WO2018159594A1 - メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム - Google Patents

メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム Download PDF

Info

Publication number
WO2018159594A1
WO2018159594A1 PCT/JP2018/007201 JP2018007201W WO2018159594A1 WO 2018159594 A1 WO2018159594 A1 WO 2018159594A1 JP 2018007201 W JP2018007201 W JP 2018007201W WO 2018159594 A1 WO2018159594 A1 WO 2018159594A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane gas
power generation
methane
carbon dioxide
injection
Prior art date
Application number
PCT/JP2018/007201
Other languages
English (en)
French (fr)
Inventor
重直 圓山
淳之介 岡島
敦樹 小宮
林 陳
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2019503009A priority Critical patent/JP6917647B2/ja
Priority to CN201880014174.XA priority patent/CN110337527A/zh
Publication of WO2018159594A1 publication Critical patent/WO2018159594A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a methane gas recovery method and a carbon dioxide low emission power generation method using marine methane hydrate, and a methane gas recovery system and a carbon dioxide low emission power generation system.
  • MH layer methane hydrate layer
  • Methane hydrate generally exists in a low-temperature and high-pressure environment, and methane gas is dissociated by increasing the temperature or decreasing the pressure. Therefore, methods for recovering methane gas are roughly classified into, for example, a heating method for dissociating methane gas from methane hydrate by heating the MH layer and a decompression method for dissociating methane gas by depressurizing the MH layer. Two methods have been proposed.
  • Patent Document 1 A method for recovering methane gas by a heating method is described in Patent Document 1, for example.
  • an injection well and a production well that are parallel wells to the MH layer are excavated, and methane gas dissociated from methane hydrate by the heat of hot water injected into the injection well is recovered from the production well.
  • the methane gas is recovered using a hot water injection method which is a kind of heating method.
  • the methane gas recovery method using the decompression method can produce energy several tens of times the energy consumption related to the recovery of methane gas, the energy output ratio is higher than when the heating method is used.
  • An object of the present invention is to provide a low carbon emission power generation method, and a methane gas recovery system and a low carbon dioxide emission power generation system.
  • the methane gas recovery method is a methane gas recovery method for recovering methane gas from a methane hydrate layer, wherein one or a plurality of injections for dissolving heated carbon dioxide and communicating heated seawater to the methane hydrate layer A step of preheating the methane hydrate layer by injecting into a well, and communicating with the methane hydrate layer, from one or a plurality of production wells provided at a set distance from the injection well, by a decompression method A step of recovering methane gas, and when a set period has elapsed, the injection well is used as a production well to recover methane gas from the methane hydrate layer preheated in the production well, and a new injection well is excavated. Then, the heated seawater is injected into the injection well to preheat the methane hydrate layer.
  • the carbon dioxide low emission power generation method includes a step of generating power using methane gas as a fuel, a step of recovering carbon dioxide from exhaust gas generated during the power generation, obtaining seawater, and collecting the recovered carbon dioxide.
  • the step of dissolving in the seawater, the step of heating the seawater in which the carbon dioxide is dissolved using the exhaust heat generated during the power generation to generate heated seawater, and the heated seawater into a methane hydrate layer Pre-heating the methane hydrate layer by injecting into one or more injection wells in communication; and one or more of the methane hydrate layer provided at a position spaced from the injection well by communication with the methane hydrate layer
  • methane gas is recovered from the methane hydrate layer preheated in the production well using the injection well as a production well, a new injection well is excavated, and the heated seawater is supplied to the injection well. It is injected to preheat the methane hydrate layer.
  • a methane gas recovery system is a methane gas recovery system that recovers methane gas from a methane hydrate layer, and is connected to the methane hydrate layer, and one or more heated seawater heated while carbon dioxide is dissolved therein
  • One or a plurality of injection pipes for injecting into each of the injection wells and a pressure reducing pressure from each of the one or a plurality of production wells communicating with the methane hydrate layer and provided at a set distance from the injection well.
  • One or a plurality of recovery pipes for recovering methane gas by the method and when a set period has elapsed, the injection well is made to function as a production well to recover methane gas from the methane hydrate layer in the production well,
  • a new injection pipe is arranged in a newly drilled injection well to inject the heated seawater.
  • a carbon dioxide low emission power generation system is a carbon dioxide low emission power generation system including a power generation system for generating power and a methane gas recovery system for recovering methane gas from a methane hydrate layer
  • the power generation system includes: A power generation device that generates power using methane gas as a fuel, and a carbon dioxide recovery device that recovers carbon dioxide from exhaust gas generated during the power generation, wherein the carbon dioxide recovery device acquires seawater and collects the recovered carbon dioxide.
  • Carbon is dissolved in the seawater, and the seawater in which the carbon dioxide is dissolved is heated by using exhaust heat generated during the power generation to generate heated seawater.
  • the methane gas recovery system includes the methane hydrate layer.
  • One or a plurality of injection wells for injecting the heated seawater and the methane hydrate layer And having one or a plurality of production wells for recovering methane gas by a decompression method, supplying the recovered methane gas as fuel for power generation to the power generation system, and having a set period
  • the injection well is made to function as a production well, and methane gas is recovered from the methane hydrate layer in the production well, and a new injection pipe is disposed in the newly drilled injection well to supply the heated seawater. To be injected.
  • the injection well is made to function as a production well, and the methane gas is recovered from the methane hydrate layer heated and injected with preheated seawater.
  • the total production volume and production speed can be improved and methane gas can be efficiently recovered.
  • the collected methane gas can be supplied with added value by converting the methane gas into electric energy and transporting it to the ground. Furthermore, by using the thermal energy released when converted into electrical energy for the recovery of methane gas, it can be operated as a more efficient and environmentally friendly system.
  • carbon dioxide emitted when methane gas is converted into energy is also mixed with seawater together with thermal energy and injected into the underground from the injection well, that is, carbon dioxide is sequestered at the bottom of the sea, so the carbon dioxide at the time of energy conversion The remarkable effect that the discharge
  • the carbon dioxide low emission power generation system generally generates power using methane gas recovered from the MH layer (methane hydrate layer), and generates carbon dioxide and exhaust heat generated during power generation. Utilizes carbon dioxide dissolved in seawater and heats the seawater. Then, heated seawater is injected into the drilled injection well to preheat and fracture the MH layer, and in parallel with this, methane gas is supplied from the production well located at a predetermined distance from the injection well. to recover.
  • MH layer methane hydrate layer
  • the injection well is made to function as a production well to collect methane gas, and heated seawater is injected into the newly drilled injection well to Perform preheating and fracturing.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a carbon dioxide low emission power generation system 1 according to the present embodiment.
  • the carbon dioxide low emission power generation system 1 is installed using a ship 2 or the like anchored on the sea of the MH layer where methane hydrate is concentrated.
  • the carbon dioxide low emission power generation system 1 is configured by connecting a methane gas recovery system 10 and a power generation system 20.
  • FIG. 2 is a block diagram showing an example of the configuration of the carbon dioxide low emission power generation system 1 according to the present embodiment. As shown in FIGS. 1 and 2, the methane gas recovery system 10 includes one or more injection pipes 11 and one or more recovery pipes 12.
  • the injection pipe 11 is, for example, a vertical well, and is installed in an injection well excavated so as to reach the lower part of the MH layer so as to extend substantially vertically from the sea to the lower part of the MH layer.
  • Hot water in which carbon dioxide, which will be described later, is dissolved, is injected into the injection tube 11.
  • the injection pipe 11 is provided with a plurality of jet outlets for jetting hot water in which carbon dioxide is dissolved in a portion arranged inside the MH layer.
  • the recovery pipe 12 is, for example, a vertical well, and is installed in a production well excavated so as to reach the lower part of the MH layer so as to extend substantially vertically from the sea to the lower part of the MH layer.
  • the recovery pipe 12 is provided with a plurality of recovery ports for recovering methane gas dissociated from the methane hydrate at a portion disposed inside the MH layer.
  • the recovered methane gas is supplied to the power generation system 20.
  • the injection well in which the injection pipe 11 is installed and the production well in which the recovery pipe 12 is installed are arranged at a predetermined interval, that is, an interval separated by a set distance. This is because, when hot water is injected into the injection well with the injection pipe 11, fracturing, which is a crack, occurs in the MH layer. This fracturing is called channeling between the injection well and the production well. This is to prevent a situation where mutual wells communicate with each other due to cracks.
  • the set distance set as the interval between the injection well and the production well is such that channeling due to fracturing does not occur.
  • the set distance is preferably about 10 m to 500 m. This is because when the set distance is less than 10 m, channeling occurs between the injection well and the production well, and the methane gas in the MH layer cannot be efficiently recovered.
  • the upper limit value of the set distance “500 m” is, for example, a methane gas recovery system in consideration of pressure loss, heat loss during transportation of hot water, and an economical arrangement of devices for configuring this system. 10 is set on the assumption of a distance that is appropriate for installing 10 and a sufficient distance that does not cause channeling due to fracturing.
  • this upper limit is a value obtained from heat loss and economic reasons, and can be solved by adding known means that can solve the reason, such as a heating device or a pressure device, or economically. If it is acceptable, it does not prevent the upper limit from being set to 500 m or more.
  • the interval between the injection wells may be an interval at which channeling due to fracturing occurs. If channeling occurs between the injection wells, the channeling, that is, the flow path by the cracks communicating with each other injection well is formed, so that the MH layer is more efficiently preheated by the injection of hot water. Can do.
  • channeling between the production wells constituting the production well group, that is, the methane gas is further flown by the flow path by the cracks communicating with the mutual production wells. It can be recovered efficiently.
  • channeling occurs between injection wells or production wells.
  • a plurality of production wells are formed as a group, even if channeling does not occur, it is possible to efficiently use heat energy during preheating.
  • the injection well where the injection pipe 11 is arranged functions as a production well after a preset period has elapsed. That is, the injection pipe 11 arranged in the injection well is used as the recovery pipe 12. And when an injection well is used as a production well, a new injection well is excavated and the injection pipe 11 is arrange
  • the well that is currently functioning as an injection well is caused to function as a production well after the set period has elapsed, and at that time, a new injection well is excavated. This is repeated sequentially for each set period.
  • the power generation system 20 includes a power generation device 21 and a carbon dioxide recovery device (hereinafter appropriately referred to as “CO 2 recovery device”) 22.
  • the power generation device 21 generates power using methane gas as fuel, and sends electric power obtained by power generation to land via, for example, an HVDC (High Voltage Direct Current) submarine cable. Further, in the power generation device 21, unnecessary exhaust gas and exhaust heat are generated during power generation.
  • the power generation device 21 supplies the generated exhaust gas and exhaust heat to the CO 2 recovery device 22.
  • a Brayton cycle type power generation device or a large gas engine can be used.
  • the CO 2 recovery device 22 recovers carbon dioxide contained in the exhaust gas supplied from the power generation device 21.
  • seawater is supplied to the CO 2 recovery device 22 using a pump or the like (not shown).
  • the CO 2 recovery device 22 dissolves the recovered carbon dioxide in the supplied seawater.
  • the CO 2 recovery device 22 uses the physical adsorption method or the chemical absorption method to dissolve the recovered carbon dioxide in seawater under high pressure.
  • the CO 2 recovery device 22 uses the exhaust heat supplied from the power generation device 21 to heat seawater in which carbon dioxide is dissolved, and heated seawater in which carbon dioxide is dissolved (hereinafter referred to as “hot water” as appropriate). Is generated. Then, the CO 2 recovery device 22 supplies this hot water to the injection pipe 11 of the methane gas recovery system 10.
  • the electric power generation system 20 when supplying hot water to the injection pipe 11, applies the preset pressure to this hot water, and supplies it.
  • the pressure at this time is, for example, a pressure that can generate fracturing in the MH layer when hot water is ejected from the injection pipe 11.
  • the power generation device 21 in the power generation system 20 generates power using methane gas as fuel, and sends the obtained power to land via the HVDC submarine cable. Further, the power generation device 21 supplies exhaust gas and heat exhausted by power generation to the CO 2 recovery device 22.
  • the CO 2 recovery device 22 recovers carbon dioxide from the exhaust gas supplied from the power generation device 21.
  • the CO 2 recovery device 22 dissolves the recovered carbon dioxide with respect to the supplied seawater. Furthermore, the seawater in which carbon dioxide is dissolved is heated using the exhaust heat supplied from the power generation device 21 to generate hot water in which carbon dioxide is dissolved.
  • the CO 2 recovery device 22 supplies the generated hot water to the injection pipe 11 of the methane gas recovery system 10. At this time, hot water is supplied to the injection tube 11 in a state where pressure is applied. When the hot water supplied to the injection tube 11 reaches the MH layer, the hot water is discharged from the injection port of the injection tube 11 to the MH layer.
