DE3348083C2 - - Google Patents

Info

Publication number
DE3348083C2
DE3348083C2 DE3348083A DE3348083A DE3348083C2 DE 3348083 C2 DE3348083 C2 DE 3348083C2 DE 3348083 A DE3348083 A DE 3348083A DE 3348083 A DE3348083 A DE 3348083A DE 3348083 C2 DE3348083 C2 DE 3348083C2
Authority
DE
Germany
Prior art keywords
liquid crystal
thin film
polycrystalline silicon
gate
dft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
DE3348083A
Other languages
English (en)
Inventor
Toshihiko Mano
Toshimoto Kodaira
Hiroyuki Suwa Nagano Jp Oshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP57061440A external-priority patent/JPS58178564A/ja
Priority claimed from JP57064892A external-priority patent/JPS58182272A/ja
Priority claimed from JP57143786A external-priority patent/JPS5933877A/ja
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Application granted granted Critical
Publication of DE3348083C2 publication Critical patent/DE3348083C2/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/13Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body combined with thin-film or thick-film passive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Description

Die Erfindung betrifft eine Flüssigkristallanzeigevorrichtung nach dem Oberbegriff des Patentanspruchs.
Die den gattungsbildenden Stand der Technik offenbarende Druckschrift App. Phys. Lett., Band 37, 1980, Seiten 936, 937, beschreibt eine Dünnfilmtransistoraufbau auf Glas- oder Quarzsubstraten und nennt Flüssigkristallanzeigevorrichtungen mit matrixartigem Aufbau als Anwendungsgebiet dieser Dünnfilmtransistoren. Jeder Dünnfilmtransistor umfaßt bei diesem Stand der Technik einen undotierten, polykristallinen Film, in dem durch Ionenimplantation Source- und Drainzonen ausgebildet wurden. Die Gateisolierschicht wird bei diesem Stand der Technik durch das CVD-Verfahren aufgebracht.
Die Druckschrift IBM Technical Disclosure Bulletin, Band 23, Nr. 1, Juni 1980, Seiten 351-352, befaßt sich ebenfalls mit dem Aufbau von Dünnfilmtransistoren für Anzeigevorrichtungen, ohne daß speziell Flüssigkristallanzeigevorrichtungen angesprochen werden. Bei diesem Stand der Technik wird ein Polysiliciumdünnfilm auf einem geeigneten Substrat zugrundegelegt. Über die Dotierung dieses Polysiliciums ist nichts ausgesagt, nachdem aber keine Schritte zur Ausbildung von Source- und Drainzonen erwähnt sind, kann wohl eine Dotierung des gesamten Dünnfilms, also auch im späteren Kanalbereich unterstellt werden. Bei diesem Stand der Technik wird die Gateisolierschicht durch thermische Oxidation des Polysiliciumdünnfilms hergestellt. Gesonderte Source- und Drainelektroden werden zu Anschlußzwecken ausgebildet.
Die Druckschrift Kaneko Eÿi: Liquid-Crysal Matrix Displays, in: Advances in Image Pickup and Display, Academic Press, 1981, Vol. 4, Seiten 59 bis 71, offenbart eine Flüssigkri­ stallanzeigevorrichtung, bei der zwischen zwei Glassubstraten eine Flüssigkristallschicht eingeschlossen ist, wobei an der Innenseite des einen Glassubstrats eine Dünnfilmtransistorschaltermatrix und an der Innenseite des anderen Substrats eine transparente gemeinsame Elektrode ausgebildet ist. Die einzelnen Dünnfilmtransistoren enthalten auf dem Glassubstrat eine Gateelektrode, über der ein Isolierfilm durch reaktives Radiofrequenzzerstäuben abgeschieden ist. Auf dem Isolierfilm befindet sich ein CdSe-Halbleiterfilm. Auf diesem sind Drain- bzw. Signalelektroden so ausgebildet, daß sie sich unmittelbar mit ihm im Kontakt befinden.
Anhand der Fig. 1a bis 1d sei zunächst die Herstellung von DFTs mit einem Dünnfilm aus polykristallinem Silizium beschrieben.
Gemäß Fig. 1a wird eine erste Dünnschicht aus polykristallinem Silizium auf einem isolierenden Substrat 101 ausgebildet und zur Schaffung einer Insel 102 gemustert. Durch thermische Oxidation der Insel 102 oder durch gemische Dampfabscheidung wird ein Gateisolierfilm 103 gebildet. Danach wird eine zweite Dünnschicht aus polykristallinem Silizium, einem Metall-Silicofluorid oder Metall aufgebracht und gemustert, um eine Gateelektrode 104 zu schaffen. Durch Ionenimplantation eingebrachter Dotierstoff 105 wie Phosphor, Arsen oder Bor wird unter Verwendung der Gateelektrode 104 als Maske in die Insel 102 diffundiert, um eine Sourcezone und eine Drainzone 106 des Transistors zu schaffen, wie dies in Fig. 1b gezeigt ist. Dann wird gemäß Fig. 1c eine Isolierschicht 107 ausgebildet und mit Kontaktfenstern 108 versehen. Schließlich wird ein Anschlußmetall 109 aus Aluminium oder ähnlichem aufgebracht, wie aus Fig. 1d zu ersehen ist.
Eine Flüssigkristallanzeigevorrichtung mit DFTs als Schaltelementen umfaßt im allgemeinen ein oberes Glassubstrat, ein unteres Glassubstrat, auf dem sich die DFTs befinden, und das zwischen den Glassubstraten eingeschlossene Flüssigkristallmaterial. Auf einem der Substrate sind Flüssigkristalltreiberelemente ausgebildet und in Matrixform angeordnet, die von externen Wähl- oder Adressierschaltungen angewählt bzw. adressiert werden. Die Treiberspannungen werden an Elektroden der Treiberelemente angelegt. Auf diese Weise können jegliche Zeichen, graphische Muster und Bilder mittels der Flüssig­ kristallanzeigevorrichtung wiedergegeben werden.
