US3618663A - Shale oil production - Google Patents

Shale oil production Download PDF

Info

Publication number
US3618663A
US3618663A US3618663DA US3618663A US 3618663 A US3618663 A US 3618663A US 3618663D A US3618663D A US 3618663DA US 3618663 A US3618663 A US 3618663A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
shale
chimney
oil
temperature
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Riley B Needham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2403Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of nuclear energy

Abstract

A nuclear device is positioned in a shale oil formation and detonated to produce a chimney of fractured oil shale with lean shale at the bottom and rich shale near the top of the chimney and producing shale oil by retorting with a heated gas, preferably at a low temperature for a prolonged period followed with retorting at a higher temperature to yield shale oil.

Description

United States Patent inventor Riley B. Needham Bartlesvllle, Okla. Appl. No. 820,777 Filed May 1, 1969 Patented Nov. 9, 1971 Assignee Phillip Petroleum Company SHALE OlL PRODUCTION 5 Claims, 2 Drawing Figs.

US. Cl 166/247, 166/254. 166/272, 166/303 Int. Cl E2lh43/24, 1521b 43/26 Field of Search 166/247. 272. 303, 271, 254

a Is

[56] References Cited UNITED STATES PATENTS 3,342,257 9/1967 Jacobs etal. 1 166/247 3.465.819 9/1969 Dixon 166/247 Primary Examiner-Stephen J. Novosad V Auorney-Young & Quigg 2-1 3= 40 4a SHALE RICHNES$,GA1

i ON FR 'ON PATENTEDuuv 9 I971 SHEET 1 0F 2 50 z CL I l l l I l l l J l 8 I6 24 32 40 48 SHALERICHNESS, GALLON PER TON F G INVENTOR.

RB. NEEDHAM BY A T TORNE VS P ATENTEDuuv 9 an SHEET 2 OF 2 modmntwmzmh wizm TIME,DAYS

FIG. 2

INVENTOR.

N EEDHAM A TTORNEYS SHALE OIL PRODUCTION BACKGROUND OF THE INVENTION This invention relates to improvements inrecovery of oil from subsurface oil shale and similar formations. In accordance with one aspect, this invention relates to an improvement for fracturing an oil shale formation with a nuclear device to form a chimney and retorting of the mass of fractured oil shale in the chimney with a heated gas. In accordance with another aspect, thisinvention relates to a method for strategically locating a nuclear device in an oil shale formation in order to produce a usable nuclear chimney which can be heated at a lower temperature in order to maintain more permeability without compaction of the shale causing plugging. In accordance with a further aspect, this invention relates to the determining of where to locate a nuclear device in order to produce a nuclear chimney comprising a mass of fractured oil shale with lean shale at the bottom and rich shale near the top of the chimney, followed by producing shale oil from the chimney by heating stepwise at different temperatures.

Despite the widespread occurrence of oil shale throughout much'of the world, the large scale recovery of shale oil from such deposits has not been widely practiced. The barriers of geology, technology and economics have heretofore effectively prevented more than token use of this source of oil. Geologically, many of the potentially most productive shales are covered by deep overburdens of earth and rock and, except in a few instances of outcroppings or surface valleys, are inaccessible for commercial recovery. Technologically, oil shale occurs as a relatively compact, impermeable rock which by present practice must be crushed or fractured by mechanical means before oil can be recovered by retorting the fragments;

because of this imperrneability, in situ retorting of oil shale has not met with success. From the economic standpoint, shale mining by open pit methods involves problems of overburden disposal, transportation to the refinery, crushing and grinding and disposal of spent shale. Similarly, underground mining by gallery techniques and subsequent crushing and heating in special retorts is hardly suitable when considering current day liquid fuel requirements.

Control of the tremendous energy of nuclear devices for peacetime uses has of late become a subject of considerable interest. Withthe knowledge that such energy in the form of thermal nuclear explosives should be available for a fraction of a mil per kilowatt hour equivalent, numerous applications involving underground explosions have been proposed. Further, it has now been realized that ultrahigh energy explosions can be used in mining operations to break up formations in the oil industry to increase or stimulate productivity by heating or raising the pressure of a reservoir and in landscaping or earth moving techniques such as digging canals, making harbors or removing troublesome obstacles.