  • the MH layer In the MH layer, fracturing occurs due to the pressure of hot water ejected from the injection tube 11. Further, the MH layer around the injection tube 11 is preheated by the heat of the hot water that has been injected.
  • the methane gas dissociated from the methane hydrate is recovered from the recovery port by using the decompression method. The recovered methane gas is supplied to the power generation system 20 and is used as fuel for power generation by the power generation device 21.
  • the injection well where the injection pipe 11 is arranged functions as a production well, and the injection pipe 11 is used as the recovery pipe 12. Then, a new injection well is excavated, and the injection pipe 11 is arranged in this injection well. Thereafter, the above-described operation is repeated every set period.
  • the volume of the MH layer increases in accordance with the amount of injected hot water, so that the environment changes, for example, the sea bottom rises.
  • the methane gas is recovered from the recovery pipe 12
  • a decompression method is used in which the pressure is reduced by pumping up seawater in the MH layer, so the volume of the MH layer is reduced. Therefore, changes in the environment such as the sea bottom can be suppressed.
  • FIG. 3 is a graph for explaining the recovery efficiency of methane gas in the MH layer.
  • the horizontal axis indicates the temperature of the MH layer
  • the vertical axis indicates the recovery efficiency of methane gas.
  • this example shows the recovery efficiency of methane gas from methane hydrate around the recovery pipe 12 and around a radius of 50 m and a depth of 35 m.
  • FIG. 4 is a graph for explaining the total production amount according to the layer temperature when methane gas is recovered using the carbon dioxide low emission power generation system 1 of FIG.
  • the horizontal axis indicates the number of days from the start of methane gas production
  • the vertical axis indicates the total production amount when methane gas is recovered using the decompression method.
  • the figure also shows the total production of methane gas when the MH layer is preheated with hot water and the temperature of the MH layer is 2.5 ° C, 7.5 ° C, and 12.5 ° C.
  • the layer temperature when not preheating is set to 2.5 ° C., for example.
  • the total production amount of methane gas is dramatically improved.
  • the total production amount of methane gas becomes 10 times or more. This is because the recovery efficiency of methane gas increases by increasing the temperature of the MH layer as described with reference to FIG.
  • the total production of methane gas can be improved by preheating the MH layer.
  • FIG. 5 is a graph for explaining the production rate according to the layer temperature when methane gas is recovered using the carbon dioxide low emission power generation system 1 of FIG.
  • the horizontal axis represents the number of days from the start of methane gas production
  • the vertical axis represents the production rate when methane gas is recovered using the decompression method.
  • the figure also shows the production rate of methane gas when the temperature of the MH layer is 2.5 ° C, 7.5 ° C, and 12.5 ° C.
  • the production rate of methane gas indicates the production amount of methane gas per unit time.
  • the production rate of methane gas is dramatically improved.
  • the production rate of methane gas becomes about 15 times. After that, the production speed becomes about three times. This is because the recovery efficiency of methane gas increases by increasing the temperature of the MH layer as described with reference to FIG.
  • the methane gas production rate can be improved by preheating the MH layer.
  • FIG. 6 is a schematic diagram illustrating an example of an analysis model used when performing a simulation according to the hot water injection period.
  • an MH layer having a thickness of about 20 m is formed between a lower layer having a thickness of about 25 m and an upper layer having a thickness of about 20 m.
  • the MH layer is provided with an injection tube 11 having a diameter of about 0.1 m. Hot water is injected into the injection tube 11, and the injected hot water is ejected from a spout provided at the lower portion of the injection tube 11. At this time, it is assumed that hot water having a temperature of 12 ° C. and a flow rate of 7.2 ⁇ 103 kg / h is injected into the injection tube 11.
  • the MH layer is assumed to be uniform at a layer temperature of 6 ° C.
  • FIG. 7 is a temperature distribution diagram showing an example of the relationship between the hot water injection period and the temperature in the analysis model of FIG. 6, in the case where the hot water injection period is changed and in the case where the fracture is formed in the MH layer.
  • the temperature distribution of MH layer is shown.
  • Case # 1 shows the temperature distribution when hot water is injected for 30 days.
  • Case # 2 shows the temperature distribution when hot water is injected for 90 days.
  • Case # 3 shows the temperature distribution when hot water is injected for 180 days.
  • Case # 4 shows the temperature distribution when hot water is injected for 360 days.
  • the fracture case shows a temperature distribution when a fracture is formed in the MH layer and hot water is injected for 360 days.
  • the fracture in this case has a gap height of about 1 m and a diameter of about 50 m.
  • the layer temperature of the MH layer rises closer to the injection tube 11 regardless of the hot water injection period.
  • the longer the hot water injection period the wider the range in which the layer temperature increases, and the layer temperature can be increased further from the injection tube 11.
  • the fracture case can raise the layer temperature farther from the injection pipe 11. This is because the hot water ejected from the injection pipe 11 can reach far through the fracture.
  • the layer temperature of the MH layer can be increased widely by lengthening the hot water injection period. Moreover, the layer temperature of the MH layer can be widely increased also by forming fractures.
  • FIG. 8 is a graph for explaining the production rate of methane gas according to the hot water injection period.
  • FIG. 9 is a graph for explaining the production rate of methane gas according to the presence or absence of fracture. 8 and 9, the horizontal axis indicates the number of days from the start of methane gas production, and the vertical axis indicates the methane gas production rate.
  • FIG. 8 shows the production rate of methane gas when the layer temperature of the MH layer is distributed as in cases # 1 to # 4 of FIG.
  • FIG. 9 shows the production rate of methane gas when the layer temperature of the MH layer is uniformly distributed at 6 ° C. and 12 ° C. and when the layer temperature is distributed as in the case # 4 and the fracture case of FIG.
  • the graph in the case where the layer temperature of the MH layer is uniformly distributed at 6 ° C. and 12 ° C. is a comparative example for comparison with the case # 4 and the fracture case.
  • the temperature of 6 ° C. is a temperature when an operation is not performed on the MH layer such as hot water injection, and corresponds to the actual temperature of the MH layer.
  • the temperature of 12 ° C. is a temperature at which all MH in the MH layer can be dissociated into methane gas, and corresponds to an ideal temperature for recovering methane gas from the MH layer.
  • the production rate of methane gas increases rapidly in the initial stage from the start of production, and then the production rate converges to a constant value, as in FIG. .
  • the longer the hot water injection period the faster the production rate of methane gas.
  • the shorter the hot water injection period the faster the production rate decreases. This is because when the hot water injection period is short, the preheating of the MH layer due to the hot water injection is not sufficient, and MH does not sufficiently dissociate into methane gas.
  • the production rate of methane gas is faster than the case where the layer temperature of the MH layer is uniform at 6 ° C. This is because hot water is injected into the MH layer to increase the temperature of the MH layer, and dissociation from MH to methane gas proceeds. Furthermore, in the case of the fracture case, the production rate of methane gas is faster than in the case # 4. This is because hot water reaches far by the fracture, and more MH can be dissociated into methane gas.
  • the production rate is the same as when the MH layer temperature is uniform at 12 ° C. until the elapsed days from the start of production of methane gas is about 150 days.
  • the temperature of 12 ° C. is a temperature at which all MH in the MH layer can be dissociated into methane gas
  • the production rate when the layer temperature is uniform at 12 ° C. is the maximum amount of methane gas produced.
  • speed is because in the fracture case, hot water reaches far by the fracture, and more MH dissociates into methane gas. Further, the fracture becomes a flow path when recovering the dissociated methane gas, and more methane gas is recovered at the time of decompression.
  • the production rate can be improved by injecting hot water into the MH layer as compared with the case of not injecting hot water.
  • the longer the hot water injection period the more the production rate can be improved.
  • the production rate of methane gas can be set to a rate equivalent to the maximum production amount at least about 150 days after the start of methane gas production.
  • FIG. 10 is a graph for explaining the total production amount of methane gas according to the hot water injection period.
  • FIG. 11 is a graph for explaining the total production amount of methane gas according to the presence or absence of fracture. 10 and 11, the horizontal axis indicates the number of days from the start of methane gas production, and the vertical axis indicates the total production amount of methane gas.
  • FIG. 10 shows the total production amount of methane gas when the layer temperature of the MH layer is distributed as in cases # 1 to # 4 of FIG.
  • FIG. 11 shows the total amount of methane gas produced when the layer temperature of the MH layer is uniformly distributed at 6 ° C. and 12 ° C., and when the MH layer is distributed like the case # 4 and the fracture case in FIG.
  • the total production in Case # 1 is 8.7 ⁇ 10 5 m 3
  • the total production in Case # 2 is 1.0 ⁇ 10 6 m 3
  • the total production amount in case # 3 is 1.3 ⁇ 10 6 m 3
  • the total production amount in case # 4 is 1.7 ⁇ 10 6 m 3 .
  • the total production amount of methane gas is larger than in the case where the layer temperature of the MH layer is uniform at 6 ° C. This is because hot water is injected into the MH layer to increase the temperature of the MH layer, and dissociation from MH to methane gas proceeds. Furthermore, in the case of the fracture case, the total production amount of methane gas is larger than in the case # 4. This is because hot water reaches far by the fracture, and more MH can be dissociated into methane gas.
  • the total production volume is the same as when the bed temperature is uniform at 12 ° C until about 150 days have passed since the start of methane gas production. This is because, as shown in FIG. 9, the production rate of methane gas is the same until about 150 days have passed since the start of production.
  • the total production volume in the fracture case is 2.9 ⁇ 10 5 m 3 .
  • the total production when the layer temperature is uniform at 6 ° C. is 8.1 ⁇ 10 5 m 3
  • the total production when the layer temperature is uniform at 12 ° C. is 4.7 ⁇ 10 6 m 3 . is there.
  • the total production amount in case # 1 is This is approximately 1.1 times the total production when the layer temperature is 6 ° C.
  • the total production in the case of the fracture case is compared with the total production in the case where the layer temperature is uniform at 6 ° C and the fracture case in which the hot water injection period is long and the fracture is formed. The amount is approximately 3.5 times the total production when the bed temperature is 6 ° C.
  • the total production volume can be increased by injecting hot water into the MH layer as compared with the case of not injecting hot water.
  • the longer the hot water injection period and the more fractures are formed the more the total production can be increased.
  • the increase ratio of the total production at this time is about 1.1 to 3.5 times. Become.
  • the total production amount of methane gas can produce methane gas equivalent to the maximum production amount at least until about 150 days from the start of production of methane gas.
  • FIG. 12 is a graph showing the relationship between the flow rate of methane gas, output power, and thermal efficiency.
  • FIG. 13 is a schematic diagram showing a state of energy in the power generation system 20 of FIG. As shown in FIG. 12, the output power in the power generation system 20 is substantially proportional to the supply amount of methane gas.
  • the thermal efficiency when power is generated using methane gas is approximately 44%.
  • the thermal efficiency is a substantially constant value with respect to the supply amount of methane gas.
  • the amount of heat required for the reboiler when absorbing carbon dioxide from the exhaust gas into the amine solution and recovering the carbon dioxide is 2215 kW, which is less than the amount of heat of exhaust heat (3284 kW).
  • a reboiler can be operated using waste heat.
  • FIG. 14 is a graph showing the relationship between the flow rate of methane gas and the gas price.
  • FIG. 15 is a graph showing the relationship between the flow rate of methane gas and the electricity price.
  • the gas price of methane gas decreases as the flow rate increases. However, even when the flow rate of methane gas becomes 120,000 m 3 / day, for example, the price of methane gas is higher than the price of conventional natural gas.
  • the electricity price when power is generated using methane gas decreases as the flow rate of methane gas increases.
  • the flow rate of methane gas currently confirmed in the marine production test and the like is 20000 m 3 / day, and in this case, it is about the same as the electricity price by offshore wind power generation.
  • the electricity price is equivalent to the electricity selling price by the power company.
  • the flow rate is 20000 m 3 / day.
  • the production period of methane gas is about 4 years. Since there is an upper limit on the amount of resources under the seabed, the production period of production wells will be shortened if the flow rate is increased.
  • the methane gas recovery method is a methane gas recovery method for recovering methane gas from the methane hydrate layer, and the heated heated seawater is communicated with the methane hydrate layer while carbon dioxide is dissolved.
  • methane gas is recovered from the methane hydrate layer preheated in the production well with the injection well as the production well, a new injection well is drilled, and heated seawater is injected into the injection well. Preheat the methane hydrate layer.
  • methane gas since methane gas is collect
  • the carbon dioxide low emission power generation method performs power generation using methane gas as fuel when recovering methane gas as described in the above methane gas recovery method, and from exhaust gas generated during power generation.
  • Carbon dioxide is recovered, seawater is obtained, the recovered carbon dioxide is dissolved in seawater, and the seawater in which carbon dioxide is dissolved is heated using exhaust heat generated during power generation to generate heated seawater.
  • the carbon dioxide contained in the exhaust gas generated in the power generation device 21 is dissolved in seawater, and the seawater is injected into the underground from the injection well, that is, the carbon dioxide is isolated from the seabed. Therefore, it is possible to suppress the release of carbon dioxide into the atmosphere among the carbon dioxide generated by power generation. Furthermore, since the seawater can be heated using the exhaust heat generated by the power generation device 21, energy loss can be suppressed.
  • 1 CO2 low emission power generation system 2 ships, 10 methane gas recovery system, 11 injection pipe, 12 recovery pipe, 20 power generation system, 21 power generation device, 22 carbon dioxide recovery device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