Fig. 2a zeigt die auf einem Substrat in Matrixform angeordneten Flüssigkristalltreiberelemente. Der mit einer Linie 1 eingeschlossene Anzeigebereich enthält die Flüs­ sigkristalltreiberelemente 2, die in Matrixform angeordnet sind. 3 ist eine Daten- oder Spaltenleitung und 4 eine Zeitsteuersignal- oder Zeilenleitung, die mit den Treiberelementen 2 verbunden sind. Fig. 2b zeigt im einzelnen den Aufbau eines Treiberelements 2. Es enthält einen DFT 5, der das Anlegen eines Signals an Elektroden eines Kondensators 6 und einer Flüssigkristallzelle 7 steuert. Der Kondensator 6 dient dazu, Datensignale von der Spaltenleitung 3 zu halten. Die Flüssigkristallzelle 7 umfaßt die Elektrode 7-1 entsprechend dem jeweiligen Treiberelement 2 sowie eine Elektrode 7-2, die sich am oberen Glassubstrat befindet.
Der DFT 5 wird also hier als Schaltelement benutzt, mittells dessen die Flüssigkristallzelle 7 an die Spaltenleitung 3 angeschaltet werden kann. Der DFT soll für diese Funktion folgende Forderungen erfüllen:
  • (1) Im Leitzustand des DFT soll ein ausreichender Strom in den Kondensator fließen, um diesen aufzuladen.
  • (2) Im Sperrzustand des DFT sollte auch kein kleiner Strom zu bzw. von der Kondensatorelektrode fließen.
Die Forderung (1) bezieht sich auf eine DFT-Eigenschaft beim Einschreiben eines Datensignals in den Kondensator. Der DFT muß einen großen Stromfluß zulassen, damit ein Datensignal innerhalb kurzer Zeit in den Kondensator eingeschrieben werden kann, da die Qualität der Flüssigkristallanzeige von der Kapazität des Kondensators abhängt. Die Höhe dieses Stroms (der nachfolgend als "Durchlaßstrom" bezeichnet werden soll) hängt von der Kapazität des Kondensators und der für das Einschreiben des Datensignals in den Kondensator zur Verfügung stehenden Zeit ab. Der Durchlaßstrom des DFTs hängt von dessen Größe (insbesondere von Länge und Breite des Kanals), dem Aufbau, dem Herstellungsverfahren und der Gatespannung ab. Ein DFT aus polykristallinem Silizium ist in der Lage, einen ausreichenden Durchlaßstrom zu führen und die Forderung (1) zu erfüllen, da polykristallines Silizium verglichen mit amorphen Halbleitern eine große Ladungsträgerbeweglichkeit besitzt.
Die Forderung (2) betrifft eine Eigenschaft, die für die Haltezeit wichtig ist, also dafür, wie lange ein in den Kondensator eingeschriebenes Datensignal gehalten werden kann. Grundsätzlich muß ein in den Kondensator eingeschriebenes Datensignal für eine Zeit gehalten werden, die erheblich länger als die für das Einschreiben dieses Datensignals benötigte Zeit ist. Während des Sperrzustands des DFT nähert sich, wenn ein geringer Leckstrom (nachfolgend als "Sperrstrom" bezeichnet) durch den DFT fließt, das Potential der Kondensatorelektrode rasch dem an der Spaltenleitung an, da die Kapazität des Kondensators im allgemeinen sehr klein ist und etwa 1 pF beträgt. Das eingeschriebene Datensignal kann dann während des Sperrzustands des DFT nicht im Kondensator gehalten werden. Insbesondere im Fall von polykristallinem Silizium sind viele Einfangniveaus ungleichmäßig in einem Kristallkorn des Polykristalls verteilt, so daß über diese Einfangniveaus ein großer Leckstrom fließt.
Infolge des Sperrstroms verschlechtert sich also bei einem DFT aus polykristallinem Silizium die Fähigkeit, ein eingeschriebenes Datensignal im Sperrzustand des DFT zu halten, selbst wenn im leitenden Zustand des DFT ein relativ großer Strom in den Kondensator fließen kann. Daher muß der Sperrstrom so weit wie möglich begrenzt werden. Diese Forderung besteht allgemein bei vielen Anwendungen über die bei einer Aktivmatrix mit DFTs hinaus. Beispielsweise im Fall einer mit DFTs aufgebauten Logikschaltung erhöht der Sperrstrom den Ruhestrom der Schaltung, während im Fall einer Speicherschaltung mit DFTs fehlerhafte Funktionen auftreten können.
Zu diesen voranstehenden Forderungen tritt die folgende weitere:
  • (3) Der DFT sollte stabile und reproduzierbare Kennwerte sowie eine ausreichende Zuverlässigkeit über eine lange Zeit besitzen.
Im allgemeinen werden auf einem Aktivmatrixsubstrat Tausende von DFTs ausgebildet, die alle gleiche Kennwerte und hohe Reproduzierbarkeit ohne Streuung zwischen verschiedenen Herstellungschargen haben müssen. Die Eigenschaften dieser DFTs müssen lange Zeit stabil und verläßlich bleiben.
Bei Ausbildung von DFTs als aktiven Elementen auf einem Substrat hat man bislang Verbindungshalbleiter wie Cadmiumselen oder ähnliche oder nicht-kristalline Halbleiter wie amorphes Silizium und ähnliche als Material für den Dünnfilm verwendet. Diese Materialien erfüllen aber gegenwärtig nicht alle der drei genannten Forderungen (1) bis (3). Verbindungshalbleiter erfüllen beispielsweise die Forderung (1) in ausreichendem Maß, da sie eine hohe La­ dungsträgerbeweglichkeit besitzen, sie erfüllen aber nicht die Forderungen (2) und (3), da diese Halbleiter eine geringe Stabilität und Reproduzierbarkeit aufweisen. Nichtkristalline Halbleiter besitzen eine kleine Ladungsträgerbeweglichkeit und damit einen niedrigen Durchlaßstrom.