The present invention is primarily directed to the production of oil utilizing an underground explosion chamber in a bituminous deposit suitable for the explosion of a high energy explosive charge. A nuclear explosion within a bed of shale deep in the earth produces a huge chimney containing a mass of shale rubble which has high permeability and is amenable to production by contacting the shale with hot gases. The nuclear chimney may have a diameter of 600 feet and a height of about 1,400 feet. In heating oil shale with hot gases, one of the problems encountered is that of plastic flow which greatly reduces or completely eliminates permeability, thereby hindering or terminating the pyrolysis operation. This invention is concerned with the strategic location of a nuclear device prior to detonation to form a chimney with lean shale near the bottom and rich shale near the top and subsequent heating with hot gases with the reduction or prevention of plastic flow during the heating of the oil shale, with such gases.

Accordingly, it is an object of this invention to provide a method for producing a usable nuclear chimney in a bituminous formation.

Another object of this invention is to provide a process for producing oil from an oil shale by pyrolysis with hot gases which avoids or substantially diminishes plastic flow of the shale.

Another object is to provide a process for producing oil from shale rubble in a nuclear chimney by effecting pyrolysis with hot gas while avoiding substantial plastic flow of the shale.

A further object of this invention is to provide a process for heating a nuclear chimney at a lower temperature in order to maintain more permeability without'compaction of the shale causing plugging.

Other objects and aspects as well as the several advantages of the invention will become apparent to those skilled in the art upon consideration of the accompanying disclosure and the appended claims.

SUMMARY OF THE INVENTION manner that upon detonation of the nuclear device-a nuclear chimney comprising a mass of fractured oil shale is produced wherein the crumbled shale is lean shale at the bottom and rich near the top of the chimney.

' In accordance with another embodiment of the invention, a mass of fractured or broken oil shale in a nuclear chimney having lean shale at the bottom and rich shale near the top is produced by being preheated with a heating gas at a temperature not in excess of 650 F. for a prolonged period of time so as to maintain permeability of the shale without compaction of the shale and causing plugging, followed by heating at a retorting temperature in excess of 700 F.

In accordance with a preferred embodiment of the inven tion, the nuclear chimney comprising a mass of fractured oil shale with lean shale at the bottom and rich shale nearthe top of the chimney is produced by passing a heating gas through the mass of fractured oil shale at a temperature so as to preheatthe shale at a temperature in the range of 500-575 F. for a period of time of at least 30 days, and then increasing the temperature of the fractured shale at a rate of l /2 to 2 F. per day to a temperature in the range of 600-650 F., and continuing the heating within this range for a period of 3 to 70 days and then rapidly heating the formation to a temperature of 700-800 F., the final retorting temperature to produce the BRIEF DESCRIPTION OF THE DRAWING FIG. 1 graphically illustrates shale richness distribution as a function of formation depth in an oil shale formation treated according to the present invention; and

FIG. 2 graphically shows the temperature history of a fragmented oil shale bed treated in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS As discussed above, one of the major technical operability uncertainties regarding in situ retorting of oil shale contained in a nuclear chimney is shale compaction during heating and the resulting reduction in permeability. in accordance to the invention, this reduction of permeability is controlled by selection of the chimney location so that the bottom of the fragmented shale is lean and the thick sections of the rich shale are near the top, and producing of the shale oil is preferably effected by prolonged heating of the shale at temperatures below the rapid retorting temperature and then sub sequent recovery of the remaining oil by heating to a higher temperature.

Bituminous deposits containing oil shale can be produced in accordance with the method of the present invention. The process is suitable for rock formations known as oil shale" which contain a combination of organic and inorganic sediments which have become hardened into impermeable rock. Suitable shales have a compressive strength in the range of 5,000 to 30,000 p.s.i. The organic portion laid down in layers is a solid amorphous material generally known as kerogen which can be converted to oil under the application of heat. The oil recovered is a black, viscous, waxy substance which will not flow below about 85 or 90 F.

