US3515213A - Shale oil recovery process using heated oil-miscible fluids - Google Patents

Shale oil recovery process using heated oil-miscible fluids Download PDF

Info

Publication number
US3515213A
US3515213A US3515213DA US3515213A US 3515213 A US3515213 A US 3515213A US 3515213D A US3515213D A US 3515213DA US 3515213 A US3515213 A US 3515213A
Authority
US
United States
Prior art keywords
oil
oil shale
fluid
zone
shale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Michael Prats
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Oil Co
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US63200667A priority Critical
Application granted granted Critical
Publication of US3515213A publication Critical patent/US3515213A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Description

M. PRATS June 2, 1970 SHALE OIL RECOVERY PROCESS. USING HEATED OIL-MISCIBLE FLUIDS Filed April 19, 1967 FIG. 2

FIG.4

TIME DAYS s A H. G O

INVENTORI MICHAEL BYI 9F'ATS HIS ATTORNEY FIG United States Patent Olce 3,515,213 Patented June 2, 1970 3,515,213 SHALE OIL RECOVERY PROCESS USING HEATED OIL-MISCIBLE FLUIDS Michael Prats, Houston, Tex., assignor to Shell Oil Company, New York, N.Y., a corporation of Delaware Filed Apr. 19, 1967, Ser. No. 632,006 Int. Cl. E21b 43/22, 43/24 U.S. Cl. 166-252 5 Claims ABSTRACT OF THE DISCLOSURE Shale oil is recovered from a subterranean oil shale formation by circulating a fluid heated at a moderate temperature from one point within the formation to another for a relatively long period of time until a significant proportion of the organic components contained in the oil shale formation is converted to oil-shale-derived lluidizable materials.

BACKGROUND OF THE INVENTION The invention relates to a method for recovering shale oil from an oil Shale formation. More particularly, it relates to a method of recovering shale oil from an oil shale formation by heating the walls of a permeable channel to a moderate temperature for a relatively long period of time, thereby recovering kerogen components that are being converted to lluidizable materials while the zone that is being heated expands.

The kerogen in an oil shale formation can be converted to fluidizable materials by prior art in-situ retorting processes. In these prior art processes, temperatures of over 700 F., and preferably 950 F., however, are used to convert the solid organic matter in the oil shale to useful recoverable products in relatively short times.

These prior art processes generally involve drilling wells into the oil shale formation and creating a horizontal fracture between the Wells to -provide a path for injected and produced fluids. A burner is operated in the injection well to start combustion in the oil shale formation. The burning zone then is moved outward from the injection Well at a controlled rate while heat flows by conduction from the burning zone to adjacent oil shale. The hydrocarbons produced -by pyrolysis llow into the stream of -gaseous combustion products and are swept through the fracture system into producing wells. Very complex heat transfer problems are involved. Relatively high temperatures, for example, 900-95 0 F., are required for etllcient separation of the hydrocarbons from the oil shale.

SUMMARY OF THE INVENTION It has been found that the kerogen in an oil shale formation undergoes a low-temperature conversion to fluidizable materials capable of being displaced, dissolved, or entrained in a hot fluid that contacts the oil shale. It is becoming increasingly evident that it may prove to lbe economically attractive to produce shale oil from an oil shale formation by a relatively long, moderately low temperature heating operation. f

In accordance with the teachings of the invention, the kerogen in an oil shale formation, which is normally a substantially insoluble solid material, is converted to fluidizable materials at a slow but significant rate at temperatures that are well below the usual retorting temperatures, the latter being generally above 900 F. Thus, the retorting or pyrolyzing conversions of the components of oil shales are not reactions in which a relatively high threshold temperature must be exceeded before a conversion occurs.

In general, the invention consists of a process for producing hydrocarbons from a subterranean oil shale formation by extending at least one well borehole into a subterranean oil shale formation, determining the depths of at least two points that encounter a zone that is capable of forming a permeable channel within the oil shale formation wherein at least one of the points is encountered by at least one of the boreholes, establishing preferential lluid communication between at least one of the boreholes and the adjacent oil shale at both of the so-encountered points and forming a permeable channel that extends through the oil shale formation from one to another of the points. Fluid is then circulated through the permeable channel from one to another of the points while heating and flowing the fluid at rates such that the temperature of the outgoing iluid is from about 10 F. greater than the natural temperature of the oil shale to about 600 F. until at least some of the organic components of the oil shale are converted to oil shale derived lluidizable materials capable of being extracted from the oil shale by entraining them in the circulating fluid.

It is an object of this invention to utilize the practices discussed above to recover oil from a subterranean oil shale formation while circulating lluid through the oil shale at much lower temperatures than required previously.

