US3221811A - Mobile in-situ heating of formations - Google Patents
Mobile in-situ heating of formations Download PDFInfo
- Publication number
- US3221811A US3221811A US264384A US26438463A US3221811A US 3221811 A US3221811 A US 3221811A US 264384 A US264384 A US 264384A US 26438463 A US26438463 A US 26438463A US 3221811 A US3221811 A US 3221811A
- Authority
- US
- United States
- Prior art keywords
- formation
- fuel
- combustion
- injection
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 67
- 238000010438 heat treatment Methods 0.000 title claims description 16
- 238000005755 formation reaction Methods 0.000 title description 60
- 238000011065 in-situ storage Methods 0.000 title description 7
- 239000000446 fuel Substances 0.000 claims description 47
- 239000012530 fluid Substances 0.000 claims description 46
- 238000002485 combustion reaction Methods 0.000 claims description 45
- 238000002347 injection Methods 0.000 claims description 41
- 239000007924 injection Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 13
- 230000002950 deficient Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- -1 etc. Chemical compound 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 101100298295 Drosophila melanogaster flfl gene Proteins 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052949 galena Inorganic materials 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
- E21B43/247—Combustion in situ in association with fracturing processes or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
Definitions
- This invention relates to the heating of hydrocarbon or oil-bearing formations and pertains more particularly to an in-situ method for thermally fluidizing minerals or hydrocarbons occurring in or near sub-surface formations in which combustion cannot be maintained by the injection of air alone.
- the present method is especially useful in producing material from formations containing hydrocarbons or other organic materials, such as coal, in quantities that are not suflicient for combustion to be maintained in the formation by the injection of air or another oxygen-containing fluid.
- the present method is based on the steps of injecting a fuel-containing fluid at one location, injecting an oxygen-containing fluid at a different location, burning the mixture formed where the fluids meet within the formation, and producing the combustion products, and displaced fluids from a third location.
- the zone of combustion can be maintained in or moved through selected regions within the formation.
- Combustion within a formation requires the presence of a fuel and oxygen in critical proportions at a temperature above a critical minimum.
- Some formations in which combustion cannot be maintained by the injection of air contain combustible materials or contain substances which produce combustible materials when they are heated, but contain these substances in proportions such that the heat from burning the combustible materials is insuflicient, or is too rapidly lost, to maintain a temperature at which ignition occurs.
- the fuel and air are injected through the same well, either concurrently as components of a single fluid stream, or sequentially as components of intermittently injected fluids.
- One drawback to such a procedure is that When combustible materials flowing from the same injection well reach their ignition temperature within a cavern or fissure near the injection well, a backflashing can occur. This may damage the well.
- the pattern of the burning zone is necessarily confined to the general shape of an arc of a circle around the injection well and the region through which the burning zone can be moved is necessarily a generally circular or spherical region of expansion around the injection well.
- a further object of the present invention is to provide a method of heating an underground formation by forming a combustion front therein at any desired point so as to heat a selected region of the formation.
- Another object of the present invention is to provide a method of heating an underground formation by means of a combustion front formed therein and subsequently selectively moving the combustion front as desired within the formation to heat various regions of the formation so as to volatilize minerals contained within the formation or to volatilize or reduce the viscosity of hydrocarbon materials contained within the formation and move them to a production well.
- Still another object of the present invention is to provide a method for producing minerals or hydrocarbons from an underground formation by selectively heating various regions of the formation one or more times by means of a moving combustion front which is moved either continuously or in a stepwise fashion through the formation.
- FIGURES 1 through 4 are plan views of three wells with various flow patterns of injected materials being schematically shown extending between the wells; and,
- FIGURE 5 is a diagrammatic view of a pair of wells taken in longitudinal cross-section with the air and fuel flow patterns being schematically shown between the wells.
- FIGURE 1 a planned view of the preferred arrangements of wells is shown for use in carrying out the method of the present invention.
- the method is started by injecting a fuel such as methane into the formation to be heated through well number 1 and producing the fluid at well number 3.
- the several lines forming flow patterns of fuel represent the injection of fuel at successive and increasing flow rates.
- air or an oxygen-containing fluid is injected through well 2 (FIGURE 2) either simultaneously with or subsequent to the formation temperature of well 2 being raised by means of a suitable down-hole heating device.
- the mixture can be ignited by any suitable ignition procedure, e.g., by utilizing an ignition means which would be lowered into the well to the desired depth.
- the air injection rate is preferably kept small enough compared to the fuel injection rate so that the fluids-produced in well 3 do not constitute an explosive mixture.
- the regions of contact of the fuel and air are at least partially within the zone of the formation heated by any down-hole heater used within well 2.
- the heater can be turned off and the heat of combustion used to maintain the temperature of the air and fuel above the ignition temperature.
- the hatched portion shown in FIGURE 2 represents schematically the combustion front surrounding well 2 and extending to well 3.
- the location of the combustion front (hatched portion) within the formation can be readily changed by adjusting the air and fuel injection rates. Increasing the injection rate of the air relative to that of the fuel moves the combustion zone further away from well 2, both in the direction toward well 1 and in the direction normal to a line between wells 1 and 2. A reduction in the fuel injection rate into well 1 will cause the combustion zone to move still further from well 2. An increase in the fuel injection rate into well 1 would have the opposite effect. Simultaneous increase of injection rates of both the fuel into well 1 and the air into well 2 would cause a greater sideward movement of the combustion front, thus allowing the combustion front to sweep into greater areas of the formation under consideration.