The method of the present invention is employed with bituminous deposits lying in the range of from I to 20,000 feet below the surface of the earth. The minimum ground cover required is that necessary to insure complete containment of the explosion. This depends upon the energy yield of the explosive utilized. For nuclear devices, the minimum depth in feet is approximately equal to in the range of 250-450 times the cube root of the size of the device in kilotons. Thus, the ex plosion from a l-kiloton nuclear bomb is completely contained if the device is exploded 250450 feet below the nearest surface point. The maximum depth is limited only by the economic considerations involved in penetrating very deep-lying formations with conventional drilling equipment.

The method of the present invention is carried out utilizing a thermal nuclear device such as the hydrogen or atomic bomb. Suitable thermal nuclear devices are now available for underground explosion; therefore, it is to be understood that the present discovery involves merely the use of a nuclear device in a novel and useful method of exploding oil deposits and that the fabrication and manufacture of hydrogen and atomic bombs form no part of this invention.

To employ the invention, it is preferable to drill an access well into the formation and then performing a geological survey of the oil shale along the length of said access well to determine the location of a rich shale section and an underlying lean shale section. In the Green River shale in the Piceance Creek basin there is excellent lateral continuity of the shale strata therefore some definition of the shale beds already exists. In addition the richness of the shale can be obtained by two methods, (a) core drilling of the entire shale section and analysis of the recovered core, and (b) logging of the drilled hole.

Upon determining location of a rich shale section and an underlying lean shale section, a nuclear explosive device is then placed into the formation in such a manner that upon detonation a nuclear chimney is produced with lean shale at the bottom and rich shale near the top of the chimney.

In a specific embodiment of the process, oil is retorted from a shale seam which is 900 feet in thickness and carries an overburden of 1,650 feet of rock. The shale seam contains an average of 27.3 gallons of oil per ton (Fischer assay) in the top half of the seam and 23.1 gallons of oil per ton (Fischer assay) in the bottom half of the seam. A I00 kiloton nuclear device is disposed in a well near the lower innerface of the shale seam and the underlying rock. Upon detonation of the device, a chimney having a radius of 180 feet and 900 feet height is formed. The crumbled shale formation is provided with inlet means for introducing hot retorting gas into the upper portion of the cavity and recovering means for recovery from the bottom of the mass of crumbled shale and bringing to the earth's surface gases and liquids. An inert gas such as nitrogen or combustion gases or hot recycle produced gases are introduced through the inlet means into the cavity and heat the formation as described above to produce shale oil. Gases and condensed liquids are withdrawn and transported to the surface via the recovery means.

The mass of fractured or broken oil shale ordinarily will have a Fischer assay value in the range of -50 gallons per ton.

The fractured shale in a preferred embodiment is first preheated to a temperature of 500-575 F. for a period of time of at least 30 days. Generally the heating will be continued at this temperature for a period of time ranging from 100 to 1,000 days.

The temperature of the preheated fractured shale is then preferably increased to a temperature in the range of 600-65 0 F. at a rate of 1/2 to 2 F. per day, and the heating in this temperature range is continued for a period of 3 to 70 days. Maintaining the shale temperature in these low temperature ranges hardens the shale, retaining more of the fragmented shale bed permeability.

After the formation is heated to 600-650 F. for a prolonged period of time, it is heated rapidly to 700-800 F., the final retorting temperature. The heating during the final retorting temperature is continued generally until the formation is substantially depleted of shale oil.

In heating the oil shale rubble with hot gases, it is feasible to utilize combustion gases, inert gases and/or hot recycle produced gases. It is preferred to inject a hot gas into the top of the chimney and move the heat front downwardly through the rubble.

EXAMPLE In order to illustrate the operation of the invention, the effective permeability at 800 F. has been calculated for four specific cases. These calculations were perfonned using data which are summarized in table 1. The average particle size in the 900-foot high nuclear chimney used in each case was assumed to be one foot. In all four cases the shale represented in FIG. 1 was used. The four cases calculated are stated below.

Case I-A fragmented shale column 900 feet high located between 1,400 and 2,300 feet below the surface in the well shown in FIG. 1. FIG. I shows the position of the shale column as position number I. The shale richness distribution is also shown in FIG. 1. This fragmented shale column is heated to 800 F. by the injection of hot gases into the top of the chimney to recover the shale oil. The resulting retorted fragmented shale bed permeability is estimated to be 20 Darcy.