Other objects of this invention will be pointed out in the following detailed description and claims and illustrated in the accompanying drawings, which disclose, by way of example, the principles of this invention and the preferred method of applying these principles.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical view of an oil shale stratum to which the recovery process of this invention has been applied involving a single well.

FIG. 2 is a vertical sectional view of an oil shale stratum to which the recovery process of this invention has been applied to a pair of wells.

FIG. 3 is a vertical sectional view of an alternate recovery process of the invention applied to a single well.

FIG. 4 is a graphical illustration of the weight loss of an oil shale formation over a relatively long period of time.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning to the drawing, FIG. l shows awell borehole 11 extending into subterranean oil shale formation 12. Fluid communication is established between points 13 and 14 in oil shale formation 12 and adjacent to borehole 11 along a vertical fracture by', for example, a conventional hydraulic fracturing procedure. A iluid is then circulated through tubing 17 past packers 18 and 19', while being heated, until the oil shale derived lluidiza'ble materials are entrained in the circulating fluid. 'Ihe fluid passes through perforations 20 and 21 in casing 22. Of course, if the Wellbore 11 is uncased, such perforations would be unnecessary. These iluidizable materials can then be recovered from the outilowing portions of the circulating fluid by any known means. Thus, a single well may be used, although it is generally preferred to use at least a pair of wells. As seen in FIG. 1, if a single well is used, the preferred two points may be a pair of substantially vertically separated points that are apt to be encountered by vertical fractures within the oil shale.

As shown in FIG. 2, a pair of wellbores 23 and 24 extend into subterranean oil shale formation 25. Fluid communication is established between point 26 adjacent wellbore 23 and point 27 adjacent wellbore 24. In a preferred embodiment, the depths of such points may be those at which a tuaceous streak is encountered by a pair of wells between which the streak is continuous. The permeable channel extending through the oil shale may be formed by the process of locating and acidizing a tuffaceous streak, described in application Ser. No. 619,259 filed Feb. 28, 1967. A fluid is then circulated through tubing 25 past packer 30, while being heated, until the oil shale derived fluidizable materials are entrained in the circulating fluid. The circulating fluid would pass through perforations 31 in the casing 32 of wellbore 23, through points 26 and 27, and through perforations 33 in the casing 34 of wellbore 24. Again, if the Well is uncased, such perforations would be unnecessary. Fluidizable materials which are derived from the oil shale can then be recovered from the circulated fluid by any known means.

The circulation of the hot fluid may be a long-duration heating operation and, for some time, the amount of oil production may be insignificant. The temperature of the circulating fluid is preferably monitored either at the point at which the fluid flows out of the permeable path or the wellhead.

Oil shales are generally impermeable. Once a permeable path has been established between a pair of Wells, the permeable path will provide substantially the only zone that can be penetrated by a fluid injected into either of the wells. In view of this, relatively simple equipment can be utilized to circulate the heated fluid through the permeable path between the selected points. The fluid can be pumped through a heating device, through the permeable path, through a temperature-monitoring device, and then recycled back through the heating device. The duration of the heating that is necessary for a given oil shale can be determined by maintaining a sample of the shale at an equivalent temperature for an equivalent time until a suitable degree of conversion is obtained. This can be done prior to or while circulating the fluid.

In FIG. 3, an alternate recovery process, which can be operated with a single well, is illustrated. Here, the permeable channel formed within oil shale formation 12 is preferably a relatively voluminous permeable fragmented zone 35. The term permeable fragmented zone refers to a multiply fractured zone in Which the number of the fractures and the volume of the interconnected openings Within the fractures provide a void volume of from about to 40 percent of the volume of the zone.

Permeable fragmented zones can be formed by known hydraulic and/or explosive techniques for fracturing subsurface earth formations. One suitable fracturing technique was described in 1922, in Pat. 1,422,204. The streak acidizing procedure of application Ser. No. 619,259, filed Feb. 28, 1967 can be used, preferably to form a channel into which a liquid explosive is injected and subsequently detonated to form a generally disc-shaped permeable fragmented zone. High-power explosives, such asthose produced by nuclear devices, are particularly suitable means for forming such fragmented zones. In general, the permeable fragmented zone formed by a nuclear de- 'vice has a vertically extensive and generally cylindrical shape. i

In circulating heated fluid through a permeable fragmented zone, the flow paths can be vertical or horizontal and can involve a radially-expanding or line-drive type displacement of the fluid that is circulated through the oil shale. Generally, a substantially vertical downward flow is preferred.