- An analysis of the produced gas from well 3 indicates whether combustion is occurring.
- the gaseous mixture in the formation can be re-ignited in the manner in which it was originally ignited.
- the location of the regions in which combustion is occurring within the formation can be determined by methods well-known to reservoir engineers, such as by calculating the flow paths of the injected gas.
- Combustion can be maintained within the formation while moving the combustion front from one region to another as long as the injection rates of the fuel and the air are not changed so rapidly that the mixing zone is moved into portions of the formation which have not been previously heated to ignition temperature by the combustion front.
- the location of the burning region within the formation can be readily changed by producing the fluids from an additional well 4 for example.
- the burning region hatchched zone
- the combustion zone can be moved back and forth between the wells as many times as desired.
- the rate at which the combustion zone can be moved is materially greater than the rates of movement which are possible for combustion zones produced by burning in a matrix containing a static body of fuel.
- FIGURE 5 While the method of the present invention has been described herein above as being carried out through three wells or conduits in communication between the surface and the underground formation to be heated, it is quite apparent that it is not essential that three sub-surface locations be employed, as shown in FIGURE 5.
- the well 6 is provided with 2 conduits 7 and 8 through which fuel is injected, and oil or other fluid production is produced, respectively.
- the open lower ends of the two conduits 7 and 8 are isolated one from the other by means of a packer 9.
- the barren sand formation 10 has been fractured in a manner well-known to the art with a barrier 11 preferably of a heat-resistent material such as cement, being injected into the fracture so as to extend radially from the well 4.
- a barrier 11 preferably of a heat-resistent material such as cement
- the barrier of a sealing material could be injected without fracturing the formation.
- the injected barrier directs the fuel flow into the formation in a manner such as to cause it to sweep a considerable area prior to it being contacted by the flow of air from conduit 12 positioned in well 13.
- a combustion front forms at 14 and may be moved up or down within the formation by varying the flow of the two injected fluids.
- two of the three subsurface locations are provided in a single well.
- the method in general comprises establishing fluid communication from points above the surface to a least three sub-surface locations, establishing fluid communication through the formation between the sub-surface locations, injecting a fuel-containing fluid into the formation around at least one of the sub-surface locations, injecting an oxygen-containing fluid into the formation around at least-one of the sub-surface locations, adjusting the relative rates of the injections so that the injected fluids meet within the formation and displace fluids into the vicinity of at least one of the sub-surface locations, igniting the mixture formed along the junction of the injected fluids, controlling the relative rates of injection so that the burning mixture extends along a path having a selected and movable portion within the formation, and withdrawing the fluids displaced in the vicinity of at least one of the sub-surface locations.
- volatilizable contents of sedimentary strata susceptible to the method of the present invention may be native metals such as mercury, bismuth, antimony, arsenic, zinc, etc., sulfur, both native and in composition, inpyrite, mispickel, galena, redruthite, argentite, blends, etc., chlorides of the metals and alkalis such as calomel, sylvite, chlorite, salmiac, etc., oxides of the metals, such as arsenolite, etc., sulfides of the metals, such as cinnabar, etc., inorganic acids in compositions, such as carbonic dioxide, etc., and any volatilizable minerals produced by the chemical
- the process can be used either for heating or for simultaneously thermally fluidizing and fluid driving a material which is present in the formation in which in-situ combustion cannot be maintained by injecting air along.
- the location into which fluids are displaced is maintained at a pressure lower than the injection pressures of the fuel in the air, and the fluidized material is withdrawn along with the fluid combustion products and the fluids displaced from the formation.
- the initial permeability of the formation in which the burning is to be conducted is not a limitation.
- the necessary fluid communication through the formation can be established by hydraulic fracturing, underground explosions, or the like.
- the fissures and caverns in locations in which .the fuel-containing and oxygen-containing fluids meet will become filled with explosive mixtures and detonations will occur.
- Such explosions will convert the nearby portions of the formation to highly porous fragmented portions and the region of this occurrence will be moved along with any movements of the junction of the fuel-containing and oxygen-containing fluids.
- the liquified material such as sulfur
- the present method can be employed to roast an ore, to reduce the viscosity of a liquid or solid which cannot be fluid-driven at the applicable pressures, or to pyrolyze a material into fluid products.