Aus den vorgenannten Gründen zeigten bisher Aktivmatrixanordnungen mit DFTs auf einem Substrat keine ausreichend guten Eigenschaften zur Erzielung einer zufriedenstellenden Bildqualität. Es gilt daher, diese Nachteile zu beseitigen und eine billige Aktivmatrixanordnung zu schaffen, bei der DFTs verwendet werden, die eine gute Reproduzierbarkeit und Verläßlichkeit aufweisen sowie einen ausreichend großen Durchlaßstrom und einen sehr kleinen Sperrstrom besitzen.
Aufgabe der Erfindung ist es, die Eigenschaften von Dünnfilmtransistoren einer Flüssigkristallanzeigevorrichtung der eingangs genannten Art dahingehend zu verbessern, daß sie stabile und reproduzierbare Kennwerte sowie eine ausreichende Zuverlässigkeit über eine lange Zeit besitzen.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs gelöst.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezug auf die Zeichnungen näher erläutert. Es zeigt
Fig. 1a bis 1d verschiedene Stufen eines Verfahrens zur Herstellung von Dünnfilmtransistoren,
Fig. 2a eine Matrixanordnung von Flüssigkristalltreiberelementen,
Fig. 2b das Schaltbild eines Flüssigkristalltreiberelements der Matrixanordnung von Fig. 2a,
Fig. 3 eine Schnittansicht des Aufbaus eines Aktivmatrixsubstrats einer Flüssigkristallanzeigevorrichtung gemäß der Erfindung,
Fig. 4a bis 4e verschiedene Stufen eines Verfahrens zur Herstellung des Aktivmatrixsubstrats von Fig. 3,
Fig. 5 graphisch den Zusammenhang zwischen der Konzentration der in die Kanalzone diffundierten Dotierstoffe und dem Sperrstrom bei einem N-Kanal- Dünnfilmtransistor, und
Fig. 6 eine Schnittansicht des Aufbaus eines Aktivmatrixsubstrats für den Fall, daß Spaltenleitung und Elektrode vom selben transparenten leitenden Film gebildet sind.
Fig. 3 zeigt eine Schnittansicht des Aufbaus eines Aktivmatrixsubstrats gemäß einer Ausführungsform der Erfindung. Zur Vereinfachung der Zeichnung ist nur ein Flüs­ sigkristalltreiberelement gezeigt. Eine Dünnschicht aus polykristallinem Silizium ist auf einem isolierenden Substrat 8 aus Quarz oder ähnlichem zur Bildung des DFT und einer Elektrode 17 des Kondensators aufgebracht. Beim DFT ist die Kanalzone 9 eigenleitendes polykristallines Silizium. Die Sourcezone 10 und die Drainzone 11 sind durch Eindotieren von Dotierstoffen wie Phosphor, Arsen oder Bor in das eigenleitende polykristalline Silizium ausgebildet. Der Gateisolierfilm 12 ist durch thermische Oxidation des eigenleitenden polykristallinen Siliziums gebildet. 13 ist eine Adreß- oder Zeilenleitung und Gateelektrode, während 14 eine Isolierschicht ist, die als Dielektrikum des Kondensators dient. 15 ist eine Datensignal- oder Spaltenleitung und Source- oder Drainelektrode, während 16 eine Treiberelektrode und Drain- oder Sourceelektrode ist. 17 ist eine gemeinsame Elektrode für eine Vielzahl von Kondensatoren zum Halten des Datensignals.
Fig. 4 zeigt ein Beispiel eines Herstellungsverfahrens für das Aktivmatrixsubstrat von Fig. 3. Gemäß Fig. 4a wird eigenleitendes polykristallines Silizium 9′ auf das Substrat 8 aufgebracht und dann durch thermische Oxidation der Gateisolierfilm 12 ausgebildet. Dann werden die Gateelektrode 13 und die gemeinsame Elektrode 17 des Kondensators, die aus demselben leitenden Material zur selben Zeit gebildet werden können, gemäß Fig. 4b hergestellt.
Nachfolgend wird Dotierstoff zur Bildung der Sourcezone 10 und der Drainzone 11 eindotiert. Danach wird die Isolierschicht 14 gebildet und mit Kontaktlöchern versehen, wie in Fig. 4c gezeigt. Thermische Diffusion oder Ionenimplantation wird allgemein für das Eindotieren des Dotierstoffs in die Sourcezone und in die Drainzone verwendet. Dann werden gemäß Fig. 4d die Spaltenleitung 15 und gemäß Fig. 4e die Treiberelektrode 16 ausgebildet. Eine andere Möglichkeit besteht darin, die Spaltenleitung 15 nach Ausbildung der Treiberelektrode 16 aufzubringen.
Die einzigartige Charakteristik der Aktivmatrixanordnung gemäß der Erfindung in der Ausführungsform der Fig. 3 und 4 besteht darin, daß für die Kanalzone ein Film aus eigenleitendem polykristallinem Silizium verwendet wird und der in einer Wärmebehandlung durch Oxidation dieses eigenleitenden polykristallinen Siliziums gebildete Film als Gateisolierfilm verwendet wird.
Diese Eigenschaften sollen nachfolgend im einzelnen erläutert werden.
Der Grund dafür, daß für die Kanalzone ein Film aus eigenleitendem polykristallinem Silizium verwendet wird, besteht darin, einerseits einen großen Durchlaßstrom zu erzielen und zugleich den Sperrstrom auf ein Minimum zu begrenzen. Da das polykristalline Silizium eine Ladungsträgerbeweglichkeit von etwa 10 cm²/Vs besitzt, ist der erzielbare Durchlaßstrom für den Einsatz auf einem Aktivmaxtrixsubstrat ausreichend. Da andererseits eigenleitendes polykristallines Silizium ohne irgendwelche Dotierstoffe verwendet wird, kann der Sperrstrom auf ein Minimum begrenzt werden.
