US3565171A - Method for producing shale oil from a subterranean oil shale formation - Google Patents
Method for producing shale oil from a subterranean oil shale formation Download PDFInfo
- Publication number
- US3565171A US3565171A US769906A US3565171DA US3565171A US 3565171 A US3565171 A US 3565171A US 769906 A US769906 A US 769906A US 3565171D A US3565171D A US 3565171DA US 3565171 A US3565171 A US 3565171A
- Authority
- US
- United States
- Prior art keywords
- chimney
- liquid
- flowing
- voids
- oil shale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004058 oil shale Substances 0.000 title claims abstract description 56
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 31
- 239000003079 shale oil Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 83
- 239000012530 fluid Substances 0.000 claims abstract description 48
- 238000002485 combustion reaction Methods 0.000 claims abstract description 35
- 239000012634 fragment Substances 0.000 claims abstract description 19
- 239000002360 explosive Substances 0.000 claims abstract description 16
- 239000011800 void material Substances 0.000 claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 14
- 238000009472 formulation Methods 0.000 claims description 13
- 238000011065 in-situ storage Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 238000005187 foaming Methods 0.000 claims description 10
- 230000035699 permeability Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- -1 ureaforrnaldehyde Polymers 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000011364 vaporized material Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/16—Methods of underground mining; Layouts therefor
- E21C41/24—Methods of underground mining; Layouts therefor for oil-bearing deposits
Definitions
- a liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney.
- Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof, thereby advancing a combustion front down the chimney to substantially the bottom thereof.
- the fluid flow path of the fluid supporting the combustion tends to be substantially confined to the vertical outlying portions of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.
- Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof thereby advancing a combustion front down the chim- 'ney to substantially the bottom thereof:
- the fluid flow path of 'the combustion supporting fluid tendsto be substantially confined to the vertical outlying portions-of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.
- FIG. 1 is a vertical cross'sectional view of an oil shale formation prior to detonating a relatively high energy explosive device therein;
- FIG. 3 is a vertical cross-sectional view of the final rubble zone created by the detonation of the explosive device of FIG. I
- FIG. 4 is a vertical cross-sectional view of the treatment of the rubble zone of FIG. 3 in accordance with the teaching of void volumes distributed throughout the chimney.
- void volumes distributed throughout the chimney.
- FIG. 5 is a vertical cross-sectional view of single-well recovery of shale oil from the treated rubble zone of FIG. 4;
- FIG. 6 is a vertical cross-sectional view of dual-well recovery of shale oil from the treated rubble of FIG. 4;
- FIG. 7 is a vertical cross-sectional view of analternate treatment of the rubble zone of FIG. 3 in accordance with the teachings of the invention.
- FIG. 1 shows a subterranean. oil shale formation 1.1 having a relatively high energy explosive device 1 2 located therein.
- Ex plosive device 12 may be nuclear or nonnuclear.
- a relatively high energy explosive device such as a nuclear bomb
- a strong shock wave from the explosive device begins to move radially outwardly, vaporizing, melting, crushing, cracking, and displacing the oil shale formation 11.
- the highpressure vaporized material expands, and a generally spherical cavity, such asthe cavity 14 in FIG.”2, is formed which continues to grow until the internal pressure is balanced by the lithostatic pressure.
- the cavity 14 persists for a variable time depending on the composition of the oil shale formation 11, then collapses to form a chimney 15 (FIG. 3). Collapse progresses upwardly until the volume'initially in cavity 14 is distributed between the fragments of the oil shale of formation 11.
- the size of the cylindrical rubble zone (i.e., the Chimney 15) formed by the collapse of the cavity 14 may be estimated from 'the depthand explosive yield of the explosive device 13 and the properties of the formations 11 and 16.
- a zone of limited permeability 17 within the fragmented oil shale formation 1'7 is also formed surrounding chimney 15 as seen in FIG. 3.
- the permeability of this zone 17 may be preferably increased by surrounding the explosive device 12 with a plurality of explosive devices of lesser energy and subsequently detonatingthe lesser energy devices in the manner discussed in my copending application Ser. No. 755,684, filed Jun. 10,1968. g
- Fluids which are apt to be encountered within such a zone are liquid and/or gaseous petroleum products and/or steam and/or water. Particularly where petroleum fluid is encountered, it
- the invention disclosed herein is illustrated as preferably applied to such a fragmented zone in which most of the fluid remaining in the chimney 15 is mainly a gas.
- the same well borehole 18, preferably cased at casing 19, cemented therein, if desirable at cementing 20, may be used to inject a liquid down tubing string 22 into the oil shale fragments 21 disposed at the bottom of chimney 15.
- the liquid is preferably pumpable and adapted to solidify in situ.
- each portion of the inflowed liquid is allowed to solidify, between the series of such injections, in order to selectively plug the central portion of the chimney.
- a first injection is made at the bottom of chimney 15 with the liquid allowed to solidify, then subsequent injections are made upwardly within chimney 15 to substantially the topthereof by selectively opening casing 19 as is well known in the art.
- the injected liquid is one which tends to flow into the larger voids and channels in the central portion of the chimney 15 and may be a foaming and thermosetting resin.
- foaming and thermosetting resin Such materials, by foaming in situ, increase, the pressure gradient necessary for flow through such large void spaces and channels.
- a tubing string 22 is packed off as at packers 24 and 25 below perforations 26 near the top of the chimney and above the bottom of tubing string 22, respectively.
- Packer 24 is preferably removed or unseatcd to provide a path of fluid communication with perforations 26 within the treated zone 23.
- a combustion front 27 is initiated and advanced downwardly towards a production point near the bottom of chimney 15. This may be accomplished by circulating a heated combustion supporting fluid down casing 19, through perforations 26 and into the fragmented oil shale 21 within chimney 15.