- a method of heating extensive areas of an underground formation for the purpose of heating a material in an underground location comprising the steps of (a) injecting fuel at one point into an underground formation which is deficient in combustible material in an amount suflicient to maintain an underground combustion,
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
Dec. 7, 1965 M. PRATS 3, 81
MOBILE IN-SIIU HEATING 0F FORMATIONS Filed March 11, 1963 2 Sheets-Sheet 1 FLUID PRODUCTION FLUID PRODUCTION FUEL AIR INJECTION INJECTION FLUID PRODUCTION FIG. 3
INVENTORZ M. PRATS HIS AGENT Dec. 7, 1965 M. PRATS 3,221,811
MOBILE IN-SITU HEATING OF FORMATIONS Filed March 11, 1963 2 Sheets-Sheet 2 FUEL INJECTION AIR FUEL rum) INJECTION PRODUCTION 'NJECHON DRIVE FLUID l T INJECTION 1 7 -"\B r OIL SAND l 1:; l1 ZZZZ 7ZZZZ XZZ Z AV/flW/flfl U/ M;7 14 jt BARREN SAND '0 AIRFLOW 2.2/27 lfl comausnou ZONE t 9 INJECTED BARRIER INVENTOR:
M. PRATS End H M C HIS AGENT United States Patent 3,221,811 MOBILE IN-SITU HEATING 0F FORMATIONS Michael Trrats, Houston, Tera, assignor to Shell Gil Company, New York, N.Y., a corporation of Delaware Filed Mar. 11, 1963, Ser. No. 264,384 Claims. (Cl. 16611) This invention relates to the heating of hydrocarbon or oil-bearing formations and pertains more particularly to an in-situ method for thermally fluidizing minerals or hydrocarbons occurring in or near sub-surface formations in which combustion cannot be maintained by the injection of air alone. The present method is especially useful in producing material from formations containing hydrocarbons or other organic materials, such as coal, in quantities that are not suflicient for combustion to be maintained in the formation by the injection of air or another oxygen-containing fluid.
The present method is based on the steps of injecting a fuel-containing fluid at one location, injecting an oxygen-containing fluid at a different location, burning the mixture formed where the fluids meet within the formation, and producing the combustion products, and displaced fluids from a third location. By adjusting the injection rates, the zone of combustion can be maintained in or moved through selected regions within the formation.
Combustion within a formation requires the presence of a fuel and oxygen in critical proportions at a temperature above a critical minimum. Some formations in which combustion cannot be maintained by the injection of air contain combustible materials or contain substances which produce combustible materials when they are heated, but contain these substances in proportions such that the heat from burning the combustible materials is insuflicient, or is too rapidly lost, to maintain a temperature at which ignition occurs.
In oil production processes, especially in the secondary recovery of oil, it is sometimes desirable to move a combustion front through a substantially barren formation, that is, one which will not support combustion, in order to supply heat to an adjacent formation. Various patents disclose methods of supplying both air and fuel to maintain an in-situ combustion in such barren formations.
However, in each of the processes suggested in the patent literature, the fuel and air are injected through the same well, either concurrently as components of a single fluid stream, or sequentially as components of intermittently injected fluids. One drawback to such a procedure is that When combustible materials flowing from the same injection well reach their ignition temperature within a cavern or fissure near the injection well, a backflashing can occur. This may damage the well. Secondly, in the patented procedures the pattern of the burning zone is necessarily confined to the general shape of an arc of a circle around the injection well and the region through which the burning zone can be moved is necessarily a generally circular or spherical region of expansion around the injection well.
It is therefore a primary object of the present invention to provide a method of carrying out in-situ heating within a formation to thermally fluidize minerals or hydrocarbons occurring in a formation which does not contain enough fuel to support combustion.
A further object of the present invention is to provide a method of heating an underground formation by forming a combustion front therein at any desired point so as to heat a selected region of the formation.
Another object of the present invention is to provide a method of heating an underground formation by means of a combustion front formed therein and subsequently selectively moving the combustion front as desired within the formation to heat various regions of the formation so as to volatilize minerals contained within the formation or to volatilize or reduce the viscosity of hydrocarbon materials contained within the formation and move them to a production well.
Still another object of the present invention is to provide a method for producing minerals or hydrocarbons from an underground formation by selectively heating various regions of the formation one or more times by means of a moving combustion front which is moved either continuously or in a stepwise fashion through the formation.
These and other objects of the invention will be understood from the following description taken with reference to the drawing, wherein:
. FIGURES 1 through 4 are plan views of three wells with various flow patterns of injected materials being schematically shown extending between the wells; and,
FIGURE 5 is a diagrammatic view of a pair of wells taken in longitudinal cross-section with the air and fuel flow patterns being schematically shown between the wells.
In FIGURE 1 a planned view of the preferred arrangements of wells is shown for use in carrying out the method of the present invention. The method is started by injecting a fuel such as methane into the formation to be heated through well number 1 and producing the fluid at well number 3. The several lines forming flow patterns of fuel represent the injection of fuel at successive and increasing flow rates.
After a suitable pattern of flow of fuel from well 1 to well 3 has been established, air or an oxygen-containing fluid is injected through well 2 (FIGURE 2) either simultaneously with or subsequent to the formation temperature of well 2 being raised by means of a suitable down-hole heating device. Alternatively, at the time the air is injected into well 2 with the fuel being present in the adjacent formation, the mixture can be ignited by any suitable ignition procedure, e.g., by utilizing an ignition means which would be lowered into the well to the desired depth. The air injection rate is preferably kept small enough compared to the fuel injection rate so that the fluids-produced in well 3 do not constitute an explosive mixture. With a small air injection rate, the regions of contact of the fuel and air are at least partially within the zone of the formation heated by any down-hole heater used within well 2. Once ignition has been accomplished, the heater can be turned off and the heat of combustion used to maintain the temperature of the air and fuel above the ignition temperature. The hatched portion shown in FIGURE 2 represents schematically the combustion front surrounding well 2 and extending to well 3.