II-ll-A fragmented shale column 900 feet high located between 1,650 and 2,550 feet below the surface in the well shown in FIG. 1. FIG. 1 shows this position of the shale column as position number 2. Again the shale richness distribution is shown in FIG. I. This fragmented shale column is heated to 800 F. by the injection of hot gases into the top of the chimney to recover the shale oil. The resulting permeability of the retorted fragmented shale bed is estimated to be I20 Darcy.

Case lII-This case is identical to case I except that the shale is heated to 600 F. for 350 hours before the shale temperature is increased to 800" F. This low temperature heating results in a permeability of the retorted fragmented shale bed of 150 Darcy.

Case IV-This case is identical to case II except that the shale is heated to 600 F. for 350 hours before the shale temperature is increased to 800 F. This low temperature heating results in a permeability of the retorted fragmented shale bed of 540 Darcy.

It can be seen that by placing the fragmented shale column in such a position that the richer shale I) are nearer the top (case II compared with case I) that the permeability of the retorted shale bed was increased from 30 to I20 Darcy. It can also be seen that by preheating the shale to 600 F. for 350 hours the retorted shale bed permeability was increased from 30 to I50 Darcy (comparison of case III with case I) and from to 540 Darcy (comparison of case IV to case II) for chimney positions numbers 1 and 2, respectively.

It should especially be noted that a combination of chimney placement and preheating increased the retorted shale bed permeability from 30 to 540 Darcy (comparison of case IV to case I).

Although in the above example the shale was preheated at 600 F. to increase the retorted shale bed permeability, other preheat temperatures and other times can be used. The low temperature (500 to 650 F.) history of the shale is a determining factor in maintaining a high bed permeability. There are several methods that can be used to heat the shale to a low temperature and then continue the retorting at a temperature in excess of 700 and in general about 800 F. One method which uses the injection of hot inert gases and recycle produced gases is outlined below:

A typical operation to achieve the required low temperature heating of the shale would be to inject hot gases into the top of the nuclear chimney and withdraw the gases and generated oil from the chimney bottom. The temperature of the injected gases is increased over a several-day span to a temperature in the 500-575 F. range. Thereafter, the temperature is increased very slowly (perhaps, for example, l/2 to 2 F. per day) to a temperature in the range of 600-650 F. Then the temperature is raised relatively rapidly to the final retorting temperature of at least 700' and generally to about 800 F. This temperature history is represented graphically in FIG. -2. The result of a temperature history such as the above is that the shale throughout the chimney is subjected to a low temperature history without the necessity of an accurate knowledge of the magnitude of the heat losses to the chimney wall. As the heat is carried down the chimney by the injected and created gases, the shale will be heated at a lower rate, thus subjecting the lower shales to a longer effective low temperature history.

it appears that the critical temperature span for subjecting the shale to an effective low temperature history is from about 500 to 650 F. The data in table 1 illustrate that prolonged low temperature heating of the shale at 650 F. had only a minor influence upon the retorted shale bed permeability. The time required to achieve an appreciable permeability benefit at a temperature of 500 F. would be too long for practical application; therefore, temperatures below 500 F. are thus excluded. indeed, the critical temperature range is probable within 550 to 625 F. However, in practice the shale could be heated slowly over a broader temperature range (such as 500 to 650 F.) to insure a sufficient low temperature history even in the presence of natural variations in heating rates due to the heat lost to the chimney wall and variations in the gas flow due to variations in the shale bed permeability.

TABLE I Compaction of a bed of fragmented green river oil shale Average particle size of Shale iregrichness Permea- Time Lithomented by bility of held static shale, Fischer shale bed at "1" pressure diameter assay at 800 F. (hrs.) (p.s.i.) (in.) (gaL/ton) (Darcy) 550 0. 23 26. 9 0. 91 0 450 0. 23 26. 9 2. 0 300 0. 23 26. 9 8. 5 0 150 0. 23 26. 9 74. 7 B 350 550 0. 23 26. 9 5. 7 0 900 0. 23 18. 3 6. 3 0 460 0. 23 18. 3 79. 4 0 450 0. 046 17. 6 10. 7 0 450 0. 046 26. 6 0. 93 0 560 0. 054 23. 7 O. 69 0 450 0. 054 23. 7 1. 9 0 450 0. 054 23. 7 1. 4 B 340 450 0. 054 23. 7 5. 4 b 150 460 0. 064 23. 7 l. 6 0 300 0. 23 37. 4 4. 4

e "T" in these runs was 600 F. b "'I in this run was 650 F.

rapid pyrolysis temperature range) is effective in maintaining a higher permeability. A comparison of runs 12 and 14 shows that a temperature 650 F. had little effect upon the final permeability at 800 F. Heating preferably is achieved by the use of hot inert gases and the use of recycle produced gases.

