US2777679A - Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ - Google Patents

Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ Download PDF

Info

Publication number
US2777679A
US2777679A US288945A US28894552A US2777679A US 2777679 A US2777679 A US 2777679A US 288945 A US288945 A US 288945A US 28894552 A US28894552 A US 28894552A US 2777679 A US2777679 A US 2777679A
Authority
US
United States
Prior art keywords
heating
heat
situ
holes
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US288945A
Inventor
Ljungstrom Fredrik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svenska Skifferolje AB
Original Assignee
Svenska Skifferolje AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Skifferolje AB filed Critical Svenska Skifferolje AB
Application granted granted Critical
Publication of US2777679A publication Critical patent/US2777679A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity

Definitions

  • My present invention relates to pyrolysis and gasifying of bituminous sub-surface deposits, such as oil shale, oil sand, tar sand and coal in situ, i. e. in place in the earth.
  • Sub-surface deposits are in this connection to be understood to mean also non-consolidated sub-terraneous strata such as fuel-containing sand. According to the method set forth oil and/or gases are produced by directly heating parts of the fuel-containing deposits or layers.
  • a drainage of the surroundings may be performed prior to the heating for example by pumping ofi subsoil water by means of a larger or minor number of drilled wells. in this way the hydraulic pressure and consequently the quantity of leakage water are obviously reduced.
  • One object of my invention is effectively to counter- 5 act leakage of water from the surroundings into the body of bituminous deposit the fuel-content of which is to be extracted.
  • a further object of my invention is to counteract a communication in the opposite direction, i. e. from the body of the deposit toward the surrounding so as so much as possible to prevent gases developed by the pyrolysis to escape from the heated body otherwise than through pro-determined collecting places.
  • Still a further object of my invention is to ensure when proceeding with methods working in situ and using superatmospheric pressure that said pressure is maintained in the body of deposit which is the object of the gasifying process.
  • Fig. l is a vertical section through different layers of geological formations including one fuel-containing layer and having members introduced there into adapted to carry out the method according to the invention; said ice figure being a section along line II of Fig. 2 which in turn is a plan view of the surface of the area in question.
  • Fig. 3 is a longitudinal section through a combined freezing and heating element.
  • Figs. 4 and 5 are vertical'sections through the geological formations with wells or holes penetrating the same and into which freezing elements constructed according to the invention are partly inserted.
  • Figs. 6 and 7 are diagrammatic plan views an area treated according to the method of the invention.
  • Fig. 8 is a perspective view of a geological formation under treatment according to the invention.
  • Fig. 9 is a vertical section through a series of geological layers in which a bituminous layer is being gasified by using a modification of the method according to the invention.
  • 1%) designates a surface overburden consisting of earth and gravel sand which in the embodiment illustrated rests on a layer of limestone 12. This latter is in turn located over a layer 14 of the bituminous geological formation such as oil-shale which is to be subjected to pyrolysis. Below the layer 14 is a layer 1% which is supposed to consist of non-aquiferous clay slate or clay.
  • the transition between the layers 1- and 16 may be constituted by a thinner layer 13 comprising eroded or dismembered, for example sandcarrying clay slate.
  • the sequence of layers just described is in general typical for alum slate formations at various places in the world because of their formation during the same geological periods. The sequence is, of course, given as an example only and may vary in each case in different ways, in particular if the bituminous deposit is of another type.
  • a pyrolysis of the shale layer 14 is in the embodiment presented in Fig. 1 performed by an electrothermal method.
  • Holes or wells 19 are driven into the geological formation, and into said holes heating elements generally denoted by 29 are introduced.
  • These elements comprise metal tubes 22 in which are placed one or a plurality of electric resistances 24.
  • the clearance between the walls of the wells or holes 19 and the tube 22 may be filled with a granular material 22 facilitating the heat transfer, such as sand.
  • the resistance 24 is at its lower end in electrical connection with the tube 22 and by wires 26, 28 joined in a circuit 36 for low tension alternating current of, for example, three-phase character.
  • the clearance between the resistance 24 and the tube 22 is filled with quartz sand or a similar granular material in order partly to prevent the current from flashing over and partly to facilitate the transfer of the generated heat to the shale layer.
  • the resistance 24 may be given varying heat capacity, for example so as to supply more heat to the upper and lower portions of the bituminous layer 14 than to its intermediate portions.
  • the gases developed by the supply of heat are collected by holes 34 from which tubes 36 extend to the surface. Between the lower end of the tube 36 and the wall of the hole 34 is a sealing flange 33 above which the tube is encased by a granular material 39.
  • each gas-collecting tube 36 may be surrounded by a large number of electric elements 21).
  • This pyrolysis method is more fully described in co-pending patent application Serial No. 756,624, filed June 24, 1947, now Patent No. 2,732,915, to which reference is made for explanation of the method and the means required for carrying out the same.
  • One or a plurality of wells or holes 40 are drilled through the geological layers, said wells 'or holes 'encircling the area which is the object subjected to pyrolysis andwhicli'is'd'esignated in Fig. 2 by the zigzag-shaped 7 lines 41.
  • freezing elements are introduced into the Wells or holes 40.
  • Said claments may, as isillusfrated in Fig. 3, consist of a tube 412 en'- -tered by a narrower tube 44 forming a loop and being wound to the shape of a coil over a major or a minor portion 46 of its length.
  • the tube 42 extends beyond.
  • the shale layer 14 into the layer 16 which in theillustrated example is assumed to be non-aquiferous.
  • a liquid or gaseous cooling medium issupplied to the one shah ,Of the tube 44 through a pipe '48and escapes through the structed
  • the box or case has a bottom of water-tight material.
  • the freezing elements should be located in, such a spaced relation from the area i of py'rolysis'as to permit the completion of its exploitation prior to developing such transfer of heat to the frozen barrier as will melt the ice.
  • geological formations usually have a
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • the freezing coil is flexible so as to permit its easy insertion into the well or hole.
  • FIG. 4'theloop composed of tubular pieces 52 interconnected by flexible sleeves 54 made of rubber or simi-,
  • the flexibility of the freezing coil may also be obtained by winding its two shanks helicoidally, as is indicated at 5,6 in .Fig. 5.
  • the heat transfer from the surroundin'gs tovthe loop is supported by the fact that the well whole 40 is filled with subsoil water which. when starting, the cooling operation is frozen to ice-
  • 5,8 denotes the barrier of frozen minerals andice surrounding and sealing the area subjected to pyrolysis andindicated by the zigzag-shaped full lines 41.
  • the pyrolysis is preferably performed so as to cause a front of heat to travel in the direction indicated 7 by the arrow 62, i. e. rows of heating elements 20 are.
  • a freezing front designated in the figure by the dot and dash zigzag-line 70 and travelling in the direction of the arrow 62 in the same manner as does the front of heat.
  • the layers or strata to be subjected to pyrolysis and the layers existent above and below the same are thus initially cooled down to a ternperature. below the freezing point of the water contained therein, whereby. a more or less coherent frozen body is obtained which; subsequently is heated to gasification tern: peraturc, in the first instance by a travelling front of heat.
  • heated body may bothgatv thetop and atth e bottom; as
  • the same wells or holes may be employed. Further the same elements 42'may' initially be used as freezing elements and subsequently as heating elements. The freezing elements illustrated in Figs. 4 and 5 will under their operation become surrounded by ice, as is mentioned above.
  • a melting of the ice in the wells or holes 48 may be performed by electric heating or means of a gaseous or liquid hot medium which is introduced into the coiled pipes, which medium may be the same as the cooling medium. The quicker the melting is performed, the minor transfer of heat to the surrounding portions of the geological formations will be encountered. A nevi freezing of water in the wells or holes will occur if the temperature around the 'well or hcle is sufiiciently low.
  • the freezing element upon release and retraction out of the well or hole may be transferred to a well or hole of the next now.
  • the front of heat commences to approach the wells or holes 40 and the "ice in them melts, they are used for the insertion of heating elements or as holes for the escape of developed gas.
  • athawing of the ice inthe wells or holes may, however, be performed prior-to the approach d the front of heat, for examplein order to use them for the supply or escape of gas.
  • FIG. 9 finally illustrates'an embodiment, where the bituminous deposit, such as oil-shale, is gasified by introducirzg oxygen or air into the same.
  • holes '76 are inserted tubes 78 which at their lower end portion are sealed against the wall of thehole by means of a packing 80connected with the tubes.
  • the clear-. ance between the pipe and the wall of the hole. is. filled with a granular material 82 such as sand.
  • combustion-supporting gas such as oxygen is supplied under a pressure such that the geological formations resting thereupon are lifted and a substantially horizontal space 84 is created, in the illustrated embodiment in the lower portion of the bituminous deposit;
  • Tests have established that within alum shale a space of the kind extends. to, a larger distance from the supply place, said distance amounting to 50 or metres, for
  • the ignition of the deposit may also be performed by means of only the oxygen gas j supplied through the tubes 78, for-example by arapid increase of its pressure and the heating effect resultingthereof, or by oxidation with the oxygen.
  • the developed gases flow to the collecting tubes 86 in which a corresponding superatmospheric pressure is maintained.
  • the holes 76 and 86 may be employed for the supply of the combustionsupporting gas and the collecting of the gases developed from the deposit as well as initially creating the frozen box or case and the freezing front.
  • the cooling and/or heating elements may be wound up helically with loops not larger than to permit convenient transportation to the place of installation to be successively introduced into the wells or holes through straightening, if desired by being passed between a pair or system of rolls.
  • a method of gasifying in situ and recovering bituminous sub-surface deposits which includes the steps of cooling a zone down to a temperature at least as low as the freezing temperature of water to create a barrier zone for a selected area to be treated, heating the deposit in said selected area to produce gaseous products while maintaining the barrier zone, wherein the selected area is heated along a portion thereof to produce a heat front and said heat front is caused to travel generally parallel to itself within said area, and said barrier zone includes a cold front generally parallel with said heat front travelling in spaced relation thereto in advance thereof, and wherein the heat front is maintained by heat supplied to boreholes, the barrier zone is maintained by refrigerant supplied to boreholes, and the boreholes in the barrier zone are successively thawed to remove ice therein prior to the approach of the heat front to provide for gas movement in the thawed boreholes as the heat and cold fronts advance.
  • a method of gasifying in situ and recovering bituminous material in a sub-surface formation comprising forming a barrier zone in said formation adjacent a selected area to prevent ingress of water from adjacent areas by cooling said formation at said zone to a temperature at 3.
  • a method of gasifying in situ and recovering bituminous material in a sub-surface bituminous formation comprising forming a barrier zone in said formation be tween a selected area and a lateral area by introducing a cooling medium into said zone, cooling said barrier zone to a temperature at least as low as the freezing point of water to create said barrier which extends as a cold front between said selected area and the laterally adjacent area, heating said selected area along a portion thereof within said barrier zone to form a heat front to produce gaseous products from bituminousmaterial in said formation, causing said heat front to travel generally parallel to itself Within said selected area, and maintaining said cold front generally parallel to said heat front and travelling in spaced relation thereto in advance thereof, and removing gaseous products formed during heating to the surface.