The location of the combustion front (hatched portion) within the formation can be readily changed by adjusting the air and fuel injection rates. Increasing the injection rate of the air relative to that of the fuel moves the combustion zone further away from well 2, both in the direction toward well 1 and in the direction normal to a line between wells 1 and 2. A reduction in the fuel injection rate into well 1 will cause the combustion zone to move still further from well 2. An increase in the fuel injection rate into well 1 would have the opposite effect. Simultaneous increase of injection rates of both the fuel into well 1 and the air into well 2 would cause a greater sideward movement of the combustion front, thus allowing the combustion front to sweep into greater areas of the formation under consideration.
An analysis of the produced gas from well 3 indicates whether combustion is occurring. In the event that combustion within the formation has stopped, the gaseous mixture in the formation can be re-ignited in the manner in which it was originally ignited. The location of the regions in which combustion is occurring within the formation can be determined by methods well-known to reservoir engineers, such as by calculating the flow paths of the injected gas. Combustion can be maintained within the formation while moving the combustion front from one region to another as long as the injection rates of the fuel and the air are not changed so rapidly that the mixing zone is moved into portions of the formation which have not been previously heated to ignition temperature by the combustion front.
As illustrated in FIGURE 4, the location of the burning region within the formation can be readily changed by producing the fluids from an additional well 4 for example. By producing from well 4 located to the left of well 1, the burning region (hatched zone) can be relocated in a manner shown. The combustion zone can be moved back and forth between the wells as many times as desired. The rate at which the combustion zone can be moved is materially greater than the rates of movement which are possible for combustion zones produced by burning in a matrix containing a static body of fuel.
While the method of the present invention has been described herein above as being carried out through three wells or conduits in communication between the surface and the underground formation to be heated, it is quite apparent that it is not essential that three sub-surface locations be employed, as shown in FIGURE 5. In the arrangement shown in FIGURE 5, the well 6 is provided with 2 conduits 7 and 8 through which fuel is injected, and oil or other fluid production is produced, respectively. The open lower ends of the two conduits 7 and 8 are isolated one from the other by means of a packer 9. Preferably prior to start of production the barren sand formation 10 has been fractured in a manner well-known to the art with a barrier 11 preferably of a heat-resistent material such as cement, being injected into the fracture so as to extend radially from the well 4. Alternately, the barrier of a sealing material could be injected without fracturing the formation. From the fuel flow lines drawn on FIGURE it will be seen that the injected barrier directs the fuel flow into the formation in a manner such as to cause it to sweep a considerable area prior to it being contacted by the flow of air from conduit 12 positioned in well 13. Thus a combustion front forms at 14 and may be moved up or down within the formation by varying the flow of the two injected fluids. In the arrangement shown in FIGURE 5, two of the three subsurface locations are provided in a single well.
The method in general comprises establishing fluid communication from points above the surface to a least three sub-surface locations, establishing fluid communication through the formation between the sub-surface locations, injecting a fuel-containing fluid into the formation around at least one of the sub-surface locations, injecting an oxygen-containing fluid into the formation around at least-one of the sub-surface locations, adjusting the relative rates of the injections so that the injected fluids meet within the formation and displace fluids into the vicinity of at least one of the sub-surface locations, igniting the mixture formed along the junction of the injected fluids, controlling the relative rates of injection so that the burning mixture extends along a path having a selected and movable portion within the formation, and withdrawing the fluids displaced in the vicinity of at least one of the sub-surface locations.
. The above-described formation heating method can be used in conjunction with an oil production operation be similarly used in conjunction with the production of any mineral matter capable of being thermally converted to a liquid or gaseous fluid, for example, viscous petroleum materials. In addition to hydrocarbons, various examples of volatilizable contents of sedimentary strata susceptible to the method of the present invention may be native metals such as mercury, bismuth, antimony, arsenic, zinc, etc., sulfur, both native and in composition, inpyrite, mispickel, galena, redruthite, argentite, blends, etc., chlorides of the metals and alkalis such as calomel, sylvite, chlorite, salmiac, etc., oxides of the metals, such as arsenolite, etc., sulfides of the metals, such as cinnabar, etc., inorganic acids in compositions, such as carbonic dioxide, etc., and any volatilizable minerals produced by the chemical action upon the constituents of the strata of mineralizing agents.
The process can be used either for heating or for simultaneously thermally fluidizing and fluid driving a material which is present in the formation in which in-situ combustion cannot be maintained by injecting air along.
In simultaneously thermally fluidizing, fluid driving, and producing a material, the location into which fluids are displaced is maintained at a pressure lower than the injection pressures of the fuel in the air, and the fluidized material is withdrawn along with the fluid combustion products and the fluids displaced from the formation.
The initial permeability of the formation in which the burning is to be conducted is not a limitation. The necessary fluid communication through the formation can be established by hydraulic fracturing, underground explosions, or the like. The fissures and caverns in locations in which .the fuel-containing and oxygen-containing fluids meet will become filled with explosive mixtures and detonations will occur. Such explosions will convert the nearby portions of the formation to highly porous fragmented portions and the region of this occurrence will be moved along with any movements of the junction of the fuel-containing and oxygen-containing fluids.
