционирующие аппараты, компрессоры и сепараторы или любое сочетание известных систем или оборудования, обеспечивающее извлечение и сепарирование олефиновых продуктов С2С5 из потока флюида 308. В некоторых вариантах осуществления олефиновые потоки 312, 314, 316 поступают в установку алкилирования 266 для того, чтобы получить углеводородный поток 268. В некоторых вариантах осуществления углеводородный поток 268 имеет октановое число по меньшей мере 70, по меньшей мере 80 или по меньшей мере 90. В некоторых вариантах осуществления части одного или нескольких из потоков 312, 314, 316 или все потоки транспортируются в другие установки переработки, такие как установки полимеризации, где используются в качестве сырья.
В некоторых вариантах осуществления сырой продукт из системы каталитического крекинга и сырой поток олефинов из второй системы каталитического крекинга могут быть объединены. Объединенный поток может поступать в отдельный блок сепарирования (например, сочетание системы 298 сепарирования жидкости и системы сепарирования олефинов 310).
- 15 016412
На фиг. 3 поток 280 использованного катализатора крекинга выходит из второй системы каталитического крекинга 284 и поступает в систему каталитического крекинга 278. Катализатор в потоке 280 использованного катализатора крекинга может иметь немного более высокую концентрацию углерода, чем концентрация углерода в регенерированном катализаторе крекинга 282. При высокой концентрации углерод на катализаторе может частично дезактивировать катализатор крекинга, что обеспечивает повышение выхода олефинов в системе каталитического крекинга 278. Содержание кокса в использованном регенерированном катализаторе может составлять по меньшей мере 0,1 мас.% или по меньшей мере 0,5 мас.%. Содержание кокса в использованном регенерированном катализаторе может изменяться приблизительно от 0,1 до 1 мас.% или от 0,1 до 0,6 мас.%.
Катализатор крекинга, использованный в системе каталитического крекинга 278 и во второй системе каталитического крекинга 284, может представлять собой любой флюидизируемый катализатор крекинга, известный из уровня техники. Этот флюидизируемый катализатор крекинга может содержать молекулярное сито, обладающее активностью при крекинге, диспергированное в пористой матрице неорганического тугоплавкого оксида или связующего. Термин молекулярное сито относится к любому материалу, способному разделять атомы или молекулы по их соответствующим размерам. Молекулярные сита, подходящие для использования в качестве компонента катализатора крекинга, включают слоистые глины, расслоенные глины и кристаллические алюмосиликаты. В некоторых вариантах осуществления катализатор крекинга содержит кристаллический алюмосиликат. Примеры таких алюмосиликатов включают Υ цеолиты, ультрастабильные Υ цеолиты, X цеолиты, цеолит бета, цеолит Ь, оффретит, морденит, фожазит и цеолит омега. В некоторых вариантах осуществления кристаллические алюмосиликаты для использования в катализаторе крекинга представляют собой цеолиты X и/или Υ. В патенте США № 3130007 Брегг описал цеолиты типа Υ.
Устойчивость и/или кислотность цеолита, использованного в качестве компонента катализатора крекинга, может быть повышена путем обмена цеолита с ионами водорода, ионами аммония, катионами поливалентных металлов, такими как катионы редкоземельных элементов, катионы магния или катионы кальция или сочетание ионов водорода, ионов аммония и катионов поливалентных металлов; таким образом, снижается содержание натрия до уровня приблизительно ниже чем 0,8 мас.%, предпочтительно меньше чем приблизительно 0,5 мас.% и наиболее предпочтительно меньше чем приблизительно 0,3 мас.% в расчете на Να2Ο. Способы проведения ионного обмена хорошо известны из уровня техники.
Цеолит или другой молекулярно ситовой компонент катализатора крекинга объединяется с пористой, неорганической тугоплавкой матрицей оксида или связующего с образованием окончательного катализатора, непосредственно до использования. Компонент тугоплавкого оксида в окончательном катализаторе может представлять собой алюмосиликат, диоксид кремния, оксид алюминия, природные или синтетические глины, слоистые или расслоенные глины, смеси одного или нескольких из этих компонентов и тому подобное. В некоторых вариантах осуществления неорганическая тугоплавкая оксидная матрица включает смесь алюмосиликата и глины, такой как каолин, гекторит, сепиолит и аттапульгит. Готовый катализатор может содержать приблизительно между 5 и 40 мас.% цеолита или другого молекулярного сита и приблизительно больше чем 20 мас.% неорганического тугоплавкого оксида. В некоторых вариантах осуществления готовый катализатор может содержать приблизительно между 10 и 35 мас.% цеолита или другого молекулярного сита, приблизительно между 10 и 30 мас.% неорганического тугоплавкого оксида и приблизительно между 30 и 70 мас.% глины.
Кристаллический алюмосиликат или другие молекулярно ситовые компоненты катализатора крекинга могут быть объединены с пористым, неорганическим тугоплавким оксидным компонентом или его предшественником с использованием любой подходящей технологии, известной из уровня техники, в том числе перемешивание, диспергирование, смешивание или гомогенизация. Примеры предшественников, которые могут быть использованы, включают (но не ограничиваются указанным) оксид алюминия, золи оксида алюминия, золи диоксида кремния, диоксид циркония, гидрогели оксида алюминия, полиоксикатионы алюминия и циркония, пептизированный оксид алюминия. В некоторых вариантах осуществления цеолит объединяется с алюмосиликатным гелем, или золем, или другим неорганическим, тугоплавким оксидным компонентом, и полученную смесь подвергают распылительной сушке, чтобы получить частицы готового катализатора, обычно имеющие диаметр в диапазоне приблизительно между 40 и 80 мкм. В некоторых вариантах осуществления цеолит или другие молекулярные сита могут быть подвергнуты размолу или смешению другим способом с тугоплавким оксидным компонентом или его предшественником и подвергнуты экструзии и затем измельчению до желательного размера частиц. Готовый катализатор может иметь насыпную плотность приблизительно между 0,30 и 0,90 г на кубический сантиметр и объем пор приблизительно между 0,10 и 0,90 кубических сантиметров на грамм.
В некоторых вариантах осуществления в промежуточный реактор крекинга второй системы каталитического крекинга 284 может быть введена добавка цеолита Ζ8Μ-5. Когда в промежуточном реакторе крекинга используется добавка Ζ8Μ-5, вместе с выбранным катализатором крекинга, повышается выход олефинов, таких как пропилен и бутилены. Количество Ζ8Μ-5 изменяется самое большее до 30 мас.%, самое большее до 20 мас.% или самое большее до 18 мас.% регенерированного катализатора, который будет введен во вторую систему каталитического крекинга 284. Количество добавки Ζ8Μ-5, введенной
- 16 016412 во вторую систему каталитического крекинга 284 может изменяться от 1 до 30 мас.%, от 3 до 20 мас.% или от 5 до 18 мас.% регенерированного катализатора крекинга, введенного во вторую систему каталитического крекинга 284.
Добавленный Ζ8Μ-5 представляет собой молекулярно ситовую добавку, которую выбирают из семейства кристаллических алюмосиликатов или цеолитов со средним размером пор. Молекулярные сита, которые могут быть использованы в качестве добавки Ζ8Μ-5, включают (но не ограничиваются указанным) среднепористые цеолиты, которые описаны в Атласе структурных типов цеолитов (А11а8 о£ Ζοο1Нс 8кшскиге Турек), ред. ^. Н. Ме1ег и Ό. Η. О18оп, ВийегооПВ-Нететап, третье издание, 1992. Цеолиты со средним размером пор обычно имеют размер пор приблизительно от 0,5 до 0,7 нм и включают, например, структурные типы цеолитов МЕ1, МЕ8, МЕЬ, МТ^, ЕИО, МТТ, НЕИ, РЕВ и ΤΟΝ (Комиссия ИЮПАК по номенклатуре цеолитов). Не ограничивающие примеры таких цеолитов со средним размером пор включают Ζ^^, Ζ8Μ-12, Ζ8Μ-22, Ζ8Μ-23, Ζ8Μ-34, Ζ8Μ-35, Ζ8Μ-38, Ζ8Μ-48, Ζ8Μ-50, силикалит и силикалит 2. Цеолит Ζ8Μ-5 описан в патенте США № 3702886 (Агдаиег и др.) и № 3,770,614 (Огауеп), которые оба включены в изобретение в качестве ссылки.
Цеолит Ζ8Μ-11 описан в патенте США № 3709979 (СЕи); Ζ8Μ-12 - в патенте США № 3832449 (Во8Ш8к1 и др.); Ζ8Μ-21 и Ζ8Μ-38 описаны в патенте США № 3948758 (Вопасс1 и др.); Ζ8Μ-23 - в патенте США № 4076842 (Р1апк и др.); и Ζ8Μ-35 описан в патенте США № 4016245 (Р1апк и др.), которые все включены в изобретение в качестве ссылки. Другие подходящие молекулярные сита включают силикоалюмофосфаты (8АРО), такие как 8АРО-4 и 8АРО-11, которые описаны в патенте США № 4440871 (Ьок и др.); хромосиликаты; галлийсиликаты, железосиликаты; алюмофосфаты (АЬРО), такие как АЬРО11, описанные в патенте США № 4310440 (^11зоп и др.); титаноалюмосиликаты (ТА8О), такие как ТА8О-45, описанные в патенте США № 4686029 (Ре11е1 и др.); боросиликаты, описанные в патенте США №4254297 (Егепкеп и др.); титаноалюмофосфаты (ТАРО), такие как ТАРО-11, описанные в патенте США № 4500651 (Ьок и др.); и железоалюмосиликаты, которые все включены в изобретение в качестве ссылки.
В патенте США № 4368114 (СЕеккег и др.), который включен в изобретение в качестве ссылки, подробно описан класс цеолитов, которые могут быть подходящими как добавки Ζ8Μ-5. Добавка Ζ8Μ-5 может удерживаться вместе с каталитически неактивным матричным компонентом неорганического оксида, в соответствии с традиционными способами.
В некоторых вариантах изобретения остаток, полученный из блоков, приведенных на фиг. 2 и 3, может быть использован в качестве источника энергии. Этот остаток может быть газифицирован с целью получения газов, которые сжигаются (например, в турбине) и/или закачиваются в подземное месторождение (например, закачка полученного диоксида углерода в подземное месторождение). В некоторых вариантах изобретения из этого остатка удаляют битум, чтобы производить асфальт. Этот асфальт может быть переработан в газ.
Примеры
Ниже представлены неограничивающие примеры фильтрации жидкого потока, термически обработайного ш 811и, и производство олефинов из жидкого потока, термически обработанного ш 8ίΙιι.
Пример 1. Нанофильтрация жидкого потока способа термической обработки ш 8ίΙιι.
Образец жидкости (500 мл, 398,68 г) получают в способе термической обработки ш 8Йи. Этот образец жидкости содержит 0,0069 г серы и 0,0118 г азота на грамм жидкости. Температура конца кипения образца жидкости составляет 481°С, и образец жидкости имеет плотность 0,8474. Мембранный блок сепарирования, использованный для фильтрации образца, представляет собой лабораторную установку с плоской листовой мембраной типа Р28, которую получают от фирмы СМ Се1£а МетЬгапкесйшк А. О. (8\\'Нхег1ап0). В качестве фильтрационной среды использована отдельная полидиметилсилоксановая мембрана (фирма ОК88 ЕогксйипдкхегИгит ОтЬН, СеекШаск Оегтапу) толщиной 2 мкм. Система фильтрации функционирует при 50°С, причем перепад давления на мембране составляет 10 бар (1 МПа). Давление на стороне пермеата является близким к атмосферному. Пермеат собирают и рециркулируют через систему фильтрации, моделируя непрерывной процесс. Пермеат сохраняют под азотом, чтобы предотвратить контакт с окружающим воздухом. Ретентат также собирают для анализа. В ходе фильтрации средняя скорость потока, равная 2 кг/м2 /бар/ч, снижалась весьма незначительно от величины начального потока. Отфильтрованная жидкость (298,15 г, степень извлечения 7,7%), содержит 0,007 г серы и 0,0124 грамма азота на грамм отфильтрованной жидкости; и отфильтрованная жидкость имеет плотность 0,8459 и температуру конца кипения 486°С. Ретентат (56,46 г, степень извлечения 14,16%) содержит 0,0076 г серы и 0,0158 г азота на грамм ретентата; причем ретентат имеет плотность 0,8714 и температуру конца кипения 543°С.
Пример 2. Испытание загрязнения для отфильтрованного и неотфильтрованного жидкого потока способа термической обработки ш 8Йи.
Для образцов неотфильтрованной и отфильтрованной жидкости из примера 1 определяют характеристику загрязнения. Эту характеристику загрязнения определяют с использованием прибора А1сог для испытания термического загрязнения. Прибор А1сог для испытания термического загрязнения представляет собой миниатюрный кожухотрубный теплообменник, выполненный из стали 1018, который до ис
- 17 016412 пользования протирают абразивной бумагой Νοτίοη К.222. В ходе испытания контролируют температуру образца на выходе (Твых), тогда как температуру теплообменника (Тт) поддерживают постоянной. Если происходит загрязнение, и на поверхности труб осаждается материал, термическое сопротивление образца возрастает, и, следовательно, температура на выходе снижается. Мерой степени загрязнения является снижение температуры на выходе, спустя заданный период времени. Снижение температуры спустя два часа работы используется в качестве показателя степени загрязнения. Величина разности ΔΤ= Твых(0) Твых(), где Твых(0) определяется как максимальная (стабильная) температура на выходе, полученная в начале испытания, Твых() регистрируют через 2 ч после первого заметного снижения температуры на выходе или когда температура на выходе была стабильной, по меньшей мере, в течение 2 ч.
В ходе каждого испытания образец жидкости непрерывно циркулирует через теплообменник со скоростью около 3 мл/мин. Время пребывания в теплообменнике составляет около 10 с. Поддерживаются следующие условия работы: давление 40 бар (4 МПа), температура образца составляет около 50°С, Тт равна 350°С, и время испытания составляет 4,41 ч. Величина ΔΤ для неотфильтрованного образца жидкого потока составляет 15°С. Величина ΔΤ для неотфильтрованного образца равна нулю.
Этот пример демонстрирует, что при нанофильтрации жидкого потока, добытого по способу термической обработки ίη δίΐιι. удаляется по меньшей мере часть закупоривающих композиций.
Пример 3. Получение олефинов из жидкого потока способа термической обработки ίη δίΐιι.
Для проведения экспериментов использована опытная пилотная система. Эта пилотная система включает систему подачи сырья, систему загрузки и перемещения катализатора, быстро флюидизируемый реактор в восходяшем слое, отпарной аппарат, систему сепарирования и сбора продукта, и регенератор. Реактор в восходяшем слое представляет собой адиабатическую вертикальную трубу, имеющую внутренний диаметр от 11 до 19 мм и длину около 3,2 м. Выход флюида из реактора в восходяшем слое сообщается с отпарным аппаратом, который эксплуатируется при той же самой температуре, что и выход потока из реактора в восходяшем слое, и таким образом, чтобы обеспечить практически 100%-ную эффективность отпаривания. Регенератор представляет собой многоступенчатый непрерывный регенератор, использованный для регенерации отработанного катализатора. Отработанный катализатор поступает в регенератор с регулируемой скоростью, и регенерированный катализатор собирают в контейнер. Материальные балансы получают в ходе каждого экспериментального пробега с интервалами 30 мин. Состав газовых проб анализируют с использованием встроенного газового хроматографа, а пробы жидкого продукта собирают и анализируют в течение ночи. Выход кокса определяют путем измерения потока катализатора и путем измерения разности содержания кокса на образцах отработанного катализатора и регенерированного катализатора, отбираемых в каждом пробеге, когда установка работает в стационарном режиме.
Жидкий поток, добытый по способу термической обработки ίη δίίυ, фракционируют, чтобы получить поток вакуумного газойля (УОО), имеющего распределение температур кипения от 310 до 640°С. Поток УОО контактирует с флюидизированным катализатором крекинга Е-Са!, содержащим 10% добавки Ζ8Μ-5 в описанной выше каталитической системе. Температуру в реакторе с восходящим слоем катализатора поддерживают равной 593°С (1100°Е). Полученный продукт содержит, на 1 г продукта: 0,1402 грамма С3 олефинов, 0,137 г С4 олефинов, 0,0897 г С5 олефинов, 0,0152 г изоолефинов С5, 0,0505 г изобутилена, 0,0159 г этана, 0,0249 г изобутана, 0,0089 г н-бутана, 0,0043 г пентана, 0,0209 г изопентанов, 0,2728 г смеси углеводородов С6 и углеводородов, имеющих температуру кипения, самое большее 232°С (450°Е), 0,0881 г углеводородов, имеющих распределение температур кипения между 232 и 343°С (между 450 и 650°Е), 0,0769 г углеводородов, имеющих распределение температур кипения между 343 и 399°С (650 и 750°Е), и 0,0386 га углеводородов, имеющих распределение температур кипения по меньшей мере 399°С (750°Е), и 0,0323 г кокса.
Этот пример иллюстрирует способ получения сырого продукта фракционирования жидкого потока, добытого путем сепарирования жидкого потока из флюида месторождения, чтобы получить сырой продукт, имеющий температуру кипения выше 343°С; и каталитический крекинг сырого продукта, имеющего температуру кипения выше 343°С, чтобы получить один или несколько дополнительных сырых продуктов, в которых по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток.
Пример 4. Получение олефинов из жидкого потока, произведенного способом термической обработки ίη δίΐιι.
Использована нафта термического крекинга с целью моделирования жидкого потока, произведенного способом термической обработки ίη δίίυ, имеющего распределение температур кипения от 30 до 182°С. В 1 г содержится: 0,186 г нафтеновых, 0,238 г изопарафиновых, 0,328 г н-парафиновых 0,029 г циклоолефиновых, 0,046 г изоолефиновых, 0,064 г н-олефиновых и 0,109 г ароматических углеводородов. Поток нафты контактирует с флюидизированным слоем катализатора Е-Са! с добавкой 10% цеолита Ζ8Μ-5 в описанной выше системе каталитического крекинга для того, чтобы получить сырой продукт. Температура в реакторе с восходяшим слоем поддерживается равной 593°С (1100°Е). Этот сырой продукт содержит (на 1 г сырого продукта): 0,1308 г этилена, 0,0139 г этана, 0,0966 г С4-олефинов, 0,0343 г
- 18 016412
С4-изоолефинов, 0,0175 г бутана, 0,0299 г изобутана, 0,0525 г С5-олефинов, 0,0309 г С5-изоолефинов, 0,0442 г пентана, 0,0384 г изопентана, 0,4943 г смеси углеводородов С6 и углеводородов, имеющих температуру кипения самое большее 232°С (450°Е), 0,0201 г углеводородов, имеющих распределение температур кипения между 232 и 343°С (между 450 и 650°Е), 0,0029 г углеводородов, имеющих распределение температур кипения между 343 и 399°С (от 650 до 750°Е) 0,00128 г углеводородов, имеющих распределение температур кипения по меньшей мере 399°С (750°Е) и 0,00128 г кокса. Суммарное количество С3С5-олефинов составляет 0,2799 г на 1 г нафты.
Этот пример иллюстрирует способ получения сырого продукта путем фракционирования жидкого потока, произведенного путем сепарирования жидкого потока из флюида месторождения, с целью получения сырого продукта, имеющего температуру кипения выше 343°С; и каталитического крекинга сырого продукта, имеющего температуру кипения выше 343°С с целью получения одного или нескольких дополнительных сырых продуктов, в которых по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток.