Description

Jan. 15, 1957 LJUNGSTRGM 2,777,679
F. RECOVERING SUB-SURFACE BITUMINOUS DEPOSITS BY CREATING A FROZEN BARRIER AND HEATING IN SITU Filed May 20, 1952 4 Sheets-Sheet 1 1957 F. LJUNGSTROM 2,777,679
RECOVERING SUB-SURFACE BITUMINOUS DEPOSITS BY CREATING A FROZEN BARRIER AND HEATING IN SITU 7 Filed May 20, 1952 4 Sheets-Sheet 2 Q W i m I L 15, 1957 F. LJUNGSTROM 2,777,679
RECOVERING SUB-SURFACE BITUMINOUS DEPOSITS BY CREATING A FROZEN BARRIER AND HEATING IN SITU 4 Sheets-Sheet 3 Filed May 20, 1952 Jan. 15, 1957 F. LJUNGSTROM 2,777,679
RECOVERING SUB-SURFACE BITUMINOUS DEPOSITS BY CREATING A FROZEN BARRIER AND HEATING IN SITU Filed May 20, 1952 4 Sheets-$11961! 4 United tates RECOVERING SUE-SURFACE BITUIVHNOUS DE- POSITS BY CREATING A FRGZEN BARRIER Ab?) EATING 3N SITU Fredrik Linngstriim, Fislrebackskil, Sweden, assignor to Svenska Sldfierolie Aktiebolaget, (lrebro, Sweden, a joint-stock company of Sweden Application May 20, 1952, Serial No. 288,945
Claims priority, application Sweden March 7, 1952 Claims. (Cl. 262-3) My present invention relates to pyrolysis and gasifying of bituminous sub-surface deposits, such as oil shale, oil sand, tar sand and coal in situ, i. e. in place in the earth. Sub-surface deposits are in this connection to be understood to mean also non-consolidated sub-terraneous strata such as fuel-containing sand. According to the method set forth oil and/or gases are produced by directly heating parts of the fuel-containing deposits or layers. The loss of heat entailed by a pyrolysis in situ has in the methods hitherto proposed or employed been much increased by the losses of heat caused by the inevitable evaporation of water leaking in or otherwise penetrating into the deposits or layers. This drawback is particularly disturbing when the fuel-containing deposits or layers are interposed by porous layers or strata consisting of sand, decomposed limestone or other such geological formations which are aquiferous in the horizontal plane and usually because of the existence of vertical splits or fissures in the layers facilitate the access of water from the sides or from above. In this connection the economy of the heating process has proved to be largely depending on the horizontal extent of the field exposed to heating, the efliciency increasing with the size of the field which is to be explained by the fact that the penetration into the field of water from the surroundings decreases in the same degree as the area of the field increases.
in order to reduce the leakage of water into the field to be worked a drainage of the surroundings may be performed prior to the heating for example by pumping ofi subsoil water by means of a larger or minor number of drilled wells. in this way the hydraulic pressure and consequently the quantity of leakage water are obviously reduced.
One object of my invention is effectively to counter- 5 act leakage of water from the surroundings into the body of bituminous deposit the fuel-content of which is to be extracted.
A further object of my invention is to counteract a communication in the opposite direction, i. e. from the body of the deposit toward the surrounding so as so much as possible to prevent gases developed by the pyrolysis to escape from the heated body otherwise than through pro-determined collecting places.
Still a further object of my invention is to ensure when proceeding with methods working in situ and using superatmospheric pressure that said pressure is maintained in the body of deposit which is the object of the gasifying process.
Further objects and advantages of my invention will be apparent from the, following description considered in connection with the accompanying drawings, which forms part or" this specification, and of which:
Fig. l is a vertical section through different layers of geological formations including one fuel-containing layer and having members introduced there into adapted to carry out the method according to the invention; said ice figure being a section along line II of Fig. 2 which in turn is a plan view of the surface of the area in question.
Fig. 3 is a longitudinal section through a combined freezing and heating element.
Figs. 4 and 5 are vertical'sections through the geological formations with wells or holes penetrating the same and into which freezing elements constructed according to the invention are partly inserted.
Figs. 6 and 7 are diagrammatic plan views an area treated according to the method of the invention.
Fig. 8 is a perspective view of a geological formation under treatment according to the invention.
Fig. 9 is a vertical section through a series of geological layers in which a bituminous layer is being gasified by using a modification of the method according to the invention.
In the various figures corresponding parts are denoted by the same reference numerals.
Referring to the drawings, 1%) designates a surface overburden consisting of earth and gravel sand which in the embodiment illustrated rests on a layer of limestone 12. This latter is in turn located over a layer 14 of the bituminous geological formation such as oil-shale which is to be subjected to pyrolysis. Below the layer 14 is a layer 1% which is supposed to consist of non-aquiferous clay slate or clay. The transition between the layers 1- and 16 may be constituted by a thinner layer 13 comprising eroded or dismembered, for example sandcarrying clay slate. The sequence of layers just described is in general typical for alum slate formations at various places in the world because of their formation during the same geological periods. The sequence is, of course, given as an example only and may vary in each case in different ways, in particular if the bituminous deposit is of another type.
A pyrolysis of the shale layer 14 is in the embodiment presented in Fig. 1 performed by an electrothermal method. Holes or wells 19 are driven into the geological formation, and into said holes heating elements generally denoted by 29 are introduced. These elements comprise metal tubes 22 in which are placed one or a plurality of electric resistances 24. The clearance between the walls of the wells or holes 19 and the tube 22 may be filled with a granular material 22 facilitating the heat transfer, such as sand. The resistance 24 is at its lower end in electrical connection with the tube 22 and by wires 26, 28 joined in a circuit 36 for low tension alternating current of, for example, three-phase character. The clearance between the resistance 24 and the tube 22 is filled with quartz sand or a similar granular material in order partly to prevent the current from flashing over and partly to facilitate the transfer of the generated heat to the shale layer. By being constructed with coils having various pitches the resistance 24 may be given varying heat capacity, for example so as to supply more heat to the upper and lower portions of the bituminous layer 14 than to its intermediate portions. The gases developed by the supply of heat are collected by holes 34 from which tubes 36 extend to the surface. Between the lower end of the tube 36 and the wall of the hole 34 is a sealing flange 33 above which the tube is encased by a granular material 39. As will be seen from Fig. 2 each gas-collecting tube 36 may be surrounded by a large number of electric elements 21). This pyrolysis method is more fully described in co-pending patent application Serial No. 756,624, filed June 24, 1947, now Patent No. 2,732,915, to which reference is made for explanation of the method and the means required for carrying out the same.
One or a plurality of wells or holes 40 are drilled through the geological layers, said wells 'or holes 'encircling the area which is the object subjected to pyrolysis andwhicli'is'd'esignated in Fig. 2 by the zigzag-shaped 7 lines 41. According to the invention, freezing elements are introduced into the Wells or holes 40. Said claments may, as isillusfrated in Fig. 3, consist of a tube 412 en'- -tered by a narrower tube 44 forming a loop and being wound to the shape of a coil over a major or a minor portion 46 of its length. The tube 42 extends beyond.
the shale layer 14 into the layer 16 which in theillustrated example is assumed to be non-aquiferous. A liquid or gaseous cooling medium issupplied to the one shah ,Of the tube 44 through a pipe '48and escapes through the structed In the example illustrated the box or case has a bottom of water-tight material. 'The freezing elements should be located in, such a spaced relation from the area i of py'rolysis'as to permit the completion of its exploitation prior to developing such transfer of heat to the frozen barrier as will melt the ice. In this connection it may be mentioned that geological formations usually have a,
low heat transfer capacity due to which the progress of the heat is relatively slow.
Preferably the freezing coil is flexible so as to permit its easy insertion into the well or hole. As is illustrated in .Fig. 4'theloopis composed of tubular pieces 52 interconnected by flexible sleeves 54 made of rubber or simi-,
lar material. The flexibility of the freezing coil may also be obtained by winding its two shanks helicoidally, as is indicated at 5,6 in .Fig. 5. The heat transfer from the surroundin'gs tovthe loop is supported by the fact that the well whole 40 is filled with subsoil water which. when starting, the cooling operation is frozen to ice- Referring to Fig. 6, 5,8 denotes the barrier of frozen minerals andice surrounding and sealing the area subjected to pyrolysis andindicated by the zigzag-shaped full lines 41.- The pyrolysisis preferably performed so as to cause a front of heat to travel in the direction indicated 7 by the arrow 62, i. e. rows of heating elements 20 are.