メタンガス回収方法は、メタンハイドレート層からメタンガスを回収するものであり、二酸化炭素が溶解するとともに加熱された加熱海水をメタンハイドレート層に連通する1または複数の注入井に注入してメタンハイドレート層を予熱し、メタンハイドレート層に連通し、注入井から設定距離だけ離れた位置に設けられた1または複数の生産井で、予熱されたメタンハイドレート層から減圧法によってメタンガスを回収し、設定期間が経過した場合に、注入井を生産井として生産井からメタンガスを回収し、新たな注入井を掘削して、注入井に加熱海水を注入してメタンハイドレートを予熱する。

Description

メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム
 本発明は、海洋メタンハイドレートを利用したメタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システムに関する。
 近年、従来の化石燃料に代わるエネルギー資源として、メタンハイドレート(Methane Hydrate:MH)が注目されている。特に、日本近海の海底には、メタンハイドレート層(以下、「MH層」と適宜称する)が存在しており、このMH層からメタンガスを回収して純国産エネルギー資源として活用することが期待されている。
 MH層からメタンガスを回収する際には、例えば、メタンガスを回収するための生産井を海底に掘削するが、MH層からのメタンガスは、油田またはガス田等と異なり自噴しない。そのため、最近では、MH層からメタンガスを回収するための様々な手法が提案されている。
 メタンハイドレートは、一般的に、低温かつ高圧の環境下で存在しており、温度を上げる、または圧力を下げることにより、メタンガスが解離するものである。そこで、メタンガスを回収するための手法として、例えば、MH層を加熱することによってメタンハイドレートからメタンガスを解離させる加熱法と、MH層を減圧することによってメタンガスを解離させる減圧法とに大別される2つの手法が提案されている。
 加熱法によるメタンガスの回収方法は、例えば特許文献1に記載されている。特許文献1に記載の方法では、MH層に対して平行井となる注入井および生産井を掘削し、注入井に圧入された熱水の熱によってメタンハイドレートから解離したメタンガスを生産井から回収する、加熱法の一種である熱水圧入法を用いてメタンガスを回収する。
 一方、減圧法によるメタンガス回収方法では、メタンガスの回収に係るエネルギー消費量の数十倍のエネルギーを生産できるため、加熱法を用いた場合よりもエネルギー産出比が高い。
特開2016-223064号公報
 しかしながら、加熱法を用いてメタンガスを回収する場合には、回収したメタンガスによって生産されるエネルギーよりも、水を加熱するために消費するエネルギーが上回ってしまう虞があるため、エネルギー産出比が悪いという課題があった。
 また、特許文献1に記載の方法のように、熱水を注入井に圧入した場合には、MH層における注入井の周囲に亀裂が生じるフラクチャリングが発生し、熱によって解離したメタンガスの流路が形成される。しかし、注入井と生産井との距離が近い場合には、注入井と生産井とが接続されるチャネリングが発生してしまう。注入井と生産井との間にチャネリングが発生すると、注入井から圧入した熱水が生産井に直接流入してしまうため、メタンガスを効率的に回収できない虞があるという課題があった。さらに、平行井は、垂直井と比較して設置コストが高い。
 一方、減圧法を用いてメタンガスを回収する場合には、メタンハイドレートからメタンガスが解離する際に吸熱反応が起こるため、MH層の温度が低下して凍結してしまう。これにより、メタンガスの流路が閉塞されるなどしてしまうため、加熱法を用いた場合と比較して、効率的にメタンガスを回収することができないという課題があった。
 また、現在提案されている様々なメタンガス回収方法では、メタンガスの総生産量、ならびに単位時間あたりの生産量である生産速度が低く、メタンハイドレートから回収されたメタンガスをエネルギーとして経済的に成立させることが困難である。
 そこで、本発明は、上記従来の技術における課題に鑑みてなされたものであって、メタンガスの総生産量および生産速度を向上させるとともに、効率的にメタンガスを回収することができるメタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システムを提供することを目的とする。
 本発明に係るメタンガス回収方法は、メタンハイドレート層からメタンガスを回収するメタンガス回収方法であって、二酸化炭素が溶解するとともに加熱された加熱海水を前記メタンハイドレート層に連通する1または複数の注入井に注入して前記メタンハイドレート層を予熱するステップと、前記メタンハイドレート層に連通し、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井から、減圧法によってメタンガスを回収するステップとを有し、設定期間が経過した場合に、前記注入井を生産井として該生産井で予熱された前記メタンハイドレート層からメタンガスを回収し、新たな注入井を掘削して、該注入井に前記加熱海水を注入して前記メタンハイドレート層を予熱するものである。
 本発明に係る二酸化炭素低排出発電方法は、メタンガスを燃料として発電を行うステップと、前記発電の際に発生する排ガスから二酸化炭素を回収するステップと、海水を取得し、回収した前記二酸化炭素を前記海水に溶解させるステップと、前記発電の際に発生する排熱を用いて、前記二酸化炭素が溶解した前記海水を加熱して加熱海水を生成するステップと、前記加熱海水をメタンハイドレート層に連通する1または複数の注入井に注入して前記メタンハイドレート層を予熱するステップと、前記メタンハイドレート層に連通し、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井から、減圧法によってメタンガスを回収するステップと、回収した前記メタンガスを発電の燃料として供給するステップとを有し、設定期間が経過した場合に、前記注入井を生産井として該生産井で予熱された前記メタンハイドレート層からメタンガスを回収し、新たな注入井を掘削して、該注入井に前記加熱海水を注入して前記メタンハイドレート層を予熱するものである。
 本発明に係るメタンガス回収システムは、メタンハイドレート層からメタンガスを回収するメタンガス回収システムであって、前記メタンハイドレート層に連通し、二酸化炭素が溶解するとともに加熱された加熱海水を1または複数の注入井のそれぞれに注入する1または複数の注入管と、前記メタンハイドレート層に連通するとともに、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井のそれぞれから、減圧法によってメタンガスを回収する1または複数の回収管とを有し、設定期間が経過した場合に、前記注入井を生産井として機能させて該生産井で前記メタンハイドレート層からメタンガスを回収し、新たに掘削された注入井に新たな注入管を配置して前記加熱海水を注入するものである。
 本発明に係る二酸化炭素低排出発電システムは、発電を行う発電システムと、メタンハイドレート層からメタンガスを回収するメタンガス回収システムとを備えた二酸化炭素低排出発電システムであって、前記発電システムは、メタンガスを燃料として発電を行う発電装置と、前記発電の際に発生する排ガスから二酸化炭素を回収する二酸化炭素回収装置とを有し、前記二酸化炭素回収装置は、海水を取得し、回収した前記二酸化炭素を前記海水に溶解させ、前記発電の際に発生する排熱を用いて、前記二酸化炭素が溶解した前記海水を加熱して加熱海水を生成し、前記メタンガス回収システムは、前記メタンハイドレート層に連通し、前記加熱海水を注入する1または複数の注入井と、前記メタンハイドレート層に連通するとともに、前記注入井から設定距離だけ離れた位置に設けられ、減圧法によってメタンガスを回収する1または複数の生産井とを有し、回収した前記メタンガスを発電の燃料として前記発電システムに供給し、設定期間が経過した場合に、前記注入井を生産井として機能させて該生産井で前記メタンハイドレート層からメタンガスを回収し、新たに掘削された注入井に新たな注入管を配置して前記加熱海水を注入するものである。
 以上のように、本発明によれば、設定期間が経過する毎に注入井を生産井として機能させ、加熱海水が注入されて予熱されたメタンハイドレート層からメタンガスを回収することにより、メタンガスの総生産量および生産速度を向上させるとともに、効率的にメタンガスを回収することができる。
 また、回収したメタンガスをそのままエネルギーとして地上に輸送するよりも、そのメタンガスを電気エネルギーに変換して地上に輸送することで、エネルギーに付加価値をつけて供給することができる。さらに、電気エネルギーに変換する際に放出される熱エネルギーをメタンガスの回収に利用することで、より効率的かつ環境に対してやさしいシステムとして運用が可能である。加えて、メタンガスをエネルギーに変換する際に排出される二酸化炭素についても、熱エネルギーと一緒に海水に混ぜ、注入井から地下に注入、すなわち、二酸化炭素を海底隔離するので、エネルギー変換時の二酸化炭素の大気中の放出を防ぐことができるという顕著な効果をも奏することができる。