I claim:

1. An improved process of recovering shale oil from a subsurface oil shale formation containing hydrocarbonsnot n aturally flowable into a well bore traversing said formation with a nuclear explosive device which comprises:

a. forming a nuclear chimney in said formation by detonating a strategically located nuclear explosive device so that the nuclear chimney formed following detonation contains a mass of fractured and broken oil shale with lean shale at the bottom of the chimney and rich shale near the top of the chimney,

b. passing a heated gas through said mass of fractured and broken oil shale at a temperature such that said mass is preheated to a temperature not in excess of 650 F. and maintaining the heating of said mass for a prolonged period of time of at least 30 days sufficient to bake the oil shale to reduce or substantially prevent plastic flow during heating of the oil shale and thereby maintain permeability of the shale without compaction of the shale causing P g.

c. retorting said preheated fractured shale by elevating the temperature of same to above 700 F., the retort temperature of said fractured shale, so as to pyrolyze and produce oil therefrom, and

d. recovering produced oil from said formation.

2. A process according to claim 1 for forming said nuclear chimney in step (a) which comprises the additional steps of:

l. drilling an access well into the formation,

2. performing a geological survey of the oil shale along the length of said access well to determine the location of a rich shale section and an underlying lean shale section,

3. Disposing a nuclear device in said formation and positioning same in said formation so that upon subsequent detonation of said device the fragmented shale forming the nuclear produced chimney is lean at the bottom and the thick sections of rich shale are near the top of the chimney, and

4. detonating the nuclear device to create a cavity in said formation, which cavity at least partially fills with collapsing oil shale to form said chimney of fractured and crumbled shale with lean shale at the bottom and rich shale near the top of said chimney.

3. A process according to claim 1 wherein i. said fractured shale is produced by first preheating same to a temperature of 500-575 F. for a period of time of at least 30 days,

2. the temperature of the preheated fractured shale is increased to 600-650 F. at a rate of l/2 to 2 F. per day and said heating is continued within the latter temperature range for 3 to 70 days, and

3. said preheated fractured shale is then rapidly heated to 700-800 F., the final retorting temperature, and continued within this temperature range until said fractured shale is essentially produced.

4. A process according to claim 1 wherein said heating gas is introduced into the top of the chimney and said oil is recovered principally from the bottom thereof.

5. A process according to claim 1 wherein said gas comprises essentially combustion gases.

Claims (9)

  1. 2. performing a geological survey of the oil shale along the length of said access well to determine the location of a rich shale section and an underlying lean shale section,
  2. 2. A process according to claim 1 for forming said nuclear chimney in step (a) which comprises the additional steps of:
  3. 2. the temperature of the preheated fractured shale is increased to 600*-650* F. at a rate of 1/2* to 2* F. per day and said heating is continued within the latter temperature range for 3 to 70 days, and
  4. 3. said preheated fractured shale is then rapidly heated to 700*-800* F., the final retorting temperature, and continued within this temperature range until said fractured shale is essentially produced.
  5. 3. A process according to claim 1 wherein
  6. 3. Disposing a nuclear device in said formation and positioning same in said formation so that upon subsequent detonation of said device the fragmented shale forming the nuclear produced chimney is lean at the bottom and the thick sections of rich shale are near the top of the chimney, and
  7. 4. detonating the nuclear device to create a cavity in said formation, which cavity at least partially fills with collapsing oil shale to form said chimney of fractured and crumbled shale with lean shale at the bottom and rich shale near the top of said chimney.
  8. 4. A process according to claim 1 wherein said heating gas is introduced into the top of the chimney and said oil is recovered principally from the bottom thereof.
  9. 5. A process according to claim 1 wherein said gas comprises essentially combustion gases.
US3618663A 1969-05-01 1969-05-01 Shale oil production Expired - Lifetime US3618663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US82077769 true 1969-05-01 1969-05-01