switched in successively so as toreachthe temperature of pyrolysis in the fuel-containing layer approximately simultaneously along the individual lines 41; Ahead of the front of heat are successively one after the other sealing frozenbarriers 64, '66, 68, ina spaced relation such that the distance. between each of them is larger than the.
distance between the'heating' elements. When the front of heat has reached the barrier 64 the next following bar rier 66 takes over the task of encasing the field of. pyrolysis ahead of the heat front.
In accordance with the modification illustrated in Fig. 7. in front of. the area of pyrolysis there is provided a freezing front designated in the figure by the dot and dash zigzag-line 70 and travelling in the direction of the arrow 62 in the same manner as does the front of heat. In this way one isicapable of initially forming a frozen bodyof. the geological formations which subsequently is heated by starting the pyrolysis. The layers or strata to be subjected to pyrolysis and the layers existent above and below the same are thus initially cooled down to a ternperature. below the freezing point of the water contained therein, whereby. a more or less coherent frozen body is obtained which; subsequently is heated to gasification tern: peraturc, in the first instance by a travelling front of heat.
' In Figure 8=, 72 denotes a tight box or case of the-fuelcontaining. layer andadjacent layers, respectively, in which a. body 74;.forms. the object. of gasification. The
heated body may bothgatv thetop and atth e bottom; as
4 ll; 9 al siqssb bqua nd by b tumin r example non-consolidated geological formations. 7
In order to create the travelling freezing and heating fronts, the same wells or holes may be employed. Further the same elements 42'may' initially be used as freezing elements and subsequently as heating elements. The freezing elements illustrated in Figs. 4 and 5 will under their operation become surrounded by ice, as is mentioned above. In order to withdraw thema melting of the ice in the wells or holes 48 may be performed by electric heating or means of a gaseous or liquid hot medium which is introduced into the coiled pipes, which medium may be the same as the cooling medium. The quicker the melting is performed, the minor transfer of heat to the surrounding portions of the geological formations will be encountered. A nevi freezing of water in the wells or holes will occur if the temperature around the 'well or hcle is sufiiciently low. The freezing element upon release and retraction out of the well or hole may be transferred to a well or hole of the next now. When. the front of heat commences to approach the wells or holes 40 and the "ice in them melts, they are used for the insertion of heating elements or as holes for the escape of developed gas. If desired, athawing of the ice inthe wells or holes may, however, be performed prior-to the approach d the front of heat, for examplein order to use them for the supply or escape of gas.
face of the soil.
'Fig. 9 finally illustrates'an embodiment, where the bituminous deposit, such as oil-shale, is gasified by introducirzg oxygen or air into the same. driving a plurality of holes 76 down to the deposit and preferably to the vicinity of its bottom layer. holes '76 are inserted tubes 78 which at their lower end portion are sealed against the wall of thehole by means of a packing 80connected with the tubes. Further the clear-. ance between the pipe and the wall of the hole. is. filled with a granular material 82 such as sand. Through a row.
of such holes the combustion-supporting gas such as oxygen is supplied under a pressure such that the geological formations resting thereupon are lifted and a substantially horizontal space 84 is created, in the illustrated embodiment in the lower portion of the bituminous deposit;
Tests have established that within alum shale a space of the kind extends. to, a larger distance from the supply place, said distance amounting to 50 or metres, for
example. At a distance determined with respect hereto from the row of holes 76a second row of holes 86 is made into which tubes 88 are introduced and tightened with the same'means as above. exploited is surrounded with a sealingfrozen barrier by means of cooling elements arranged in the holes 40 ac-.
cording to any of the alternatives described above. Upon ignition of the fuel-containing deposit home or the other way, for example by means of electric heating elements or electric resistances located in thelower portion of the supply-tubes 78, the space 84 will cause a continuous gasi= fication in the deposit. The ignition of the deposit may also be performed by means of only the oxygen gas j supplied through the tubes 78, for-example by arapid increase of its pressure and the heating effect resultingthereof, or by oxidation with the oxygen. The developed gases flow to the collecting tubes 86 in which a corresponding superatmospheric pressure is maintained. By heat trans? fer the zone of gasification is enlarged upwards so that larger and larger portions of the deposit will be brought to .theternperature at which gases'are developed and pyrol ysis will take place. A method of this kind is described for example in the U. S. patent specification Serial No. 210,682, filed February 13,1951, now forfeited, which is referred to for explanation of itsdetails. In this case it is particularly important. that the space 84 outside the remotest. holes along the flanks of .thefront. of heat trayelling: from. one. row. of holes tothe' next. one be H For this purpose, a suitable salt may be introduced into the wells or holes from the sur- This may be done by.
Into the The field or area. to be prevented by the sealing barrier of ice from permitting the gases to escape otherwise than through the collecting pipes.
, In this alternative embodiment, too, the holes 76 and 86 may be employed for the supply of the combustionsupporting gas and the collecting of the gases developed from the deposit as well as initially creating the frozen box or case and the freezing front.
The cooling and/or heating elements may be wound up helically with loops not larger than to permit convenient transportation to the place of installation to be successively introduced into the wells or holes through straightening, if desired by being passed between a pair or system of rolls.
While several more or less specific embodiments of my invention have been shown, it is to be understood that this is for purpose of illustration only, and my invention is not to be limited thereby, but its scope is to be determined by the appended claims.
What I claim is:
1. A method of gasifying in situ and recovering bituminous sub-surface deposits which includes the steps of cooling a zone down to a temperature at least as low as the freezing temperature of water to create a barrier zone for a selected area to be treated, heating the deposit in said selected area to produce gaseous products while maintaining the barrier zone, wherein the selected area is heated along a portion thereof to produce a heat front and said heat front is caused to travel generally parallel to itself within said area, and said barrier zone includes a cold front generally parallel with said heat front travelling in spaced relation thereto in advance thereof, and wherein the heat front is maintained by heat supplied to boreholes, the barrier zone is maintained by refrigerant supplied to boreholes, and the boreholes in the barrier zone are successively thawed to remove ice therein prior to the approach of the heat front to provide for gas movement in the thawed boreholes as the heat and cold fronts advance.
2. A method of gasifying in situ and recovering bituminous material in a sub-surface formation, comprising forming a barrier zone in said formation adjacent a selected area to prevent ingress of water from adjacent areas by cooling said formation at said zone to a temperature at 3. A method of gasifying in situ and recovering bituminous material in a sub-surface bituminous formation, comprising forming a barrier zone in said formation be tween a selected area and a lateral area by introducing a cooling medium into said zone, cooling said barrier zone to a temperature at least as low as the freezing point of water to create said barrier which extends as a cold front between said selected area and the laterally adjacent area, heating said selected area along a portion thereof within said barrier zone to form a heat front to produce gaseous products from bituminousmaterial in said formation, causing said heat front to travel generally parallel to itself Within said selected area, and maintaining said cold front generally parallel to said heat front and travelling in spaced relation thereto in advance thereof, and removing gaseous products formed during heating to the surface.
4. The method as set forth in claim 2 in which the when the formation adjacent said apparatus is to be refrigerated, and said element including a heat generating resistance adapted to be inserted into said bore for supplying heat thereto when energized, whereby the formation may be selectively cooled or heated from the same bore hole without removal of the temperature control apparatus.
References Cited in the file of this patent UNITED STATES PATENTS
US288945A 1952-03-07 1952-05-20 Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ Expired - Lifetime US2777679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE2777679X 1952-03-07