実施の形態に係る二酸化炭素低排出発電システムの構成の一例を示す概略図である。 実施の形態に係る二酸化炭素低排出発電システムの構成の一例を示すブロック図である。 MH層におけるメタンガスの回収効率について説明するためのグラフである。 図1の二酸化炭素低排出発電システムを用いてメタンガスを回収した場合の、層温度に応じた総生産量について説明するためのグラフである。 図1の二酸化炭素低排出発電システムを用いてメタンガスを回収した場合の、層温度に応じた生産速度について説明するためのグラフである。 熱水圧入期間に応じたシミュレーションを行う際に用いた解析モデルの一例を示す概略図である。 図6の解析モデルにおける熱水圧入期間と温度との関係の一例を示す温度分布図である。 熱水圧入期間に応じたメタンガスの生産速度について説明するためのグラフである。 フラクチャの有無に応じたメタンガスの生産速度について説明するためのグラフである。 熱水圧入期間に応じたメタンガスの総生産量について説明するためのグラフである。 フラクチャの有無に応じたメタンガスの総生産量について説明するためのグラフである。 メタンガスの流量と出力電力および熱効率との関係を示すグラフである。 図1の発電システムにおけるエネルギーの状態を示す概略図である。 メタンガスの流量とガス価格との関係を示すグラフである。 メタンガスの流量と電気価格との関係を示すグラフである。
実施の形態.
 以下、本発明の実施の形態に係る二酸化炭素低排出発電システムについて説明する。本実施の形態に係る二酸化炭素低排出発電システムは、概略的には、MH層(メタンハイドレート層)から回収したメタンガスを用いて発電を行い、発電の際に発生する二酸化炭素および排熱を利用して海水に二酸化炭素を溶解させるとともに海水を加熱する。そして、掘削された注入井に加熱した海水を注入してMH層の予熱およびフラクチャリングを行い、それと平行して、注入井に対して予め設定された距離だけ離れた位置の生産井からメタンガスを回収する。
 また、メタンガスの回収開始から予め設定された期間が経過する毎に、注入井を生産井として機能させてメタンガスを回収するとともに、新たに掘削された注入井に加熱海水を注入してMH層の予熱およびフラクチャリングを行う。
[二酸化炭素低排出発電システムの構成]
 図1は、本実施の形態に係る二酸化炭素低排出発電システム1の構成の一例を示す概略図である。図1に示すように、二酸化炭素低排出発電システム1は、メタンハイドレートが濃集したMH層の海上に停泊した船2などを利用して設置されている。二酸化炭素低排出発電システム1は、メタンガス回収システム10および発電システム20が接続されて構成されている。
(メタンガス回収システム)
 図2は、本実施の形態に係る二酸化炭素低排出発電システム1の構成の一例を示すブロック図である。図1および図2に示すように、メタンガス回収システム10は、1または複数の注入管11と、1または複数の回収管12とを備えている。
 注入管11は、例えば垂直井であり、MH層の下部まで到達するように掘削された注入井に、海上からMH層の下部まで略垂直に延びるように設置されている。注入管11には、後述する二酸化炭素が溶解した熱水が圧入される。注入管11は、MH層の内部に配置された部分に、二酸化炭素を溶解させた熱水を噴出させるための複数の噴出口が設けられている。
 回収管12は、例えば垂直井であり、MH層の下部まで到達するように掘削された生産井に、海上からMH層の下部まで略垂直に延びるように設置されている。回収管12は、MH層の内部に配置された部分に、メタンハイドレートから解離したメタンガスを回収するための複数の回収口が設けられている。回収されたメタンガスは、発電システム20に供給される。
 ここで、注入管11が設置される注入井と、回収管12が設置される生産井とは、予め設定された間隔、すなわち設定距離だけ離れた間隔で配置されている。これは、注入管11で注入井に熱水を圧入した際に、MH層に亀裂であるフラクチャリングが発生するが、この発生したフラクチャリングによって注入井と生産井との間に、チャネリングと呼ばれる亀裂によって相互の井が連通してしまう状態が生じるのを防ぐためである。
 したがって、本実施の形態では、フラクチャリングによる注入井と生産井との間のチャネリングを防止するため、注入井と生産井との間隔として設定された設定距離を、フラクチャリングによるチャネリングが生じない程度の間隔に設定する。具体的には、例えば、当該設定距離は、10m以上500m以下程度とすると好ましい。これは、設定距離が10mより小さい場合には、注入井と生産井との間にチャネリングが発生してしまい、MH層内のメタンガスを効率的に回収することができないためである。
 なお一方、設定距離の上限値である「500m」は、例えば、熱水輸送時の圧力損失、熱損失、および本システムを構成するための経済的な装置配置等を考慮して、メタンガス回収システム10を設置するのに適切な距離であり、かつ、フラクチャリングによるチャネリングが発生しない十分な距離を想定して設定している。しかしながら、この上限値は、熱損失や経済的理由から得られた値であり、その理由を解決できる公知な手段、例えば加熱装置や加圧装置などを付加することで解決できたり、経済的に許容できたりするのであれば、上限値を500m以上とすることを妨げない。
 また、注入井を複数掘削して注入井群として機能させる場合には、それぞれの注入井同士の間に上述したような間隔制限を設ける必要はない。すなわち、それぞれの注入井同士の間隔は、フラクチャリングによるチャネリングが発生するような間隔であってもよい。注入井同士の間にチャネリングが発生すれば、そのチャネリング、すなわち相互の注入井に連通した亀裂による流路が形成されることにより、熱水の注入によるMH層のより効率的な予熱を行うことができる。そして、その注入井群を生産井群としてメタンガスを回収する段階では、生産井群を構成するそれぞれの生産井の間にチャネリング、すなわち相互の生産井に連通した亀裂による流路によって、メタンガスをより効率的に回収することができる。
 しかしながら、当然、注入井同士または生産井同士の間にチャネリングが発生していることは必須ではない。例えば、複数の生産井を群として形成すれば、たとえチャネリングが発生していなくとも、それだけで予熱の際の熱エネルギーの効率的な活用が可能となる。
 ここで、本実施の形態において、注入管11が配置された注入井は、予め設定された期間が経過した後に、生産井として機能する。すなわち、注入井に配置された注入管11は、回収管12として用いられる。そして、注入井を生産井として用いた場合には、新たな注入井が掘削され、この新たな注入井に注入管11が配置される。
 このように、本実施の形態では、現在注入井として機能している井戸を、設定期間経過後に生産井として機能させ、その際に、新たな注入井を掘削する。これを設定期間ごとに順次繰り返して行う。
(発電システム)
 発電システム20は、発電装置21および二酸化炭素回収装置(以下、「CO回収装置」と適宜称する)22を備えている。発電装置21は、メタンガスを燃料として発電を行い、発電によって得られる電力を、例えば、HVDC(High Voltage Direct Current:高圧直流)海底ケーブルを介して陸上に送る。また、発電装置21では、発電の際に不要な排ガスおよび排熱が発生する。発電装置21は、発生した排ガスおよび排熱をCO回収装置22に供給する。発電装置21としては、例えば、ブレイトンサイクル型の発電装置または大型のガスエンジン等を用いることができる。
 CO回収装置22は、発電装置21から供給される排ガスに含まれる二酸化炭素を回収する。また、CO回収装置22には、図示しないポンプ等を用いて海水が供給される。CO回収装置22は、供給された海水に回収した二酸化炭素を溶解させる。例えば、CO回収装置22は、物理吸着法または化学吸収法を用いて、回収した二酸化炭素を高圧下で海水に溶解させる。
 また、CO回収装置22は、発電装置21から供給される排熱を用いて、二酸化炭素が溶解した海水を加熱し、二酸化炭素が溶解した加熱海水(以下、「熱水」と適宜称する)を生成する。そして、CO回収装置22は、この熱水をメタンガス回収システム10の注入管11に供給する。
 なお、熱水を注入管11に供給する場合、発電システム20は、この熱水に予め設定された圧力を加えて供給する。このときの圧力は、例えば、熱水が注入管11から噴出した際に、MH層にフラクチャリングを発生させることができる程度の圧力である。
[二酸化炭素低排出発電システムの動作]
 次に、本実施の形態に係る二酸化炭素低排出発電システム1の動作について説明する。発電システム20における発電装置21は、メタンガスを燃料として発電を行い、得られた電力を、HVDC海底ケーブルを介して陸上に送る。また、発電装置21は、発電によって排出される排ガスおよび排熱をCO回収装置22に供給する。
 CO回収装置22は、発電装置21から供給された排ガスから二酸化炭素を回収する。また、CO回収装置22は、供給された海水に対して回収した二酸化炭素を溶解させる。さらに、発電装置21から供給された排熱を利用して二酸化炭素が溶解した海水を加熱し、二酸化炭素が溶解した熱水を生成する。CO回収装置22は、生成した熱水をメタンガス回収システム10の注入管11に供給する。このとき、熱水は、圧力が加えられた状態で注入管11に供給される。注入管11に供給された熱水は、MH層に到達すると、注入管11の噴出口からMH層に噴出する。
 MH層では、注入管11から噴出した熱水の圧力により、フラクチャリングが発生する。また、圧入された熱水の熱により、注入管11の周囲のMH層が予熱される。一方、回収管12では、減圧法を用いることにより、メタンハイドレートから解離したメタンガスが回収口から回収される。回収されたメタンガスは、発電システム20に供給され、発電装置21による発電の際の燃料として利用される。
 そして、設定期間経過後、注入管11が配置された注入井は生産井として機能し、注入管11が回収管12として用いられる。そして、新たに注入井が掘削され、この注入井に注入管11が配置される。以後、設定期間毎に、上述した動作が繰り返される。