Beim herkömmlichen MOS-Transistor mit monokristallinem Silizium begrenzt ein PN-Übergang den Sperrstrom, wo ein P-Substrat für einen N-Kanal-Transistor bzw. ein N-Substrat für einen P-Kanal-Transistor verwendet wird. Bei Verwendung von polykristallinem Silizium wird jedoch kein PN-Übergang ausgebildet, so daß eine Sperrstromverringerung hierdurch nicht erreicht werden kann.
Fig. 5 zeigt graphisch den Zusammenhang zwischen der Konzentration des in die Kanalzone eines N-Kanal-DFT diffundierten Dotierstoffs einerseits und dem Sperrstrom andererseits, wie er sich aus vom Anmelder durchgeführten Experimenten darstellt. Bor wurde als Dotierstoff verwendet und durch Ionenimplantation zur Bildung einer P-Kanalzone eindiffundiert. Auf der Abszisse in Fig. 5 ist die Menge des eindiffundierten Bors, auf der Ordinate der Sperrstrom für den Fall der Gatespannung VGS=0 aufgetragen.
Aus Fig. 5 ist zu entnehmen, daß der Sperrstrom ohne diffundiertes Bor, also bei Verwendung eigenleitenden polykristallinen Siliziums minimal wird. Dies beruht darauf, daß der Leckstrom im Fall eines PN-Übergangs mit der Dotierstoffkonzentration zunimmt. Bei Bildung einer N-Kanalzone, also eines Verarmungs-Transistors, steigt der Sperrstrom. Also ergibt sich bei Verwendung von eigenleitendem polykristallinem Silizium ein minimaler Sperrstrom.
Eine thermische Oxidation des eigenleitenden polykristallinen Siliziums wird zur Bildung des Gateisolierfilms ausgeführt, so daß ein großer Durchlaßstrom erreicht wird und Stabilität, Reproduzierbarkeit und Verläßlichkeit des Dünnfilmtransistors verbessert werden. Polykristallines Silizium muß zur thermischen Oxidation Temperaturen von über 900°C ausgesetzt werden. Dabei nimmt die Korngröße der kristallinen Partikel zu, und ihre Beweglichkeit steigt erheblich an. Es ist bekannt, daß bei Ausbildung eines Gateisolierfilms durch thermische Oxidation von Polysilizium das Grenzschichtniveau zwischen polykristallinem Silizium und seinem thermischen Oxidationsfilm auf einen kleineren Wert gebracht werden kann, als wenn ein SiO₂-Film von außen durch Aufstäuben, Aufwachsen aus der Dampfphase und ähnliches aufgebracht wird. Daher kann die Schwellenspannung des Transistors gesenkt werden. Das bedeutet, durch Verwendung eigenleitenden polykristallinen Siliziums mit einer großen Beweglichkeit und einer geringen Schwellenspannung als Kanal kann ein großer Durchlaßstrom erzielt werden.
Darüberhinaus kann ein hinsichtlich Stabilität, Reproduzierbarkeit und Verläßlichkeit besserer Transistor dadurch geschaffen werden, daß dieses polykristalline Silizium zu einem Gateisolierfilm mittels einer Wärmebehandlung oxidiert wird, wie sie gewöhlich bei Ausbildung des Gateisolierfilms bei MOS-Transistoren entsprechend der gewünschten Siliziumtechnologie benutzt wird. Das heißt, es kann eine günstige Grenzschicht, die gewöhnlich ein geringes Grenzschichtniveau aufweist, stabil ausgebildet werden, so daß die Stabilität und die Reproduzierbarkeit des Transistors erheblich verbessert werden und auch die Verläßlichkeit wesentlich besser wird, da die Grenzschicht des Transistors unter Verwendung stabiler Materialien wie Silizium gebildet wird und sein thermischer Oxidationsfilm auf gleiche Weise wie bei der gewöhnlichen Siliziumtechnologie hergestellt wird.
Für die Wärmebehandlung zur Herstellung dieses thermischen Oxidationsfilms sind Temperaturen von über 900°C unvermeidlich. Daher muß ein isolierendes Substrat mit einem hohen Schmelzpunkt, das diesen hohen Temperaturen standhält (z. B. Quarzglas) verwendet werden. Dies erhöht die Herstellungskosten des Aktivmatrixsubstrats, da Substrate mit hohem Schmelzpunkt teurer als solche mit niedrigem Schmelzpunkt sind. Die Kosten müssen daher bei anderen Teilen entsprechend verringert werden. Im allgemeinen benötigt man zur Herstellung des Aktivmatrixsubstrats ein kompliziertes Herstellungsverfahren. Durch Vereinfachung des Herstellungsverfahrens können daher die Kosten wirkungsvoll verringert werden. Die Erfindung liefert einen Aufbau eines aktiven Matrixsubstrats, der mit einem einfachen Verfahren hergestellt werden kann, d. h. bei dem die Spaltenleitung und die Treiberelektrode aus demselben transparenten leitenden Film gebildet werden können.
Fig. 6 zeigt den Aufbau eines Aktivmatrixsubstrats, bei dem dies der Fall ist. Der grundsätzliche Aufbau ist, ausgenommen die Spaltenleitung 15 und die Treiberelektrode 16, der gleiche wie in Fig. 3. Indiumoxid, Zinnoxid oder Indiumzinnoxid wird als transparenter leitender Film verwendet. Der Verfahrensschritt in Fig. 4d kann bei diesem Aufbau entfallen. Es ist sehr wirkungsvoll, die Musterung zu vereinfachen, um die Herstellungskosten zu senken, da die Musterung (Photoätzprozeß) einen hohen Anteil an den Herstellungskosten einer Halbleitervorrichtung trägt. Beim Herstellungsverfahren nach Fig. 4 sind fünf Musterschritte erforderlich, während beim Verfahren nach Fig. 6 vier Musterschritte ausreichen. Außerdem brauchen nicht zwei Arten von leitenden Filmen beschichtet zu werden. Eine solche Vereinfachung des Herstellungsverfahrens ist außerordentlich wirkungsvoll zur Schaffung eines billigen Aktivmatrixsubstrats.