Publications (1)

Publication Number Publication Date
US2777679A true US2777679A (en) 1957-01-15

Family

ID=20427239

Family Applications (1)

Application Number Title Priority Date Filing Date
US288945A Expired - Lifetime US2777679A (en) 1952-03-07 1952-05-20 Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ

Country Status (1)

Country Link
US (1) US2777679A (en)

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004594A (en) * 1956-11-19 1961-10-17 Phillips Petroleum Co Process for producing oil
US3115928A (en) * 1959-08-14 1963-12-31 Pan American Petroleum Corp Heavy oil recovery
US3194315A (en) * 1962-06-26 1965-07-13 Charles D Golson Apparatus for isolating zones in wells
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3302707A (en) * 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3500930A (en) * 1968-09-18 1970-03-17 Shell Oil Co Permanently plugging thief zones between temporary frozen plug areas
US3815957A (en) * 1972-09-11 1974-06-11 Kennecott Copper Corp Controlled in-situ leaching of mineral values
US3866681A (en) * 1973-09-10 1975-02-18 Billie J Shirley Method and apparatus for establishing a packer
US4010803A (en) * 1974-11-14 1977-03-08 Rose Shuffman, executrix Method for cryothermal fracturing of rock formations
US4399866A (en) * 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4474238A (en) * 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4480689A (en) * 1982-12-06 1984-11-06 Atlantic Richfield Company Block pattern method for in situ gasification of subterranean carbonaceous deposits
US4597444A (en) * 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US20020003988A1 (en) * 1997-05-20 2002-01-10 Thomas Mikus Remediation method
US20020027001A1 (en) * 2000-04-24 2002-03-07 Wellington Scott L. In situ thermal processing of a coal formation to produce a selected gas mixture
WO2003035987A2 (en) 2001-10-24 2003-05-01 Shell Oil Company Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
WO2003036041A2 (en) * 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation using barriers
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
WO2003053603A2 (en) * 2001-10-24 2003-07-03 Shell Internationale Research Maatschappij B.V. Remediation of mercury contaminated soil
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030178191A1 (en) * 2000-04-24 2003-09-25 Maher Kevin Albert In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20040126190A1 (en) * 2001-10-24 2004-07-01 Stegemeier George L Thermally enhanced soil decontamination method
US20040140095A1 (en) * 2002-10-24 2004-07-22 Vinegar Harold J. Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
WO2004097159A2 (en) * 2003-04-24 2004-11-11 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US20040228689A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation with heated soil
US20040228688A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Remediation of soil piles using central equipment
US20040228690A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation using heated vapors
US20050133405A1 (en) * 2003-12-19 2005-06-23 Wellington Scott L. Systems and methods of producing a crude product
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20080017380A1 (en) * 2006-04-21 2008-01-24 Vinegar Harold J Non-ferromagnetic overburden casing
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080087421A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing subsurface freeze zone
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US20110203792A1 (en) * 2009-12-15 2011-08-25 Chevron U.S.A. Inc. System, method and assembly for wellbore maintenance operations
US20110277992A1 (en) * 2010-05-14 2011-11-17 Paul Grimes Systems and methods for enhanced recovery of hydrocarbonaceous fluids
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US829664A (en) * 1906-05-17 1906-08-28 Hermann Mehner Process of solidifying earthy ground.
GB190820778A (en) * 1908-10-02 1909-01-07 Friedrich Koepe Process for Excavating Shafts, Tunnels and the like.
GB191011890A (en) * 1908-10-02 1911-03-30 Friedrich Koepe Process for the Sinking In Sections of Shafts and like Excavation in Mines, Docks, Tunnels, Sewers and the like.
US1342780A (en) * 1919-06-09 1920-06-08 Dwight G Vedder Method and apparatus for shutting water out of oil-wells
GB155732A (en) * 1920-03-20 1920-12-30 Daniel Diver Improved heating means for use in the destructive distillation of oil-bearing materia l in situ
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1661389A (en) * 1926-10-16 1928-03-06 Midwest Refining Company Method of mining oil and the like
US1870869A (en) * 1929-08-23 1932-08-09 Standard Oil Dev Co Method and means for developing impermeable barriers in porous media

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US829664A (en) * 1906-05-17 1906-08-28 Hermann Mehner Process of solidifying earthy ground.
GB190820778A (en) * 1908-10-02 1909-01-07 Friedrich Koepe Process for Excavating Shafts, Tunnels and the like.
GB191011890A (en) * 1908-10-02 1911-03-30 Friedrich Koepe Process for the Sinking In Sections of Shafts and like Excavation in Mines, Docks, Tunnels, Sewers and the like.
US1342780A (en) * 1919-06-09 1920-06-08 Dwight G Vedder Method and apparatus for shutting water out of oil-wells
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
GB155732A (en) * 1920-03-20 1920-12-30 Daniel Diver Improved heating means for use in the destructive distillation of oil-bearing materia l in situ
US1661389A (en) * 1926-10-16 1928-03-06 Midwest Refining Company Method of mining oil and the like
US1870869A (en) * 1929-08-23 1932-08-09 Standard Oil Dev Co Method and means for developing impermeable barriers in porous media

Cited By (558)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004594A (en) * 1956-11-19 1961-10-17 Phillips Petroleum Co Process for producing oil
US3115928A (en) * 1959-08-14 1963-12-31 Pan American Petroleum Corp Heavy oil recovery
US3194315A (en) * 1962-06-26 1965-07-13 Charles D Golson Apparatus for isolating zones in wells
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3302707A (en) * 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3500930A (en) * 1968-09-18 1970-03-17 Shell Oil Co Permanently plugging thief zones between temporary frozen plug areas
US3815957A (en) * 1972-09-11 1974-06-11 Kennecott Copper Corp Controlled in-situ leaching of mineral values
US3866681A (en) * 1973-09-10 1975-02-18 Billie J Shirley Method and apparatus for establishing a packer
US4010803A (en) * 1974-11-14 1977-03-08 Rose Shuffman, executrix Method for cryothermal fracturing of rock formations
US4399866A (en) * 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4474238A (en) * 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4480689A (en) * 1982-12-06 1984-11-06 Atlantic Richfield Company Block pattern method for in situ gasification of subterranean carbonaceous deposits
US4597444A (en) * 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US20020003988A1 (en) * 1997-05-20 2002-01-10 Thomas Mikus Remediation method
US6994160B2 (en) 2000-04-24 2006-02-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020049360A1 (en) * 2000-04-24 2002-04-25 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020046883A1 (en) * 2000-04-24 2002-04-25 Wellington Scott Lee In situ thermal processing of a coal formation using pressure and/or temperature control
US20020076212A1 (en) * 2000-04-24 2002-06-20 Etuan Zhang In situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020132862A1 (en) * 2000-04-24 2002-09-19 Vinegar Harold J. Production of synthesis gas from a coal formation
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6966372B2 (en) 2000-04-24 2005-11-22 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6973967B2 (en) 2000-04-24 2005-12-13 Shell Oil Company Situ thermal processing of a coal formation using pressure and/or temperature control
US6959761B2 (en) 2000-04-24 2005-11-01 Shell Oil Company In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6953087B2 (en) 2000-04-24 2005-10-11 Shell Oil Company Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6948563B2 (en) 2000-04-24 2005-09-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6923258B2 (en) 2000-04-24 2005-08-02 Shell Oil Company In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6913078B2 (en) 2000-04-24 2005-07-05 Shell Oil Company In Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6910536B2 (en) 2000-04-24 2005-06-28 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6902004B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6902003B2 (en) 2000-04-24 2005-06-07 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6896053B2 (en) 2000-04-24 2005-05-24 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6889769B2 (en) 2000-04-24 2005-05-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6994161B2 (en) 2000-04-24 2006-02-07 Kevin Albert Maher In situ thermal processing of a coal formation with a selected moisture content
US6994168B2 (en) 2000-04-24 2006-02-07 Scott Lee Wellington In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6880635B2 (en) 2000-04-24 2005-04-19 Shell Oil Company In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6877554B2 (en) 2000-04-24 2005-04-12 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6871707B2 (en) 2000-04-24 2005-03-29 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6866097B2 (en) 2000-04-24 2005-03-15 Shell Oil Company In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6997255B2 (en) 2000-04-24 2006-02-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US7017661B2 (en) 2000-04-24 2006-03-28 Shell Oil Company Production of synthesis gas from a coal formation
US20020040778A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US6991031B2 (en) 2000-04-24 2006-01-31 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US20090101346A1 (en) * 2000-04-24 2009-04-23 Shell Oil Company, Inc. In situ recovery from a hydrocarbon containing formation
US7036583B2 (en) 2000-04-24 2006-05-02 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030178191A1 (en) * 2000-04-24 2003-09-25 Maher Kevin Albert In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20020027001A1 (en) * 2000-04-24 2002-03-07 Wellington Scott L. In situ thermal processing of a coal formation to produce a selected gas mixture
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US7096941B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US7086468B2 (en) 2000-04-24 2006-08-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US20060213657A1 (en) * 2001-04-24 2006-09-28 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US20080314593A1 (en) * 2001-04-24 2008-12-25 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US20030173080A1 (en) * 2001-04-24 2003-09-18 Berchenko Ilya Emil In situ thermal processing of an oil shale formation using a pattern of heat sources
US7032660B2 (en) * 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6782947B2 (en) * 2001-04-24 2004-08-31 Shell Oil Company In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030137181A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US20040126190A1 (en) * 2001-10-24 2004-07-01 Stegemeier George L Thermally enhanced soil decontamination method
WO2003035987A2 (en) 2001-10-24 2003-05-01 Shell Oil Company Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
AU2002365145B2 (en) * 2001-10-24 2008-05-22 Shell Internationale Research Maatschappij B.V. Remediation of mercury contaminated soil
WO2003036041A2 (en) * 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation using barriers
WO2003036041A3 (en) * 2001-10-24 2003-10-16 Shell Oil Co In situ recovery from a hydrocarbon containing formation using barriers
WO2003053603A2 (en) * 2001-10-24 2003-07-03 Shell Internationale Research Maatschappij B.V. Remediation of mercury contaminated soil
WO2003035987A3 (en) * 2001-10-24 2003-07-31 Shell Oil Co Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
US20030192693A1 (en) * 2001-10-24 2003-10-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
CN100513740C (en) * 2001-10-24 2009-07-15 国际壳牌研究有限公司 Method in situ recovery from a hydrocarbon containing formation using barriers
US20030192691A1 (en) * 2001-10-24 2003-10-16 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using barriers
US6962466B2 (en) 2001-10-24 2005-11-08 Board Of Regents, The University Of Texas System Soil remediation of mercury contamination
US6951436B2 (en) 2001-10-24 2005-10-04 Board Of Regents, The University Of Texas System Thermally enhanced soil decontamination method
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173072A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030173082A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of a heavy oil diatomite formation
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
AU2002365145C1 (en) * 2001-10-24 2008-11-13 Shell Internationale Research Maatschappij B.V. Remediation of mercury contaminated soil
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US6854929B2 (en) 2001-10-24 2005-02-15 Board Of Regents, The University Of Texas System Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20030196789A1 (en) * 2001-10-24 2003-10-23 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment
US20040211569A1 (en) * 2001-10-24 2004-10-28 Vinegar Harold J. Installation and use of removable heaters in a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US20070209799A1 (en) * 2001-10-24 2007-09-13 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20040120771A1 (en) * 2001-10-24 2004-06-24 Vinegar Harold J. Soil remediation of mercury contamination
US20040120772A1 (en) * 2001-10-24 2004-06-24 Vinegar Harold J. Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
WO2003053603A3 (en) * 2001-10-24 2003-12-04 Shell Oil Co Remediation of mercury contaminated soil
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US20050006097A1 (en) * 2002-10-24 2005-01-13 Sandberg Chester Ledlie Variable frequency temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US20040140095A1 (en) * 2002-10-24 2004-07-22 Vinegar Harold J. Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040145969A1 (en) * 2002-10-24 2004-07-29 Taixu Bai Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040144541A1 (en) * 2002-10-24 2004-07-29 Picha Mark Gregory Forming wellbores using acoustic methods
US20040144540A1 (en) * 2002-10-24 2004-07-29 Sandberg Chester Ledlie High voltage temperature limited heaters
US20040146288A1 (en) * 2002-10-24 2004-07-29 Vinegar Harold J. Temperature limited heaters for heating subsurface formations or wellbores
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
WO2004097159A2 (en) * 2003-04-24 2004-11-11 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
WO2004097159A3 (en) * 2003-04-24 2006-05-18 Shell Int Research Thermal processes for subsurface formations
US20040228690A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation using heated vapors
US6881009B2 (en) 2003-05-15 2005-04-19 Board Of Regents , The University Of Texas System Remediation of soil piles using central equipment
US7534926B2 (en) 2003-05-15 2009-05-19 Board Of Regents, The University Of Texas System Soil remediation using heated vapors
US20040228688A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Remediation of soil piles using central equipment
US7004678B2 (en) 2003-05-15 2006-02-28 Board Of Regents, The University Of Texas System Soil remediation with heated soil
US20040228689A1 (en) * 2003-05-15 2004-11-18 Stegemeier George L. Soil remediation with heated soil
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20100078169A1 (en) * 2003-06-24 2010-04-01 Symington William A Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US8663453B2 (en) 2003-12-19 2014-03-04 Shell Oil Company Crude product composition
US7811445B2 (en) 2003-12-19 2010-10-12 Shell Oil Company Systems and methods of producing a crude product
US20110186479A1 (en) * 2003-12-19 2011-08-04 Scott Lee Wellington Crude product composition
US20110210043A1 (en) * 2003-12-19 2011-09-01 Scott Lee Wellington Crude product composition
US8025791B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems and methods of producing a crude product
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
US7828958B2 (en) 2003-12-19 2010-11-09 Shell Oil Company Systems and methods of producing a crude product
US8394254B2 (en) 2003-12-19 2013-03-12 Shell Oil Company Crude product composition
US20050133405A1 (en) * 2003-12-19 2005-06-23 Wellington Scott L. Systems and methods of producing a crude product
US20050139512A1 (en) * 2003-12-19 2005-06-30 Wellington Scott L. Systems and methods of producing a crude product
US20050167321A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050173298A1 (en) * 2003-12-19 2005-08-11 Wellington Scott L. Systems and methods of producing a crude product
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US7575053B2 (en) * 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
GB2439028B (en) * 2005-04-22 2009-02-25 Shell Int Research Systems and processes for use in treating subsurface formations
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070133959A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J Grouped exposed metal heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US20090301724A1 (en) * 2005-10-24 2009-12-10 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US20070131419A1 (en) * 2005-10-24 2007-06-14 Maria Roes Augustinus W Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070095537A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20080107577A1 (en) * 2005-10-24 2008-05-08 Vinegar Harold J Varying heating in dawsonite zones in hydrocarbon containing formations
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
US20070131427A1 (en) * 2005-10-24 2007-06-14 Ruijian Li Systems and methods for producing hydrocarbons from tar sands formations
US20070127897A1 (en) * 2005-10-24 2007-06-07 John Randy C Subsurface heaters with low sulfidation rates
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US20070095536A1 (en) * 2005-10-24 2007-05-03 Vinegar Harold J Cogeneration systems and processes for treating hydrocarbon containing formations
US20070131420A1 (en) * 2005-10-24 2007-06-14 Weijian Mo Methods of cracking a crude product to produce additional crude products
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20070125533A1 (en) * 2005-10-24 2007-06-07 Minderhoud Johannes K Methods of hydrotreating a liquid stream to remove clogging compounds
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US20080017380A1 (en) * 2006-04-21 2008-01-24 Vinegar Harold J Non-ferromagnetic overburden casing
US20080035705A1 (en) * 2006-04-21 2008-02-14 Menotti James L Welding shield for coupling heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US20080038144A1 (en) * 2006-04-21 2008-02-14 Maziasz Phillip J High strength alloys
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US20080174115A1 (en) * 2006-04-21 2008-07-24 Gene Richard Lambirth Power systems utilizing the heat of produced formation fluid
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US20080173444A1 (en) * 2006-04-21 2008-07-24 Francis Marion Stone Alternate energy source usage for in situ heat treatment processes
US20080173450A1 (en) * 2006-04-21 2008-07-24 Bernard Goldberg Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080173442A1 (en) * 2006-04-21 2008-07-24 Vinegar Harold J Sulfur barrier for use with in situ processes for treating formations
US20080173449A1 (en) * 2006-04-21 2008-07-24 Thomas David Fowler Sour gas injection for use with in situ heat treatment
US20080035346A1 (en) * 2006-04-21 2008-02-14 Vijay Nair Methods of producing transportation fuel
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US20080035348A1 (en) * 2006-04-21 2008-02-14 Vitek John M Temperature limited heaters using phase transformation of ferromagnetic material
US20100272595A1 (en) * 2006-04-21 2010-10-28 Shell Oil Company High strength alloys
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080087421A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing subsurface freeze zone
US20080087426A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing a subsurface freeze zone using formation fractures
WO2008048451A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Improved method of developing subsurface freeze zone
WO2008048451A3 (en) * 2006-10-13 2008-07-03 Exxonmobil Upstream Res Co Improved method of developing subsurface freeze zone
US20100319909A1 (en) * 2006-10-13 2010-12-23 Symington William A Enhanced Shale Oil Production By In Situ Heating Using Hydraulically Fractured Producing Wells
CN101553628B (en) * 2006-10-13 2013-06-05 埃克森美孚上游研究公司 Improved method of developing subsurface freeze zone
US7516787B2 (en) * 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing a subsurface freeze zone using formation fractures