- the initial flow paths of the heated fluid are confined mainly to the outlying portions of chimney 15, that is, the untreated zone 28 of relatively high permeability as indicated by the direction of the major portion of the arrows in FIG. and also to the untreated smaller voids within the chimney 15, until the heat from the combustion front thermally mobilizes the plugging material that was formed within the larger voids in treated zone 23.
- the overall effect is a pyrolysis of substantially all the fragmented oil shale material without a bypassing of the portions of fragmented oil shale material adjacent to smaller voids through which the flow resistance is significantly larger than that within the larger voids.
- a zone A is formed depleted of oil and plugging material.
- a partially depleted zone B is formed between combustion front 27 and the bottom of chimney 15.
- the preferred path of hot combustion products and entrained oil shale is indicated at 29.
- Suitable materials include fluid mixtures containing the components of polyurethane, ureaforrnaldehyde, melamine formaldehyde, and the like types of foaming resin formulations.
- foaming resin formulations As the foam begins to form, the gas entrained within the liquid tends to divert the foams from the small voids and keeps them within the larger voids where they remain until the liquid components solidify.
- the relatively higher density of such a foam causes it to form a layer along the bottom of the gas-filled zone.
- the plugging liquid may also be a liquid resin containing filler particles of sizes such that flow through smaller pores and channels is inhibited.
- Such formulations may include solutions of the components of resin, such as epoxy resins, phenolformaldehyde resins, and the like resin formulations containing particles like shredded rubber; walnut shells, wood fibers, etc., of the types used as conventional lost-circulation controlling materials in working wells.
- Such preferentially wetting formulations may comprise aqueous surfactants which tend to contact the smaller pore spaces and block them off during a subsequent injection of resin.
- the presence of the liquid surfactant phase on the walls of the oil shale fragments adjacent to the smaller void spaces inhibits the wetting of the oil shale fragments by the resin at least for a time and to an extent sufficient to divert the resin into the larger channels and voids.
- the presence of the liquid surfactant phase may, in some cases, be useful in causing reaction of the injected resinous fluid.
- Such a wetting fluid may be injected into the chimney 15 down the annulus formed between casing 19 and tubing string 22 as discussed hereinabove with respect to F IG. 5
- the combustion-supporting fluid adapted to be injected into chimney 15 may be heated prior to circulation by means of a heating device 30.
- the fluid is pumped by means of a pump or compressor 31 through heating device 30 and into the annulus fonned between tubing string 22 and casing 19.
- the fluid then flows through perforations 26 and into the zone a of chimney 15.
- Oil shale pyrolysis products are removed at the bottom of chimney 15 up tubing string 22, through heat exchanger 32 and into separator 33 where the oil and gas components are separated as is well known in the art. At least some makeup gas or preferably air is added at, for example, pump 31.
- FIG. 6 a preferred arrangement for producing shale oil from chimney 15 utilizing at least one production well and one injection well is shown.
- like numerals refer to like parts of FIG. 5.
- the fluid from heater 30 is injected into injection well 34, cased and casing 35, through tubing string 36.
- the fluid exits past packer 37 and enters the void space 13 of chimney 15.
- Oil shale pyrolysis products are produced up the casing 38 of production well 39 and into heat exchanger 32. 4
- the formation of treated zone 23 may be accomplished by injecting the foaming formulation near the top as illustrated in FIG. 7, while producing dense liquid from near the bottom of the chimney.
- the setting time of the resin components should be adjusted so that the treated layer extends down through the chimney to near the bottom before the foaming formulation becomes immobile.
- tubing 22 is packed in casing 19 by means of packers 19a as is well known in the art. Shale oil is then produced from the treated chimney 15 up tubing 22 in the manner discussed hereinabove with respect to FIGS. 5 and 6.
- the injected formulation passes from casing 19 out perforations 19b and into the top of chimney 15.
- the chimney of rubble 15 is liquid filled initially, then the flow of injected resinous fluid may be controlled by adjusting its density to be below of the filling liquid, such as water.
- the chimney 15 may then be filled upwardly in a series of steps, beginning at the bottom, as disclosed hereinabove with respect to FIG. 4.
- the foaming resin formulation may be injected at a number of vertical positions from the same well (i.e., either well 18 or 34) by either selectively opening well 18 at different vertical positions in chimney 15 or by extending well 34 downwardly into selective vertical positions in chimney 15.
- two or more wells may be drilled to communicate with different levels within chimney 15.
- a limited amount of the foaming resin formulation may be then injected into each of these wells to treat a specified region of the chimney 15.
- One advantage of injecting the foaming resin formulation through a central well is that, by carefully regulating the quantity of such injected materials, the outer portions of the chimney of rubble 21, i.e., zone 28, remain substantially untreated. Injected fluids then tend to flow preferentially near the walls of the chimney 15 but not beyond and improve the overall sweep efficiency of the flow process.
- step of flowing a liquid through said voids includes the step of flowing said liquid from a plurality of vertical positions within said central well into said chimney.
- step of flowing said liquid includes flowing a liquid which is capable of substantially solidifying in situ thereby materially reducing the permeability of the larger voids in which it is present.
- step of flowing a liquid capable of substantially solidifying in situ includes flowing a liquid capable of being thermally converted from a substantial solid to a mobile fluid at a temperature between about 400 F. and 1,200 P.
- step of flowing a combustion-supporting fluid includes the step of flowing a heated fluid at a temperature exceeding the thermal conversion temperature of the substantially solidified liquid formed in situ within said larger voids.