Claims (2)

  1. Flüssigkristallanzeigevorrichtung mit folgenden Merkmalen:
    • (1) Zwischen Glas- oder Quarzsubstraten (8) ist eine Flüssigkristallschicht eingeschlossen;
    • (2) auf einem der Substrate (8) ist eine Vielzahl von Dünnfilmabschnitten aus Siliziumhalbleitermaterial ausgebildet, das mit Ausnahme von Source und Drain darstellenden dotierten Zonen (10, 11) eigenleitend ist; und
    • (3) auf den Dünnfilmabschnitten befindet sich je eine Gateisolierschicht (12) und daraus eine Gateelektrode (13);
  2. gekennzeichnet durch folgende weitere Merkmale:
    • (4) auf einem der Substrate (8) ist eine Vielzahl von matrixartig angeordneten Flüssigkristall-Treiberelektroden (16) aus einem transparenten leitenden Film ausgebildet, die je in direktem Kontakt mit einer der dotierten Zonen (11) eines zugeordneten Dünnfilmabschnitts stehen,
    • (5) die Gateisolierschicht (12) ist durch thermische Oxidation des eigenleitenden Siliciumhalbleitermaterials gebildet;
    • (6) die Gateelektroden (13) sind mit einer Vielzahl von Gateleitungen verbunden, und
    • (7) die Dünnfilmabschhnitte (9, 10, 11) sind mit einer Vielzahl von Datenleitungen (15) verbunden.
DE3348083A 1982-04-13 1983-04-08 Revoked DE3348083C2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP57061440A JPS58178564A (ja) 1982-04-13 1982-04-13 薄膜トランジスタ
JP57064892A JPS58182272A (ja) 1982-04-19 1982-04-19 薄膜トランジスタ
JP57143786A JPS5933877A (ja) 1982-08-19 1982-08-19 薄膜トランジスタ

Publications (1)

Publication Number Publication Date
DE3348083C2 true DE3348083C2 (de) 1993-07-01

Family

ID=27297500

Family Applications (2)

Application Number Title Priority Date Filing Date
DE3312743A Expired DE3312743C2 (de) 1982-04-13 1983-04-08 Dünnfilm-MOS-Transistor und Verwendung desselben als Schaltelement in einer Aktivmatrixanordnung
DE3348083A Revoked DE3348083C2 (de) 1982-04-13 1983-04-08

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE3312743A Expired DE3312743C2 (de) 1982-04-13 1983-04-08 Dünnfilm-MOS-Transistor und Verwendung desselben als Schaltelement in einer Aktivmatrixanordnung

Country Status (5)

Country Link
US (2) US5124768A (de)
DE (2) DE3312743C2 (de)
FR (2) FR2527385B1 (de)
GB (1) GB2118365B (de)
HK (1) HK88687A (de)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38727E1 (en) 1982-08-24 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US5391893A (en) * 1985-05-07 1995-02-21 Semicoductor Energy Laboratory Co., Ltd. Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
USRE37441E1 (en) 1982-08-24 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US5468653A (en) * 1982-08-24 1995-11-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
GB2140203B (en) * 1983-03-15 1987-01-14 Canon Kk Thin film transistor with wiring layer continuous with the source and drain
GB8406330D0 (en) * 1984-03-10 1984-04-11 Lucas Ind Plc Amorphous silicon field effect transistors
JPS60213062A (ja) * 1984-04-09 1985-10-25 Hosiden Electronics Co Ltd 薄膜トランジスタの製造方法
JPH0752776B2 (ja) * 1985-01-24 1995-06-05 シャープ株式会社 薄膜トランジスタおよびその製造法
JPS61228671A (ja) * 1985-04-02 1986-10-11 Hitachi Ltd 薄膜トランジスタ
WO1989002095A1 (en) * 1987-08-27 1989-03-09 Hughes Aircraft Company Lcmos displays fabricated with implant treated silicon wafers
US4839707A (en) * 1987-08-27 1989-06-13 Hughes Aircraft Company LCMOS displays fabricated with implant treated silicon wafers
US4849805A (en) * 1987-11-20 1989-07-18 General Electric Company Radiation hardened integrated circuit and method of making the same
JPH01217325A (ja) * 1988-02-25 1989-08-30 Sharp Corp 液晶表示装置
US5231039A (en) * 1988-02-25 1993-07-27 Sharp Kabushiki Kaisha Method of fabricating a liquid crystal display device
EP0377084B1 (de) * 1988-10-03 1994-06-22 Kabushiki Kaisha Toshiba Feldeffekttransistor auf einem Isolator und Verfahren zu seiner Herstellung
JP3226223B2 (ja) * 1990-07-12 2001-11-05 株式会社東芝 薄膜トランジスタアレイ装置および液晶表示装置
SG63578A1 (en) * 1990-11-16 1999-03-30 Seiko Epson Corp Thin film semiconductor device process for fabricating the same and silicon film
US5362979A (en) * 1991-02-01 1994-11-08 Philips Electronics North America Corporation SOI transistor with improved source-high performance
US5246870A (en) * 1991-02-01 1993-09-21 North American Philips Corporation Method for making an improved high voltage thin film transistor having a linear doping profile
JP3556679B2 (ja) * 1992-05-29 2004-08-18 株式会社半導体エネルギー研究所 電気光学装置
US5854494A (en) * 1991-02-16 1998-12-29 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5218214A (en) * 1991-05-17 1993-06-08 United Technologies Corporation Field oxide termination and gate oxide
US6975296B1 (en) * 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JP2894391B2 (ja) * 1991-09-20 1999-05-24 三菱電機株式会社 薄膜トランジスタおよびその製造方法
US5459347A (en) * 1991-12-30 1995-10-17 Nippon Telegraph And Telephone Corporation Method of making field-effect semiconductor device on SOI
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
KR940006273A (ko) * 1992-06-20 1994-03-23 오가 노리오 스태틱램(sram) 장치 및 그 제조방법
TW232751B (en) 1992-10-09 1994-10-21 Semiconductor Energy Res Co Ltd Semiconductor device and method for forming the same
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5403762A (en) 1993-06-30 1995-04-04 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a TFT
US6323071B1 (en) * 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
JPH07175084A (ja) * 1993-12-21 1995-07-14 Hitachi Ltd 液晶表示装置及びその製造方法
JP3637069B2 (ja) * 1993-03-12 2005-04-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN1095204C (zh) * 1993-03-12 2002-11-27 株式会社半导体能源研究所 半导体器件和晶体管
FR2708142B1 (fr) * 1993-07-22 1995-08-18 Commissariat Energie Atomique Procédé de fabrication d'un transistor en technologie silicium sur isolant.
US5567966A (en) * 1993-09-29 1996-10-22 Texas Instruments Incorporated Local thinning of channel region for ultra-thin film SOI MOSFET with elevated source/drain
US5418391A (en) * 1994-03-31 1995-05-23 Vlsi Technology, Inc. Semiconductor-on-insulator integrated circuit with selectively thinned channel region
US5489792A (en) * 1994-04-07 1996-02-06 Regents Of The University Of California Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility
JP3402400B2 (ja) 1994-04-22 2003-05-06 株式会社半導体エネルギー研究所 半導体集積回路の作製方法
US6747627B1 (en) 1994-04-22 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Redundancy shift register circuit for driver circuit in active matrix type liquid crystal display device
KR0136066B1 (ko) * 1994-05-06 1998-04-24 한민구 오프셋구조로 이루어지는 박막 트랜지스터의 제조방법
US6337232B1 (en) * 1995-06-07 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabrication of a crystalline silicon thin film semiconductor with a thin channel region
JP3256391B2 (ja) * 1994-11-28 2002-02-12 キヤノン株式会社 回路基板構造
US5567958A (en) * 1995-05-31 1996-10-22 Motorola, Inc. High-performance thin-film transistor and SRAM memory cell
US5736435A (en) * 1995-07-03 1998-04-07 Motorola, Inc. Process for fabricating a fully self-aligned soi mosfet
US5627097A (en) * 1995-07-03 1997-05-06 Motorola, Inc. Method for making CMOS device having reduced parasitic capacitance
US5742373A (en) * 1995-10-13 1998-04-21 Massachusetts Institute Of Technology Color microdisplays and methods of manufacturing same
JP3296975B2 (ja) * 1996-08-22 2002-07-02 シャープ株式会社 薄膜トランジスタ及びその製造方法
US5965861A (en) * 1997-02-07 1999-10-12 Ncr Corporation Method and apparatus for enhancing security in a self-service checkout terminal
US5982553A (en) 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US5982004A (en) * 1997-06-20 1999-11-09 Hong Kong University Of Science & Technology Polysilicon devices and a method for fabrication thereof
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US6101036A (en) 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
JP4401488B2 (ja) * 1998-09-01 2010-01-20 キヤノン株式会社 光電変換装置
FR2815143B1 (fr) * 2000-10-11 2005-11-18 Lg Philips Lcd Co Ltd Substrat reseau pour un affichage a cristaux liquides et methode de fabrication de celui-ci
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6952040B2 (en) * 2001-06-29 2005-10-04 Intel Corporation Transistor structure and method of fabrication