Claims (15)

1. Способ получения сырого продукта, который включает следующие стадии:
добычу пластового флюида в процессе пиролиза ίη §йи при термической обработке;
разделение пластового флюида с получением жидкого потока и первого газового потока, в котором первый газовый поток содержит олефины;
фракционирование жидкого потока с получением одного или нескольких сырых продуктов, при котором по меньшей мере один из сырых продуктов имеет интервал температур кипения от 38 до 343°С, определяемый по методу Ά8ΤΜ Ό5307; и каталитический крекинг сырого продукта, имеющего интервал температур кипения от 38 до 343°С, на флюидизируемом катализаторе крекинга, содержащем молекулярное сито, обладающее активностью при крекинге, диспергированное в пористой матрице неорганического тугоплавкого оксида, с получением одного или нескольких дополнительных сырых продуктов, содержащих углеводороды бензина, имеющие октановое число по меньшей мере 70, причем по меньшей мере один из дополнительных сырых продуктов представляет собой второй газовый поток, и второй газовый поток имеет температуру кипения самое большее 38°С при 0,101 МПа и содержит углеводороды, имеющие по меньшей мере три атома углерода.
2. Способ по п.1, в котором по меньшей мере один из дополнительных сырых продуктов имеет интервал температур кипения между 38 и 200°С, определяемый по методу Ά8Τ ΜΌ5307.
3. Способ по п.1, в котором каталитический крекинг сырого продукта осуществляют в первой системе каталитического крекинга путем контактирования жидкого потока сырого продукта с катализатором крекинга с получением потока углеводородов бензина и отработанного катализатора крекинга;
регенерацию отработанного катализатора крекинга с получением регенерированного катализатора крекинга;
каталитический крекинг потока углеводородов бензина во второй системе каталитического крекинга путем контактирования потока углеводородов бензина с регенерированным катализатором крекинга с получением сырого потока олефинов, содержащего углеводороды, имеющие по меньшей мере два атома углерода, и использованный регенерированный катализатор крекинга; и выделение олефинов, которые имеют от 2 до 5 атомов углерода из сырого потока олефинов; и доставку использованного регенерированного катализатора крекинга из второй системы каталитического крекинга в первую систему каталитического крекинга.
4. Способ по п.3, в котором катализатор крекинга содержит аморфный алюмосиликат и цеолит.
5. Способ по п.3 или 4, который дополнительно включает добавку Ζ8Μ-5 во вторую систему каталитического крекинга.
6. Способ по любому из пп.3-5, в котором содержание кокса в регенерированном катализаторе крекинга составляет от 0,01 до 0,5 мас.%.
7. Способ по любому из пп.3-6, в котором массовое отношение использованного регенерированного катализатора крекинга к регенерированному катализатору крекинга изменяется от 0,1:1 до 100:1.
8. Способ по любому из пп.3-7, который дополнительно включает добавление водяного пара в первую и/или вторую систему каталитического крекинга.
9. Способ по любому из пп.8, который дополнительно включает один или несколько потоков углеводородов, в котором по меньшей мере один из потоков углеводородов представляет собой поток углеводородов бензина, и подачу по меньшей мере части потока углеводородов бензина во вторую систему каталитического крекинга.
10. Способ по п.9, в котором по меньшей мере один из потоков углеводородов представляет собой поток рециклового газойля и который включает подачу по меньшей мере части потока рециклового газойля в первую систему каталитического крекинга.
- 19 016412
11. Способ по любому из пп.3-11, который дополнительно включает подачу по меньшей мере части олефинов, имеющих от 3 до 5 атомов углерода, в установку алкилирования.
12. Способ по любому из пп.3-11, который дополнительно включает подачу по меньшей мере части олефинов, имеющих от 3 до 5 атомов углерода, в установку алкилирования с последующим алкилированием олефинов и получением углеводородов, подходящих для смешивания с целью получения транспортного топлива.
13. Способ по п.12, в котором транспортное топливо представляет собой бензин.
14. Способ по любому из пп.3-13, который дополнительно включает подачу по меньшей мере части олефинов в установку полимеризации.
15. Способ по любому из пп.1-14, который дополнительно включает гидроочистку по меньшей мере части жидкого потока в условиях, обеспечивающих удаление засоряющих композиций.
EA200801157A 2005-10-24 2006-10-20 Способы крекинга сырого продукта с целью получения дополнительных сырых продуктов и способ получения транспортного топлива EA016412B9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72976305P 2005-10-24 2005-10-24
US79429806P 2006-04-21 2006-04-21
PCT/US2006/040991 WO2007050450A2 (en) 2005-10-24 2006-10-20 Methods of cracking a crude product to produce additional crude products

Publications (3)

Publication Number Publication Date
EA200801157A1 EA200801157A1 (ru) 2008-12-30
EA016412B1 true EA016412B1 (ru) 2012-04-30
EA016412B9 EA016412B9 (ru) 2012-07-30

Family

ID=37736147

Family Applications (8)

Application Number Title Priority Date Filing Date
EA200801155A EA013513B1 (ru) 2005-10-24 2006-10-20 Способ получения сырых продуктов с подземной термической переработкой in situ
EA200801152A EA013579B1 (ru) 2005-10-24 2006-10-20 Система для совместного производства теплоты и электричества и способ обработки углеводородсодержащих пластов
EA200801154A EA012941B1 (ru) 2005-10-24 2006-10-20 Способ фильтрации жидкого потока, полученного способом термической переработки in situ
EA200801157A EA016412B9 (ru) 2005-10-24 2006-10-20 Способы крекинга сырого продукта с целью получения дополнительных сырых продуктов и способ получения транспортного топлива
EA200801156A EA014215B1 (ru) 2005-10-24 2006-10-20 Ограниченный по температуре нагреватель с трубопроводом, по существу, электрически изолированным от пласта
EA200801151A EA013253B1 (ru) 2005-10-24 2006-10-20 Способы обработки углеводородсодержащих пластов
EA200801153A EA015618B1 (ru) 2005-10-24 2006-10-20 Способы получения алкилированных углеводородов из текучей среды, полученной способом термической переработки in situ
EA200801150A EA014196B1 (ru) 2005-10-24 2006-10-20 Система и способ для добычи углеводородов из битуминозных песков по дренажным каналам, образованным нагревом

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EA200801155A EA013513B1 (ru) 2005-10-24 2006-10-20 Способ получения сырых продуктов с подземной термической переработкой in situ
EA200801152A EA013579B1 (ru) 2005-10-24 2006-10-20 Система для совместного производства теплоты и электричества и способ обработки углеводородсодержащих пластов
EA200801154A EA012941B1 (ru) 2005-10-24 2006-10-20 Способ фильтрации жидкого потока, полученного способом термической переработки in situ

Family Applications After (4)

Application Number Title Priority Date Filing Date
EA200801156A EA014215B1 (ru) 2005-10-24 2006-10-20 Ограниченный по температуре нагреватель с трубопроводом, по существу, электрически изолированным от пласта
EA200801151A EA013253B1 (ru) 2005-10-24 2006-10-20 Способы обработки углеводородсодержащих пластов
EA200801153A EA015618B1 (ru) 2005-10-24 2006-10-20 Способы получения алкилированных углеводородов из текучей среды, полученной способом термической переработки in situ
EA200801150A EA014196B1 (ru) 2005-10-24 2006-10-20 Система и способ для добычи углеводородов из битуминозных песков по дренажным каналам, образованным нагревом

Country Status (14)

Country Link
US (14) US8606091B2 (ru)
EP (8) EP1941001A2 (ru)
JP (8) JP5570723B2 (ru)
KR (9) KR101359313B1 (ru)
AT (1) ATE499428T1 (ru)
AU (9) AU2006306476B2 (ru)
CA (9) CA2626972C (ru)
DE (1) DE602006020314D1 (ru)
EA (8) EA013513B1 (ru)
GB (1) GB2451311A (ru)
IL (8) IL190657A (ru)
MA (8) MA29953B1 (ru)
NZ (9) NZ567658A (ru)
WO (9) WO2007050477A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658829C2 (ru) * 2013-05-24 2018-06-25 Экспендер Энерджи Инк. Способ очистки тяжелой нефти и битума