Publications (1)

Publication Number Publication Date
US3618663A true US3618663A (en) 1971-11-09

Family

ID=25231697

Family Applications (1)

Application Number Title Priority Date Filing Date
US3618663A Expired - Lifetime US3618663A (en) 1969-05-01 1969-05-01 Shale oil production

Country Status (1)

Country Link
US (1) US3618663A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882941A (en) * 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US4047760A (en) * 1975-11-28 1977-09-13 Occidental Oil Shale, Inc. In situ recovery of shale oil
US4149595A (en) * 1977-12-27 1979-04-17 Occidental Oil Shale, Inc. In situ oil shale retort with variations in surface area corresponding to kerogen content of formation within retort site
US4227574A (en) * 1979-01-08 1980-10-14 Occidental Oil Shale, Inc. Locating the top of an in situ oil shale retort for ease of ignition
US4577908A (en) * 1984-09-19 1986-03-25 Phillips Petroleum Company Method for in situ shale oil recovery
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3465819A (en) * 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342257A (en) * 1963-12-30 1967-09-19 Standard Oil Co In situ retorting of oil shale using nuclear energy
US3465819A (en) * 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882941A (en) * 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US4047760A (en) * 1975-11-28 1977-09-13 Occidental Oil Shale, Inc. In situ recovery of shale oil
US4149595A (en) * 1977-12-27 1979-04-17 Occidental Oil Shale, Inc. In situ oil shale retort with variations in surface area corresponding to kerogen content of formation within retort site
US4227574A (en) * 1979-01-08 1980-10-14 Occidental Oil Shale, Inc. Locating the top of an in situ oil shale retort for ease of ignition
US4577908A (en) * 1984-09-19 1986-03-25 Phillips Petroleum Company Method for in situ shale oil recovery
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020053429A1 (en) * 2000-04-24 2002-05-09 Stegemeier George Leo In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20030164234A1 (en) * 2000-04-24 2003-09-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040108111A1 (en) * 2000-04-24 2004-06-10 Vinegar Harold J. In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030209348A1 (en) * 2001-04-24 2003-11-13 Ward John Michael In situ thermal processing and remediation of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US20040177966A1 (en) * 2002-10-24 2004-09-16 Vinegar Harold J. Conductor-in-conduit temperature limited heaters
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US3500913A (en) Method of recovering liquefiable components from a subterranean earth formation
US3572838A (en) Recovery of aluminum compounds and oil from oil shale formations
US3303883A (en) Thermal notching technique
US3501201A (en) Method of producing shale oil from a subterranean oil shale formation
US3515213A (en) Shale oil recovery process using heated oil-miscible fluids
US3554285A (en) Production and upgrading of heavy viscous oils
US3292702A (en) Thermal well stimulation method
US3170517A (en) Fracturing formation and stimulation of wells
US3455383A (en) Method of producing fluidized material from a subterranean formation
US3528501A (en) Recovery of oil from oil shale
US3474863A (en) Shale oil extraction process
US3342258A (en) Underground oil recovery from solid oil-bearing deposits
US3521709A (en) Producing oil from oil shale by heating with hot gases
US3205942A (en) Method for recovery of hydrocarbons by in situ heating of oil shale
US3250327A (en) Recovering nonflowing hydrocarbons
US3542131A (en) Method of recovering hydrocarbons from oil shale
US3454958A (en) Producing oil from nuclear-produced chimneys in oil shale
US3537528A (en) Method for producing shale oil from an exfoliated oil shale formation
US3004596A (en) Process for recovery of hydrocarbons by in situ combustion
US2969226A (en) Pendant parting petro pyrolysis process
US3954140A (en) Recovery of hydrocarbons by in situ thermal extraction
US3048221A (en) Hydrocarbon recovery by thermal drive
US3139928A (en) Thermal process for in situ decomposition of oil shale
US4487260A (en) In situ production of hydrocarbons including shale oil
US3382922A (en) Production of oil shale by in situ pyrolysis