 なお、注入管11から熱水をMH層に注入した場合には、注入した熱水の量に応じてMH層の体積が増加するため、海底面が隆起したりするなどして環境が変化する可能性がある。しかしながら、本実施の形態では、回収管12からメタンガスを回収する際に、MH層内の海水を汲み上げることによって減圧する減圧法を用いるため、MH層の体積が減少する。そのため、海底面などの環境の変化を抑制することができる。
[二酸化炭素低排出発電システムによる効果]
 次に、本実施の形態に係る二酸化炭素低排出発電システム1を用いてメタンガスを回収した場合の効果について説明する。ここでは、上述した二酸化炭素低排出発電システム1を用いて、予め想定したMH層からメタンガスを回収する際のシミュレーション結果を用いて説明する。また、以下では、MH層の層温度に応じた結果と、熱水圧入期間に応じた結果とについて、順次説明する。
(メタンガスの回収効率)
 図3は、MH層におけるメタンガスの回収効率について説明するためのグラフである。図3において、横軸はMH層の温度を示し、縦軸はメタンガスの回収効率を示す。また、この例は、回収管12を中心として半径50mの周囲および深さ35mの領域における、メタンハイドレートからのメタンガスの回収効率を示している。
 図3に示すように、通常時のMH層の温度が3℃程度である場合、メタンガスの回収効率は30%程度である。これに対して、層温度を8℃程度上昇させ、11℃とすることにより、メタンガスの回収効率は100%に上昇する。このことから、MH層を予熱することにより、MH層におけるメタンハイドレートからメタンガスを効率的に回収することができる。
(層温度に応じたメタンガスの総生産量)
 まず、MH層の層温度に応じたシミュレーション結果について説明する。図4は、図1の二酸化炭素低排出発電システム1を用いてメタンガスを回収した場合の、層温度に応じた総生産量について説明するためのグラフである。図4において、横軸はメタンガスの生産開始からの日数を示し、縦軸は減圧法を用いてメタンガスを回収した場合の総生産量を示す。また、同図は、熱水によってMH層を予熱し、MH層の温度が2.5℃、7.5℃および12.5℃である場合のメタンガスの総生産量を示す。なお、この例では、予熱しない場合の層温度を例えば2.5℃とした場合を示している。
 図4に示すように、層温度がいずれの場合においても、メタンガスの総生産量は、生産開始から初期の段階では急激に上昇し、その後、緩やかに上昇する。これは、生産開始から初期の段階では、回収管12の周囲のメタンハイドレートから解離したメタンガスを回収できるためであり、その後は、回収管12から離れた位置に存在するメタンハイドレートから解離したメタンガスを回収するためである。
 一方、MH層を予熱し、層温度を通常時の2.5℃から上昇させた場合には、メタンガスの総生産量が飛躍的に向上する。特に、生産開始から100日、すなわち3ヶ月程度経過した時点では、MH層の温度を5℃上昇させる毎に、メタンガスの総生産量が10倍以上となる。これは、図3を用いて説明したように、MH層の温度を上昇させることにより、メタンガスの回収効率が上昇するためである。
 このように、図4に示すシミュレーション結果から、MH層を予熱することにより、メタンガスの総生産量を向上させることができる。
(層温度に応じたメタンガスの生産速度)
 図5は、図1の二酸化炭素低排出発電システム1を用いてメタンガスを回収した場合の、層温度に応じた生産速度について説明するためのグラフである。図5において、横軸はメタンガスの生産開始からの日数を示し、縦軸は減圧法を用いてメタンガスを回収した場合の生産速度を示す。また、同図は、MH層の温度が2.5℃、7.5℃および12.5℃である場合のメタンガスの生産速度を示す。なお、メタンガスの生産速度は、単位時間あたりのメタンガスの生産量を示す。
 図5に示すように、層温度がいずれの場合においても、メタンガスの生産速度は、生産開始から初期の段階では急激に上昇し、その後、生産速度が一定値に収束する。これは、図4に示す結果と同様に、生産初期の段階で回収管12の周囲のメタンガスを回収し、その後は回収管12から離れた位置のメタンガスを回収するためである。
 一方、MH層を予熱し、層温度を通常時の2.5℃から上昇させた場合には、メタンガスの生産速度が飛躍的に向上する。特に、生産開始から100日、すなわち3ヶ月程度経過した時点では、MH層の温度を5℃上昇させる毎に、メタンガスの生産速度が15倍程度となる。そして、その後は、生産速度が3倍程度となる。これは、図3を用いて説明したように、MH層の温度を上昇させることにより、メタンガスの回収効率が上昇するためである。
 このように、図5に示すシミュレーション結果から、MH層を予熱することにより、メタンガスの生産速度を向上させることができる。
(解析モデルについて)
 次に、MH層に対する熱水圧入期間に応じたシミュレーション結果について説明する。図6は、熱水圧入期間に応じたシミュレーションを行う際に用いた解析モデルの一例を示す概略図である。図6に示すように、この解析モデルでは、厚みが25m程度の下層と、厚みが20m程度の上層との間に、厚みが20m程度のMH層が形成されている。そして、このMH層には、直径が0.1m程度の注入管11が設置されている。注入管11には熱水が圧入され、注入管11の下部に設けられた噴出口から、圧入された熱水が噴出する。このとき、注入管11には、温度が12℃であり、流量が7.2×103kg/hである熱水が注入されるものとする。また、MH層は、層温度が6℃で均一であるものとする。
(熱水圧入期間に応じた温度分布)
 図7は、図6の解析モデルにおける熱水圧入期間と温度との関係の一例を示す温度分布図であり、熱水圧入期間を変化させた場合と、MH層にフラクチャを形成した場合とにおけるMH層の温度分布を示す。ケース#1は、熱水を30日間圧入した場合の温度分布を示す。ケース#2は、熱水を90日間圧入した場合の温度分布を示す。ケース#3は、熱水を180日間圧入した場合の温度分布を示す。ケース#4は、熱水を360日間圧入した場合の温度分布を示す。フラクチャケースは、MH層にフラクチャを形成し、熱水を360日間圧入した場合の温度分布を示す。この場合のフラクチャは、隙間の高さが1m程度であり、直径が50m程度であるものとする。
 図7に示すように、熱水圧入期間がいずれの場合においても、MH層の層温度は、注入管11に近いほど上昇する。また、熱水の圧入期間が長いほど、層温度が上昇する範囲が広くなり、注入管11からより遠くまで層温度を上昇させることができる。
 さらに、熱水圧入期間が360日であるケース#4とフラクチャケースとを比較した場合、フラクチャケースの方が、注入管11からより遠くまで層温度を上昇させることができる。これは、注入管11から噴出した熱水が、フラクチャを介して遠くまで到達できるためである。
 このように、図7に示すシミュレーション結果から、熱水圧入期間を長くすることにより、MH層の層温度を広く上昇させることができる。また、フラクチャが形成されることによっても、MH層の層温度を広く上昇させることができる。
(熱水圧入期間に応じたメタンガスの生産速度)
 図8は、熱水圧入期間に応じたメタンガスの生産速度について説明するためのグラフである。図9は、フラクチャの有無に応じたメタンガスの生産速度について説明するためのグラフである。図8および図9において、横軸はメタンガスの生産開始からの日数を示し、縦軸はメタンガスの生産速度を示す。また、図8は、MH層の層温度が図7のケース#1~#4のように分布する場合のメタンガスの生産速度を示す。図9は、MH層の層温度が6℃および12℃で均一に分布する場合と、図7のケース#4およびフラクチャケースのように分布する場合とにおけるメタンガスの生産速度を示す。
 なお、図9において、MH層の層温度が6℃および12℃で均一に分布する場合のグラフは、ケース#4およびフラクチャケースの場合と比較するための比較例である。ここで、6℃という温度は、熱水を圧入するなどのMH層に対する操作がなされていない場合の温度であり、実際のMH層の温度に相当する。また、12℃という温度は、MH層内のMHがすべてメタンガスに解離できる温度であり、MH層からメタンガスを回収するのに理想的な温度に相当する。
 図8に示すように、層温度がいずれの場合においても、メタンガスの生産速度は、図5と同様に、生産開始から初期の段階では急激に上昇し、その後、生産速度が一定値に収束する。また、熱水注入期間が長いほど、メタンガスの生産速度が速い。ただし、熱水圧入期間が短いほど、生産速度が早く低下する。これは、熱水圧入期間が短い場合に、熱水を圧入することによるMH層の予熱が十分でなく、MHが十分にメタンガスに解離しないためである。
 一方、図9に示すように、ケース#4およびフラクチャケースの場合には、MH層の層温度が6℃で均一の場合と比較して、メタンガスの生産速度が速い。これは、熱水をMH層に圧入することによってMH層の温度が上昇し、MHからメタンガスへの解離が進行するためである。さらに、フラクチャケースの場合は、ケース#4と比較して、メタンガスの生産速度が速い。これは、フラクチャによって熱水が遠くまで到達し、より多くのMHをメタンガスに解離させることができるためである。
 また、フラクチャケースの場合には、メタンガスの生産開始からの経過日数が150日程度まで、MH層の層温度が12℃で均一の場合と同等の生産速度となる。なお、12℃という温度は、上述したように、MH層内のMHがすべてメタンガスに解離できる温度であり、層温度が12℃で均一の場合の生産速度は、メタンガスの生産量が最大となる速度に相当する。これは、フラクチャケースでは、フラクチャによって熱水が遠くまで到達し、より多くのMHがメタンガスに解離するためである。また、フラクチャは、解離したメタンガスを回収する際の流路となり、減圧時により多くのメタンガスが回収されるためである。