Families Citing this family (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270051C (zh) 2000-04-24 2006-08-16 国际壳牌研究有限公司 从含油母质的岩层中就地回收烃的方法
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
CN100400793C (zh) 2001-10-24 2008-07-09 国际壳牌研究有限公司 通过u形开口现场加热含烃地层的方法与系统
DE10245103A1 (de) * 2002-09-27 2004-04-08 General Electric Co. Schaltschrank für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
EP1556580A1 (en) 2002-10-24 2005-07-27 Shell Internationale Researchmaatschappij B.V. Temperature limited heaters for heating subsurface formations or wellbores
CA2524689C (en) * 2003-04-24 2012-05-22 Shell Canada Limited Thermal processes for subsurface formations
US8296968B2 (en) * 2003-06-13 2012-10-30 Charles Hensley Surface drying apparatus and method
US7552762B2 (en) * 2003-08-05 2009-06-30 Stream-Flo Industries Ltd. Method and apparatus to provide electrical connection in a wellhead for a downhole electrical device
ATE414840T1 (de) 2004-04-23 2008-12-15 Shell Int Research Zur erwärmung von unterirdischen formationen verwendete temperaturbegrenzte heizvorrichtungen
DE102004025528B4 (de) * 2004-05-25 2010-03-04 Eisenmann Anlagenbau Gmbh & Co. Kg Verfahren und Vorrichtung zum Trocknen von beschichteten Gegenständen
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US20070084077A1 (en) * 2004-07-19 2007-04-19 Gorbell Brian N Control system for gas turbine in material treatment unit
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024800B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
DE102005000782A1 (de) * 2005-01-05 2006-07-20 Voith Paper Patent Gmbh Trockenzylinder
EP1871986A1 (en) 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Varying properties along lengths of temperature limited heaters
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8606091B2 (en) * 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20070163316A1 (en) * 2006-01-18 2007-07-19 Earthrenew Organics Ltd. High organic matter products and related systems for restoring organic matter and nutrients in soil
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US7445041B2 (en) * 2006-02-06 2008-11-04 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil shale
US7484561B2 (en) * 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
US20090173491A1 (en) * 2006-02-24 2009-07-09 O'brien Thomas B Method and system for extraction of hydrocarbons from oil shale and limestone formations
CA2643214C (en) 2006-02-24 2016-04-12 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil sands
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
AU2007240367B2 (en) * 2006-04-21 2011-04-07 Shell Internationale Research Maatschappij B.V. High strength alloys
US7775281B2 (en) * 2006-05-10 2010-08-17 Kosakewich Darrell S Method and apparatus for stimulating production from oil and gas wells by freeze-thaw cycling
US7426926B2 (en) * 2006-05-31 2008-09-23 Ford Global Technologies, Llc Cold idle adaptive air-fuel ratio control utilizing lost fuel approximation
US20070281224A1 (en) * 2006-05-31 2007-12-06 Kerry Arthur Kirk Scratch-off document and method for producing same
NO325979B1 (no) * 2006-07-07 2008-08-25 Shell Int Research System og fremgangsmate for a kjole en flerfasebronnstrom
AU2007313394B2 (en) 2006-10-13 2015-01-29 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
BRPI0719213A2 (pt) 2006-10-13 2014-06-10 Exxonmobil Upstream Res Co Método para abaixar a temperatura de uma formação subsuperfiacial
CN101595273B (zh) 2006-10-13 2013-01-02 埃克森美孚上游研究公司 用于原位页岩油开发的优化的井布置
GB2456251B (en) 2006-10-20 2011-03-16 Shell Int Research Heating hydrocarbon containing formations in a spiral startup staged sequence
DE102007008292B4 (de) * 2007-02-16 2009-08-13 Siemens Ag Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
CA2675780C (en) 2007-03-22 2015-05-26 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
BRPI0808508A2 (pt) 2007-03-22 2014-08-19 Exxonmobil Upstream Res Co Métodos para aquecer uma formação de subsuperfície e uma formação rochosa rica em compostos orgânicos, e, método para produzir um fluido de hidrocarboneto
CA2905364C (en) * 2007-03-26 2017-05-02 J. I. Livingstone Enterprises Ltd. Drilling, completing and stimulating a hydrocarbon production well
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
CN101680284B (zh) 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
BRPI0810590A2 (pt) 2007-05-25 2014-10-21 Exxonmobil Upstream Res Co Método in situ de produzir fluidos de hidrocarboneto de uma formação rochosa rica em matéria orgânica
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
DK2008726T3 (da) * 2007-06-29 2013-10-14 Eurecat Sa Farvesortering af katalytiske eller adsorberende partikler
US20090028000A1 (en) * 2007-07-26 2009-01-29 O'brien Thomas B Method and process for the systematic exploration of uranium in the athabasca basin
CA2597881C (en) 2007-08-17 2012-05-01 Imperial Oil Resources Limited Method and system integrating thermal oil recovery and bitumen mining for thermal efficiency
WO2009038777A1 (en) * 2007-09-18 2009-03-26 Vast Power Portfolio, Llc Heavy oil recovery with fluid water and carbon dioxide
WO2009042575A1 (en) * 2007-09-26 2009-04-02 Tyco Thermal Controls Llc Skin effect heating system having improved heat transfer and wire support characteristics
CA2698564C (en) 2007-10-19 2014-08-12 Shell Internationale Research Maatschappij B.V. In situ oxidation of subsurface formations
CA2609419C (en) * 2007-11-02 2010-12-14 Imperial Oil Resources Limited System and method of heat and water recovery from tailings using gas humidification/dehumidification
CA2609859C (en) * 2007-11-02 2011-08-23 Imperial Oil Resources Limited Recovery of high quality water from produced water arising from a thermal hydrocarbon recovery operation using vacuum technologies
CA2610052C (en) * 2007-11-08 2013-02-19 Imperial Oil Resources Limited System and method of recovering heat and water and generating power from bitumen mining operations
CA2610463C (en) * 2007-11-09 2012-04-24 Imperial Oil Resources Limited Integration of an in-situ recovery operation with a mining operation
CA2610230C (en) * 2007-11-13 2012-04-03 Imperial Oil Resources Limited Water integration between an in-situ recovery operation and a bitumen mining operation
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
WO2009082674A1 (en) * 2007-12-22 2009-07-02 Services Petroliers Schlumberger Thermal bubble point measurement system and method
US8090227B2 (en) 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US20090192731A1 (en) * 2008-01-24 2009-07-30 Halliburton Energy Services, Inc. System and Method for Monitoring a Health State of Hydrocarbon Production Equipment
US20090218876A1 (en) * 2008-02-29 2009-09-03 Petrotek Engineering Corporation Method of achieving hydraulic control for in-situ mining through temperature-controlled mobility ratio alterations
WO2009117426A1 (en) * 2008-03-17 2009-09-24 Shell Oil Company Kerosene base fuel
WO2009120779A2 (en) * 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
BRPI0911530A2 (pt) 2008-05-23 2016-07-05 Exxonmobil Upstream Res Co métodos para produzir fluidos de hidrocarbonetos de uma formação de rocha rica em orgânicos, e para utilizar gás produzido de um processo de conversão in situ em uma área de desenvolvimento de hidrocarboneto
US8122956B2 (en) * 2008-07-03 2012-02-28 Baker Hughes Incorporated Magnetic stirrer
DE102008047219A1 (de) * 2008-09-15 2010-03-25 Siemens Aktiengesellschaft Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage
JP2010073002A (ja) * 2008-09-19 2010-04-02 Hoya Corp 画像処理装置およびカメラ
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
CN104739502B (zh) 2008-10-06 2018-01-19 维兰德·K·沙马 用于组织消融的方法和装置
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
CA2738805A1 (en) * 2008-10-13 2010-04-22 Shell Internationale Research Maatschappij B.V. Circulated heated transfer fluid systems used to treat a subsurface formation
US8247747B2 (en) * 2008-10-30 2012-08-21 Xaloy, Inc. Plasticating barrel with integrated exterior heater layer
WO2010070029A1 (en) 2008-12-18 2010-06-24 Shell Internationale Research Maatschappij B.V. Process for removing iron particles
CA2852121C (en) * 2009-02-06 2017-05-16 Hpd, Llc Method and system for recovering oil and generating steam from produced water
KR101078725B1 (ko) * 2009-02-16 2011-11-01 주식회사 하이닉스반도체 반도체 소자 및 그의 제조방법
AU2010216407B2 (en) 2009-02-23 2014-11-20 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
DE102009010289A1 (de) * 2009-02-24 2010-09-02 Siemens Aktiengesellschaft Vorrichtung zur Temperaturmessung in elektromagnetischen Feldern, Verwendung dieser Vorrichtung sowie zugehörige Messanordnung
DE102009023910A1 (de) * 2009-03-03 2010-09-16 Tracto-Technik Gmbh & Co. Kg Erdbohrvorrichtung
US8261831B2 (en) 2009-04-09 2012-09-11 General Synfuels International, Inc. Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil/tar sands
US8312927B2 (en) * 2009-04-09 2012-11-20 General Synfuels International, Inc. Apparatus and methods for adjusting operational parameters to recover hydrocarbonaceous and additional products from oil shale and sands
US8262866B2 (en) 2009-04-09 2012-09-11 General Synfuels International, Inc. Apparatus for the recovery of hydrocarbonaceous and additional products from oil shale and sands via multi-stage condensation
US8312928B2 (en) 2009-04-09 2012-11-20 General Synfuels International, Inc. Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil shale and oil sands
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
CN102421988A (zh) 2009-05-05 2012-04-18 埃克森美孚上游研究公司 通过基于一种或更多生产资源的可用性控制生产操作来将源自地下地层的有机物转化为可生产的烃
EP2442898B1 (en) * 2009-06-18 2019-01-02 Entegris, Inc. Sintered porous material comprising particles of different average sizes
NO330123B1 (no) 2009-07-11 2011-02-21 Sargas As Lav CO2-anlegg for utvinning av oljesand
CA2710078C (en) * 2009-07-22 2015-11-10 Conocophillips Company Hydrocarbon recovery method
WO2011014705A1 (en) * 2009-07-31 2011-02-03 Nicholas Castellano Method to enhance the production capacity of an oil well
WO2011017413A2 (en) 2009-08-05 2011-02-10 Shell Oil Company Use of fiber optics to monitor cement quality
GB2484053B (en) 2009-08-05 2013-05-08 Shell Int Research method for monitoring a well
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US20120198844A1 (en) * 2009-10-22 2012-08-09 Kaminsky Robert D System and Method For Producing Geothermal Energy
US8602103B2 (en) 2009-11-24 2013-12-10 Conocophillips Company Generation of fluid for hydrocarbon recovery
WO2011067863A1 (ja) * 2009-12-01 2011-06-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8240370B2 (en) * 2009-12-18 2012-08-14 Air Products And Chemicals, Inc. Integrated hydrogen production and hydrocarbon extraction
US8512009B2 (en) * 2010-01-11 2013-08-20 Baker Hughes Incorporated Steam driven pump for SAGD system
EP2531575A4 (en) * 2010-02-05 2013-08-07 Texas A & M Univ Sys DEVICES AND METHODS FOR A PYROLYSIS AND GASIFICATION SYSTEM OF A BIOMASS FEED CHARGE
US20110207972A1 (en) * 2010-02-23 2011-08-25 Battelle Memorial Institute Catalysts and processes for the hydrogenolysis of glycerol and other organic compounds for producing polyols and propylene glycol
DE102010013982A1 (de) 2010-04-06 2011-10-06 Bomag Gmbh Vorrichtung zum Erzeugen von Schaumbitumen und Verfahren zu deren Wartung
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
CA2703319C (en) * 2010-05-05 2012-06-12 Imperial Oil Resources Limited Operating wells in groups in solvent-dominated recovery processes
US20110277992A1 (en) * 2010-05-14 2011-11-17 Paul Grimes Systems and methods for enhanced recovery of hydrocarbonaceous fluids
RU2562460C2 (ru) * 2010-07-20 2015-09-10 Басф Се Способ получения ацетилена по способу саксе-бартоломé
US8975460B2 (en) * 2010-07-20 2015-03-10 Basf Se Process for preparing acetylene by the Sachsse-Bartholomé process
WO2012030426A1 (en) 2010-08-30 2012-03-08 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
BR112013000931A2 (pt) 2010-08-30 2016-05-17 Exxonmobil Upstream Res Co integridade mecânica de poço para a pirólise in situ
US9466398B2 (en) * 2010-09-27 2016-10-11 Purdue Research Foundation Ceramic-ceramic composites and process therefor, nuclear fuels formed thereby, and nuclear reactor systems and processes operated therewith
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8356678B2 (en) * 2010-10-29 2013-01-22 Racional Energy & Environment Company Oil recovery method and apparatus
US9334436B2 (en) 2010-10-29 2016-05-10 Racional Energy And Environment Company Oil recovery method and product
US9097110B2 (en) * 2010-12-03 2015-08-04 Exxonmobil Upstream Research Company Viscous oil recovery using a fluctuating electric power source and a fired heater
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
RU2013133887A (ru) 2010-12-22 2015-01-27 Шеврон Ю.Эс.Эй. Инк. Конверсия и извлечение керонена на месте залегания
JP5287962B2 (ja) * 2011-01-26 2013-09-11 株式会社デンソー 溶接装置
US20120217233A1 (en) * 2011-02-28 2012-08-30 Tom Richards, Inc. Ptc controlled environment heater
DE102011014345A1 (de) * 2011-03-18 2012-09-20 Ecoloop Gmbh Verfahren zur energieffizienten und umweltschonenden Gewinnung von Leichtöl und/oder Treibstoffen ausgehend von Roh-Bitumen aus Ölschifer und /oder Ölsanden
US9739123B2 (en) 2011-03-29 2017-08-22 Conocophillips Company Dual injection points in SAGD
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
AU2012240160B2 (en) 2011-04-08 2015-02-19 Shell Internationale Research Maatschappij B.V. Systems for joining insulated conductors
WO2012158722A2 (en) 2011-05-16 2012-11-22 Mcnally, David, J. Surgical instrument guide
US9279316B2 (en) 2011-06-17 2016-03-08 Athabasca Oil Corporation Thermally assisted gravity drainage (TAGD)
US9051828B2 (en) 2011-06-17 2015-06-09 Athabasca Oil Sands Corp. Thermally assisted gravity drainage (TAGD)
US9062525B2 (en) * 2011-07-07 2015-06-23 Single Buoy Moorings, Inc. Offshore heavy oil production
HU230571B1 (hu) * 2011-07-15 2016-12-28 Sld Enhanced Recovery, Inc. Eljárás lézeres olvasztásos kőzeteltávolítás során keletkező kőzet olvadék eltávolítására, valamint berendezés az eljárás megvalósítására
US8685281B2 (en) 2011-07-21 2014-04-01 Battelle Energy Alliance Llc System and process for the production of syngas and fuel gasses
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
JO3141B1 (ar) 2011-10-07 2017-09-20 Shell Int Research الوصلات المتكاملة للموصلات المعزولة
CN104011327B (zh) 2011-10-07 2016-12-14 国际壳牌研究有限公司 利用地下地层中的绝缘导线的介电性能来确定绝缘导线的性能
CA2850741A1 (en) 2011-10-07 2013-04-11 Manuel Alberto GONZALEZ Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
CA2791725A1 (en) * 2011-10-07 2013-04-07 Shell Internationale Research Maatschappij B.V. Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods
JO3139B1 (ar) 2011-10-07 2017-09-20 Shell Int Research تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية.
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
CA2783819C (en) 2011-11-08 2014-04-29 Imperial Oil Resources Limited Dewatering oil sand tailings
KR20140102668A (ko) 2011-12-06 2014-08-22 도메인 서지컬, 인크. 수술 기기로의 전원공급 제어 시스템 및 그 방법
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
WO2013103518A1 (en) * 2012-01-03 2013-07-11 Conocophillips Company Enhanced heavy oil recovery using downhole bitumen upgrading with steam assisted gravity drainage
US9605524B2 (en) 2012-01-23 2017-03-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
JP5696063B2 (ja) * 2012-02-02 2015-04-08 信越化学工業株式会社 多結晶シリコン棒搬出冶具および多結晶シリコン棒の刈取方法
CA2864863A1 (en) * 2012-02-18 2013-08-22 Genie Ip B.V. Method and system for heating a bed of hydrocarbon-containing rocks
US8910514B2 (en) * 2012-02-24 2014-12-16 Schlumberger Technology Corporation Systems and methods of determining fluid properties
CA2811666C (en) 2012-04-05 2021-06-29 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
RU2479620C1 (ru) * 2012-04-10 2013-04-20 Общество с ограниченной ответственностью "Инжиниринговый центр" Способ разделения газов в процессе каталитического крекинга бензинового направления
TW201400407A (zh) * 2012-04-18 2014-01-01 Exxonmobil Upstream Res Co 用於形成碳同素異形體之觸媒的製造
AU2013256823B2 (en) 2012-05-04 2015-09-03 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
WO2013180909A1 (en) * 2012-05-29 2013-12-05 Exxonmobil Upstream Research Company Systems and methods for hydrotreating a shale oil stream using hydrogen gas that is concentrated from the shale oil stream
HU229953B1 (hu) 2012-07-05 2015-03-02 Sld Enhanced Recovery, Inc Eljárás és berendezés elsősorban kitermelőcsövek alkáliföldfém-só lerakódásainak eltávolítására
US20140030117A1 (en) * 2012-07-24 2014-01-30 David Zachariah Multi-stage hydraulic jet pump
KR101938171B1 (ko) 2012-10-31 2019-01-14 대우조선해양 주식회사 백업 기능을 가지는 브라인 및 베이스오일 공급 시스템과 브라인 및 베이스오일의 백업 공급 방법
US9777564B2 (en) 2012-12-03 2017-10-03 Pyrophase, Inc. Stimulating production from oil wells using an RF dipole antenna
US9243485B2 (en) 2013-02-05 2016-01-26 Triple D Technologies, Inc. System and method to initiate permeability in bore holes without perforating tools
US9309741B2 (en) 2013-02-08 2016-04-12 Triple D Technologies, Inc. System and method for temporarily sealing a bore hole
US9534489B2 (en) * 2013-03-06 2017-01-03 Baker Hughes Incorporated Modeling acid distribution for acid stimulation of a formation
US10168447B2 (en) * 2013-03-27 2019-01-01 Schlumberger Technology Corporation Automatic geosteering and evolutionary algorithm for use with same
US10316644B2 (en) 2013-04-04 2019-06-11 Shell Oil Company Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation
US20140318773A1 (en) * 2013-04-26 2014-10-30 Elliot B. Kennel Methane enhanced liquid products recovery from wet natural gas
CN103233713B (zh) * 2013-04-28 2014-02-26 吉林省众诚汽车服务连锁有限公司 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
GB2515547A (en) * 2013-06-27 2014-12-31 Statoil Petroleum As Increasing hydrocarbon production from reservoirs
US9969638B2 (en) 2013-08-05 2018-05-15 Gradiant Corporation Water treatment systems and associated methods
US9920608B2 (en) * 2013-08-13 2018-03-20 Board Of Regents, The University Of Texas System Method of improving hydraulic fracturing by decreasing formation temperature
KR101506469B1 (ko) * 2013-09-09 2015-03-27 한국지질자원연구원 순환식 용해 채광 장치
KR101510826B1 (ko) 2013-11-19 2015-04-10 한국지질자원연구원 개선된 블레이드를 구비하는 순환식 용해 채광 장치 및 방법
AU2014202934B2 (en) 2013-09-09 2016-03-17 Korea Institute Of Geoscience And Mineral Resources (Kigam) Apparatus and method for solution mining using cycling process
KR101519967B1 (ko) * 2013-09-09 2015-05-15 한국지질자원연구원 순환식 용해 채광방법
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
AU2014321305B2 (en) 2013-09-20 2017-11-30 Baker Hughes, A Ge Company, Llc Method of using surface modifying metallic treatment agents to treat subterranean formations
RU2676341C2 (ru) 2013-09-20 2018-12-28 Бейкер Хьюз Инкорпорейтед Композитные материалы на основе фосфорорганических соединений для применения в операциях по обработке скважин
NZ717494A (en) 2013-09-20 2020-07-31 Baker Hughes Inc Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent
WO2015042486A1 (en) 2013-09-20 2015-03-26 Baker Hughes Incorporated Composites for use in stimulation and sand control operations
WO2015042477A1 (en) 2013-09-20 2015-03-26 Baker Hughes Incorporated Method of using surface modifying treatment agents to treat subterranean formations
CN105683095B (zh) 2013-09-23 2019-09-17 格雷迪安特公司 脱盐系统及相关方法
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US10041341B2 (en) 2013-11-06 2018-08-07 Nexen Energy Ulc Processes for producing hydrocarbons from a reservoir
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
CN103711483B (zh) * 2014-01-13 2017-01-11 北京源海威科技有限公司 页岩生烃、吸附及解吸模拟系统和模拟方法
CA2882182C (en) 2014-02-18 2023-01-03 Athabasca Oil Corporation Cable-based well heater
GB2523567B (en) 2014-02-27 2017-12-06 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
AU2015241248B2 (en) * 2014-04-04 2017-03-16 Shell Internationale Research Maatschappij B.V. Traveling unit and work vehicle
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
US20160097247A1 (en) * 2014-10-01 2016-04-07 H2O Oilfield Services Methods of filtering a fluid using a portable fluid filtration apparatus
WO2016081104A1 (en) 2014-11-21 2016-05-26 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
CN107002486B (zh) 2014-11-25 2019-09-10 国际壳牌研究有限公司 热解以增压油地层
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10066156B2 (en) * 2015-04-14 2018-09-04 Saudi Arabian Oil Company Supercritical carbon dioxide emulsified acid
GB2539045A (en) * 2015-06-05 2016-12-07 Statoil Asa Subsurface heater configuration for in situ hydrocarbon production
AU2016298326B2 (en) 2015-07-29 2022-08-04 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
WO2017030937A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
TW201733915A (zh) 2015-11-13 2017-10-01 艾克頌美孚研究工程公司 逆滲透膜及分離
US9337704B1 (en) * 2015-11-20 2016-05-10 Jerry Leslie System for electricity generation by utilizing flared gas
EP3407089B1 (en) 2016-01-29 2024-03-27 Meiji University Laser scanning system, laser scanning method, moving laser scanning system, and program
WO2017147113A1 (en) 2016-02-22 2017-08-31 Gradiant Corporation Hybrid desalination systems and associated methods
CN105952431B (zh) * 2016-04-21 2018-08-10 中国石油天然气股份有限公司 不动管柱解堵方法
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
IT201600074309A1 (it) * 2016-07-15 2018-01-15 Eni Spa Sistema per la trasmissione dati bidirezionale cableless in un pozzo per l’estrazione di fluidi di formazione.
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
RU2654886C2 (ru) * 2016-10-18 2018-05-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Когенерационная система энергоснабжения кустовой буровой установки
WO2018159594A1 (ja) * 2017-02-28 2018-09-07 国立大学法人東北大学 メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム
CN107488464B (zh) * 2017-04-27 2019-04-30 中国石油大学(北京) 一种超清洁高辛烷值汽油的生产方法及生产系统
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
JOP20180091B1 (ar) * 2017-10-12 2022-09-15 Red Leaf Resources Inc تسخين المواد من خلال التوليد المشترك للحرارة والكهرباء
US10450494B2 (en) 2018-01-17 2019-10-22 Bj Services, Llc Cement slurries for well bores
AU2019279011A1 (en) 2018-06-01 2021-01-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
CN110608023B (zh) * 2018-06-15 2021-12-10 中国石油化工股份有限公司 稠油分层注汽的适应性界限分析评价方法
SG11202101293TA (en) 2018-08-22 2021-03-30 Gradiant Corp Liquid solution concentration system comprising isolated subsystem and related methods
CN109273105B (zh) * 2018-09-13 2022-03-25 中国核动力研究设计院 一种超临界二氧化碳反应堆燃料组件
US11053775B2 (en) * 2018-11-16 2021-07-06 Leonid Kovalev Downhole induction heater
CN109507182B (zh) * 2018-12-04 2021-07-30 中山市中能检测中心有限公司 一种土壤酸碱度失衡检测装备及其使用方法
CN111396011B (zh) * 2019-01-02 2022-06-03 中国石油天然气股份有限公司 提高双支u型井产气量的方法及装置
RU190546U1 (ru) * 2019-03-29 2019-07-03 Оксана Викторовна Давыдова Утилизирующая попутный нефтяной газ энергетическая установка для выработки пара, подаваемого в нагнетательные скважины
RU194690U1 (ru) * 2019-07-16 2019-12-19 Алексей Петрович Сальников Электрообогреватель
CN110259424B (zh) * 2019-07-17 2020-07-28 中国石油大学(北京) 一种原位开采油页岩的方法和装置
CN110439503B (zh) * 2019-08-14 2021-08-10 西安石油大学 一种裂缝性低渗透油藏多段塞油井选择性堵水方法
RU2726693C1 (ru) * 2019-08-27 2020-07-15 Анатолий Александрович Чернов Способ повышения эффективности добычи углеводородов из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления
US11207636B2 (en) * 2019-09-04 2021-12-28 Uop Llc Membrane permeate recycle system for use with pressure swing adsorption apparatus
US11376548B2 (en) 2019-09-04 2022-07-05 Uop Llc Membrane permeate recycle process for use with pressure swing adsorption processes
RU2726703C1 (ru) * 2019-09-26 2020-07-15 Анатолий Александрович Чернов Способ повышения эффективности добычи высокотехнологичной нефти из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления
CN110702840B (zh) * 2019-10-14 2022-06-07 河北地质大学华信学院 一种基于城市生活污水生物质碳化后能量利用率的分析装置
CN110595859B (zh) * 2019-10-29 2022-09-13 长沙开元弘盛科技有限公司 除水方法、分析仪及其除水装置
MX2021005587A (es) * 2020-05-13 2022-02-10 Greenfire Energy Inc Produccion de hidrogeno a partir de recursos geotermicos utilizando sistemas de circuito cerrado.
EP4153702A1 (en) * 2020-05-21 2023-03-29 Pyrophase, Inc. Configurable universal wellbore reactor system
CN111883851B (zh) * 2020-08-02 2022-04-12 江西安驰新能源科技有限公司 一种锂离子电池从化成到配组的方法
CN111929219B (zh) * 2020-08-12 2022-04-01 西南石油大学 一种页岩油藏油水两相相对渗透率计算方法
CA3197204A1 (en) 2020-11-17 2022-05-27 Richard STOVER Osmotic methods and systems involving energy recovery
RU2752299C1 (ru) * 2021-01-13 2021-07-26 Алексей Владимирович Лысенков Способ термокислотной обработки призабойной зоны пласта
CN112901128B (zh) * 2021-01-23 2022-09-02 长安大学 盐度响应型乳状液用于含水层稠油油藏启动sagd方法
CN112983376B (zh) * 2021-03-05 2022-03-04 中国矿业大学 一种带有分子筛的原位甲烷燃爆聚能射孔装置
DE102021203551A1 (de) 2021-04-09 2022-10-13 Volkswagen Aktiengesellschaft Fahrintentionserkennung
CN113585333B (zh) * 2021-07-09 2022-05-17 中铁建工集团有限公司 一种地下空间施工溶洞顶壁加强结构及处理方法
CN115012878B (zh) * 2022-06-30 2023-06-23 西南石油大学 一种基于双层管的含硫气井不停产的抑制剂加注系统
CN115492558B (zh) * 2022-09-14 2023-04-14 中国石油大学(华东) 一种海域天然气水合物降压开采井筒中水合物二次生成防治装置及防治方法
CN116044389B (zh) * 2023-01-29 2024-04-30 西南石油大学 一种致密页岩油藏早期衰竭开采合理生产压差的确定方法
KR102618017B1 (ko) * 2023-06-12 2023-12-27 주식회사 에이치엔티 고체분리 시스템
KR102618021B1 (ko) * 2023-06-12 2023-12-27 주식회사 에이치엔티 수막이 형성된 하이드로사이클론 타입의 디센더