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6785001B2 (en) 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
TWI291729B (en) 2001-11-22 2007-12-21 Semiconductor Energy Lab A semiconductor fabricating apparatus
US7133737B2 (en) 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
TWI267145B (en) * 2001-11-30 2006-11-21 Semiconductor Energy Lab Manufacturing method for a semiconductor device
US7214573B2 (en) * 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
JP3992976B2 (ja) * 2001-12-21 2007-10-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4030758B2 (ja) * 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
WO2003088280A1 (en) * 2002-04-08 2003-10-23 Council Of Scientific And Industrial Research Process for the production of neodymium-iron-boron permanent magnet alloy powder
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6839479B2 (en) 2002-05-29 2005-01-04 Silicon Light Machines Corporation Optical switch
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US7046420B1 (en) 2003-02-28 2006-05-16 Silicon Light Machines Corporation MEM micro-structures and methods of making the same
JP2006041115A (ja) * 2004-07-26 2006-02-09 Seiko Epson Corp 半導体装置及びその製造方法、集積回路、電気光学装置、電子機器
US8127706B2 (en) * 2005-05-02 2012-03-06 Fairfield Industries Incorporated Deck configuration for ocean bottom seismometer launch platforms
JP2007081335A (ja) * 2005-09-16 2007-03-29 Renesas Technology Corp 半導体装置
CN101617354A (zh) 2006-12-12 2009-12-30 埃文斯和萨瑟兰计算机公司 用于校准单个调制器投影仪中的rgb光的系统和方法
US8358317B2 (en) 2008-05-23 2013-01-22 Evans & Sutherland Computer Corporation System and method for displaying a planar image on a curved surface
US8702248B1 (en) 2008-06-11 2014-04-22 Evans & Sutherland Computer Corporation Projection method for reducing interpixel gaps on a viewing surface
US8077378B1 (en) 2008-11-12 2011-12-13 Evans & Sutherland Computer Corporation Calibration system and method for light modulation device
JP5730529B2 (ja) 2009-10-21 2015-06-10 株式会社半導体エネルギー研究所 半導体装置
EP2513893A4 (de) * 2009-12-18 2016-09-07 Semiconductor Energy Lab Flüssigkristallanzeigevorrichtung und elektronische vorrichtung
SG10201500220TA (en) * 2010-01-15 2015-03-30 Semiconductor Energy Lab Semiconductor device and method for driving the same
KR102069496B1 (ko) 2010-01-24 2020-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface
KR102109166B1 (ko) 2013-01-15 2020-05-12 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 구비하는 표시 기판
CN104779171A (zh) * 2015-05-05 2015-07-15 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管及制作方法、阵列基板、显示装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL282170A (de) * 1961-08-17
US3484662A (en) * 1965-01-15 1969-12-16 North American Rockwell Thin film transistor on an insulating substrate
SE317137B (de) * 1966-08-04 1969-11-10 Rca Corp
GB1267975A (en) * 1968-06-24 1972-03-22 Westinghouse Electric Corp Thin film electronic components on flexible substrates and the apparatus and process for producing same
US3669060A (en) * 1970-09-24 1972-06-13 Westinghouse Electric Corp Mask changing mechanism for use in the evaporation of thin film devices
DE2636873A1 (de) * 1976-08-17 1978-02-23 Siemens Ag Halbleiterbauelement mit zwei gekreuzten teildioden und mit transistorartigen eigenschaften
US4119992A (en) * 1977-04-28 1978-10-10 Rca Corp. Integrated circuit structure and method for making same
US4177473A (en) * 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. Amorphous semiconductor member and method of making the same
JPS5522811A (en) * 1978-08-04 1980-02-18 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacturing of semiconductor apparatus
US4199773A (en) * 1978-08-29 1980-04-22 Rca Corporation Insulated gate field effect silicon-on-sapphire transistor and method of making same
JPS5598868A (en) * 1979-01-23 1980-07-28 Sumitomo Electric Ind Ltd Insulated gate type field effect semiconductor device
US4199384A (en) * 1979-01-29 1980-04-22 Rca Corporation Method of making a planar semiconductor on insulating substrate device utilizing the deposition of a dual dielectric layer between device islands
US4317686A (en) * 1979-07-04 1982-03-02 National Research Development Corporation Method of manufacturing field-effect transistors by forming double insulative buried layers by ion-implantation
US4431271A (en) * 1979-09-06 1984-02-14 Canon Kabushiki Kaisha Display device with a thin film transistor and storage condenser
DE3036869C2 (de) * 1979-10-01 1985-09-05 Hitachi, Ltd., Tokio/Tokyo Integrierte Halbleiterschaltung und Schaltkreisaktivierverfahren
JPS5662356A (en) * 1979-10-26 1981-05-28 Seiko Instr & Electronics Ltd Logic integrated circuit device and its manufacturing method
IL61679A (en) * 1979-12-13 1984-11-30 Energy Conversion Devices Inc Thin film,field effect transistor
JPS5692573A (en) * 1979-12-26 1981-07-27 Citizen Watch Co Ltd Display panel
GB2140617B (en) * 1980-03-03 1985-06-19 Raytheon Co Methods of forming a field effect transistor
GB2070858B (en) * 1980-03-03 1985-02-06 Raytheon Co Shallow channel field effect transistor
US4385937A (en) * 1980-05-20 1983-05-31 Tokyo Shibaura Denki Kabushiki Kaisha Regrowing selectively formed ion amorphosized regions by thermal gradient
JPS5710266A (en) * 1980-06-23 1982-01-19 Fujitsu Ltd Mis field effect semiconductor device
GB2081018B (en) * 1980-07-31 1985-06-26 Suwa Seikosha Kk Active matrix assembly for display device
JPS5754370A (en) * 1980-09-19 1982-03-31 Nippon Telegr & Teleph Corp <Ntt> Insulating gate type transistor
US4335161A (en) * 1980-11-03 1982-06-15 Xerox Corporation Thin film transistors, thin film transistor arrays, and a process for preparing the same
JPS57126131A (en) * 1981-01-28 1982-08-05 Toshiba Corp Manufacture of semiconductor device
JPS5812365A (ja) * 1981-07-15 1983-01-24 Japan Electronic Ind Dev Assoc<Jeida> 薄膜トランジスタ及びその製造方法
JPS5856409A (ja) * 1981-09-30 1983-04-04 Toshiba Corp 半導体装置の製造方法
US4399605A (en) * 1982-02-26 1983-08-23 International Business Machines Corporation Method of making dense complementary transistors
JPS5978557A (ja) * 1982-10-27 1984-05-07 Toshiba Corp 相補型mos半導体装置の製造方法
US5116771A (en) * 1989-03-20 1992-05-26 Massachusetts Institute Of Technology Thick contacts for ultra-thin silicon on insulator films
US5047356A (en) * 1990-02-16 1991-09-10 Hughes Aircraft Company High speed silicon-on-insulator device and process of fabricating same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
US-B.: Eiji, Kaneko: Liquid-Crystal Matrix Displays. In: Advances in Image Pickup and Display, Academic Press, 1981, Vol. 4, S. 59-71 *
US-Z.: Appl. Phys. Lett., Bd. 37, 1980, S. 936,937 *
US-Z.: IBM Techn. Disclosure Bull., Bd. 23, Nr. 1, Juni 1980, S. 351,352 *