- the method of claim 8 including the step of terminating the inflowing of liquid when a layer of the liquid extends over a significantly large proportion of the central cross-sectional area of the chimney and allowing said inflowing liquid to solidify in situ prior to igniting said hydrocarbons.
- the method of claim 1 including the step producing substantially all of the liquids presentat the bottom of said chimney after forming said chimney and prior to flowing a liquid through said voids so that most of the fluid remaining in said chimney is a gas.
- step of flowing said liquid includes flowing a liquid containing dispersed material which tends to cause the inflowing liquid to bypass said small voids and flow through said larger voids.
- step of flowing said liquid includes flowing a liquid havingadensity differing from the formation fluid being displaced from within the chimney in 15.
- step of flowing a liquid through said voids includes the step of flowing a foaming thermosetting resin formulation through said voids.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Remote Sensing (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
A method for producing shale oil from a subterranean oil shale formation wherein a chimney of fragmented oil shale is formed in the formation by exploding a relatively high energy explosive device therein, the chimney having a substantially void space formed at the top thereof. A liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney. Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof, thereby advancing a combustion front down the chimney to substantially the bottom thereof. The fluid flow path of the fluid supporting the combustion tends to be substantially confined to the vertical outlying portions of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.
Description
United States Patent [72] Inventor Philip J. Closmann Houston, Tex. [21] Appl. No. 769,906 [22] Filed Oct. 23, 1968 [45] Patented Feb. 23, 1971 [73] Assignee. Shell Oil Company New York, NY. a corporation of Delaware [54] METHOD FOR PRODUCING SHALE OIL FROM A SUBTERRANEAN OIL SHALE FORMATION 16 Claims, 7 Drawing Figs.
[52] US. Cl. 166/247, 166/256, 166/295 [51] Int. Cl E2lb [50] Field of Search 166/247, 256, 258, 260, 268, 272, 294, 295 56] References Cited UNITED STATES PATENTS 3,113,620 12/1963 l-lemminger 166/257 3,251,414 5/1966 Willman 166/295 3,342,257 9/ 1967 Jacobs et al. 166/247 3,342,263 9/1967 Fischer 166/294X 3,369,601 2/ 1968 Bond et a1 166/258 3,369,603 2/ 1968 Trantham 166/294X 3,460,620 8/1969 Parker 166/247UX 3,465,819 Dixon Primary Examiner-Stephen J. Novosad AttorneysJ. l-l. McCarthy and L. J. Bovasso ABSTRACT: A method for producing shale oil from a subterranean oil shale formation wherein a chimney of fragmented oil shale is formed in the formation by exploding a relatively high energy explosive device therein, the chimney having a substantially void space formed at the top thereof. A liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney. Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof, thereby advancing a combustion front down the chimney to substantially the bottom thereof. The fluid flow path of the fluid supporting the combustion tends to be substantially confined to the vertical outlying portions of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.
OIL
HEAT EXCHANGER P'ATENTEU FEB? 3 I9?! SHEET 1 OF 3 FIG.
INVENTOR P. J. CLOSM-ANN HIS ATTORNEY FIG. 3
PATEN-TED FEB23 I97! SHEET 2 [IF 3 AIR GAS 33 SEPARATOR HEATER 32 HEAT EXCHANGER OIL FIG-'5 i INVENTORI P.-J; CLOSMANN BYIMW FIG. 4
HIS ATTORNEY PATENfED 5823 I97! sum 3 0F 3 v SEPARATOR GAS 3 HEAT EXCHANGER FIG. 6
INVENTOR:
P. J. CLOSMANN HIS ATTORNEY METHOD FOR PRODUCING SI-IALE OIL FROM A SUB'IERRANEAN OIL SHALE FORMATION BACKGROUND OF THE INVENTION the rubbled zone by known techniques, such as in situ retortrng.
Experience has shown that when a relatively high energy device, such as a nuclear bomb, is exploded within a subterranean earth formation, an almost spherical cavity filled with hot gases isformed. This cavity expands until the pressure within the cavity equals that of the overburden. On cooling,
the roof of the cavity collapses since, generally,.it cannot support itself, and a so-called chimney" develops. Chimney growth ceases when the rock pile substantially fills the cavity, or, a stable arch develops. In both cases,.a substantially void space is formed below the overburdenand above the rubble contained within the chimney. Surrounding the chimney is a i fractured zone which results from the shock of the nuclear explosion.
However, in any chimney of rubble or fragmented oil shale formed by the explosion of a relatively high energy device, the occurrence of large blocks of rock or oil shale indicates large rubble, these voids result in significant'bypassing of injected treated.
SUMMARY OF THE INVENTION shale formation thereby forming a chimney of oil shale fragments therein, the chimney having a substantially void space formed at the top thereof. A liquid is flowed through the voids formed between the oil shale fragments, the liquid being adapted to selectively bypass small voids and plug larger voids formed between the fragments at least in the substantially vertical central portion of the chimney. Hydrocarbons at substantially the top of the chimney are ignited and a combustion supporting fluid is flowed into the chimney at substantially the top thereof thereby advancing a combustion front down the chim- 'ney to substantially the bottom thereof: The fluid flow path of 'the combustion supporting fluid tendsto be substantially confined to the vertical outlying portions-of the chimney and the untreated small voids within the chimney until the heat from the combustion front thermally mobilizes the liquid plugging the larger voids thus decomposing the plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a a substantially horizontal level within the chimney without the combustion front bypassing the portions of the fragmented oil shale adjacent to the small voids as the combustion front proceeds down the chimney.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical cross'sectional view of an oil shale formation prior to detonating a relatively high energy explosive device therein;
FIG. 2 is a vertical cross-sectional view of the oil shale formation of FIG. 1 after the explosive device has been detonated;
FIG. 3 is a vertical cross-sectional view of the final rubble zone created by the detonation of the explosive device of FIG. I
FIG. 4 is a vertical cross-sectional view of the treatment of the rubble zone of FIG. 3 in accordance with the teaching of void volumes distributed throughout the chimney. In an in situ flow process for recovering shale oilfrom such a chimney of r and produced fluids, leaving large portions of the rock unv substantially void space 13 is formed at the top of chimney 1'5.