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889882A (en) * 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3412011A (en) * 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
US4248306A (en) * 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
WO1997007321A1 (en) * 1994-06-28 1997-02-27 Amoco Corporation In situ combustion using ammonium nitrate as oxygene source
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden

Family Cites Families (864)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US345586A (en) 1886-07-13 Oil from wells
SE123136C1 (ru) 1948-01-01
US94813A (en) 1869-09-14 Improvement in torpedoes for oil-wells
US326439A (en) * 1885-09-15 Protecting wells
CA899987A (en) 1972-05-09 Chisso Corporation Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current
US48994A (en) * 1865-07-25 Improvement in devices for oil-wells
US2732195A (en) 1956-01-24 Ljungstrom
SE123138C1 (ru) 1948-01-01
SE126674C1 (ru) 1949-01-01
US2734579A (en) 1956-02-14 Production from bituminous sands
US760304A (en) 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1342741A (en) * 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1510655A (en) * 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) * 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) * 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US1913395A (en) 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US1998123A (en) * 1932-08-25 1935-04-16 Socony Vacuum Oil Co Inc Process and apparatus for the distillation and conversion of hydrocarbons
US2244255A (en) 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2244256A (en) * 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2370507A (en) * 1941-08-22 1945-02-27 Texas Co Production of gasoline hydrocarbons
US2365591A (en) * 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2381256A (en) * 1942-10-06 1945-08-07 Texas Co Process for treating hydrocarbon fractions
US2390770A (en) 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2484063A (en) 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) * 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2481051A (en) 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) * 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2497868A (en) 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) * 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) * 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2685930A (en) 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2630307A (en) 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) * 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) * 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
GB674082A (en) 1949-06-15 1952-06-18 Nat Res Dev Improvements in or relating to the underground gasification of coal
US2670802A (en) 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2714930A (en) 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) * 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
GB697189A (en) 1951-04-09 1953-09-16 Nat Res Dev Improvements relating to the underground gasification of coal
US2630306A (en) 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2777679A (en) 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2789805A (en) 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2780449A (en) 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2783971A (en) * 1953-03-11 1957-03-05 Engineering Lab Inc Apparatus for earth boring with pressurized air
US2771954A (en) 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2847306A (en) 1953-07-01 1958-08-12 Exxon Research Engineering Co Process for recovery of oil from shale
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2882218A (en) * 1953-12-09 1959-04-14 Kellogg M W Co Hydrocarbon conversion process
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) * 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2923535A (en) 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2799341A (en) * 1955-03-04 1957-07-16 Union Oil Co Selective plugging in oil wells
US2801089A (en) 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2862558A (en) * 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) * 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US3120264A (en) * 1956-07-09 1964-02-04 Texaco Development Corp Recovery of oil by in situ combustion
US3016053A (en) 1956-08-02 1962-01-09 George J Medovick Underwater breathing apparatus
US2997105A (en) 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US2952449A (en) 1957-02-01 1960-09-13 Fmc Corp Method of forming underground communication between boreholes
US3127936A (en) * 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US2942223A (en) 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) * 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US3007521A (en) 1957-10-28 1961-11-07 Phillips Petroleum Co Recovery of oil by in situ combustion
US3010516A (en) * 1957-11-18 1961-11-28 Phillips Petroleum Co Burner and process for in situ combustion
US2954826A (en) 1957-12-02 1960-10-04 William E Sievers Heated well production string
US2994376A (en) 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3061009A (en) 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3062282A (en) * 1958-01-24 1962-11-06 Phillips Petroleum Co Initiation of in situ combustion in a carbonaceous stratum
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US3004603A (en) 1958-03-07 1961-10-17 Phillips Petroleum Co Heater
US3032102A (en) 1958-03-17 1962-05-01 Phillips Petroleum Co In situ combustion method
US3004601A (en) 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3048221A (en) 1958-05-12 1962-08-07 Phillips Petroleum Co Hydrocarbon recovery by thermal drive
US3026940A (en) 1958-05-19 1962-03-27 Electronic Oil Well Heater Inc Oil well temperature indicator and control
US3010513A (en) 1958-06-12 1961-11-28 Phillips Petroleum Co Initiation of in situ combustion in carbonaceous stratum
US2958519A (en) 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3044545A (en) 1958-10-02 1962-07-17 Phillips Petroleum Co In situ combustion process
US3050123A (en) 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US2974937A (en) 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) * 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US3036632A (en) 1958-12-24 1962-05-29 Socony Mobil Oil Co Inc Recovery of hydrocarbon materials from earth formations by application of heat
US2969226A (en) 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3017168A (en) 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3110345A (en) * 1959-02-26 1963-11-12 Gulf Research Development Co Low temperature reverse combustion process
US3113619A (en) * 1959-03-30 1963-12-10 Phillips Petroleum Co Line drive counterflow in situ combustion process
US3113620A (en) 1959-07-06 1963-12-10 Exxon Research Engineering Co Process for producing viscous oil
US3113623A (en) * 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3181613A (en) * 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
US3116792A (en) * 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3132692A (en) * 1959-07-27 1964-05-12 Phillips Petroleum Co Use of formation heat from in situ combustion
US3150715A (en) * 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3095031A (en) 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3004911A (en) * 1959-12-11 1961-10-17 Phillips Petroleum Co Catalytic cracking process and two unit system
US3006142A (en) 1959-12-21 1961-10-31 Phillips Petroleum Co Jet engine combustion processes
US3131763A (en) * 1959-12-30 1964-05-05 Texaco Inc Electrical borehole heater
US3163745A (en) 1960-02-29 1964-12-29 Socony Mobil Oil Co Inc Heating of an earth formation penetrated by a well borehole
US3127935A (en) * 1960-04-08 1964-04-07 Marathon Oil Co In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3139928A (en) * 1960-05-24 1964-07-07 Shell Oil Co Thermal process for in situ decomposition of oil shale
US3058730A (en) 1960-06-03 1962-10-16 Fmc Corp Method of forming underground communication between boreholes
US3106244A (en) * 1960-06-20 1963-10-08 Phillips Petroleum Co Process for producing oil shale in situ by electrocarbonization
US3142336A (en) * 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3105545A (en) * 1960-11-21 1963-10-01 Shell Oil Co Method of heating underground formations
US3164207A (en) * 1961-01-17 1965-01-05 Wayne H Thessen Method for recovering oil
US3138203A (en) * 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3191679A (en) 1961-04-13 1965-06-29 Wendell S Miller Melting process for recovering bitumens from the earth
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3207220A (en) 1961-06-26 1965-09-21 Chester I Williams Electric well heater
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3246695A (en) 1961-08-21 1966-04-19 Charles L Robinson Method for heating minerals in situ with radioactive materials
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3183675A (en) 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3170842A (en) * 1961-11-06 1965-02-23 Phillips Petroleum Co Subcritical borehole nuclear reactor and process
US3209825A (en) 1962-02-14 1965-10-05 Continental Oil Co Low temperature in-situ combustion
US3205946A (en) 1962-03-12 1965-09-14 Shell Oil Co Consolidation by silica coalescence
US3165154A (en) 1962-03-23 1965-01-12 Phillips Petroleum Co Oil recovery by in situ combustion
US3149670A (en) 1962-03-27 1964-09-22 Smclair Res Inc In-situ heating process
US3214890A (en) * 1962-04-19 1965-11-02 Marathon Oil Co Method of separation of hydrocarbons by a single absorption oil
US3149672A (en) 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3208531A (en) 1962-08-21 1965-09-28 Otis Eng Co Inserting tool for locating and anchoring a device in tubing
US3182721A (en) * 1962-11-02 1965-05-11 Sun Oil Co Method of petroleum production by forward in situ combustion
US3288648A (en) 1963-02-04 1966-11-29 Pan American Petroleum Corp Process for producing electrical energy from geological liquid hydrocarbon formation
US3205942A (en) 1963-02-07 1965-09-14 Socony Mobil Oil Co Inc Method for recovery of hydrocarbons by in situ heating of oil shale
US3221811A (en) 1963-03-11 1965-12-07 Shell Oil Co Mobile in-situ heating of formations
US3250327A (en) 1963-04-02 1966-05-10 Socony Mobil Oil Co Inc Recovering nonflowing hydrocarbons
US3241611A (en) 1963-04-10 1966-03-22 Equity Oil Company Recovery of petroleum products from oil shale
GB959945A (en) 1963-04-18 1964-06-03 Conch Int Methane Ltd Constructing a frozen wall within the ground
US3237689A (en) 1963-04-29 1966-03-01 Clarence I Justheim Distillation of underground deposits of solid carbonaceous materials in situ
US3205944A (en) 1963-06-14 1965-09-14 Socony Mobil Oil Co Inc Recovery of hydrocarbons from a subterranean reservoir by heating
US3233668A (en) * 1963-11-15 1966-02-08 Exxon Production Research Co Recovery of shale oil
US3285335A (en) 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3273640A (en) 1963-12-13 1966-09-20 Pyrochem Corp Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US3272261A (en) * 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3275076A (en) 1964-01-13 1966-09-27 Mobil Oil Corp Recovery of asphaltic-type petroleum from a subterranean reservoir
US3342258A (en) 1964-03-06 1967-09-19 Shell Oil Co Underground oil recovery from solid oil-bearing deposits
US3294167A (en) 1964-04-13 1966-12-27 Shell Oil Co Thermal oil recovery
US3284281A (en) 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3302707A (en) * 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3380913A (en) 1964-12-28 1968-04-30 Phillips Petroleum Co Refining of effluent from in situ combustion operation
US3332480A (en) 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3338306A (en) 1965-03-09 1967-08-29 Mobil Oil Corp Recovery of heavy oil from oil sands
US3358756A (en) 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3262741A (en) * 1965-04-01 1966-07-26 Pittsburgh Plate Glass Co Solution mining of potassium chloride
DE1242535B (de) 1965-04-13 1967-06-22 Deutsche Erdoel Ag Verfahren zur Restausfoerderung von Erdoellagerstaetten
US3316344A (en) * 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3342267A (en) 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3278234A (en) * 1965-05-17 1966-10-11 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3352355A (en) 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3349845A (en) 1965-10-22 1967-10-31 Sinclair Oil & Gas Company Method of establishing communication between wells
US3379248A (en) 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3424254A (en) * 1965-12-29 1969-01-28 Major Walter Huff Cryogenic method and apparatus for drilling hot geothermal zones
US3386508A (en) 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3362751A (en) * 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
US3595082A (en) 1966-03-04 1971-07-27 Gulf Oil Corp Temperature measuring apparatus
US3410977A (en) 1966-03-28 1968-11-12 Ando Masao Method of and apparatus for heating the surface part of various construction materials
DE1615192B1 (de) 1966-04-01 1970-08-20 Chisso Corp Induktiv beheiztes Heizrohr
US3513913A (en) 1966-04-19 1970-05-26 Shell Oil Co Oil recovery from oil shales by transverse combustion
US3372754A (en) 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3389975A (en) 1967-03-10 1968-06-25 Sinclair Research Inc Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
NL6803827A (ru) 1967-03-22 1968-09-23
US3528501A (en) 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3434541A (en) 1967-10-11 1969-03-25 Mobil Oil Corp In situ combustion process
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3477058A (en) 1968-02-01 1969-11-04 Gen Electric Magnesia insulated heating elements and methods of production
US3580987A (en) 1968-03-26 1971-05-25 Pirelli Electric cable
US3455383A (en) 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3529682A (en) 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3502372A (en) 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale
US3565171A (en) * 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3554285A (en) * 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3501201A (en) * 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3540999A (en) * 1969-01-15 1970-11-17 Universal Oil Prod Co Jet fuel kerosene and gasoline production from gas oils
US3562401A (en) 1969-03-03 1971-02-09 Union Carbide Corp Low temperature electric transmission systems
US3614986A (en) 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3618663A (en) 1969-05-01 1971-11-09 Phillips Petroleum Co Shale oil production
US3605890A (en) 1969-06-04 1971-09-20 Chevron Res Hydrogen production from a kerogen-depleted shale formation
US3572838A (en) * 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations
US3599714A (en) 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3614387A (en) 1969-09-22 1971-10-19 Watlow Electric Mfg Co Electrical heater with an internal thermocouple
US3547193A (en) 1969-10-08 1970-12-15 Electrothermic Co Method and apparatus for recovery of minerals from sub-surface formations using electricity
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3661423A (en) 1970-02-12 1972-05-09 Occidental Petroleum Corp In situ process for recovery of carbonaceous materials from subterranean deposits
JPS4829418B1 (ru) * 1970-03-04 1973-09-10
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3759574A (en) * 1970-09-24 1973-09-18 Shell Oil Co Method of producing hydrocarbons from an oil shale formation
US4305463A (en) 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3679812A (en) 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3680633A (en) 1970-12-28 1972-08-01 Sun Oil Co Delaware Situ combustion initiation process
US3675715A (en) 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3770614A (en) 1971-01-15 1973-11-06 Mobil Oil Corp Split feed reforming and n-paraffin elimination from low boiling reformate
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3748251A (en) * 1971-04-20 1973-07-24 Mobil Oil Corp Dual riser fluid catalytic cracking with zsm-5 zeolite
US3700280A (en) 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3774701A (en) * 1971-05-07 1973-11-27 C Weaver Method and apparatus for drilling
US3770398A (en) 1971-09-17 1973-11-06 Cities Service Oil Co In situ coal gasification process
US3812913A (en) * 1971-10-18 1974-05-28 Sun Oil Co Method of formation consolidation
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3766982A (en) 1971-12-27 1973-10-23 Justheim Petrol Co Method for the in-situ treatment of hydrocarbonaceous materials
US3759328A (en) 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3794116A (en) * 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
US3779602A (en) 1972-08-07 1973-12-18 Shell Oil Co Process for solution mining nahcolite
US3809159A (en) 1972-10-02 1974-05-07 Continental Oil Co Process for simultaneously increasing recovery and upgrading oil in a reservoir
US3804172A (en) * 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3794113A (en) * 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US3804169A (en) 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3947683A (en) 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
US4076761A (en) 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US3881551A (en) 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3853185A (en) 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3907045A (en) 1973-11-30 1975-09-23 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3882941A (en) 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US3922148A (en) 1974-05-16 1975-11-25 Texaco Development Corp Production of methane-rich gas
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3894769A (en) * 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US3948758A (en) 1974-06-17 1976-04-06 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US4006778A (en) * 1974-06-21 1977-02-08 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbon from tar sands