US7647972B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Subsurface freeze zone using formation fractures
US7647971B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US7516785B2 (en) 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US20090101348A1 (en) * 2006-10-13 2009-04-23 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US20090107679A1 (en) * 2006-10-13 2009-04-30 Kaminsky Robert D Subsurface Freeze Zone Using Formation Fractures
US20100089585A1 (en) * 2006-10-13 2010-04-15 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US20080135244A1 (en) * 2006-10-20 2008-06-12 David Scott Miller Heating hydrocarbon containing formations in a line drive staged process
US20080142216A1 (en) * 2006-10-20 2008-06-19 Vinegar Harold J Treating tar sands formations with dolomite
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US20090014181A1 (en) * 2006-10-20 2009-01-15 Vinegar Harold J Creating and maintaining a gas cap in tar sands formations
US20080128134A1 (en) * 2006-10-20 2008-06-05 Ramesh Raju Mudunuri Producing drive fluid in situ in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US20080135254A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J In situ heat treatment process utilizing a closed loop heating system
US20090014180A1 (en) * 2006-10-20 2009-01-15 George Leo Stegemeier Moving hydrocarbons through portions of tar sands formations with a fluid
US20080135253A1 (en) * 2006-10-20 2008-06-12 Vinegar Harold J Treating tar sands formations with karsted zones
US20080277113A1 (en) * 2006-10-20 2008-11-13 George Leo Stegemeier Heating tar sands formations while controlling pressure
US20080142217A1 (en) * 2006-10-20 2008-06-19 Roelof Pieterson Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US20080283246A1 (en) * 2006-10-20 2008-11-20 John Michael Karanikas Heating tar sands formations to visbreaking temperatures
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US20080185147A1 (en) * 2006-10-20 2008-08-07 Vinegar Harold J Wax barrier for use with in situ processes for treating formations
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US20080217015A1 (en) * 2006-10-20 2008-09-11 Vinegar Harold J Heating hydrocarbon containing formations in a spiral startup staged sequence
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20080217016A1 (en) * 2006-10-20 2008-09-11 George Leo Stegemeier Creating fluid injectivity in tar sands formations
US20080217003A1 (en) * 2006-10-20 2008-09-11 Myron Ira Kuhlman Gas injection to inhibit migration during an in situ heat treatment process
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US20080217004A1 (en) * 2006-10-20 2008-09-11 De Rouffignac Eric Pierre Heating hydrocarbon containing formations in a checkerboard pattern staged process
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US20090084547A1 (en) * 2007-04-20 2009-04-02 Walter Farman Farmayan Downhole burner systems and methods for heating subsurface formations
US20090078461A1 (en) * 2007-04-20 2009-03-26 Arthur James Mansure Drilling subsurface wellbores with cutting structures
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US20090090509A1 (en) * 2007-04-20 2009-04-09 Vinegar Harold J In situ recovery from residually heated sections in a hydrocarbon containing formation
US20090071652A1 (en) * 2007-04-20 2009-03-19 Vinegar Harold J In situ heat treatment from multiple layers of a tar sands formation
US20090120646A1 (en) * 2007-04-20 2009-05-14 Dong Sub Kim Electrically isolating insulated conductor heater
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US20090126929A1 (en) * 2007-04-20 2009-05-21 Vinegar Harold J Treating nahcolite containing formations and saline zones
US20090095476A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Molten salt as a heat transfer fluid for heating a subsurface formation
US20090321075A1 (en) * 2007-04-20 2009-12-31 Christopher Kelvin Harris Parallel heater system for subsurface formations
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US20090095479A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Production from multiple zones of a tar sands formation
US20090095478A1 (en) * 2007-04-20 2009-04-16 John Michael Karanikas Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US20090095477A1 (en) * 2007-04-20 2009-04-16 Scott Vinh Nguyen Heating systems for heating subsurface formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US20090095480A1 (en) * 2007-04-20 2009-04-16 Vinegar Harold J In situ heat treatment of a tar sands formation after drive process treatment
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US20090200031A1 (en) * 2007-10-19 2009-08-13 David Scott Miller Irregular spacing of heat sources for treating hydrocarbon containing formations
US20090194282A1 (en) * 2007-10-19 2009-08-06 Gary Lee Beer In situ oxidation of subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US20090189617A1 (en) * 2007-10-19 2009-07-30 David Burns Continuous subsurface heater temperature measurement
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090194269A1 (en) * 2007-10-19 2009-08-06 Vinegar Harold J Three-phase heaters with common overburden sections for heating subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US20090194524A1 (en) * 2007-10-19 2009-08-06 Dong Sub Kim Methods for forming long subsurface heaters
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20090194329A1 (en) * 2007-10-19 2009-08-06 Rosalvina Ramona Guimerans Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US20090200025A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo High temperature methods for forming oxidizer fuel
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090260824A1 (en) * 2008-04-18 2009-10-22 David Booth Burns Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090260823A1 (en) * 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071903A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272533A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272578A1 (en) * 2008-04-18 2009-11-05 Macdonald Duncan Charles Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090272535A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Using tunnels for treating subsurface hydrocarbon containing formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US20100108379A1 (en) * 2008-10-13 2010-05-06 David Alston Edbury Systems and methods of forming subsurface wellbores
US20100089584A1 (en) * 2008-10-13 2010-04-15 David Booth Burns Double insulated heaters for treating subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101784A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US20100096137A1 (en) * 2008-10-13 2010-04-22 Scott Vinh Nguyen Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100108310A1 (en) * 2008-10-13 2010-05-06 Thomas David Fowler Offset barrier wells in subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US20100155070A1 (en) * 2008-10-13 2010-06-24 Augustinus Wilhelmus Maria Roes Organonitrogen compounds used in treating hydrocarbon containing formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100089586A1 (en) * 2008-10-13 2010-04-15 John Andrew Stanecki Movable heaters for treating subsurface hydrocarbon containing formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US20110203792A1 (en) * 2009-12-15 2011-08-25 Chevron U.S.A. Inc. System, method and assembly for wellbore maintenance operations
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US20110277992A1 (en) * 2010-05-14 2011-11-17 Paul Grimes Systems and methods for enhanced recovery of hydrocarbonaceous fluids
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation

Similar Documents

Publication Publication Date Title
US2777679A (en) Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2780450A (en) Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US4303126A (en) Arrangement of wells for producing subsurface viscous petroleum
US3338306A (en) Recovery of heavy oil from oil sands
US3294167A (en) Thermal oil recovery
US3559737A (en) Underground fluid storage in permeable formations
US3024013A (en) Recovery of hydrocarbons by in situ combustion
US2795279A (en) Method of underground electrolinking and electrocarbonization of mineral fuels
US4099570A (en) Oil production processes and apparatus
US3954140A (en) Recovery of hydrocarbons by in situ thermal extraction
US2923535A (en) Situ recovery from carbonaceous deposits
US4597444A (en) Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4705108A (en) Method for in situ heating of hydrocarbonaceous formations
CA2463110C (en) In situ recovery from a hydrocarbon containing formation using barriers
US3986557A (en) Production of bitumen from tar sands
US3362751A (en) Method and system for recovering shale oil and gas
US3302707A (en) Method for improving fluid recoveries from earthen formations
US4019577A (en) Thermal energy production by in situ combustion of coal
US4700779A (en) Parallel horizontal wells
CN105863569A (en) Single-well fracture gravity self-circulation dry-hot-rock geotherm mining method
CA2084113C (en) Single horizontal well conduction assisted steam drive process for removing viscous hydrocarbonaceous fluids
US3001775A (en) Vertical flow process for in situ retorting of oil shale
DE2113341A1 (en) Method and device for the exploitation of geothermal energy sources
GB2042027A (en) Method of solution mining water-soluble salts
US3129758A (en) Steam drive oil production method