In an operation which a normally solid material is thermally liquified and the fluid driven into a production well, the liquified material, such as sulfur, must be pumped out or removed in a manner so as to maintain a relatively low pressure in the production well. The present method can be employed to roast an ore, to reduce the viscosity of a liquid or solid which cannot be fluid-driven at the applicable pressures, or to pyrolyze a material into fluid products.
I claim as my invention:
1. A method of heating extensive areas of an underground formation for the purpose of heating a material in an underground location, said method comprising the steps of (a) injecting fuel at one point into an underground formation which is deficient in combustible material in an amount suflicient to maintain an underground combustion,
(b) injecting an oxygen-containing fluid into said underground formation at a point spaced from said fuelinjection point but within contact range of said in jected fuel,
(c) igniting said mixture of fuel and oxygen-containing fluid at least at one point along the contact front in the formation between said injection points where the fuel and oxygen-containing fluid combine into a combustible mixture, thereby forming a combustion front which subsequently propagates along the entire contact front,
(d) discharging the products of said combustion from said formation at a point displaced from the points at which the fuel and the oxygen-containing fuel are separately injected,
(e) controlling the injection rates of said fuel and said oxygen-containing fluid to maintain the combustion front in a selected area of said formation being heated, nd
(f) slowly increasing the flow rate of one of said injected materials relative to the other to cause the combustion front to move from a portion of the formation closer to one injection point toward the other injection point.
2. The method of claim 1 including the step of slowly decreasing the flow rate of said one injected material to cause the combustion front to move in the opposite direction between said injection points.
3. The method of claim 1 wherein the injection of fuel and the injection of oxygen-containing fluid into the formation take place through separate wells at points spaced from each other and from a production well.
4. The method of claim 3 wherein the injection wells are both to one side of and substantially in line together with said production well.
5. The method of claim 1 wherein the steps of injecting fuel and of injecting oxygen-containing fluid take place through separate spaced apart injection wells while the products of combustion are first discharged through a production well to one side of the injection wells and including the steps of subsequently closing the production well and opening another production well through which the products may be discharged substantially on the op posite side of said injection wells.
References Cited by the Examiner UNITED STATES PATENTS CHARLES E. OCONNELL, Primary Examiner.
BENJAMIN HERSH, Examiner.
Claims (1)
1. A METHOD OF HEATING EXTENSIVE AREAS OF AN UNDERGROUND FORMATION FOR THE PURPOSE OF HEATING A MATERIAL IN AN UNDERGROUND LOCATION, SAID METHOD COMPRISING THE STEPS OF (A) INJECTING FUEL AT ONE POINT INTO AN UNDERGROUND FORMATION WHICH IS DEFICIENT IN COMBUSTIBLE MATERIAL IN AN AMOUNT SUFFICIENT TO MAINTAIN AN UNDERGROUND COMBUSTION, (B) INJECTING AN OXYGEN-CONTAINING FLUID INTO SAID UNDERGROUND FORMATION AT A POINT SPACED FROM SAID FUELINJECTION POINT BUT WITHIN CONTACT RANGE OF SAID INJECTED FUEL, (C) IGNITING SAID MIXTURE OF FUEL AND OXYGEN-CONTAINING FLUID AT LEAST AT ONE POINT ALONG THE CONTACT FRONT IN THE FORMATION BETWEEN SAID INJECTION POINTS WHERE THE FUEL AND OXYGEN-CONTAINING FLUID COMBINE INTO A COMBUSTIBLE MIXTURE, THEREBY FORMING A COMBUSTION FRONT WHICH SUBSEQUENTLY PROPAGATES ALONG THE ENTIRE CONTACT FRONT, (D) DISCHARGING THE PRODUCTS OF SAID COMBUSTION FROM SAID FORMATION AT A POINT DISPLACED FROM THE POINTS AT WHICH THE FUEL AND THE OXYGEN-CONTAINING FUEL ARE SEPARATELY INJECTED, (E) CONTROLLING THE INJECTION RATES OF SAID FUEL AND SAID OXYGEN-CONTAINING FLUID TO MAINTAIN THE COMBUSTION FRONT IN A SELECTED AREA OF SAID FORMATION BEING HEATED, AND (F) SLOWLY INCREASING THE FLOW RATE OF ONE OF SAID INJECTED MATERIALS RELATIVE TO THE OTHER TO CAUSE THE COMBUSTION FRONT TO MOVE FROM A PORTION OF THE FORMATION CLOSER TO ONE INJECTION POINT TOWARD THE OTHER INJECTION POINT.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US264384A US3221811A (en) | 1963-03-11 | 1963-03-11 | Mobile in-situ heating of formations |
GB9895/64A GB1010023A (en) | 1963-03-11 | 1964-03-09 | Heating of underground formations |
DES89910A DE1235240B (en) | 1963-03-11 | 1964-03-09 | Process for the recovery of extractable material from underground formations |
NL6402488A NL6402488A (en) | 1963-03-11 | 1964-03-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US264384A US3221811A (en) | 1963-03-11 | 1963-03-11 | Mobile in-situ heating of formations |
Publications (1)
Publication Number | Publication Date |
---|---|
US3221811A true US3221811A (en) | 1965-12-07 |
Family
ID=23005826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US264384A Expired - Lifetime US3221811A (en) | 1963-03-11 | 1963-03-11 | Mobile in-situ heating of formations |
Country Status (4)
Country | Link |
---|---|
US (1) | US3221811A (en) |
DE (1) | DE1235240B (en) |
GB (1) | GB1010023A (en) |
NL (1) | NL6402488A (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3349846A (en) * | 1964-07-30 | 1967-10-31 | Phillips Petroleum Co | Production of heavy crude oil by heating |
US3361201A (en) * | 1965-09-02 | 1968-01-02 | Pan American Petroleum Corp | Method for recovery of petroleum by fluid injection |