US4026357A (en) 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US4005752A (en) 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US3941421A (en) 1974-08-13 1976-03-02 Occidental Petroleum Corporation Apparatus for obtaining uniform gas flow through an in situ oil shale retort
GB1454324A (en) 1974-08-14 1976-11-03 Iniex Recovering combustible gases from underground deposits of coal or bituminous shale
US3948319A (en) 1974-10-16 1976-04-06 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
AR205595A1 (es) 1974-11-06 1976-05-14 Haldor Topsoe As Procedimiento para preparar gases rico en metano
US3933447A (en) * 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US4138442A (en) 1974-12-05 1979-02-06 Mobil Oil Corporation Process for the manufacture of gasoline
US3952802A (en) 1974-12-11 1976-04-27 In Situ Technology, Inc. Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3986556A (en) 1975-01-06 1976-10-19 Haynes Charles A Hydrocarbon recovery from earth strata
US4042026A (en) 1975-02-08 1977-08-16 Deutsche Texaco Aktiengesellschaft Method for initiating an in-situ recovery process by the introduction of oxygen
US4096163A (en) 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US3924680A (en) 1975-04-23 1975-12-09 In Situ Technology Inc Method of pyrolysis of coal in situ
US3973628A (en) 1975-04-30 1976-08-10 New Mexico Tech Research Foundation In situ solution mining of coal
US3989108A (en) * 1975-05-16 1976-11-02 Texaco Inc. Water exclusion method for hydrocarbon production wells using freezing technique
US4016239A (en) 1975-05-22 1977-04-05 Union Oil Company Of California Recarbonation of spent oil shale
US3987851A (en) 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3986557A (en) 1975-06-06 1976-10-19 Atlantic Richfield Company Production of bitumen from tar sands
CA1064890A (en) * 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US3950029A (en) 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US3993132A (en) 1975-06-18 1976-11-23 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbons from tar sands
US4069868A (en) 1975-07-14 1978-01-24 In Situ Technology, Inc. Methods of fluidized production of coal in situ
BE832017A (fr) * 1975-07-31 1975-11-17 Nouveau procede d'exploitation d'un gisement de houille ou de lignite par gazefication souterraine sous haute pression
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US3954140A (en) 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US3986349A (en) 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US4037658A (en) * 1975-10-30 1977-07-26 Chevron Research Company Method of recovering viscous petroleum from an underground formation
US3994341A (en) 1975-10-30 1976-11-30 Chevron Research Company Recovering viscous petroleum from thick tar sand
US3994340A (en) 1975-10-30 1976-11-30 Chevron Research Company Method of recovering viscous petroleum from tar sand
US4087130A (en) 1975-11-03 1978-05-02 Occidental Petroleum Corporation Process for the gasification of coal in situ
US4018279A (en) * 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4018280A (en) * 1975-12-10 1977-04-19 Mobil Oil Corporation Process for in situ retorting of oil shale
US3992474A (en) * 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
US4019575A (en) 1975-12-22 1977-04-26 Chevron Research Company System for recovering viscous petroleum from thick tar sand
US4017319A (en) 1976-01-06 1977-04-12 General Electric Company Si3 N4 formed by nitridation of sintered silicon compact containing boron
US3999607A (en) 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4031956A (en) 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4008762A (en) * 1976-02-26 1977-02-22 Fisher Sidney T Extraction of hydrocarbons in situ from underground hydrocarbon deposits
US4010800A (en) 1976-03-08 1977-03-08 In Situ Technology, Inc. Producing thin seams of coal in situ
US4048637A (en) 1976-03-23 1977-09-13 Westinghouse Electric Corporation Radar system for detecting slowly moving targets
DE2615874B2 (de) 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen
GB1544245A (en) * 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
US4049053A (en) 1976-06-10 1977-09-20 Fisher Sidney T Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating
US4487257A (en) * 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4193451A (en) 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
US4067390A (en) * 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4057293A (en) 1976-07-12 1977-11-08 Garrett Donald E Process for in situ conversion of coal or the like into oil and gas
US4043393A (en) * 1976-07-29 1977-08-23 Fisher Sidney T Extraction from underground coal deposits
US4091869A (en) 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4059308A (en) 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4083604A (en) 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4064943A (en) * 1976-12-06 1977-12-27 Shell Oil Co Plugging permeable earth formation with wax
US4089374A (en) 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ
US4084637A (en) 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4093026A (en) 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4277416A (en) 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4085803A (en) * 1977-03-14 1978-04-25 Exxon Production Research Company Method for oil recovery using a horizontal well with indirect heating
US4099567A (en) 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4169506A (en) * 1977-07-15 1979-10-02 Standard Oil Company (Indiana) In situ retorting of oil shale and energy recovery
US4140180A (en) 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
US4144935A (en) 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
NL181941C (nl) * 1977-09-16 1987-12-01 Ir Arnold Willem Josephus Grup Werkwijze voor het ondergronds vergassen van steenkool of bruinkool.
US4125159A (en) 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
SU915451A1 (ru) * 1977-10-21 1988-08-23 Vnii Ispolzovania Способ подземной газификации топлива
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4114688A (en) 1977-12-05 1978-09-19 In Situ Technology Inc. Minimizing environmental effects in production and use of coal
US4158467A (en) 1977-12-30 1979-06-19 Gulf Oil Corporation Process for recovering shale oil
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
SU680357A1 (ru) * 1978-01-30 1981-08-07 Всесоюзный Научно-Исследовательскийи Проектный Институт Галургии Способ подземного растворени соли
FR2420024A1 (fr) * 1978-03-16 1979-10-12 Neftegazovy N Iss I Procede de thermo-extraction de petrole par mines
DE2812490A1 (de) 1978-03-22 1979-09-27 Texaco Ag Verfahren zur ermittlung der raeumlichen ausdehnung von untertaegigen reaktionen
JPS54128401A (en) * 1978-03-27 1979-10-05 Texaco Development Corp Recovery of oil from underground
US4160479A (en) * 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4197911A (en) 1978-05-09 1980-04-15 Ramcor, Inc. Process for in situ coal gasification
US4228853A (en) 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4186801A (en) * 1978-12-18 1980-02-05 Gulf Research And Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4185692A (en) 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4184548A (en) * 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4183405A (en) * 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
ES474736A1 (es) * 1978-10-31 1979-04-01 Empresa Nacional Aluminio Sistema de generacion y autocontrol de la forma de onda y - tension o corriente aplicable a procesos de coloracion elec-trolitica del aluminio anodizado.
US4311340A (en) * 1978-11-27 1982-01-19 Lyons William C Uranium leeching process and insitu mining
NL7811732A (nl) 1978-11-30 1980-06-03 Stamicarbon Werkwijze voor de omzetting van dimethylether.
JPS5576586A (en) 1978-12-01 1980-06-09 Tokyo Shibaura Electric Co Heater
US4457365A (en) 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
US4265307A (en) 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4194562A (en) 1978-12-21 1980-03-25 Texaco Inc. Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion
US4258955A (en) * 1978-12-26 1981-03-31 Mobil Oil Corporation Process for in-situ leaching of uranium
US4274487A (en) 1979-01-11 1981-06-23 Standard Oil Company (Indiana) Indirect thermal stimulation of production wells
US4232902A (en) * 1979-02-09 1980-11-11 Ppg Industries, Inc. Solution mining water soluble salts at high temperatures
US4324292A (en) 1979-02-21 1982-04-13 University Of Utah Process for recovering products from oil shale
US4289354A (en) * 1979-02-23 1981-09-15 Edwin G. Higgins, Jr. Borehole mining of solid mineral resources
US4282587A (en) 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4254287A (en) * 1979-07-05 1981-03-03 Conoco, Inc. Removal of catalyst from ethoxylates by centrifugation
US4241787A (en) * 1979-07-06 1980-12-30 Price Ernest H Downhole separator for wells
US4290650A (en) * 1979-08-03 1981-09-22 Ppg Industries Canada Ltd. Subterranean cavity chimney development for connecting solution mined cavities
US4228854A (en) 1979-08-13 1980-10-21 Alberta Research Council Enhanced oil recovery using electrical means
US4256945A (en) * 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US4701587A (en) 1979-08-31 1987-10-20 Metcal, Inc. Shielded heating element having intrinsic temperature control
US4549396A (en) 1979-10-01 1985-10-29 Mobil Oil Corporation Conversion of coal to electricity
US4368114A (en) 1979-12-05 1983-01-11 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4250230A (en) 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
US4250962A (en) * 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4398151A (en) 1980-01-25 1983-08-09 Shell Oil Company Method for correcting an electrical log for the presence of shale in a formation
US4359687A (en) 1980-01-25 1982-11-16 Shell Oil Company Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4303126A (en) 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4269697A (en) * 1980-02-27 1981-05-26 Mobil Oil Corporation Low pour point heavy oils
US4375302A (en) * 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4445574A (en) 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4417782A (en) 1980-03-31 1983-11-29 Raychem Corporation Fiber optic temperature sensing
FR2480300B1 (fr) * 1980-04-09 1985-06-07 Inst Francais Du Petrole Procede de valorisation d'huiles lourdes
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
US4273188A (en) 1980-04-30 1981-06-16 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4306621A (en) 1980-05-23 1981-12-22 Boyd R Michael Method for in situ coal gasification operations
US4287957A (en) * 1980-05-27 1981-09-08 Evans Robert F Cooling a drilling tool component with a separate flow stream of reduced-temperature gaseous drilling fluid
US4409090A (en) 1980-06-02 1983-10-11 University Of Utah Process for recovering products from tar sand
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
CA1183909A (en) * 1980-06-30 1985-03-12 Vernon L. Heeren Rf applicator for in situ heating
US4310440A (en) * 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4401099A (en) 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4299285A (en) 1980-07-21 1981-11-10 Gulf Research & Development Company Underground gasification of bituminous coal
US4396062A (en) 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4353418A (en) 1980-10-20 1982-10-12 Standard Oil Company (Indiana) In situ retorting of oil shale
US4384613A (en) * 1980-10-24 1983-05-24 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4401163A (en) 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4448251A (en) * 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4423311A (en) 1981-01-19 1983-12-27 Varney Sr Paul Electric heating apparatus for de-icing pipes
US4366668A (en) * 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4382469A (en) 1981-03-10 1983-05-10 Electro-Petroleum, Inc. Method of in situ gasification
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4399866A (en) 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4444255A (en) 1981-04-20 1984-04-24 Lloyd Geoffrey Apparatus and process for the recovery of oil
US4380930A (en) 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
US4378048A (en) 1981-05-08 1983-03-29 Gulf Research & Development Company Substoichiometric combustion of low heating value gases using different platinum catalysts
US4429745A (en) 1981-05-08 1984-02-07 Mobil Oil Corporation Oil recovery method
US4384614A (en) 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4437519A (en) * 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4428700A (en) 1981-08-03 1984-01-31 E. R. Johnson Associates, Inc. Method for disposing of waste materials
US4456065A (en) 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4344483A (en) * 1981-09-08 1982-08-17 Fisher Charles B Multiple-site underground magnetic heating of hydrocarbons
US4452491A (en) 1981-09-25 1984-06-05 Intercontinental Econergy Associates, Inc. Recovery of hydrocarbons from deep underground deposits of tar sands
US4425967A (en) * 1981-10-07 1984-01-17 Standard Oil Company (Indiana) Ignition procedure and process for in situ retorting of oil shale
US4605680A (en) 1981-10-13 1986-08-12 Chevron Research Company Conversion of synthesis gas to diesel fuel and gasoline
JPS6053159B2 (ja) * 1981-10-20 1985-11-22 三菱電機株式会社 炭化水素系地下資源の電気加熱方法
US4410042A (en) 1981-11-02 1983-10-18 Mobil Oil Corporation In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant
US4444258A (en) * 1981-11-10 1984-04-24 Nicholas Kalmar In situ recovery of oil from oil shale
US4388176A (en) * 1981-11-19 1983-06-14 Texaco Inc. Hydrocarbon conversion process
US4418752A (en) 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
FR2519688A1 (fr) 1982-01-08 1983-07-18 Elf Aquitaine Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud
US4397732A (en) 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed
US4551226A (en) 1982-02-26 1985-11-05 Chevron Research Company Heat exchanger antifoulant
US4530401A (en) 1982-04-05 1985-07-23 Mobil Oil Corporation Method for maximum in-situ visbreaking of heavy oil
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4537252A (en) 1982-04-23 1985-08-27 Standard Oil Company (Indiana) Method of underground conversion of coal
US4491179A (en) 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4455215A (en) 1982-04-29 1984-06-19 Jarrott David M Process for the geoconversion of coal into oil
US4412585A (en) 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4524826A (en) 1982-06-14 1985-06-25 Texaco Inc. Method of heating an oil shale formation
US4457374A (en) 1982-06-29 1984-07-03 Standard Oil Company Transient response process for detecting in situ retorting conditions
US4442896A (en) 1982-07-21 1984-04-17 Reale Lucio V Treatment of underground beds
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4407973A (en) 1982-07-28 1983-10-04 The M. W. Kellogg Company Methanol from coal and natural gas
US4479541A (en) 1982-08-23 1984-10-30 Wang Fun Den Method and apparatus for recovery of oil, gas and mineral deposits by panel opening
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4458767A (en) 1982-09-28 1984-07-10 Mobil Oil Corporation Method for directionally drilling a first well to intersect a second well
US4485868A (en) * 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
CA1214815A (en) 1982-09-30 1986-12-02 John F. Krumme Autoregulating electrically shielded heater
US4695713A (en) 1982-09-30 1987-09-22 Metcal, Inc. Autoregulating, electrically shielded heater
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4498531A (en) * 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4485869A (en) 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
ATE21340T1 (de) 1982-11-22 1986-08-15 Shell Int Research Verfahren zur herstellung eines fischer-tropsch- katalysators, der auf diese weise hergestellte katalysator und seine verwendung zur herstellung von kohlenwasserstoffen.
US4474238A (en) 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4498535A (en) 1982-11-30 1985-02-12 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line
US4752673A (en) 1982-12-01 1988-06-21 Metcal, Inc. Autoregulating heater
US4436613A (en) * 1982-12-03 1984-03-13 Texaco Inc. Two stage catalytic cracking process
US4501326A (en) * 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4526615A (en) * 1983-03-01 1985-07-02 Johnson Paul H Cellular heap leach process and apparatus
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4500651A (en) * 1983-03-31 1985-02-19 Union Carbide Corporation Titanium-containing molecular sieves
US4458757A (en) 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4545435A (en) 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
US4524827A (en) 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4518548A (en) 1983-05-02 1985-05-21 Sulcon, Inc. Method of overlaying sulphur concrete on horizontal and vertical surfaces
US4436615A (en) * 1983-05-09 1984-03-13 United States Steel Corporation Process for removing solids from coal tar
US5073625A (en) 1983-05-26 1991-12-17 Metcal, Inc. Self-regulating porous heating device
EP0130671A3 (en) * 1983-05-26 1986-12-17 Metcal Inc. Multiple temperature autoregulating heater
US4794226A (en) 1983-05-26 1988-12-27 Metcal, Inc. Self-regulating porous heater device
DE3319732A1 (de) 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol
US4658215A (en) 1983-06-20 1987-04-14 Shell Oil Company Method for induced polarization logging
US4583046A (en) 1983-06-20 1986-04-15 Shell Oil Company Apparatus for focused electrode induced polarization logging
US4717814A (en) * 1983-06-27 1988-01-05 Metcal, Inc. Slotted autoregulating heater
US4985313A (en) * 1985-01-14 1991-01-15 Raychem Limited Wire and cable
US5209987A (en) 1983-07-08 1993-05-11 Raychem Limited Wire and cable
US4598392A (en) 1983-07-26 1986-07-01 Mobil Oil Corporation Vibratory signal sweep seismic prospecting method and apparatus
US4501445A (en) 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US4573530A (en) 1983-11-07 1986-03-04 Mobil Oil Corporation In-situ gasification of tar sands utilizing a combustible gas
US4698149A (en) 1983-11-07 1987-10-06 Mobil Oil Corporation Enhanced recovery of hydrocarbonaceous fluids oil shale