FIG. 3 illustrates a portion of a nuclear chimney type of permeable fragmented zone 35. In treating such a zone, one or more wells 36 are drilled to near the bottom, preferably while the zone is hot, or at least warm, from the explosion energy. In the illustrated arrangement of FIG. 3, the Well 36 is drilled and cased to near the bottom and the casing 37 is perforated at 38 and 39 and equipped for injecting uid through the borehole annulus above packer 18, and through perforations 38 into the upper portion of the fragmented zone. Fluid is produced 4 from near the bottom of the zone through perforations 39 and tubing string 40.

With such an arrangement, the pressure within the permeable fragmented zone is adjusted to one selected for the circulation of heated fluid. The adjustment is affected by controlling the rate of withdrawing fluid from the cavern relative to the rate of injecting fluid into the cavern. As indicated in FIG. 3, conventional equipment and techniques, such as heater 41, pump 41a, separator 42 and heat exchanger 43, can be used for pressurizing, heating, injecting, producing, and separating components of the fluid that are circulated through the permeable zone 35. The production of the fluid can be aided by downhole pumping means, not shown, or restricted to the extent necessary to maintain the selected pressure within the zone. The pressure in the zone is preferably maintained at a level suited for economically transferring heat into the zone by circulating a fluid that is economically available at the Well site.

A Wide variety of fluids can be used in this process. The main requirements are that the fluid be pumpable at a moderate temperature such as from about 400l to 600 F. Aqueous liquids or streams of various grades, such as low quality steam, dry steam, or super saturated steam, can be used. Such aqueous fluids should be softened as required to inhibit scaling at the temperatures to which they are heated. Oil-miscible fluids are generally preferred. The relatively low cost volatile hydrocarbons that contain or consist essentially of volatile oil shale hydrocarbons are particularly suitable.

In certain situations, it is advantageous to circulate a mixture of relatively low molecular weight, predominantly aromatic hydrocarbons having relatively low critical temperatures and pressures. With such hydrocarbons (which may include significant proportions of shale oil hydrocarbon) the temperatures and pressures Within the permeable zone can provide conditions approaching or exceeding the critical conditions for part or all of the circulating hydrocarbons. In the critical or supercritical region, such hydrocarbons have densities and viscosities that are intermediate between their gas and liquid states and are particularly effective in extracting organic components from oil shale.

FIG. 4 shows graphically the heating of oil shale over a period of days at a temperature of 550 F. and 60 p.s.i.g., total pressure. The results were plotted to show the percent weight loss per time being heated. These results show that fluidization occurs at a relatively slow, but significant rate.

It has been found that the pyrolysis of the oil shale utilizing the process of the instant invention is significantly benefited by the presence of hydrogen sulfide. Thus, in this process it is desirable, in certain situations, to mix significant proportions of hydrogen sulfide or hydrogen sulfide plus hydrogen with either or both the fluid which is circulated to effect the heating and the fluid which is circulated to displace or extract the oil. Such situations would be those in which an adequate supply of such additives are available at the well site at relatively lowcost. Such additives are preferably used, with recycling, where an oil miscible uid is being circulated, separated from the entrained oil and recycled. Significant proportions would be those capable of causing a significant increase in the rate of oil production. Such proportions may be as low as about one mole percent of the circulating fluid. These proportions can be increased to whatever extent is economically desirable.

I claim as my invention:

1. In a process for producing hydrocarbons from a subterranean oil shale formation comprising the steps of:

extending at least one well borehole into a subterranean oil shale formation;

determining the depth of at least tw'o points at which a zone capable of forming a permeable channel Within the oil shale formation is adjacent to at least one well borehole that extends into the oil shale formation;

establishing ud communication between at least one of said boreholes and the adjacent zone at at least two of said points and forming a permeable channel that extends through the oil shale from one to another of said points; and

circulating an oil-miscible fluid containing hydrogen sulfide therein through the permeable channel from one to another of said points while heating and flowing the uid at rates such that the temperature of the outgoing uid is from about 10 F. greater than the natural temperature of the oil shale to about 600 F. until a significant proportion of the organic components of the heated oil shale are converted to oil-shale-derived uidizable materials.

2. In the process of claim 1 including the step of extracting the oil-shale derived fiuidizable materials from the heated oil shale by entraining such materials in outowing portions of the circulating fluid.

3. In the process of claim 2 including the step of recovering the oil-Shale-derived uidizable materials from the outowing portions of the circulating uid.

References Cited] UNITED STATES PATENTS Marx et al. 166-11 Graham 166-11 X Thomas 16611 X Strubhar 166-11 Jacobs et al. 166-11 Vogel 166-11 X Needham 166-11 STEPHEN J. NOVOSAD, Primary Examiner U.S. Cl. X.R.