US3422891A (en) * | 1966-08-15 | 1969-01-21 | Continental Oil Co | Rapid breakthrough in situ combustion process |
EP0030430A1 (en) * | 1979-11-28 | 1981-06-17 | The University Of Newcastle Research Associates Limited | Underground gasification of coal |
US4440224A (en) * | 1977-10-21 | 1984-04-03 | Vesojuzny Nauchno-Issledovatelsky Institut Ispolzovania Gaza V Narodnom Khozyaistve I Podzemnogo Khranenia Nefti, Nefteproduktov I Szhizhennykh Gazov (Vniipromgaz) | Method of underground fuel gasification |
US4456065A (en) * | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US20020029884A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US20030062154A1 (en) * | 2000-04-24 | 2003-04-03 | Vinegar Harold J. | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20030062164A1 (en) * | 2000-04-24 | 2003-04-03 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US20030066644A1 (en) * | 2000-04-24 | 2003-04-10 | Karanikas John Michael | In situ thermal processing of a coal formation using a relatively slow heating rate |
US20030075318A1 (en) * | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20030085034A1 (en) * | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030130136A1 (en) * | 2001-04-24 | 2003-07-10 | Rouffignac Eric Pierre De | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US20030173078A1 (en) * | 2001-04-24 | 2003-09-18 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a condensate |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US20100126727A1 (en) * | 2001-10-24 | 2010-05-27 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
CN115539009A (en) * | 2022-10-17 | 2022-12-30 | 安徽理工大学 | Test system and method for measuring underground coal gasification efficiency |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53128566U (en) * | 1976-04-07 | 1978-10-12 | ||
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
RU2587459C2 (en) | 2011-04-08 | 2016-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Systems for joining insulated conductors |
JO3141B1 (en) | 2011-10-07 | 2017-09-20 | Shell Int Research | Integral splice for insulated conductors |
CN104011327B (en) | 2011-10-07 | 2016-12-14 | 国际壳牌研究有限公司 | Utilize the dielectric properties of the insulated conductor in subsurface formations to determine the performance of insulated conductor |
JO3139B1 (en) | 2011-10-07 | 2017-09-20 | Shell Int Research | Forming insulated conductors using a final reduction step after heat treating |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2880803A (en) * | 1958-01-16 | 1959-04-07 | Phillips Petroleum Co | Initiating in situ combustion in a stratum |
US2913050A (en) * | 1955-05-12 | 1959-11-17 | Phillips Petroleum Co | Preventing explosions in bore holes during underground combustion operations for oil recovery |
US2954218A (en) * | 1956-12-17 | 1960-09-27 | Continental Oil Co | In situ roasting and leaching of uranium ores |
US3007521A (en) * | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US3026937A (en) * | 1957-05-17 | 1962-03-27 | California Research Corp | Method of controlling an underground combustion zone |
US3097690A (en) * | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US3120264A (en) * | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1036432B (en) * | 1955-08-04 | 1958-08-14 | Phillips Petroleum Co | Process for the extraction of hydrocarbons from a gas-permeable underground storage facility |
US3007520A (en) * | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | In situ combustion technique |
US3023807A (en) * | 1958-06-19 | 1962-03-06 | Phillips Petroleum Co | In situ combustion process |
-
1963
- 1963-03-11 US US264384A patent/US3221811A/en not_active Expired - Lifetime
-
1964
- 1964-03-09 GB GB9895/64A patent/GB1010023A/en not_active Expired
- 1964-03-09 DE DES89910A patent/DE1235240B/en active Pending
- 1964-03-11 NL NL6402488A patent/NL6402488A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2913050A (en) * | 1955-05-12 | 1959-11-17 | Phillips Petroleum Co | Preventing explosions in bore holes during underground combustion operations for oil recovery |
US3120264A (en) * | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
US2954218A (en) * | 1956-12-17 | 1960-09-27 | Continental Oil Co | In situ roasting and leaching of uranium ores |
US3026937A (en) * | 1957-05-17 | 1962-03-27 | California Research Corp | Method of controlling an underground combustion zone |
US3007521A (en) * | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US2880803A (en) * | 1958-01-16 | 1959-04-07 | Phillips Petroleum Co | Initiating in situ combustion in a stratum |
US3097690A (en) * | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
Cited By (248)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3349846A (en) * | 1964-07-30 | 1967-10-31 | Phillips Petroleum Co | Production of heavy crude oil by heating |
US3361201A (en) * | 1965-09-02 | 1968-01-02 | Pan American Petroleum Corp | Method for recovery of petroleum by fluid injection |
US3422891A (en) * | 1966-08-15 | 1969-01-21 | Continental Oil Co | Rapid breakthrough in situ combustion process |
US4440224A (en) * | 1977-10-21 | 1984-04-03 | Vesojuzny Nauchno-Issledovatelsky Institut Ispolzovania Gaza V Narodnom Khozyaistve I Podzemnogo Khranenia Nefti, Nefteproduktov I Szhizhennykh Gazov (Vniipromgaz) | Method of underground fuel gasification |
EP0030430A1 (en) * | 1979-11-28 | 1981-06-17 | The University Of Newcastle Research Associates Limited | Underground gasification of coal |
US4456065A (en) * | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US6877554B2 (en) | 2000-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US20020050357A1 (en) * | 2000-04-24 | 2002-05-02 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US20020029881A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US20020034380A1 (en) * | 2000-04-24 | 2002-03-21 | Maher Kevin Albert | In situ thermal processing of a coal formation with a selected moisture content |
US20020033255A1 (en) * | 2000-04-24 | 2002-03-21 | Fowler Thomas David | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US20020033280A1 (en) * | 2000-04-24 | 2002-03-21 | Schoeling Lanny Gene | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US20020035307A1 (en) * | 2000-04-24 | 2002-03-21 | Vinegar Harold J. | In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US20020033253A1 (en) * | 2000-04-24 | 2002-03-21 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources |
US20020033256A1 (en) * | 2000-04-24 | 2002-03-21 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US20020033257A1 (en) * | 2000-04-24 | 2002-03-21 | Shahin Gordon Thomas | In situ thermal processing of hydrocarbons within a relatively impermeable formation |
US20020036089A1 (en) * | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources |
US20020036084A1 (en) * | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US20020036103A1 (en) * | 2000-04-24 | 2002-03-28 | Rouffignac Eric Pierre De | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US20020036083A1 (en) * | 2000-04-24 | 2002-03-28 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US20020038711A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US20020038712A1 (en) * | 2000-04-24 | 2002-04-04 | Vinegar Harold J. | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US20020040173A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US20020038705A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US20020039486A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US20020038708A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce a condensate |
US20020038709A1 (en) * | 2000-04-24 | 2002-04-04 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US20020040177A1 (en) * | 2000-04-24 | 2002-04-04 | Maher Kevin Albert | In situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US20020040779A1 (en) * | 2000-04-24 | 2002-04-11 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons |
US20020040781A1 (en) * | 2000-04-24 | 2002-04-11 | Keedy Charles Robert | In situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores |
US20020043405A1 (en) * | 2000-04-24 | 2002-04-18 | Vinegar Harold J. | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US20020043366A1 (en) * | 2000-04-24 | 2002-04-18 | Wellington Scott Lee | In situ thermal processing of a coal formation and ammonia production |
US20020043367A1 (en) * | 2000-04-24 | 2002-04-18 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US20020043365A1 (en) * | 2000-04-24 | 2002-04-18 | Berchenko Ilya Emil | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US20020046839A1 (en) * | 2000-04-24 | 2002-04-25 | Vinegar Harold J. | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US20020046832A1 (en) * | 2000-04-24 | 2002-04-25 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US20020049358A1 (en) * | 2000-04-24 | 2002-04-25 | Vinegar Harold J. | In situ thermal processing of a coal formation using a distributed combustor |
US20020046838A1 (en) * | 2000-04-24 | 2002-04-25 | Karanikas John Michael | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US20020050353A1 (en) * | 2000-04-24 | 2002-05-02 | Berchenko Ilya Emil | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US20020052297A1 (en) * | 2000-04-24 | 2002-05-02 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US20020050356A1 (en) * | 2000-04-24 | 2002-05-02 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US20020053432A1 (en) * | 2000-04-24 | 2002-05-09 | Berchenko Ilya Emil | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US20020053429A1 (en) * | 2000-04-24 | 2002-05-09 | Stegemeier George Leo | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US20020053435A1 (en) * | 2000-04-24 | 2002-05-09 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US20020053436A1 (en) * | 2000-04-24 | 2002-05-09 | Vinegar Harold J. | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US20020056551A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US20020057905A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US20020062052A1 (en) * | 2000-04-24 | 2002-05-23 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US20020062051A1 (en) * | 2000-04-24 | 2002-05-23 | Wellington Scott L. | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US20020062961A1 (en) * | 2000-04-24 | 2002-05-30 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US20020062959A1 (en) * | 2000-04-24 | 2002-05-30 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US20020066565A1 (en) * | 2000-04-24 | 2002-06-06 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US20020077515A1 (en) * | 2000-04-24 | 2002-06-20 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US20020074117A1 (en) * | 2000-04-24 | 2002-06-20 | Shahin Gordon Thomas | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US20020084074A1 (en) * | 2000-04-24 | 2002-07-04 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US20020096320A1 (en) * | 2000-04-24 | 2002-07-25 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US20020104654A1 (en) * | 2000-04-24 | 2002-08-08 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US20020108753A1 (en) * | 2000-04-24 | 2002-08-15 | Vinegar Harold J. | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US20020117303A1 (en) * | 2000-04-24 | 2002-08-29 | Vinegar Harold J. | Production of synthesis gas from a hydrocarbon containing formation |