this invention;
FIG. 5 is a vertical cross-sectional view of single-well recovery of shale oil from the treated rubble zone of FIG. 4;
FIG. 6 is a vertical cross-sectional view of dual-well recovery of shale oil from the treated rubble of FIG. 4; and
FIG. 7 is a vertical cross-sectional view of analternate treatment of the rubble zone of FIG. 3 in accordance with the teachings of the invention;
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a subterranean. oil shale formation 1.1 having a relatively high energy explosive device 1 2 located therein. Ex plosive device 12 may be nuclear or nonnuclear. When a relatively high energy explosive device, such as a nuclear bomb, is detonated within an oil shale formation, a strong shock wave from the explosive device begins to move radially outwardly, vaporizing, melting, crushing, cracking, and displacing the oil shale formation 11. After the shock wave-has passed, the highpressure vaporized material expands, and a generally spherical cavity, such asthe cavity 14 in FIG."2, is formed which continues to grow until the internal pressure is balanced by the lithostatic pressure. The cavity 14 persists for a variable time depending on the composition of the oil shale formation 11, then collapses to form a chimney 15 (FIG. 3). Collapse progresses upwardly until the volume'initially in cavity 14 is distributed between the fragments of the oil shale of formation 11. The size of the cylindrical rubble zone (i.e., the Chimney 15) formed by the collapse of the cavity 14 may be estimated from 'the depthand explosive yield of the explosive device 13 and the properties of the formations 11 and 16. A
A zone of limited permeability 17 within the fragmented oil shale formation 1'7 is also formed surrounding chimney 15 as seen in FIG. 3. The permeability of this zone 17 may be preferably increased by surrounding the explosive device 12 with a plurality of explosive devices of lesser energy and subsequently detonatingthe lesser energy devices in the manner discussed in my copending application Ser. No. 755,684, filed Jun. 10,1968. g
. After forming chimney 15, it may be desirable to extend a well borehole 18 to a point adjacent to the bottom of the chimney 15. Fluids which are apt to be encountered within such a zone (i.e., at the bottom of chimney 15) are liquid and/or gaseous petroleum products and/or steam and/or water. Particularly where petroleum fluid is encountered, it
may be desirable to produce substantially all the liquid phase present at the bottom of chimney 15 so that most of the fluid remaining in the fragmented zone orchimney 15 is gaseous petroleum or air.
Referring now to FIGS. 4 and -5,.the invention disclosed herein is illustrated as preferably applied to such a fragmented zone in which most of the fluid remaining in the chimney 15 is mainly a gas. The same well borehole 18, preferably cased at casing 19, cemented therein, if desirable at cementing 20, may be used to inject a liquid down tubing string 22 into the oil shale fragments 21 disposed at the bottom of chimney 15. The liquid is preferably pumpable and adapted to solidify in situ. Thus, each portion of the inflowed liquid is allowed to solidify, between the series of such injections, in order to selectively plug the central portion of the chimney. Preferably then, a first injection is made at the bottom of chimney 15 with the liquid allowed to solidify, then subsequent injections are made upwardly within chimney 15 to substantially the topthereof by selectively opening casing 19 as is well known in the art.
The injected liquid is one which tends to flow into the larger voids and channels in the central portion of the chimney 15 and may be a foaming and thermosetting resin. Such materials, by foaming in situ, increase, the pressure gradient necessary for flow through such large void spaces and channels.
After the selective plugging of preferably a substantial portion of the vertical central portion of chimney 15, as indicated by a solidified or treated zone 23 of relatively low permeability as in FIG. 5, a tubing string 22 is packed off as at packers 24 and 25 below perforations 26 near the top of the chimney and above the bottom of tubing string 22, respectively. Packer 24 is preferably removed or unseatcd to provide a path of fluid communication with perforations 26 within the treated zone 23. 7
After igniting the hydrocarbons present at the top of chimney 15, by any suitable means, such as by downhole heating means, a combustion front 27 is initiated and advanced downwardly towards a production point near the bottom of chimney 15. This may be accomplished by circulating a heated combustion supporting fluid down casing 19, through perforations 26 and into the fragmented oil shale 21 within chimney 15. The initial flow paths of the heated fluid are confined mainly to the outlying portions of chimney 15, that is, the untreated zone 28 of relatively high permeability as indicated by the direction of the major portion of the arrows in FIG. and also to the untreated smaller voids within the chimney 15, until the heat from the combustion front thermally mobilizes the plugging material that was formed within the larger voids in treated zone 23.
By the time the plugging material decomposes, the relatively slow advance of combustion front 27, and the resultant gradual heating of all the rocks within the remaining fragmented zone of chimney 15, initiates the pyrolysis of the kerogen in the larger oil shale fragments. The overall effect is a pyrolysis of substantially all the fragmented oil shale material without a bypassing of the portions of fragmented oil shale material adjacent to smaller voids through which the flow resistance is significantly larger than that within the larger voids.
Thus, as illustrated in FIG. 5, at the top of chimney 15, between void space 13 and combustion of front 27 a zone A is formed depleted of oil and plugging material. A partially depleted zone B is formed between combustion front 27 and the bottom of chimney 15. The preferred path of hot combustion products and entrained oil shale is indicated at 29.
Numerous types of pumpable liquids may be used to selectively permeate and temporarily plug the larger voids between oil shale fragments 21 within chimney 15. Suitable materials include fluid mixtures containing the components of polyurethane, ureaforrnaldehyde, melamine formaldehyde, and the like types of foaming resin formulations. As the foam begins to form, the gas entrained within the liquid tends to divert the foams from the small voids and keeps them within the larger voids where they remain until the liquid components solidify. In a gas-filled fragmented zone, the relatively higher density of such a foam causes it to form a layer along the bottom of the gas-filled zone.
The plugging liquid may also be a liquid resin containing filler particles of sizes such that flow through smaller pores and channels is inhibited. Such formulations may include solutions of the components of resin, such as epoxy resins, phenolformaldehyde resins, and the like resin formulations containing particles like shredded rubber; walnut shells, wood fibers, etc., of the types used as conventional lost-circulation controlling materials in working wells.
it may also be desirable to inject a fluid adapted to wet preferentially the oil shale material. Such preferentially wetting formulations may comprise aqueous surfactants which tend to contact the smaller pore spaces and block them off during a subsequent injection of resin. The presence of the liquid surfactant phase on the walls of the oil shale fragments adjacent to the smaller void spaces inhibits the wetting of the oil shale fragments by the resin at least for a time and to an extent sufficient to divert the resin into the larger channels and voids. The presence of the liquid surfactant phase may, in some cases, be useful in causing reaction of the injected resinous fluid. Such a wetting fluid may be injected into the chimney 15 down the annulus formed between casing 19 and tubing string 22 as discussed hereinabove with respect to F IG. 5
The combustion-supporting fluid adapted to be injected into chimney 15 may be heated prior to circulation by means of a heating device 30. in other words, the fluid is pumped by means of a pump or compressor 31 through heating device 30 and into the annulus fonned between tubing string 22 and casing 19. The fluid then flows through perforations 26 and into the zone a of chimney 15. Oil shale pyrolysis products are removed at the bottom of chimney 15 up tubing string 22, through heat exchanger 32 and into separator 33 where the oil and gas components are separated as is well known in the art. At least some makeup gas or preferably air is added at, for example, pump 31.
Referring now to FIG. 6, a preferred arrangement for producing shale oil from chimney 15 utilizing at least one production well and one injection well is shown. Here, like numerals refer to like parts of FIG. 5. The fluid from heater 30 is injected into injection well 34, cased and casing 35, through tubing string 36. The fluid exits past packer 37 and enters the void space 13 of chimney 15. Oil shale pyrolysis products are produced up the casing 38 of production well 39 and into heat exchanger 32. 4
Where the fragmented zone within chimney 15 is filled with a relatively dense liquid, such as water, by using a relatively low-density formulation, such as a solution of melamine-formaldehyde resin components containing shredded rubber, the formation of treated zone 23 may be accomplished by injecting the foaming formulation near the top as illustrated in FIG. 7, while producing dense liquid from near the bottom of the chimney. The setting time of the resin components should be adjusted so that the treated layer extends down through the chimney to near the bottom before the foaming formulation becomes immobile. Thus, tubing 22 is packed in casing 19 by means of packers 19a as is well known in the art. Shale oil is then produced from the treated chimney 15 up tubing 22 in the manner discussed hereinabove with respect to FIGS. 5 and 6. The injected formulation passes from casing 19 out perforations 19b and into the top of chimney 15. Alternatively, if the chimney of rubble 15 is liquid filled initially, then the flow of injected resinous fluid may be controlled by adjusting its density to be below of the filling liquid, such as water. The chimney 15 may then be filled upwardly in a series of steps, beginning at the bottom, as disclosed hereinabove with respect to FIG. 4.
Because of the large rubble volume to be so treated in chimney 15, the foaming resin formulation may be injected at a number of vertical positions from the same well (i.e., either well 18 or 34) by either selectively opening well 18 at different vertical positions in chimney 15 or by extending well 34 downwardly into selective vertical positions in chimney 15.
Alternatively, two or more wells may be drilled to communicate with different levels within chimney 15. A limited amount of the foaming resin formulation may be then injected into each of these wells to treat a specified region of the chimney 15.
One advantage of injecting the foaming resin formulation through a central well is that, by carefully regulating the quantity of such injected materials, the outer portions of the chimney of rubble 21, i.e., zone 28, remain substantially untreated. Injected fluids then tend to flow preferentially near the walls of the chimney 15 but not beyond and improve the overall sweep efficiency of the flow process.
I claim:
1. In a method for producing shale oil from a subterranean formation comprising the steps of:
placing a relatively high energy explosive device within the formation;
exploding the relatively high energy explosive device within the oil shale formation, thereby forming a cavity within the oil shale formation having a roof beneath the overburden which subsequentlycollapses to form a chimney of fragmented oil shale within the oil shale formation, said chimney having a substantially void space formed adjacent to the top thereof; flowing a liquid through voids 'fonned between said oil shale fragments in said chimney, said liquid being adapted to bypass small voids and selectively plug larger voids fon-ned between said oil shale fragments at least in the substantially vertical central portion of said chimney;
igniting hydrocarbons at substantially the top of said chimney; and t v flowing a combustion-supporting fluid through said chimney at substantiallythe top thereof thereby advancing a combustion front down said chimney to substantially the bottom thereof, said fluid flow path of said combustionsupporting fluid tending to besubstantially confined to the vertical outlying portions of said chimney and the untreated small voids within said chimney until the heat I from said combustion front thermally mobilizes the liquid plugging said larger voids thus decomposing said plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within said chimney without said combustion front bypassing the portions of said fragmented oil shale adjacent to said small voids as said combustion front proceeds down said chimney.