US3515213D 1967-04-19 1967-04-19 Shale oil recovery process using heated oil-miscible fluids Expired - Lifetime US3515213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US63200667A true 1967-04-19 1967-04-19

Publications (1)

Publication Number Publication Date
US3515213A true US3515213A (en) 1970-06-02

Family

ID=24533690

Family Applications (1)

Application Number Title Priority Date Filing Date
US3515213D Expired - Lifetime US3515213A (en) 1967-04-19 1967-04-19 Shale oil recovery process using heated oil-miscible fluids

Country Status (1)

Country Link
US (1) US3515213A (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695354A (en) * 1970-03-30 1972-10-03 Shell Oil Co Halogenating extraction of oil from oil shale
US3730270A (en) * 1971-03-23 1973-05-01 Marathon Oil Co Shale oil recovery from fractured oil shale
US3776309A (en) * 1971-05-28 1973-12-04 Exxon Production Research Co Viscous surfactant water flooding
US3881551A (en) * 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3882941A (en) * 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US4116275A (en) * 1977-03-14 1978-09-26 Exxon Production Research Company Recovery of hydrocarbons by in situ thermal extraction
US4157847A (en) * 1977-07-28 1979-06-12 Freeport Minerals Company Method and apparatus for utilizing accumulated underground water in the mining of subterranean sulphur
US4220202A (en) * 1970-03-23 1980-09-02 Aladiev Ivan T Apparatus for realization of rock exploitation method based on thermodynamic cycles utilizing in situ energy source
US4362213A (en) * 1978-12-29 1982-12-07 Hydrocarbon Research, Inc. Method of in situ oil extraction using hot solvent vapor injection
US4438816A (en) * 1982-05-13 1984-03-27 Uop Inc. Process for recovery of hydrocarbons from oil shale
US4448251A (en) * 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4449586A (en) * 1982-05-13 1984-05-22 Uop Inc. Process for the recovery of hydrocarbons from oil shale
US4501445A (en) * 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US20070023186A1 (en) * 2003-11-03 2007-02-01 Kaminsky Robert D Hydrocarbon recovery from impermeable oil shales
WO2007031227A1 (en) * 2005-09-16 2007-03-22 Diehl Stiftung & Co Kg Method for producing a hdr heat exchanger
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
WO2013132137A1 (en) * 2012-03-05 2013-09-12 Oilwhaleoy Method and apparatus for extracting oil from the soil comprising oil or from the solid materials comprising oil
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8839860B2 (en) 2010-12-22 2014-09-23 Chevron U.S.A. Inc. In-situ Kerogen conversion and product isolation
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9399907B2 (en) 2013-11-20 2016-07-26 Shell Oil Company Steam-injecting mineral insulated heater design
CN106050206A (en) * 2016-08-01 2016-10-26 中嵘能源科技集团有限公司 Air drive reservoir oxygen-enriched gas injection spontaneous ignition method
CN106089164A (en) * 2016-08-01 2016-11-09 中嵘能源科技集团有限公司 Air-injection displacement oil production method for producing oil from horizontal wells by means of injecting air in vertical wells
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813583A (en) * 1954-12-06 1957-11-19 Phillips Petroleum Co Process for recovery of petroleum from sands and shale
US3136359A (en) * 1961-08-11 1964-06-09 Thomas T Graham Method of treating oil wells
US3284281A (en) * 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3322194A (en) * 1965-03-25 1967-05-30 Mobil Oil Corp In-place retorting of oil shale
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3358756A (en) * 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3382922A (en) * 1966-08-31 1968-05-14 Phillips Petroleum Co Production of oil shale by in situ pyrolysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813583A (en) * 1954-12-06 1957-11-19 Phillips Petroleum Co Process for recovery of petroleum from sands and shale
US3136359A (en) * 1961-08-11 1964-06-09 Thomas T Graham Method of treating oil wells
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3284281A (en) * 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3358756A (en) * 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3322194A (en) * 1965-03-25 1967-05-30 Mobil Oil Corp In-place retorting of oil shale
US3382922A (en) * 1966-08-31 1968-05-14 Phillips Petroleum Co Production of oil shale by in situ pyrolysis