US4489782A (en) 1983-12-12 1984-12-25 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
US4598772A (en) 1983-12-28 1986-07-08 Mobil Oil Corporation Method for operating a production well in an oxygen driven in-situ combustion oil recovery process
US4540882A (en) 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4583242A (en) 1983-12-29 1986-04-15 Shell Oil Company Apparatus for positioning a sample in a computerized axial tomographic scanner
US4613754A (en) 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4635197A (en) 1983-12-29 1987-01-06 Shell Oil Company High resolution tomographic imaging method
US4571491A (en) * 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
US4542648A (en) 1983-12-29 1985-09-24 Shell Oil Company Method of correlating a core sample with its original position in a borehole
US4662439A (en) 1984-01-20 1987-05-05 Amoco Corporation Method of underground conversion of coal
US4572229A (en) * 1984-02-02 1986-02-25 Thomas D. Mueller Variable proportioner
US4623401A (en) 1984-03-06 1986-11-18 Metcal, Inc. Heat treatment with an autoregulating heater
US4644283A (en) * 1984-03-19 1987-02-17 Shell Oil Company In-situ method for determining pore size distribution, capillary pressure and permeability
US4552214A (en) 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4637464A (en) 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4570715A (en) 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577690A (en) 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US4592423A (en) 1984-05-14 1986-06-03 Texaco Inc. Hydrocarbon stratum retorting means and method
US4597441A (en) 1984-05-25 1986-07-01 World Energy Systems, Inc. Recovery of oil by in situ hydrogenation
US4663711A (en) 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
US4577503A (en) 1984-09-04 1986-03-25 International Business Machines Corporation Method and device for detecting a specific acoustic spectral feature
US4577691A (en) * 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4576231A (en) 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4597444A (en) 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4691771A (en) 1984-09-25 1987-09-08 Worldenergy Systems, Inc. Recovery of oil by in-situ combustion followed by in-situ hydrogenation
US4616705A (en) 1984-10-05 1986-10-14 Shell Oil Company Mini-well temperature profiling process
US4750990A (en) * 1984-10-15 1988-06-14 Uop Inc. Membrane separation of hydrocarbons using cycloparaffinic solvents
JPS61104582A (ja) 1984-10-25 1986-05-22 株式会社デンソー シ−ズヒ−タ
US4598770A (en) 1984-10-25 1986-07-08 Mobil Oil Corporation Thermal recovery method for viscous oil
US4572299A (en) 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation
US4669542A (en) 1984-11-21 1987-06-02 Mobil Oil Corporation Simultaneous recovery of crude from multiple zones in a reservoir
US4634187A (en) * 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
US4585066A (en) 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
US4704514A (en) 1985-01-11 1987-11-03 Egmond Cor F Van Heating rate variant elongated electrical resistance heater
US4645906A (en) * 1985-03-04 1987-02-24 Thermon Manufacturing Company Reduced resistance skin effect heat generating system
US4698583A (en) 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
US4785163A (en) 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
US4733057A (en) 1985-04-19 1988-03-22 Raychem Corporation Sheet heater
US4671102A (en) 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids
US4626665A (en) 1985-06-24 1986-12-02 Shell Oil Company Metal oversheathed electrical resistance heater
US4605489A (en) 1985-06-27 1986-08-12 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4623444A (en) 1985-06-27 1986-11-18 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4662438A (en) 1985-07-19 1987-05-05 Uentech Corporation Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole
US4719423A (en) 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4728892A (en) 1985-08-13 1988-03-01 Shell Oil Company NMR imaging of materials
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
US4662443A (en) * 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4730162A (en) 1985-12-31 1988-03-08 Shell Oil Company Time-domain induced polarization logging method and apparatus with gated amplification level
US4706751A (en) 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US4694907A (en) * 1986-02-21 1987-09-22 Carbotek, Inc. Thermally-enhanced oil recovery method and apparatus
US4640353A (en) * 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4734115A (en) * 1986-03-24 1988-03-29 Air Products And Chemicals, Inc. Low pressure process for C3+ liquids recovery from process product gas
US4810397A (en) 1986-03-26 1989-03-07 Union Oil Company Of California Antifoulant additives for high temperature hydrocarbon processing
US4651825A (en) 1986-05-09 1987-03-24 Atlantic Richfield Company Enhanced well production
US4814587A (en) 1986-06-10 1989-03-21 Metcal, Inc. High power self-regulating heater
US4682652A (en) 1986-06-30 1987-07-28 Texaco Inc. Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4893504A (en) 1986-07-02 1990-01-16 Shell Oil Company Method for determining capillary pressure and relative permeability by imaging
US4769602A (en) 1986-07-02 1988-09-06 Shell Oil Company Determining multiphase saturations by NMR imaging of multiple nuclides
US4716960A (en) 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4818370A (en) 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4772634A (en) 1986-07-31 1988-09-20 Energy Research Corporation Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer
US4744245A (en) 1986-08-12 1988-05-17 Atlantic Richfield Company Acoustic measurements in rock formations for determining fracture orientation
US4863585A (en) * 1986-09-03 1989-09-05 Mobil Oil Corporation Fluidized catalytic cracking process utilizing a C3-C4 paraffin-rich Co-feed and mixed catalyst system with selective reactivation of the medium pore silicate zeolite component thereofo
US4769606A (en) 1986-09-30 1988-09-06 Shell Oil Company Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations
US5316664A (en) 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US4983319A (en) 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
US5340467A (en) 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4766958A (en) 1987-01-12 1988-08-30 Mobil Oil Corporation Method of recovering viscous oil from reservoirs with multiple horizontal zones
US4756367A (en) 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
US4817711A (en) 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4818371A (en) 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4787452A (en) 1987-06-08 1988-11-29 Mobil Oil Corporation Disposal of produced formation fines during oil recovery
US4821798A (en) * 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4827761A (en) 1987-06-25 1989-05-09 Shell Oil Company Sample holder
US4856341A (en) 1987-06-25 1989-08-15 Shell Oil Company Apparatus for analysis of failure of material
US4884455A (en) 1987-06-25 1989-12-05 Shell Oil Company Method for analysis of failure of material employing imaging
US4776638A (en) 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
US4848924A (en) 1987-08-19 1989-07-18 The Babcock & Wilcox Company Acoustic pyrometer
US4828031A (en) 1987-10-13 1989-05-09 Chevron Research Company In situ chemical stimulation of diatomite formations
US4762425A (en) 1987-10-15 1988-08-09 Parthasarathy Shakkottai System for temperature profile measurement in large furnances and kilns and method therefor
US5306640A (en) 1987-10-28 1994-04-26 Shell Oil Company Method for determining preselected properties of a crude oil
US4983278A (en) * 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
US4987368A (en) * 1987-11-05 1991-01-22 Shell Oil Company Nuclear magnetism logging tool using high-temperature superconducting squid detectors
US4808925A (en) * 1987-11-19 1989-02-28 Halliburton Company Three magnet casing collar locator
US4852648A (en) 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4823890A (en) * 1988-02-23 1989-04-25 Longyear Company Reverse circulation bit apparatus
US4866983A (en) 1988-04-14 1989-09-19 Shell Oil Company Analytical methods and apparatus for measuring the oil content of sponge core
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US4885080A (en) 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US4872991A (en) * 1988-07-05 1989-10-10 Texaco Inc. Treatment of water
US4840720A (en) 1988-09-02 1989-06-20 Betz Laboratories, Inc. Process for minimizing fouling of processing equipment
US4928765A (en) 1988-09-27 1990-05-29 Ramex Syn-Fuels International Method and apparatus for shale gas recovery
US4856587A (en) 1988-10-27 1989-08-15 Nielson Jay P Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US5064006A (en) 1988-10-28 1991-11-12 Magrange, Inc Downhole combination tool
US4848460A (en) 1988-11-04 1989-07-18 Western Research Institute Contained recovery of oily waste
US5065501A (en) 1988-11-29 1991-11-19 Amp Incorporated Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5103920A (en) * 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
CA2015318C (en) * 1990-04-24 1994-02-08 Jack E. Bridges Power sources for downhole electrical heating
US4895206A (en) 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US5150118A (en) 1989-05-08 1992-09-22 Hewlett-Packard Company Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions
US5059303A (en) * 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization
DE3922612C2 (de) * 1989-07-10 1998-07-02 Krupp Koppers Gmbh Verfahren zur Erzeugung von Methanol-Synthesegas
US4982786A (en) * 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US5050386A (en) 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5097903A (en) 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5305239A (en) 1989-10-04 1994-04-19 The Texas A&M University System Ultrasonic non-destructive evaluation of thin specimens
US4926941A (en) 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US5656239A (en) 1989-10-27 1997-08-12 Shell Oil Company Method for recovering contaminants from soil utilizing electrical heating
US4984594A (en) * 1989-10-27 1991-01-15 Shell Oil Company Vacuum method for removing soil contamination utilizing surface electrical heating
US5020596A (en) 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5011329A (en) 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
CA2009782A1 (en) 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5027896A (en) 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5126037A (en) 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
US5080776A (en) * 1990-06-14 1992-01-14 Mobil Oil Corporation Hydrogen-balanced conversion of diamondoid-containing wash oils to gasoline
US5201219A (en) 1990-06-29 1993-04-13 Amoco Corporation Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core
GB2246308A (en) * 1990-07-25 1992-01-29 Shell Int Research Process for reducing the metal content of a hydrocarbon mixture
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
US5060726A (en) 1990-08-23 1991-10-29 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
US5042579A (en) * 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5046559A (en) 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
BR9004240A (pt) 1990-08-28 1992-03-24 Petroleo Brasileiro Sa Processo de aquecimento eletrico de tubulacoes
US5085276A (en) * 1990-08-29 1992-02-04 Chevron Research And Technology Company Production of oil from low permeability formations by sequential steam fracturing
US5207273A (en) 1990-09-17 1993-05-04 Production Technologies International Inc. Method and apparatus for pumping wells
US5066852A (en) 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5182427A (en) 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
JPH04272680A (ja) * 1990-09-20 1992-09-29 Thermon Mfg Co スイッチ制御形ゾーン式加熱ケーブル及びその組み立て方法
US5400430A (en) 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US5517593A (en) 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
US5247994A (en) 1990-10-01 1993-09-28 Nenniger John E Method of stimulating oil wells
US5070533A (en) * 1990-11-07 1991-12-03 Uentech Corporation Robust electrical heating systems for mineral wells
US5060287A (en) 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5217076A (en) * 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5190405A (en) 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
SU1836876A3 (ru) 1990-12-29 1994-12-30 Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики Способ отработки угольных пластов и комплекс оборудования для его осуществления
US5626190A (en) 1991-02-06 1997-05-06 Moore; Boyd B. Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well
US5289882A (en) 1991-02-06 1994-03-01 Boyd B. Moore Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas
US5261490A (en) 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor
US5102551A (en) * 1991-04-29 1992-04-07 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5142608A (en) 1991-04-29 1992-08-25 Meshekow Oil Recovery Corp. Horizontal steam generator for oil wells
US5093002A (en) 1991-04-29 1992-03-03 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
EP0519573B1 (en) 1991-06-21 1995-04-12 Shell Internationale Researchmaatschappij B.V. Hydrogenation catalyst and process
IT1248535B (it) 1991-06-24 1995-01-19 Cise Spa Sistema per misurare il tempo di trasferimento di un'onda sonora
US5133406A (en) * 1991-07-05 1992-07-28 Amoco Corporation Generating oxygen-depleted air useful for increasing methane production
US5215954A (en) 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
JP2788348B2 (ja) * 1991-08-15 1998-08-20 モービル・オイル・コーポレイション 炭化水素品質向上方法
US5189283A (en) 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5168927A (en) 1991-09-10 1992-12-08 Shell Oil Company Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation
US5173213A (en) 1991-11-08 1992-12-22 Baker Hughes Incorporated Corrosion and anti-foulant composition and method of use
US5347070A (en) 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5349859A (en) 1991-11-15 1994-09-27 Scientific Engineering Instruments, Inc. Method and apparatus for measuring acoustic wave velocity using impulse response
US5158681A (en) * 1991-11-21 1992-10-27 Separation Dynamics International Ltd. Dual membrane process for removing organic compounds from the water
DE69209466T2 (de) 1991-12-16 1996-08-14 Inst Francais Du Petrole Aktive oder passive Überwachungsanordnung für unterirdische Lagerstätte mittels fester Stationen
CA2058255C (en) * 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
US5420402A (en) 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
GB9207174D0 (en) 1992-04-01 1992-05-13 Raychem Sa Nv Method of forming an electrical connection
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
MY108830A (en) 1992-06-09 1996-11-30 Shell Int Research Method of completing an uncased section of a borehole
US5226961A (en) 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5297626A (en) 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5392854A (en) 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5255742A (en) 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5236039A (en) 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5295763A (en) * 1992-06-30 1994-03-22 Chambers Development Co., Inc. Method for controlling gas migration from a landfill
US5275726A (en) 1992-07-29 1994-01-04 Exxon Research & Engineering Co. Spiral wound element for separation
US5282957A (en) * 1992-08-19 1994-02-01 Betz Laboratories, Inc. Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine
US5305829A (en) * 1992-09-25 1994-04-26 Chevron Research And Technology Company Oil production from diatomite formations by fracture steamdrive
US5229583A (en) 1992-09-28 1993-07-20 Shell Oil Company Surface heating blanket for soil remediation
US5339904A (en) 1992-12-10 1994-08-23 Mobil Oil Corporation Oil recovery optimization using a well having both horizontal and vertical sections
US5256297A (en) * 1992-12-17 1993-10-26 Exxon Research And Engineering Company Multi-stage ultrafiltration process (OP-3711)
CA2096034C (en) * 1993-05-07 1996-07-02 Kenneth Edwin Kisman Horizontal well gravity drainage combustion process for oil recovery
US5360067A (en) 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil
CA2117571A1 (en) * 1993-08-30 1995-03-01 Junichi Kubo Process for hydrotreating heavy hydrocarbon oil
US5377756A (en) 1993-10-28 1995-01-03 Mobil Oil Corporation Method for producing low permeability reservoirs using a single well
US5388645A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388640A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388641A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations
US5388642A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
US5388643A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using pressure swing adsorption separation
US5566755A (en) 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5411086A (en) 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
US5435666A (en) 1993-12-14 1995-07-25 Environmental Resources Management, Inc. Methods for isolating a water table and for soil remediation
US5404952A (en) 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5433271A (en) 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5411089A (en) 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5425416A (en) * 1994-01-06 1995-06-20 Enviro-Tech Tools, Inc. Formation injection tool for down-bore in-situ disposal of undesired fluids
MY112792A (en) 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
US5411104A (en) 1994-02-16 1995-05-02 Conoco Inc. Coalbed methane drilling
CA2144597C (en) 1994-03-18 1999-08-10 Paul J. Latimer Improved emat probe and technique for weld inspection
US5415231A (en) 1994-03-21 1995-05-16 Mobil Oil Corporation Method for producing low permeability reservoirs using steam
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5431224A (en) 1994-04-19 1995-07-11 Mobil Oil Corporation Method of thermal stimulation for recovery of hydrocarbons
FR2719579B1 (fr) * 1994-05-05 1996-06-21 Inst Francais Du Petrole Procédé d'alkylation de paraffines.
US5409071A (en) 1994-05-23 1995-04-25 Shell Oil Company Method to cement a wellbore
JPH07316566A (ja) * 1994-05-27 1995-12-05 Nippon Oil Co Ltd 重質油の水素化処理方法
ZA954204B (en) 1994-06-01 1996-01-22 Ashland Chemical Inc A process for improving the effectiveness of a process catalyst
AU2241695A (en) 1994-07-18 1996-02-16 Babcock & Wilcox Co., The Sensor transport system for flash butt welder
US5458774A (en) 1994-07-25 1995-10-17 Mannapperuma; Jatal D. Corrugated spiral membrane module
US5632336A (en) 1994-07-28 1997-05-27 Texaco Inc. Method for improving injectivity of fluids in oil reservoirs
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5553189A (en) 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
US5624188A (en) 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
US5498960A (en) 1994-10-20 1996-03-12 Shell Oil Company NMR logging of natural gas in reservoirs
US5497087A (en) 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
US6088294A (en) 1995-01-12 2000-07-11 Baker Hughes Incorporated Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction
WO1996021871A1 (en) 1995-01-12 1996-07-18 Baker Hughes Incorporated A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers
DE19505517A1 (de) 1995-02-10 1996-08-14 Siegfried Schwert Verfahren zum Herausziehen eines im Erdreich verlegten Rohres
US5621844A (en) 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
CA2152521C (en) 1995-03-01 2000-06-20 Jack E. Bridges Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
DE19507584C2 (de) 1995-03-04 1997-06-12 Geesthacht Gkss Forschung Strahlenchemisch modifizierte Silikonkompositmembran für die Ultrafiltration
US5935421A (en) 1995-05-02 1999-08-10 Exxon Research And Engineering Company Continuous in-situ combination process for upgrading heavy oil
US5911898A (en) 1995-05-25 1999-06-15 Electric Power Research Institute Method and apparatus for providing multiple autoregulated temperatures
US5571403A (en) 1995-06-06 1996-11-05 Texaco Inc. Process for extracting hydrocarbons from diatomite
CA2167486C (en) * 1995-06-20 2004-11-30 Nowsco Well Service, Inc. Coiled tubing composite
US5824214A (en) * 1995-07-11 1998-10-20 Mobil Oil Corporation Method for hydrotreating and upgrading heavy crude oil during production
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
US5759022A (en) 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
US5890840A (en) * 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
EP0870100B1 (en) 1995-12-27 2000-03-29 Shell Internationale Researchmaatschappij B.V. Flameless combustor and method
IE960011A1 (en) * 1996-01-10 1997-07-16 Padraig Mcalister Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures
US5751895A (en) 1996-02-13 1998-05-12 Eor International, Inc. Selective excitation of heating electrodes for oil wells
US5826655A (en) 1996-04-25 1998-10-27 Texaco Inc Method for enhanced recovery of viscous oil deposits
US5652389A (en) 1996-05-22 1997-07-29 The United States Of America As Represented By The Secretary Of Commerce Non-contact method and apparatus for inspection of inertia welds
CA2177726C (en) 1996-05-29 2000-06-27 Theodore Wildi Low-voltage and low flux density heating system
US5769569A (en) 1996-06-18 1998-06-23 Southern California Gas Company In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
EP0909258A1 (en) 1996-06-21 1999-04-21 Syntroleum Corporation Synthesis gas production system and method
PE17599A1 (es) 1996-07-09 1999-02-22 Syntroleum Corp Procedimiento para convertir gases a liquidos
US5785860A (en) * 1996-09-13 1998-07-28 University Of British Columbia Upgrading heavy oil by ultrafiltration using ceramic membrane
US5782301A (en) * 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US6079499A (en) 1996-10-15 2000-06-27 Shell Oil Company Heater well method and apparatus
US6056057A (en) 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US7462207B2 (en) * 1996-11-18 2008-12-09 Bp Oil International Limited Fuel composition
US5862858A (en) * 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
US6427124B1 (en) 1997-01-24 2002-07-30 Baker Hughes Incorporated Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
US5744025A (en) 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
GB9704181D0 (en) 1997-02-28 1997-04-16 Thompson James Apparatus and method for installation of ducts
US5926437A (en) 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5802870A (en) * 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
EA200100863A1 (ru) 1997-05-02 2002-08-29 Сенсор Хайвей Лимитед Приводимая в действие от световой энергии система, предназначенная для использования в скважине, и способ добычи из пласта жидкостей через скважину
WO1998050179A1 (en) 1997-05-07 1998-11-12 Shell Internationale Research Maatschappij B.V. Remediation method
US6023554A (en) 1997-05-20 2000-02-08 Shell Oil Company Electrical heater
US5997214A (en) 1997-06-05 1999-12-07 Shell Oil Company Remediation method
US6102122A (en) 1997-06-11 2000-08-15 Shell Oil Company Control of heat injection based on temperature and in-situ stress measurement
US6112808A (en) 1997-09-19 2000-09-05 Isted; Robert Edward Method and apparatus for subterranean thermal conditioning
US5984010A (en) 1997-06-23 1999-11-16 Elias; Ramon Hydrocarbon recovery systems and methods
CA2208767A1 (en) 1997-06-26 1998-12-26 Reginald D. Humphreys Tar sands extraction process
US5868202A (en) 1997-09-22 1999-02-09 Tarim Associates For Scientific Mineral And Oil Exploration Ag Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations
US5962763A (en) * 1997-11-21 1999-10-05 Shell Oil Company Atmospheric distillation of hydrocarbons-containing liquid streams
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6152987A (en) 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6094048A (en) 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
NO305720B1 (no) 1997-12-22 1999-07-12 Eureka Oil Asa FremgangsmÕte for Õ °ke oljeproduksjonen fra et oljereservoar
US6026914A (en) * 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
US6035949A (en) * 1998-02-03 2000-03-14 Altschuler; Sidney J. Methods for installing a well in a subterranean formation
MA24902A1 (fr) 1998-03-06 2000-04-01 Shell Int Research Rechauffeur electrique
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
US6035701A (en) * 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
MXPA00011041A (es) 1998-05-12 2003-08-01 Lockheed Corp Proceso para optimizar mediciones gradiometricas de la gravedad.
US6016867A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6016868A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US5958365A (en) * 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods
US6130398A (en) 1998-07-09 2000-10-10 Illinois Tool Works Inc. Plasma cutter for auxiliary power output of a power source
US6180008B1 (en) * 1998-07-30 2001-01-30 W. R. Grace & Co.-Conn. Polyimide membranes for hyperfiltration recovery of aromatic solvents
NO984235L (no) 1998-09-14 2000-03-15 Cit Alcatel Oppvarmingssystem for metallrør for rõoljetransport
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
FR2784687B1 (fr) * 1998-10-14 2000-11-17 Inst Francais Du Petrole Procede d'hydrotraitement d'une fraction lourde d'hydrocarbures avec reacteurs permutables et introduction d'un distillat moyen
US6192748B1 (en) 1998-10-30 2001-02-27 Computalog Limited Dynamic orienting reference system for directional drilling
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US20040035582A1 (en) 2002-08-22 2004-02-26 Zupanick Joseph A. System and method for subterranean access
US6123830A (en) * 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
US6609761B1 (en) * 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US6078868A (en) 1999-01-21 2000-06-20 Baker Hughes Incorporated Reference signal encoding for seismic while drilling measurement
US6196314B1 (en) * 1999-02-15 2001-03-06 Baker Hughes Incorporated Insoluble salt control system and method
US6218333B1 (en) 1999-02-15 2001-04-17 Shell Oil Company Preparation of a hydrotreating catalyst
US6155117A (en) 1999-03-18 2000-12-05 Mcdermott Technology, Inc. Edge detection and seam tracking with EMATs
US6561269B1 (en) * 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6110358A (en) 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
US6257334B1 (en) * 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
US6269310B1 (en) 1999-08-25 2001-07-31 Tomoseis Corporation System for eliminating headwaves in a tomographic process
US6196350B1 (en) * 1999-10-06 2001-03-06 Tomoseis Corporation Apparatus and method for attenuating tube waves in a borehole
US6193010B1 (en) 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
US6288372B1 (en) 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6353706B1 (en) * 1999-11-18 2002-03-05 Uentech International Corporation Optimum oil-well casing heating
US6422318B1 (en) 1999-12-17 2002-07-23 Scioto County Regional Water District #1 Horizontal well system
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US6679332B2 (en) * 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US6715550B2 (en) * 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
WO2001060951A1 (en) * 2000-02-16 2001-08-23 Indian Oil Corporation Limited A multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks
DE60119898T2 (de) 2000-03-02 2007-05-10 Shell Internationale Research Maatschappij B.V. Gesteuerte chemikalieneinspritzung in einem bohrloch
US7170424B2 (en) * 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
US6357526B1 (en) 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) * 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
GB0009662D0 (en) 2000-04-20 2000-06-07 Scotoil Group Plc Gas and oil production
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030085034A1 (en) 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US20030066642A1 (en) * 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) * 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
CN1270051C (zh) 2000-04-24 2006-08-16 国际壳牌研究有限公司 从含油母质的岩层中就地回收烃的方法
US6584406B1 (en) 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
CA2412041A1 (en) 2000-06-29 2002-07-25 Paulo S. Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
FR2813209B1 (fr) 2000-08-23 2002-11-29 Inst Francais Du Petrole Catalyseur bimetallique supporte comportant une forte interaction entre un metal du groupe viii et de l'etain et son utilisation dans un procede de reformage catalytique
US6585046B2 (en) 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US6541524B2 (en) * 2000-11-08 2003-04-01 Chevron U.S.A. Inc. Method for transporting Fischer-Tropsch products
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
US20020110476A1 (en) 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US6649061B2 (en) * 2000-12-28 2003-11-18 Exxonmobil Research And Engineering Company Membrane process for separating sulfur compounds from FCC light naphtha
US20020112890A1 (en) 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US6872231B2 (en) * 2001-02-08 2005-03-29 Bp Corporation North America Inc. Transportation fuels
US6827845B2 (en) * 2001-02-08 2004-12-07 Bp Corporation North America Inc. Preparation of components for refinery blending of transportation fuels
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
US6531516B2 (en) * 2001-03-27 2003-03-11 Exxonmobil Research & Engineering Co. Integrated bitumen production and gas conversion
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
ATE384852T1 (de) * 2001-04-24 2008-02-15 Shell Int Research Verfahren zur in situ gewinnung aus einer teersandformation und ein nach diesem verfahren hergestellter mischungszusatz
JP2002338968A (ja) * 2001-05-11 2002-11-27 New Business Trading:Kk オイルサンド油の回収方法
CA2351272C (en) * 2001-06-22 2009-09-15 Petro Sep International Ltd. Membrane-assisted fluid separation apparatus and method
US20030029617A1 (en) * 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
RU2311441C2 (ru) * 2001-10-18 2007-11-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Непрерывный способ отделения окрашенных масс и/или асфальтеновых примесей от углеводородной смеси
US6846402B2 (en) * 2001-10-19 2005-01-25 Chevron U.S.A. Inc. Thermally stable jet prepared from highly paraffinic distillate fuel component and conventional distillate fuel component
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
JP4344795B2 (ja) * 2001-10-24 2009-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 土壌の伝導熱処理に先立つ凍結バリヤでの土壌の分離
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7090013B2 (en) * 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
CN100400793C (zh) 2001-10-24 2008-07-09 国际壳牌研究有限公司 通过u形开口现场加热含烃地层的方法与系统
US6759364B2 (en) 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
US6679326B2 (en) 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
WO2003062590A1 (en) 2002-01-22 2003-07-31 Presssol Ltd. Two string drilling system using coil tubing
US6958195B2 (en) 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
US6818333B2 (en) * 2002-06-03 2004-11-16 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation
US6709573B2 (en) * 2002-07-12 2004-03-23 Anthon L. Smith Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US7204327B2 (en) 2002-08-21 2007-04-17 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric drill string
EP1556580A1 (en) * 2002-10-24 2005-07-27 Shell Internationale Researchmaatschappij B.V. Temperature limited heaters for heating subsurface formations or wellbores
WO2004042188A2 (en) * 2002-11-06 2004-05-21 Canitron Systems, Inc. Down hole induction heating tool and method of operating and manufacturing same
AR041930A1 (es) * 2002-11-13 2005-06-01 Shell Int Research Composiciones de combustible diesel
US7048051B2 (en) * 2003-02-03 2006-05-23 Gen Syn Fuels Recovery of products from oil shale
FR2853904B1 (fr) * 2003-04-15 2007-11-16 Air Liquide Procede de production de liquides hydrocarbones mettant en oeuvre un procede fischer-tropsch
CA2524689C (en) * 2003-04-24 2012-05-22 Shell Canada Limited Thermal processes for subsurface formations
US6951250B2 (en) * 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
GB0312394D0 (en) * 2003-05-30 2003-07-02 Weir Westgarth Ltd Filtration apparatus and method
CN100392206C (zh) * 2003-06-24 2008-06-04 埃克森美孚上游研究公司 处理地下地层以将有机物转化成可采出的烃的方法
NO20033230D0 (no) * 2003-07-16 2003-07-16 Statoil Asa Fremgangsmåte for utvinning og oppgradering av olje
US7306735B2 (en) * 2003-09-12 2007-12-11 General Electric Company Process for the removal of contaminants from water
US7208647B2 (en) * 2003-09-23 2007-04-24 Synfuels International, Inc. Process for the conversion of natural gas to reactive gaseous products comprising ethylene
US7114880B2 (en) * 2003-09-26 2006-10-03 Carter Jr Ernest E Process for the excavation of buried waste
US7147057B2 (en) * 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
CA2544452A1 (en) * 2003-11-04 2005-05-12 Shell Internationale Research Maatschappij B.V. Process for upgrading a liquid hydrocarbon stream with a non-porous or nano-filtration membrane
US7282138B2 (en) 2003-11-05 2007-10-16 Exxonmobil Research And Engineering Company Multistage removal of heteroatoms and wax from distillate fuel
US7811445B2 (en) 2003-12-19 2010-10-12 Shell Oil Company Systems and methods of producing a crude product
BRPI0405581A (pt) * 2003-12-19 2005-09-20 Shell Int Research Produto de petróleo bruto e método de produzir combustìvel de transporte, combustìvel de aquecimento, lubrificantes ou substâncias quìmicas
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
ATE414840T1 (de) * 2004-04-23 2008-12-15 Shell Int Research Zur erwärmung von unterirdischen formationen verwendete temperaturbegrenzte heizvorrichtungen
FR2871167B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles
US7582203B2 (en) 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
US20060231461A1 (en) 2004-08-10 2006-10-19 Weijian Mo Method and apparatus for making a middle distillate product and lower olefins from a hydrocarbon feedstock
JP2008515618A (ja) 2004-10-11 2008-05-15 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 炭化水素混合物から着色物質および/またはアスファルテン不純物を分離する方法
US20060096920A1 (en) * 2004-11-05 2006-05-11 General Electric Company System and method for conditioning water
CA2606215C (en) * 2005-04-21 2015-06-30 Shell Internationale Research Maatschappij B.V. Systems and methods for producing oil and/or gas
EP1871986A1 (en) 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Varying properties along lengths of temperature limited heaters
US7575053B2 (en) * 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7124584B1 (en) * 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
PL1984599T3 (pl) * 2006-02-16 2012-11-30 Chevron Usa Inc Ekstrakcja kerogenu z podziemnych złóż łupka bitumicznego
AU2007240367B2 (en) 2006-04-21 2011-04-07 Shell Internationale Research Maatschappij B.V. High strength alloys
US7644993B2 (en) * 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
CN101595273B (zh) 2006-10-13 2013-01-02 埃克森美孚上游研究公司 用于原位页岩油开发的优化的井布置
AU2007313388B2 (en) 2006-10-13 2013-01-31 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
GB2456251B (en) * 2006-10-20 2011-03-16 Shell Int Research Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080216323A1 (en) * 2007-03-09 2008-09-11 Eveready Battery Company, Inc. Shaving preparation delivery system for wet shaving system
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
CN101680284B (zh) 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
CA2698564C (en) 2007-10-19 2014-08-12 Shell Internationale Research Maatschappij B.V. In situ oxidation of subsurface formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889882A (en) * 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3412011A (en) * 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
US4248306A (en) * 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
WO1997007321A1 (en) * 1994-06-28 1997-02-27 Amoco Corporation In situ combustion using ammonium nitrate as oxygene source
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658829C2 (ru) * 2013-05-24 2018-06-25 Экспендер Энерджи Инк. Способ очистки тяжелой нефти и битума