 このように、図8および図9に示すシミュレーション結果から、MH層に対して熱水を圧入することにより、熱水を圧入しない場合と比較して生産速度を向上させることができる。また、熱水圧入期間が長いほど、生産速度をより向上させることができる。
 さらに、図9に示す結果から、フラクチャを形成した場合、メタンガスの生産速度は、少なくともメタンガスの生産開始から150日程度までは、最大生産量となる場合と同等の速度とすることができる。
(熱水圧入期間に応じたメタンガスの総生産量)
 図10は、熱水圧入期間に応じたメタンガスの総生産量について説明するためのグラフである。図11は、フラクチャの有無に応じたメタンガスの総生産量について説明するためのグラフである。図10および図11において、横軸はメタンガスの生産開始からの日数を示し、縦軸はメタンガスの総生産量を示す。また、図10は、MH層の層温度が図7のケース#1~#4のように分布する場合のメタンガスの総生産量を示す。図11は、MH層の層温度が6℃および12℃で均一に分布する場合と、図7のケース#4およびフラクチャケースのように分布する場合とにおけるメタンガスの総生産量を示す。
 図10に示すように、層温度がいずれの場合においても、メタンガスの総生産量は、図4に示すように、生産開始から初期の段階では急激に上昇し、その後、緩やかに上昇する。また、熱水注入期間が長いほど、メタンガスの総生産量が多い。
 メタンガスの生産開始から500日経過した場合の、ケース#1における総生産量は8.7×10であり、ケース#2における総生産量は1.0×10である。また、ケース#3における総生産量は1.3×10であり、ケース#4における総生産量は1.7×10である。
 一方、図11に示すように、ケース#4およびフラクチャケースの場合には、MH層の層温度が6℃で均一の場合と比較して、メタンガスの総生産量が多い。これは、熱水をMH層に圧入することによってMH層の温度が上昇し、MHからメタンガスへの解離が進行するためである。さらに、フラクチャケースの場合は、ケース#4と比較して、メタンガスの総生産量が多い。これは、フラクチャによって熱水が遠くまで到達し、より多くのMHをメタンガスに解離させることができるためである。
 また、フラクチャケースの場合は、メタンガスの生産開始から150日程度経過するまでは、層温度が12℃で均一の場合と同等の総生産量となる。これは、図9に示すように、生産開始から150日程度経過するまでのメタンガスの生産速度が同等であるためである。
 メタンガスの生産開始から500日経過した場合の、フラクチャケースにおける総生産量は2.9×10である。また、層温度が6℃で均一の場合の総生産量は8.1×10であり、層温度が12℃で均一の場合の総生産量は4.7×10である。
 ここで、層温度が6℃で均一の場合の総生産量と、熱水圧入期間が比較的短いケース#1の場合の総生産量とを比較すると、ケース#1の場合の総生産量は、層温度が6℃の場合の総生産量のおよそ1.1倍となる。また、層温度が6℃で均一の場合の総生産量と、熱水圧入期間が長く、かつフラクチャが形成されたフラクチャケースの場合の総生産量とを比較すると、フラクチャケースの場合の総生産量は、層温度が6℃の場合の総生産量のおよそ3.5倍となる。
 このように、図10および図11に示すシミュレーション結果から、MH層に対して熱水を圧入することにより、熱水を圧入しない場合と比較して総生産量を増大させることができる。また、熱水圧入期間が長く、かつフラクチャが形成されるほど、総生産量をより増大させることができ、このときの総生産量の増大比率は、1.1倍~3.5倍程度となる。
 さらに、図11に示す結果から、フラクチャを形成した場合、メタンガスの総生産量は、少なくともメタンガスの生産開始から150日程度までは、最大生産量となる場合と同等のメタンガスを生産することができる。
(二酸化炭素低排出発電システムの熱効率)
 図12は、メタンガスの流量と出力電力および熱効率との関係を示すグラフである。図13は、図1の発電システム20におけるエネルギーの状態を示す概略図である。図12に示すように、発電システム20における出力電力は、メタンガスの供給量に対して略比例する。
 また、図13に示すように、発電システム20においては、供給される575kg/hのメタンガスに対して、3852kWの電力と、3284kWの回収される排熱と、1680kWの廃熱とが発生する。そのため、メタンガスを用いて発電を行った場合の熱効率は、およそ44%となる。この熱効率は、図12にも示すように、メタンガスの供給量に対してほぼ一定の値となっている。
 さらに、図13では、CO回収装置22でアミンを用いた化学吸収法を用いた場合を想定している。この場合、排ガスからアミン溶液に二酸化炭素を吸収させ、二酸化炭素を回収する際のリボイラーに必要な熱量は2215kWであり、排熱の熱量(3284kW)よりも少ない。このように、本実施の形態では、廃熱を利用してリボイラーを動作させることができる。
(ガス価格および電気価格)
 図14は、メタンガスの流量とガス価格との関係を示すグラフである。図15は、メタンガスの流量と電気価格との関係を示すグラフである。図14に示すように、メタンガスのガス価格は、流量が多くなるに従って低下する。しかしながら、例えばメタンガスの流量が120000m/dayとなった場合でも、メタンガスの価格は、従来の天然ガスの価格よりも高価である。
 一方、図15に示すように、メタンガスを用いて発電した場合の電気価格は、メタンガスの流量が多くなるに従って低下する。ここで、現在、海洋産出試験等において確認されているメタンガスの流量は、20000m/dayであり、この場合には、洋上風力発電による電気価格と同等程度である。これに対して、例えばメタンガスの流量が120000m/dayとなった場合には、電気価格が電力会社による売電価格と同等となる。
 この結果から、メタンガスの流量、すなわちメタンガスの生産速度を向上させ、例えば120000m/dayの流量でメタンガスを生産することにより、電力会社による売電価格と同等となり、商業的に実用化することができる。
 なお、海底下のメタンハイドレートの分布を均一と仮定し、生産井の周囲半径120mの範囲のメタンハイドレートがメタンガスとして80%の変換効率で産出可能と仮定すると、流量が20000m/dayの場合、メタンガスの生産期間は4年程度となる。海底下の資源量には上限があるため、流量を増やす場合、生産井の産出期間は短くなっていく。
 以上のシミュレーション結果から、例えば2ヶ月から4年といった、周期的に予め設定された期間、すなわち設定期間毎に予熱およびフラクチャリングを行った注入井を生産井として機能させ、メタンガスを回収することにより、メタンガスの総生産量および生産速度を向上させることができる。また、発電の際の排ガスに含まれる二酸化炭素および排熱を利用して加熱海水を生成することにより、エネルギー損失を抑制して高い熱効率を維持することができる。
 さらに、商業的な観点から、上述したようにメタンガスの総生産量および生産速度を向上させることにより、メタンガスの価格、およびメタンガスを燃料として発電した場合の電気価格を低減することができる。特に、メタンガスを燃料として発電した場合の電気価格は、電力会社による売電価格と同等となり、実用化が可能となる。
 以上のように、本実施の形態に係るメタンガス回収方法は、メタンハイドレート層からメタンガスを回収するメタンガス回収方法であり、二酸化炭素が溶解するとともに加熱された加熱海水をメタンハイドレート層に連通する1または複数の注入井に注入してメタンハイドレート層を予熱し、メタンハイドレート層に連通し、注入井から設定距離だけ離れた位置に設けられた1または複数の生産井から、減圧法によってメタンガスを回収する。そして、設定期間が経過した場合に、注入井を生産井として生産井で予熱されたメタンハイドレート層からメタンガスを回収し、新たな注入井を掘削して、注入井に加熱海水を注入してメタンハイドレート層を予熱する。
 このように、本実施の形態では、加熱海水によって予熱されたMH層からメタンガスを回収するため、メタンガスを効率的に回収することができる。また、設定期間が経過する毎に、注入井を生産井として機能させ、当該生産井からメタンガスを回収することにより、MH層から回収するメタンガスの総生産量および生産速度を向上させることができる。
 また、本実施の形態に係る二酸化炭素低排出発電方法は、上述したメタンガス回収方法で説明したようにしてメタンガスを回収する際に、メタンガスを燃料として発電を行い、発電の際に発生する排ガスから二酸化炭素を回収し、海水を取得し、回収した二酸化炭素を海水に溶解させ、発電の際に発生する排熱を用いて、二酸化炭素が溶解した海水を加熱して加熱海水を生成する。
 このように、本実施の形態では、さらに、発電装置21で発生する排ガスに含まれる二酸化炭素を海水に溶解させ、その海水を注入井から地下に注入する、すなわち、二酸化炭素を海底隔離するものであるため、発電によって発生する二酸化炭素のうち、大気中への二酸化炭素の放出を抑制することができる。さらにまた、発電装置21で発生する排熱を用いて海水を加熱することができるため、エネルギー損失を抑制することができる。
 1 二酸化炭素低排出発電システム、2 船、10 メタンガス回収システム、11 注入管、12 回収管、20 発電システム、21 発電装置、22 二酸化炭素回収装置。

Claims (18)

  1.  メタンハイドレート層からメタンガスを回収するメタンガス回収方法であって、
     二酸化炭素が溶解するとともに加熱された加熱海水を前記メタンハイドレート層に連通する1または複数の注入井に注入して前記メタンハイドレート層を予熱するステップと、
     前記メタンハイドレート層に連通し、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井から、減圧法によってメタンガスを回収するステップと
    を有し、
     設定期間が経過した場合に、前記注入井を生産井として該生産井で予熱された前記メタンハイドレート層からメタンガスを回収し、
     新たな注入井を掘削して、該注入井に前記加熱海水を注入して前記メタンハイドレート層を予熱する
    ことを特徴とするメタンガス回収方法。
  2.  前記加熱海水を前記注入井に注入するステップは、前記メタンハイドレート層にフラクチャリングを発生させる圧力が加えられた前記加熱海水を注入する
    ことを特徴とする請求項1に記載のメタンガス回収方法。
  3.  前記注入井と前記生産井との間の設定距離は、10m以上である
    ことを特徴とする請求項1または2に記載のメタンガス回収方法。
  4.  前記注入井および前記生産井は、垂直井である
    ことを特徴とする請求項1~3のいずれか一項に記載のメタンガス回収方法。
  5.  前記設定期間は、2ヶ月から4年の間の周期的な期間である
    ことを特徴とする請求項1~4のいずれか一項に記載のメタンガス回収方法。
  6.  メタンガスを燃料として発電を行うステップと、
     前記発電の際に発生する排ガスから二酸化炭素を回収するステップと、
     海水を取得し、回収した前記二酸化炭素を前記海水に溶解させるステップと、
     前記発電の際に発生する排熱を用いて、前記二酸化炭素が溶解した前記海水を加熱して加熱海水を生成するステップと、
     前記加熱海水をメタンハイドレート層に連通する1または複数の注入井に注入して前記メタンハイドレート層を予熱するステップと、
     前記メタンハイドレート層に連通し、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井から、減圧法によってメタンガスを回収するステップと、
     回収した前記メタンガスを発電の燃料として供給するステップと
    を有し、
     設定期間が経過した場合に、前記注入井を生産井として該生産井で予熱された前記メタンハイドレート層からメタンガスを回収し、
     新たな注入井を掘削して、該注入井に前記加熱海水を注入して前記メタンハイドレート層を予熱する
    ことを特徴とする二酸化炭素低排出発電方法。
  7.  前記メタンハイドレート層にフラクチャリングを発生させる圧力を前記加熱海水に加えるステップをさらに有する
    ことを特徴とする請求項6に記載の二酸化炭素低排出発電方法。
  8.  前記注入井と前記生産井との間の設定距離は、10m以上である
    ことを特徴とする請求項6または7に記載の二酸化炭素低排出発電方法。
  9.  前記注入井および前記生産井は、垂直井である
    ことを特徴とする請求項6~8のいずれか一項に記載の二酸化炭素低排出発電方法。
  10.  前記設定期間は、2ヶ月から4年の間の周期的な期間である
    ことを特徴とする請求項6~9のいずれか一項に記載の二酸化炭素低排出発電方法。
  11.  メタンハイドレート層からメタンガスを回収するメタンガス回収システムであって、
     前記メタンハイドレート層に連通し、二酸化炭素が溶解するとともに加熱された加熱海水を1または複数の注入井のそれぞれに注入する1または複数の注入管と、
     前記メタンハイドレート層に連通するとともに、前記注入井から設定距離だけ離れた位置に設けられた1または複数の生産井のそれぞれから、減圧法によってメタンガスを回収する1または複数の回収管と
    を有し、
     設定期間が経過した場合に、前記注入井を生産井として機能させて該生産井で前記メタンハイドレート層からメタンガスを回収し、新たに掘削された注入井に新たな注入管を配置して前記加熱海水を注入する
    ことを特徴とするメタンガス回収システム。
  12.  前記注入管に、前記メタンハイドレート層にフラクチャリングを発生させる圧力が加えられた前記加熱海水が注入される
    ことを特徴とする請求項11に記載のメタンガス回収システム。
  13.  前記注入井と前記生産井との間の設定距離は、10m以上である
    ことを特徴とする請求項11または12に記載のメタンガス回収システム。
  14.  前記注入井および前記生産井は、垂直井である
    ことを特徴とする請求項11~13のいずれか一項に記載のメタンガス回収システム。
  15.  発電を行う発電システムと、メタンハイドレート層からメタンガスを回収するメタンガス回収システムとを備えた二酸化炭素低排出発電システムであって、
     前記発電システムは、
     メタンガスを燃料として発電を行う発電装置と、
     前記発電の際に発生する排ガスから二酸化炭素を回収する二酸化炭素回収装置と
    を有し、
     前記二酸化炭素回収装置は、
     海水を取得し、回収した前記二酸化炭素を前記海水に溶解させ、
     前記発電の際に発生する排熱を用いて、前記二酸化炭素が溶解した前記海水を加熱して加熱海水を生成し、
     前記メタンガス回収システムは、
     前記メタンハイドレート層に連通し、前記加熱海水を注入する1または複数の注入井と、
     前記メタンハイドレート層に連通するとともに、前記注入井から設定距離だけ離れた位置に設けられ、減圧法によってメタンガスを回収する1または複数の生産井と
    を有し、
     回収した前記メタンガスを発電の燃料として前記発電システムに供給し、
     設定期間が経過した場合に、前記注入井を生産井として機能させて該生産井で前記メタンハイドレート層からメタンガスを回収し、新たに掘削された注入井に新たな注入管を配置して前記加熱海水を注入する
    ことを特徴とする二酸化炭素低排出発電システム。
  16.  前記発電システムは、
     前記加熱海水を前記注入井に注入する際に、前記メタンハイドレート層にフラクチャリングを発生させる圧力を前記加熱海水に加える
    ことを特徴とする請求項15に記載の二酸化炭素低排出発電システム。
  17.  前記注入井と前記生産井との間の設定距離は、10m以上である
    ことを特徴とする請求項15または16に記載の二酸化炭素低排出発電システム。
  18.  前記注入井および前記生産井は、垂直井である
    ことを特徴とする請求項15~17のいずれか一項に記載の二酸化炭素低排出発電システム。
PCT/JP2018/007201 2017-02-28 2018-02-27 メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム WO2018159594A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019503009A JP6917647B2 (ja) 2017-02-28 2018-02-27 メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム
CN201880014174.XA CN110337527A (zh) 2017-02-28 2018-02-27 甲烷气回收方法和二氧化碳低排放发电方法以及甲烷气回收系统和二氧化碳低排放发电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037501 2017-02-28
JP2017-037501 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159594A1 true WO2018159594A1 (ja) 2018-09-07