2. The method of claim 1 including the step of recovering shale oil displaced from said combustion front.
3. The method of claim 1 including:
the step of extending at least a central well from a surface location to a first point adjacent to a substantially vertical central portion of said chimney; and
subsequently flowing said liquid and said combustion-sup porting fluid through said well and into said chimney.
4., The method of claim 3 wherein the step of flowing a liquid through said voids includes the step of flowing said liquid from a plurality of vertical positions within said central well into said chimney.
a manner such that gravity tends to segregate the inflowing liquid toward the nearest vertical extremity of the chimney.
7. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid which is capable of substantially solidifying in situ thereby materially reducing the permeability of the larger voids in which it is present.
8. The method of claim 7 wherein the step of flowing a liquid capable of substantially solidifying in situ includes flowing a liquid capable of being thermally converted from a substantial solid to a mobile fluid at a temperature between about 400 F. and 1,200 P.
9. The method of claim 8 wherein the step of flowing a combustion-supporting fluid includes the step of flowing a heated fluid at a temperature exceeding the thermal conversion temperature of the substantially solidified liquid formed in situ within said larger voids.
10. The method of claim 8 including the step of terminating the inflowing of liquid when a layer of the liquid extends over a significantly large proportion of the central cross-sectional area of the chimney and allowing said inflowing liquid to solidify in situ prior to igniting said hydrocarbons.
11: The method of claim 10 including the steps of repeating the steps of flowing said liquid and terminating the inflowing of said liquid from a first point within said chimney to an additional point within said chimney closer than than said first point towards the center of said chimney. I
12. The method of claim 11 wherein said first point is a point substantially adjacent to the bottom vertical central portion of said chimney and said repeated steps move upwardly within said chimney along said vertical central portion thereof.
13. The method of claim 11 wherein said first point is a point substantially adjacent to the top vertical central portion of said chimney and said repeated steps move downwardly within said chimney along said vertical central portion thereof.
14. The method of claim 1 including the step producing substantially all of the liquids presentat the bottom of said chimney after forming said chimney and prior to flowing a liquid through said voids so that most of the fluid remaining in said chimney is a gas.
5. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid containing dispersed material which tends to cause the inflowing liquid to bypass said small voids and flow through said larger voids.
6. The method of claim 1 wherein thestep of flowing said liquid includes flowing a liquid havingadensity differing from the formation fluid being displaced from within the chimney in 15. The method of claim 1 wherein the step of flowing a liquid through said voids includes the step of flowing a foaming thermosetting resin formulation through said voids.
16. The method of claim 1 including the step of injecting a fluid adapted to wet preferentially oil shale fragments adjacent said small voids prior to flowing said liquid through said voids.
Claims (16)
1. In a method for producing shale oil from a subterranean formation comprising the steps of: placing a relatively high energy explosive device within the formation; exploding the relatively high energy explosive device within the oil shale formation, thereby forming a cavity within the oil shale formation having a roof beneath the overburden which subsequently collapses to form a chimney of fragmented oil shale within the oil shale formation, said chimney having a substantially void space formed adjacent to the top thereof; flowing a liquid through voids formed between said oil shale fragments in said chimney, said liquid being adapted to bypass small voids and selectively plug larger voids formed between said oil shale fragments at least in the substantially vertical central portion of said chimney; igniting hydrocarbons at substantially the top of said chimney; and flowing a combustion-supporting fluid through said chimney at substantially the top thereof thereby advancing a combustion front down said chimney to substantially the bottom thereof, said fluid flow path of said combustion-supporting fluid tending to be substantially confined to the vertical outlying portions of said chimney and the untreated small voids within said chimney until the heat from said combustion front thermally mobilizes the liquid plugging said larger voids thus decomposing said plugging liquid thereby pyrolyzing substantially all of the fragmented oil shale along a substantially horizontal level within said chimney without said combustion front bypassing the portions of said fragmented oil shale adjacent to said small voids as said combustion front proceeds down said chimney.
2. The method of claim 1 including the step of recovering shale oil displaced from said combustion front.
3. The method of claim 1 including: the step of extending at least a central well from a surfacE location to a first point adjacent to a substantially vertical central portion of said chimney; and subsequently flowing said liquid and said combustion-supporting fluid through said well and into said chimney.
4. The method of claim 3 wherein the step of flowing a liquid through said voids includes the step of flowing said liquid from a plurality of vertical positions within said central well into said chimney.
5. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid containing dispersed material which tends to cause the inflowing liquid to bypass said small voids and flow through said larger voids.
6. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid having a density differing from the formation fluid being displaced from within the chimney in a manner such that gravity tends to segregate the inflowing liquid toward the nearest vertical extremity of the chimney.
7. The method of claim 1 wherein the step of flowing said liquid includes flowing a liquid which is capable of substantially solidifying in situ thereby materially reducing the permeability of the larger voids in which it is present.
8. The method of claim 7 wherein the step of flowing a liquid capable of substantially solidifying in situ includes flowing a liquid capable of being thermally converted from a substantial solid to a mobile fluid at a temperature between about 400* F. and 1,200* F.
9. The method of claim 8 wherein the step of flowing a combustion-supporting fluid includes the step of flowing a heated fluid at a temperature exceeding the thermal conversion temperature of the substantially solidified liquid formed in situ within said larger voids.
10. The method of claim 8 including the step of terminating the inflowing of liquid when a layer of the liquid extends over a significantly large proportion of the central cross-sectional area of the chimney and allowing said inflowing liquid to solidify in situ prior to igniting said hydrocarbons.
11. The method of claim 10 including the steps of repeating the steps of flowing said liquid and terminating the inflowing of said liquid from a first point within said chimney to an additional point within said chimney closer than than said first point towards the center of said chimney.