Also Published As

Publication number Publication date
US5294555A (en) 1994-03-15
FR2536194A1 (fr) 1984-05-18
HK88687A (en) 1987-12-04
GB8309750D0 (en) 1983-05-18
DE3312743A1 (de) 1983-10-13
GB2118365A (en) 1983-10-26
FR2527385A1 (fr) 1983-11-25
FR2527385B1 (fr) 1987-05-22
US5124768A (en) 1992-06-23
GB2118365B (en) 1986-04-30
FR2536194B1 (fr) 1990-11-30
DE3312743C2 (de) 1986-12-18

Similar Documents

Publication Publication Date Title
DE3348083C2 (de)
DE3130407C2 (de)
DE19605634B4 (de) Aktivmatrixanzeigegerät
DE19605669B4 (de) Aktivmatrix-Anzeigevorrichtung
DE3311923C2 (de)
DE69021513T2 (de) Anzeigevorrichtung mit aktiver Matrix.
DE68929091T2 (de) Tafel mit aktiver Matrix
DE69120329T2 (de) Anzeigevorrichtung mit aktiver Matrix
DE69510080T2 (de) Zellendesign für hochauflösendes aktiv-matrix-lcd
DE69212383T2 (de) Dünnfilmtransistor und Verfahren zu seiner Herstellung
DE69226334T2 (de) Dünnschichttransistoranordnung für eine Treiber- und eine Matrixschaltung
DE3685623T2 (de) Duennfilmtransistor und verfahren zu seiner herstellung.
DE3783870T2 (de) Transistor-gesteuerter elektrooptischer anzeigeschirm und verfahren zu seiner herstellung.
DE69513628T2 (de) Herstellung elektronischer artikel aus dünnschicht-schaltungen
DE2705503C3 (de) Halbleiterspeicheranordnung
DE3714164A1 (de) Fluessigkristallanzeige
DE69633533T2 (de) Herstellung eines Gitters mit metallischen Abtastzeilen zur Steuerung von Halbleiter-Gitterzeilen
DE102006060734B4 (de) Flüssigkristalldisplay und Verfahren zu dessen Herstellung
DE19736204A1 (de) Flüssigkristallanzeige mit Dünnschichttransistor und Herstellungsverfahren dafür
DE2432352C3 (de) MNOS-Halbleiterspeicherelement
DE69212518T2 (de) Matrix-Ansteuerungsstruktur für Anzeigeschirm
DE3810494A1 (de) Integrierte halbleiterschaltungseinrichtung mit supraleitender schicht und verfahren zu ihrer herstellung
DE2644832A1 (de) Feldeffekt-transistor und verfahren zu seiner herstellung
DE2827165B2 (de) Bistabile Kippstufe mit fixierbarem Schaltzustand
DE60218945T2 (de) Speicheranordnung mit Dünnfilmtransistoren

Legal Events

Date Code Title Description
Q172 Divided out of (supplement):

Ref country code: DE

Ref document number: 3312743

8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: H01L 27/13

AC Divided out of

Ref country code: DE

Ref document number: 3312743

Format of ref document f/p: P

D2 Grant after examination
8363 Opposition against the patent
8369 Partition in:

Ref document number: 3348484

Country of ref document: DE

Format of ref document f/p: P

Q171 Divided out to:

Ref country code: DE

Ref document number: 3348484

8328 Change in the person/name/address of the agent

Free format text: HOFFMANN, E., DIPL.-ING., PAT.-ANW., 82166 GRAEFELFING

8327 Change in the person/name/address of the patent owner

Owner name: SEIKO EPSON CORP., TOKIO/TOKYO, JP

8331 Complete revocation