US20020170708A1 (en) * | 2000-04-24 | 2002-11-21 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US20020191969A1 (en) * | 2000-04-24 | 2002-12-19 | Wellington Scott Lee | In situ thermal processing of a coal formation in reducing environment |
US20020191968A1 (en) * | 2000-04-24 | 2002-12-19 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US20030006039A1 (en) * | 2000-04-24 | 2003-01-09 | Etuan Zhang | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US20030019626A1 (en) * | 2000-04-24 | 2003-01-30 | Vinegar Harold J. | In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio |
US20030024699A1 (en) * | 2000-04-24 | 2003-02-06 | Vinegar Harold J. | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US20030051872A1 (en) * | 2000-04-24 | 2003-03-20 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US20030062154A1 (en) * | 2000-04-24 | 2003-04-03 | Vinegar Harold J. | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US20030066644A1 (en) * | 2000-04-24 | 2003-04-10 | Karanikas John Michael | In situ thermal processing of a coal formation using a relatively slow heating rate |
US20030075318A1 (en) * | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20030085034A1 (en) * | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20030141065A1 (en) * | 2000-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US20030164238A1 (en) * | 2000-04-24 | 2003-09-04 | Vinegar Harold J. | In situ thermal processing of a coal formation using a controlled heating rate |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20030213594A1 (en) * | 2000-04-24 | 2003-11-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US20040015023A1 (en) * | 2000-04-24 | 2004-01-22 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US20040069486A1 (en) * | 2000-04-24 | 2004-04-15 | Vinegar Harold J. | In situ thermal processing of a coal formation and tuning production |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US20040108111A1 (en) * | 2000-04-24 | 2004-06-10 | Vinegar Harold J. | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6866097B2 (en) | 2000-04-24 | 2005-03-15 | Shell Oil Company | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US20020029884A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6910536B2 (en) | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US20030062164A1 (en) * | 2000-04-24 | 2003-04-03 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US20020029882A1 (en) * | 2000-04-24 | 2002-03-14 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US20090101346A1 (en) * | 2000-04-24 | 2009-04-23 | Shell Oil Company, Inc. | In situ recovery from a hydrocarbon containing formation |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US6782947B2 (en) | 2001-04-24 | 2004-08-31 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030100451A1 (en) * | 2001-04-24 | 2003-05-29 | Messier Margaret Ann | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US20030173078A1 (en) * | 2001-04-24 | 2003-09-18 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a condensate |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20030130136A1 (en) * | 2001-04-24 | 2003-07-10 | Rouffignac Eric Pierre De | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20100126727A1 (en) * | 2001-10-24 | 2010-05-27 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
CN115539009A (en) * | 2022-10-17 | 2022-12-30 | 安徽理工大学 | Test system and method for measuring underground coal gasification efficiency |
WO2023208248A1 (en) * | 2022-10-17 | 2023-11-02 | 安徽理工大学 | Test system and method for measuring underground coal gasification efficiency |
CN115539009B (en) * | 2022-10-17 | 2024-05-31 | 安徽理工大学 | Test system and method for measuring underground coal gasification efficiency |
Also Published As
Publication number | Publication date |
---|---|
GB1010023A (en) | 1965-11-17 |
NL6402488A (en) | 1964-09-14 |
DE1235240B (en) | 1967-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3221811A (en) | Mobile in-situ heating of formations | |
US2780449A (en) | Thermal process for in-situ decomposition of oil shale | |
US3593789A (en) | Method for producing shale oil from an oil shale formation | |
US3978920A (en) | In situ combustion process for multi-stratum reservoirs | |
US2584605A (en) | Thermal drive method for recovery of oil | |
US4895206A (en) | Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes | |
US3513913A (en) | Oil recovery from oil shales by transverse combustion | |
US4185693A (en) | Oil shale retorting from a high porosity cavern | |
US3775073A (en) | In situ gasification of coal by gas fracturing | |
US3170517A (en) | Fracturing formation and stimulation of wells | |
US3120264A (en) | Recovery of oil by in situ combustion | |
US3250327A (en) | Recovering nonflowing hydrocarbons | |
US4059308A (en) | Pressure swing recovery system for oil shale deposits | |
US3004596A (en) | Process for recovery of hydrocarbons by in situ combustion | |
WO2016127108A1 (en) | Stimulation of light tight shale oil formations | |
US2946382A (en) | Process for recovering hydrocarbons from underground formations | |
US3332482A (en) | Huff and puff fire flood process | |
US4945984A (en) | Igniter for detonating an explosive gas mixture within a well | |
US4436153A (en) | In-situ combustion method for controlled thermal linking of wells | |
US3334687A (en) | Reverse in situ combustion process for the recovery of oil | |
US3232345A (en) | Thermal recovery of heavy crude oil | |
US3734180A (en) | In-situ gasification of coal utilizing nonhypersensitive explosives | |
US3727690A (en) | Method of fracturing a natural gas bearing earth formation | |
US3024841A (en) | Method of oil recovery by in situ combustion | |
US2913050A (en) | Preventing explosions in bore holes during underground combustion operations for oil recovery |