12. The method of claim 11 wherein said first point is a point substantially adjacent to the bottom vertical central portion of said chimney and said repeated steps move upwardly within said chimney along said vertical central portion thereof.
13. The method of claim 11 wherein said first point is a point substantially adjacent to the top vertical central portion of said chimney and said repeated steps move downwardly within said chimney along said vertical central portion thereof.
14. The method of claim 1 including the step producing substantially all of the liquids present at the bottom of said chimney after forming said chimney and prior to flowing a liquid through said voids so that most of the fluid remaining in said chimney is a gas.
15. The method of claim 1 wherein the step of flowing a liquid through said voids includes the step of flowing a foaming thermosetting resin formulation through said voids.
16. The method of claim 1 including the step of injecting a fluid adapted to wet preferentially oil shale fragments adjacent said small voids prior to flowing said liquid through said voids.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76990668A | 1968-10-23 | 1968-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3565171A true US3565171A (en) | 1971-02-23 |
Family
ID=25086856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US769906A Expired - Lifetime US3565171A (en) | 1968-10-23 | 1968-10-23 | Method for producing shale oil from a subterranean oil shale formation |
Country Status (1)
Country | Link |
---|---|
US (1) | US3565171A (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945679A (en) * | 1975-03-03 | 1976-03-23 | Shell Oil Company | Subterranean oil shale pyrolysis with permeating and consolidating steps |
US4121662A (en) * | 1977-06-03 | 1978-10-24 | Kilburn James S | Water purification with fragmented oil shale |
US5411098A (en) * | 1993-11-09 | 1995-05-02 | Atlantic Richfield Company | Method of stimulating gas-producing wells |
US20050269088A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Inhibiting effects of sloughing in wellbores |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US20070284108A1 (en) * | 2006-04-21 | 2007-12-13 | Roes Augustinus W M | Compositions produced using an in situ heat treatment process |
US20080236831A1 (en) * | 2006-10-20 | 2008-10-02 | Chia-Fu Hsu | Condensing vaporized water in situ to treat tar sands formations |
US20090071647A1 (en) * | 2003-04-24 | 2009-03-19 | Vinegar Harold J | Thermal processes for subsurface formations |
US20090090158A1 (en) * | 2007-04-20 | 2009-04-09 | Ian Alexander Davidson | Wellbore manufacturing processes for in situ heat treatment processes |
US20090194286A1 (en) * | 2007-10-19 | 2009-08-06 | Stanley Leroy Mason | Multi-step heater deployment in a subsurface formation |
US20090272536A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20100155070A1 (en) * | 2008-10-13 | 2010-06-24 | Augustinus Wilhelmus Maria Roes | Organonitrogen compounds used in treating hydrocarbon containing formations |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US8200072B2 (en) | 2002-10-24 | 2012-06-12 | Shell Oil Company | Temperature limited heaters for heating subsurface formations or wellbores |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8701788B2 (en) | 2011-12-22 | 2014-04-22 | Chevron U.S.A. Inc. | Preconditioning a subsurface shale formation by removing extractible organics |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8839860B2 (en) | 2010-12-22 | 2014-09-23 | Chevron U.S.A. Inc. | In-situ Kerogen conversion and product isolation |
US8851177B2 (en) | 2011-12-22 | 2014-10-07 | Chevron U.S.A. Inc. | In-situ kerogen conversion and oxidant regeneration |
US8992771B2 (en) | 2012-05-25 | 2015-03-31 | Chevron U.S.A. Inc. | Isolating lubricating oils from subsurface shale formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9033033B2 (en) | 2010-12-21 | 2015-05-19 | Chevron U.S.A. Inc. | Electrokinetic enhanced hydrocarbon recovery from oil shale |
US9181467B2 (en) | 2011-12-22 | 2015-11-10 | Uchicago Argonne, Llc | Preparation and use of nano-catalysts for in-situ reaction with kerogen |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113620A (en) * | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3251414A (en) * | 1962-10-30 | 1966-05-17 | Exxon Production Research Co | Method for control of water injection profiles |
US3342257A (en) * | 1963-12-30 | 1967-09-19 | Standard Oil Co | In situ retorting of oil shale using nuclear energy |
US3342263A (en) * | 1965-05-12 | 1967-09-19 | Union Oil Company Of Califonia | Method and composition for treating subterranean formations |
US3369603A (en) * | 1965-09-02 | 1968-02-20 | Phillips Petroleum Co | Plugging of a formation adjacent an oil stratum |
US3369601A (en) * | 1965-01-21 | 1968-02-20 | Union Oil Co | Secondary recovery method |
US3460620A (en) * | 1967-06-12 | 1969-08-12 | Phillips Petroleum Co | Recovering oil from nuclear chimneys in oil-yielding solids |
US3465819A (en) * | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
-
1968
- 1968-10-23 US US769906A patent/US3565171A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113620A (en) * | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3251414A (en) * | 1962-10-30 | 1966-05-17 | Exxon Production Research Co | Method for control of water injection profiles |
US3342257A (en) * | 1963-12-30 | 1967-09-19 | Standard Oil Co | In situ retorting of oil shale using nuclear energy |
US3369601A (en) * | 1965-01-21 | 1968-02-20 | Union Oil Co | Secondary recovery method |
US3342263A (en) * | 1965-05-12 | 1967-09-19 | Union Oil Company Of Califonia | Method and composition for treating subterranean formations |
US3369603A (en) * | 1965-09-02 | 1968-02-20 | Phillips Petroleum Co | Plugging of a formation adjacent an oil stratum |
US3465819A (en) * | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
US3460620A (en) * | 1967-06-12 | 1969-08-12 | Phillips Petroleum Co | Recovering oil from nuclear chimneys in oil-yielding solids |