Family

ID=63370842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007201 WO2018159594A1 (ja) 2017-02-28 2018-02-27 メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム

Country Status (3)

Country Link
JP (1) JP6917647B2 (ja)
CN (1) CN110337527A (ja)
WO (1) WO2018159594A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111608618B (zh) * 2020-06-01 2022-08-23 中国科学院工程热物理研究所 一种低碳化海洋水合物开采及发电利用系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (ja) * 1998-08-18 2000-02-29 Toshiba Corp メタンハイドレートを燃料として利用するシステム
WO2007023943A1 (ja) * 2005-08-26 2007-03-01 Central Research Institute Of Electric Power Industry ガスハイドレートの生成方法、置換方法及び採掘方法
JP2008095394A (ja) * 2006-10-12 2008-04-24 General Environmental Technos Co Ltd γ線スペクトロメトリーを用いた二酸化炭素の地中浸透モニタリング方法
JP2009030378A (ja) * 2007-07-27 2009-02-12 Japan Drilling Co Ltd メタンハイドレートの分解促進およびメタンガス採取システム
JP2009512802A (ja) * 2005-10-24 2009-03-26 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 溶液採鉱システム及び炭化水素含有地層の処理方法
JP2010261252A (ja) * 2009-05-08 2010-11-18 Central Res Inst Of Electric Power Ind 二酸化炭素を利用したメタンハイドレート採掘方法
US20110272166A1 (en) * 2011-06-09 2011-11-10 Robert Daniel Hunt Separation Under Pressure of Methane from Hot Brine Useful for Geothermal Power
US20130043678A1 (en) * 2009-03-13 2013-02-21 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
JP5366300B2 (ja) * 2009-03-10 2013-12-11 国立大学法人東北大学 二酸化炭素低排出発電方法及びシステム
JP2014502322A (ja) * 2010-12-09 2014-01-30 エムジーエム エナジー コープ. ハイドレートからメタンガスを回収するinSituの方法
WO2014045815A1 (ja) * 2012-09-20 2014-03-27 旭硝子株式会社 坑井用プロパント及び炭化水素含有地層からの炭化水素の回収方法
JP2016223064A (ja) * 2015-05-27 2016-12-28 国立大学法人東北大学 二酸化炭素低排出発電方法および二酸化炭素低排出発電システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (ja) * 1998-08-18 2000-02-29 Toshiba Corp メタンハイドレートを燃料として利用するシステム
WO2007023943A1 (ja) * 2005-08-26 2007-03-01 Central Research Institute Of Electric Power Industry ガスハイドレートの生成方法、置換方法及び採掘方法
JP2009512802A (ja) * 2005-10-24 2009-03-26 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 溶液採鉱システム及び炭化水素含有地層の処理方法
JP2008095394A (ja) * 2006-10-12 2008-04-24 General Environmental Technos Co Ltd γ線スペクトロメトリーを用いた二酸化炭素の地中浸透モニタリング方法
JP2009030378A (ja) * 2007-07-27 2009-02-12 Japan Drilling Co Ltd メタンハイドレートの分解促進およびメタンガス採取システム
JP5366300B2 (ja) * 2009-03-10 2013-12-11 国立大学法人東北大学 二酸化炭素低排出発電方法及びシステム
US20130043678A1 (en) * 2009-03-13 2013-02-21 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
JP2010261252A (ja) * 2009-05-08 2010-11-18 Central Res Inst Of Electric Power Ind 二酸化炭素を利用したメタンハイドレート採掘方法
JP2014502322A (ja) * 2010-12-09 2014-01-30 エムジーエム エナジー コープ. ハイドレートからメタンガスを回収するinSituの方法
US20110272166A1 (en) * 2011-06-09 2011-11-10 Robert Daniel Hunt Separation Under Pressure of Methane from Hot Brine Useful for Geothermal Power
WO2014045815A1 (ja) * 2012-09-20 2014-03-27 旭硝子株式会社 坑井用プロパント及び炭化水素含有地層からの炭化水素の回収方法
JP2016223064A (ja) * 2015-05-27 2016-12-28 国立大学法人東北大学 二酸化炭素低排出発電方法および二酸化炭素低排出発電システム

Also Published As

Publication number Publication date
JP6917647B2 (ja) 2021-08-11
JPWO2018159594A1 (ja) 2020-01-09
CN110337527A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
JP3914994B2 (ja) メタンハイドレート堆積層からの天然ガス生産設備と発電設備を具備する統合設備
CN105840159B (zh) 一种基于太阳能技术的天然气水合物开采装置及开采方法
EP2841689B1 (en) Hydropower and geothermal energy system and methods
US6988549B1 (en) SAGD-plus
CN101666286B (zh) 一种海洋能源一体化开发系统
CN112499586B (zh) 一种水侵气藏地层加热实现蒸汽重整制氢的方法
AU2005258224A1 (en) Method of developingand producing deep geothermal reservoirs
CN108547600B (zh) 一种利用电磁加热方式开采天然气水合物的方法
CN104912585B (zh) 一种无损治理煤田火区的液氮系统及方法
CN103216219A (zh) 一种co2/n2地下置换开采天然气水合物的方法
WO2014176933A1 (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
JP2008248837A (ja) 地熱発電方法並びにシステム
US20150344770A1 (en) System and method for producing carbon dioxide for use in hydrocarbon recovery
CN105041275A (zh) 一种注减氧空气降低采油井伴生气氧浓度的采油方法
CN106968644A (zh) 一种基于温差发电机的海域天然气水合物热采装置
CN114183115B (zh) 一种天然气水合物高效开采系统及方法
US20130036748A1 (en) System and method for producing carbon dioxide for use in hydrocarbon recovery
WO2018159594A1 (ja) メタンガス回収方法および二酸化炭素低排出発電方法、ならびに、メタンガス回収システムおよび二酸化炭素低排出発電システム
CN101864936A (zh) 油层中自生二氧化碳驱油采收率技术
CN114876437A (zh) 一种利用超临界水的煤层原位制氢方法
CN109779574B (zh) 一种基于风电补偿的天然气水合物开采系统及方法
CN111608618B (zh) 一种低碳化海洋水合物开采及发电利用系统
CN102392623A (zh) 一种低渗透油藏空气驱采油方法
CN105114045A (zh) 一种基于气举法采油的ccus系统及应用
CN115573690A (zh) 一种基于二氧化碳存储的天然气水合物热采系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761346

Country of ref document: EP

Kind code of ref document: A1