Also Published As

Publication number Publication date
JP5570723B2 (ja) 2014-08-13
IL190847A0 (en) 2008-11-03
ATE499428T1 (de) 2011-03-15
WO2007111642A3 (en) 2009-05-14
DE602006020314D1 (de) 2011-04-07
EP1941127A1 (en) 2008-07-09
EA200801155A1 (ru) 2008-12-30
US20070095536A1 (en) 2007-05-03
AU2006306475B2 (en) 2010-07-29
US20080107577A1 (en) 2008-05-08
AU2006306476A1 (en) 2007-05-03
US20070131415A1 (en) 2007-06-14
AU2006306412B2 (en) 2010-08-19
IL190849A0 (en) 2008-11-03
CA2626972C (en) 2014-07-08
AU2006340864B2 (en) 2010-12-23
IL190658A (en) 2012-05-31
WO2007050479A1 (en) 2007-05-03
JP5456318B2 (ja) 2014-03-26
JP5441412B2 (ja) 2014-03-12
JP5441413B2 (ja) 2014-03-12
US7556096B2 (en) 2009-07-07
WO2007050469A1 (en) 2007-05-03
KR20080074904A (ko) 2008-08-13
US7559367B2 (en) 2009-07-14
MA29953B1 (fr) 2008-11-03
CA2626319A1 (en) 2007-10-04
KR101359313B1 (ko) 2014-02-10
NZ567257A (en) 2011-02-25
KR20080069635A (ko) 2008-07-28
KR20140003620A (ko) 2014-01-09
NZ567705A (en) 2011-03-31
NZ567657A (en) 2012-04-27
CA2626905A1 (en) 2007-05-03
WO2007050445A1 (en) 2007-05-03
KR101434248B1 (ko) 2014-08-27
EA014215B1 (ru) 2010-10-29
IL190848A0 (en) 2008-11-03
NZ567706A (en) 2010-12-24
EP1941003B1 (en) 2011-02-23
JP2009512801A (ja) 2009-03-26
US7635025B2 (en) 2009-12-22
EA200801151A1 (ru) 2008-08-29
WO2007050449A2 (en) 2007-05-03
AU2006340864B9 (en) 2011-03-03
US20070127897A1 (en) 2007-06-07
EP1941128A1 (en) 2008-07-09
CA2626962C (en) 2014-07-08
CA2626970A1 (en) 2007-05-03
IL190849A (en) 2012-12-31
KR20080074905A (ko) 2008-08-13
EP1941003A2 (en) 2008-07-09
EA200801156A1 (ru) 2008-10-30
US7591310B2 (en) 2009-09-22
MA29960B1 (fr) 2008-11-03
KR101348117B1 (ko) 2014-01-07
JP5214457B2 (ja) 2013-06-19
US20070131427A1 (en) 2007-06-14
IL190848A (en) 2013-09-30
CA2626959A1 (en) 2007-05-03
KR20080066052A (ko) 2008-07-15
EA015618B1 (ru) 2011-10-31
AU2006306414A1 (en) 2007-05-03
EA200801154A1 (ru) 2008-10-30
JP2009512802A (ja) 2009-03-26
NZ567658A (en) 2011-08-26
AU2006306471A1 (en) 2007-05-03
WO2007050446A3 (en) 2008-05-22
JP2009512798A (ja) 2009-03-26
AU2006340864A1 (en) 2007-10-04
KR20080064887A (ko) 2008-07-09
EA200801157A1 (ru) 2008-12-30
US7581589B2 (en) 2009-09-01
US7559368B2 (en) 2009-07-14
AU2006306472A1 (en) 2007-05-03
NZ567656A (en) 2012-04-27
EA200801153A1 (ru) 2008-10-30
US20110168394A1 (en) 2011-07-14
EA013513B1 (ru) 2010-06-30
EP1941126A1 (en) 2008-07-09
EA016412B9 (ru) 2012-07-30
JP2009512550A (ja) 2009-03-26
US7562706B2 (en) 2009-07-21
US20070131419A1 (en) 2007-06-14
US8606091B2 (en) 2013-12-10
JP5107928B2 (ja) 2012-12-26
KR20080064889A (ko) 2008-07-09
IL190657A (en) 2013-09-30
WO2007050450A3 (en) 2007-07-26
JP2009512800A (ja) 2009-03-26
IL190657A0 (en) 2008-11-03
EA012941B1 (ru) 2010-02-26
AU2006306411A1 (en) 2007-05-03
MA29955B1 (fr) 2008-11-03
WO2007050449A3 (en) 2007-07-26
GB0806000D0 (en) 2008-05-07
EA013579B1 (ru) 2010-06-30
CA2626959C (en) 2014-07-08
AU2006306412A1 (en) 2007-05-03
NZ568140A (en) 2011-01-28
AU2006306475A1 (en) 2007-05-03
EP1941001A2 (en) 2008-07-09
WO2007050450A2 (en) 2007-05-03
EA014196B1 (ru) 2010-10-29
MA29959B1 (fr) 2008-11-03
AU2006306476B2 (en) 2010-08-19
CA2626972A1 (en) 2007-05-03
IL190844A (en) 2014-01-30
US8151880B2 (en) 2012-04-10
CA2626965A1 (en) 2007-05-03
KR20080059331A (ko) 2008-06-26
IL190846A (en) 2013-11-28
MA29965B1 (fr) 2008-11-03
NZ567255A (en) 2011-05-27
KR101434259B1 (ko) 2014-08-27
KR20080072662A (ko) 2008-08-06
WO2007111642A2 (en) 2007-10-04
AU2006306404A1 (en) 2007-05-03
CA2626962A1 (en) 2007-05-03
JP2009512773A (ja) 2009-03-26
MA29956B1 (fr) 2008-11-03
IL190845A0 (en) 2008-11-03
AU2006306471B2 (en) 2010-11-25
EA013253B1 (ru) 2010-04-30
US20070095537A1 (en) 2007-05-03
US20090301724A1 (en) 2009-12-10
IL190847A (en) 2012-08-30
CA2626965C (en) 2014-10-14
EA200801150A1 (ru) 2008-08-29
CA2626969A1 (en) 2007-05-03
JP5214458B2 (ja) 2013-06-19
KR101434232B1 (ko) 2014-08-27
EP1941125A1 (en) 2008-07-09
US20070125533A1 (en) 2007-06-07
MA29954B1 (fr) 2008-11-03
CA2626946C (en) 2014-08-12
US7556095B2 (en) 2009-07-07
AU2006306411B2 (en) 2010-12-02
JP2009512799A (ja) 2009-03-26
US20070131428A1 (en) 2007-06-14
EP1941002A2 (en) 2008-07-09
JP2009512775A (ja) 2009-03-26
CA2626946A1 (en) 2007-05-03
CA2626905C (en) 2014-12-16
CA2626969C (en) 2014-06-10
EP1941006A1 (en) 2008-07-09
US20080017370A1 (en) 2008-01-24
US7584789B2 (en) 2009-09-08
AU2006306472B2 (en) 2010-11-18
IL190844A0 (en) 2008-11-03
WO2007050446A2 (en) 2007-05-03
AU2006306404B2 (en) 2010-12-09
KR101434226B1 (ko) 2014-08-27
EA200801152A1 (ru) 2008-10-30
IL190658A0 (en) 2008-11-03
IL190845A (en) 2014-12-31
US20070131420A1 (en) 2007-06-14
NZ567415A (en) 2010-12-24
CA2626970C (en) 2014-12-16
JP5214459B2 (ja) 2013-06-19
AU2006306414B2 (en) 2010-08-05
US7549470B2 (en) 2009-06-23
IL190846A0 (en) 2008-11-03
US20070221377A1 (en) 2007-09-27
GB2451311A (en) 2009-01-28
WO2007050476A1 (en) 2007-05-03
WO2007050477A1 (en) 2007-05-03
MA29957B1 (fr) 2008-11-03

Similar Documents

Publication Publication Date Title
EA016412B1 (ru) Способы крекинга сырого продукта с целью получения дополнительных сырых продуктов и способ получения транспортного топлива
CN101316983A (zh) 过滤由原位热处理法生产的液体物流的方法

Legal Events

Date Code Title Description
TH4A Publication of the corrected specification to eurasian patent
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KG MD TJ TM

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): KZ RU