Cited By (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945679A (en) * | 1975-03-03 | 1976-03-23 | Shell Oil Company | Subterranean oil shale pyrolysis with permeating and consolidating steps |
US4121662A (en) * | 1977-06-03 | 1978-10-24 | Kilburn James S | Water purification with fragmented oil shale |
US5411098A (en) * | 1993-11-09 | 1995-05-02 | Atlantic Richfield Company | Method of stimulating gas-producing wells |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8200072B2 (en) | 2002-10-24 | 2012-06-12 | Shell Oil Company | Temperature limited heaters for heating subsurface formations or wellbores |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US20090071647A1 (en) * | 2003-04-24 | 2009-03-19 | Vinegar Harold J | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20050269088A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Inhibiting effects of sloughing in wellbores |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7357180B2 (en) * | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US20110170843A1 (en) * | 2005-04-22 | 2011-07-14 | Shell Oil Company | Grouped exposed metal heaters |
US7986869B2 (en) * | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US20080017380A1 (en) * | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US20070284108A1 (en) * | 2006-04-21 | 2007-12-13 | Roes Augustinus W M | Compositions produced using an in situ heat treatment process |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080236831A1 (en) * | 2006-10-20 | 2008-10-02 | Chia-Fu Hsu | Condensing vaporized water in situ to treat tar sands formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US20090090158A1 (en) * | 2007-04-20 | 2009-04-09 | Ian Alexander Davidson | Wellbore manufacturing processes for in situ heat treatment processes |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US20090321071A1 (en) * | 2007-04-20 | 2009-12-31 | Etuan Zhang | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US20090200022A1 (en) * | 2007-10-19 | 2009-08-13 | Jose Luis Bravo | Cryogenic treatment of gas |
US20090194286A1 (en) * | 2007-10-19 | 2009-08-06 | Stanley Leroy Mason | Multi-step heater deployment in a subsurface formation |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US20090200290A1 (en) * | 2007-10-19 | 2009-08-13 | Paul Gregory Cardinal | Variable voltage load tap changing transformer |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100071903A1 (en) * | 2008-04-18 | 2010-03-25 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US20090272526A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20090272536A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US20100155070A1 (en) * | 2008-10-13 | 2010-06-24 | Augustinus Wilhelmus Maria Roes | Organonitrogen compounds used in treating hydrocarbon containing formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9033033B2 (en) | 2010-12-21 | 2015-05-19 | Chevron U.S.A. Inc. | Electrokinetic enhanced hydrocarbon recovery from oil shale |
US8997869B2 (en) | 2010-12-22 | 2015-04-07 | Chevron U.S.A. Inc. | In-situ kerogen conversion and product upgrading |
US9133398B2 (en) | 2010-12-22 | 2015-09-15 | Chevron U.S.A. Inc. | In-situ kerogen conversion and recycling |
US8936089B2 (en) | 2010-12-22 | 2015-01-20 | Chevron U.S.A. Inc. | In-situ kerogen conversion and recovery |
US8839860B2 (en) | 2010-12-22 | 2014-09-23 | Chevron U.S.A. Inc. | In-situ Kerogen conversion and product isolation |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US8701788B2 (en) | 2011-12-22 | 2014-04-22 | Chevron U.S.A. Inc. | Preconditioning a subsurface shale formation by removing extractible organics |
US8851177B2 (en) | 2011-12-22 | 2014-10-07 | Chevron U.S.A. Inc. | In-situ kerogen conversion and oxidant regeneration |
US9181467B2 (en) | 2011-12-22 | 2015-11-10 | Uchicago Argonne, Llc | Preparation and use of nano-catalysts for in-situ reaction with kerogen |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US8992771B2 (en) | 2012-05-25 | 2015-03-31 | Chevron U.S.A. Inc. | Isolating lubricating oils from subsurface shale formations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3565171A (en) | Method for producing shale oil from a subterranean oil shale formation | |
US3593789A (en) | Method for producing shale oil from an oil shale formation | |
US3537528A (en) | Method for producing shale oil from an exfoliated oil shale formation | |
US3474863A (en) | Shale oil extraction process | |
US3578080A (en) | Method of producing shale oil from an oil shale formation | |
US3515213A (en) | Shale oil recovery process using heated oil-miscible fluids | |
US10655441B2 (en) | Stimulation of light tight shale oil formations | |
US3113620A (en) | Process for producing viscous oil | |
US4327805A (en) | Method for producing viscous hydrocarbons | |
US7740069B2 (en) | Process for two-step fracturing of subsurface formations | |
US3120264A (en) | Recovery of oil by in situ combustion | |
US3682246A (en) | Fracturing to interconnect wells | |
US3513913A (en) | Oil recovery from oil shales by transverse combustion | |
US4817717A (en) | Hydraulic fracturing with a refractory proppant for sand control | |
US4185693A (en) | Oil shale retorting from a high porosity cavern | |
US3692111A (en) | Stair-step thermal recovery of oil | |
US3593790A (en) | Method for producing shale oil from an oil shale formation | |
US2962095A (en) | Underground combustion process for oil recovery | |
US4042029A (en) | Carbon-dioxide-assisted production from extensively fractured reservoirs | |
US4522260A (en) | Method for creating a zone of increased permeability in hydrocarbon-containing subterranean formation penetrated by a plurality of wellbores | |
US3434757A (en) | Shale oil-producing process | |
US4034812A (en) | Method for recovering viscous petroleum from unconsolidated mineral formations | |
US3055423A (en) | Controlling selective plugging of carbonaceous strata for controlled production of thermal drive | |
US4078608A (en) | Thermal oil recovery method | |
US3303883A (en) | Thermal notching technique |