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220202A (en) * 1970-03-23 1980-09-02 Aladiev Ivan T Apparatus for realization of rock exploitation method based on thermodynamic cycles utilizing in situ energy source
US3695354A (en) * 1970-03-30 1972-10-03 Shell Oil Co Halogenating extraction of oil from oil shale
US3730270A (en) * 1971-03-23 1973-05-01 Marathon Oil Co Shale oil recovery from fractured oil shale
US3776309A (en) * 1971-05-28 1973-12-04 Exxon Production Research Co Viscous surfactant water flooding
US3881551A (en) * 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3882941A (en) * 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US4116275A (en) * 1977-03-14 1978-09-26 Exxon Production Research Company Recovery of hydrocarbons by in situ thermal extraction
US4157847A (en) * 1977-07-28 1979-06-12 Freeport Minerals Company Method and apparatus for utilizing accumulated underground water in the mining of subterranean sulphur
US4362213A (en) * 1978-12-29 1982-12-07 Hydrocarbon Research, Inc. Method of in situ oil extraction using hot solvent vapor injection
US4448251A (en) * 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4438816A (en) * 1982-05-13 1984-03-27 Uop Inc. Process for recovery of hydrocarbons from oil shale
US4449586A (en) * 1982-05-13 1984-05-22 Uop Inc. Process for the recovery of hydrocarbons from oil shale
US4501445A (en) * 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US7441603B2 (en) 2003-11-03 2008-10-28 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US7857056B2 (en) 2003-11-03 2010-12-28 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US20070023186A1 (en) * 2003-11-03 2007-02-01 Kaminsky Robert D Hydrocarbon recovery from impermeable oil shales
US20090038795A1 (en) * 2003-11-03 2009-02-12 Kaminsky Robert D Hydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
WO2007031227A1 (en) * 2005-09-16 2007-03-22 Diehl Stiftung & Co Kg Method for producing a hdr heat exchanger
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9755415B2 (en) 2010-10-08 2017-09-05 Shell Oil Company End termination for three-phase insulated conductors
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US8936089B2 (en) 2010-12-22 2015-01-20 Chevron U.S.A. Inc. In-situ kerogen conversion and recovery
US9133398B2 (en) 2010-12-22 2015-09-15 Chevron U.S.A. Inc. In-situ kerogen conversion and recycling
US8839860B2 (en) 2010-12-22 2014-09-23 Chevron U.S.A. Inc. In-situ Kerogen conversion and product isolation
US8997869B2 (en) 2010-12-22 2015-04-07 Chevron U.S.A. Inc. In-situ kerogen conversion and product upgrading
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
WO2013132137A1 (en) * 2012-03-05 2013-09-12 Oilwhaleoy Method and apparatus for extracting oil from the soil comprising oil or from the solid materials comprising oil
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9399907B2 (en) 2013-11-20 2016-07-26 Shell Oil Company Steam-injecting mineral insulated heater design
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
CN106089164A (en) * 2016-08-01 2016-11-09 中嵘能源科技集团有限公司 Air-injection displacement oil production method for producing oil from horizontal wells by means of injecting air in vertical wells
CN106050206A (en) * 2016-08-01 2016-10-26 中嵘能源科技集团有限公司 Air drive reservoir oxygen-enriched gas injection spontaneous ignition method

Similar Documents

Publication Publication Date Title
US3284281A (en) Production of oil from oil shale through fractures
US3294167A (en) Thermal oil recovery
US3521709A (en) Producing oil from oil shale by heating with hot gases
US3513913A (en) Oil recovery from oil shales by transverse combustion
US3455383A (en) Method of producing fluidized material from a subterranean formation
US3382922A (en) Production of oil shale by in situ pyrolysis
US3386508A (en) Process and system for the recovery of viscous oil
US3578080A (en) Method of producing shale oil from an oil shale formation
US3554285A (en) Production and upgrading of heavy viscous oils
US3502372A (en) Process of recovering oil and dawsonite from oil shale
US3455392A (en) Thermoaugmentation of oil production from subterranean reservoirs
US3434541A (en) In situ combustion process
US3565171A (en) Method for producing shale oil from a subterranean oil shale formation
US4037658A (en) Method of recovering viscous petroleum from an underground formation
US3474863A (en) Shale oil extraction process
AU2004288130B2 (en) Hydrocarbon recovery from impermeable oil shales
US6918444B2 (en) Method for production of hydrocarbons from organic-rich rock
CA1274468A (en) Hasdrive with offset producers
US3994341A (en) Recovering viscous petroleum from thick tar sand
US3951457A (en) Hydraulic mining technique for recovering bitumen from tar sand deposit
US4020901A (en) Arrangement for recovering viscous petroleum from thick tar sand
US3358756A (en) Method for in situ recovery of solid or semi-solid petroleum deposits
US4867241A (en) Limited entry, multiple fracturing from deviated wellbores
US5377756A (en) Method for producing low permeability reservoirs using a single well
US3051235A (en) Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation