CN1894811A - 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法 - Google Patents

作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法 Download PDF

Info

Publication number
CN1894811A
CN1894811A CNA2004800379008A CN200480037900A CN1894811A CN 1894811 A CN1894811 A CN 1894811A CN A2004800379008 A CNA2004800379008 A CN A2004800379008A CN 200480037900 A CN200480037900 A CN 200480037900A CN 1894811 A CN1894811 A CN 1894811A
Authority
CN
China
Prior art keywords
particle
coating
carbon
silicon
carbon residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800379008A
Other languages
English (en)
Other versions
CN1894811B (zh
Inventor
毛振华
巴拉特·沙哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHILPS 66
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ConocoPhillips Co filed Critical ConocoPhillips Co
Publication of CN1894811A publication Critical patent/CN1894811A/zh
Application granted granted Critical
Publication of CN1894811B publication Critical patent/CN1894811B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

一种生产涂敷的硅/碳粒子的方法,包括:提供形成残炭材料;提供硅粒子,用所述的形成残炭材料涂敷所述的硅粒子以形成涂敷的硅粒子;提供含碳材料粒子;用所述的形成残炭材料涂敷所述的含碳材料粒子以形成涂敷的含碳粒子;将所述的涂敷的硅粒子嵌入所述的涂敷的含碳粒子以形成硅/碳复合粒子;用所述的形成残炭材料涂敷所述的硅/碳复合粒子以形成涂敷的硅/碳复合粒子;通过对所述涂敷的复合粒子进行氧化反应处理稳定所述涂敷的复合粒子。所述涂敷的复合粒子基本上具有光滑的涂层。所述粒子可以涂有多层的形成残炭材料。

Description

作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法
技术领域
本发明涉及用作电池电极活性材料的硅/碳复合材料。更具体的,本发明涉及特别用作电极材料的涂敷碳的硅粒子,及制造所述的涂敷碳的硅粒子的方法。
发明背景
人造石墨被广泛用作锂离子电池的标准阴极材料。其它的含碳物质由于它们的效率和合理的成本也广泛用于诸如此类的电池中。锂离子电池主要用作手提式的电子器件的电源。与其它类型的可再充电电池比如镍镉和镍金属氢化物蓄电池相比,锂离子电池由于相对高的存储容量和可再充电性越来越普及。
由于相对于类似额定值的镍镉和镍金属氢化物蓄电池,每单位质量或者单位体积存储容量增加,锂离子电池较小的空间要求可以生产满足特定蓄电和供电要求的电池。因此,锂离子电池用于越来越多的器件中,比如数字照相机,数字录像机,电脑等等,其中从实用观点看特别希望紧凑的尺寸。
尽管如此,再充电式锂离子蓄电池不是没有缺陷。这些缺陷可以借助于改进构造材料而最小化。使用人造石墨电极的商业锂离子电池的生产成本昂贵,而且具有低的相对锂容量。另外,目前用于锂离子电极的石墨制品接近它们的蓄能理论极限(372mAhr/g)。因此,本领域需要一种降低再充电式锂电池成本,并提供改进的操作性能,比如更高的能量密度,更大的可逆容量和更大的起始充电效率的改进的电极材料。也存在改进制造诸如此类电极材料的方法的需要。
因为硅可以与相对大量的锂搀合提供更大的存储容量,所以已经研究硅作为锂离子电池的阳极材料。事实上,硅的理论锂容量大于石墨的十倍。然而,纯硅是一种差的电极材料,因为当锂化时其晶胞体积可以增加到大于300%。在循环期间这种体积膨胀破坏电极的机械完整性,导致在电池循环期间容量的迅速损失。,尽管与碳相比较硅可以保持更多的锂,但当锂引入到硅中时,硅会碎裂导致更少的电接触,这最终导致蓄电池再充电能力的降低。
在解决硅体积膨胀问题方面持续的研究工作仅得到有限的结果。与碳和硅粉通过碾磨或者其它的机械法制造的机械混合物相比,硅/碳复合粒子或者粉末具有良好的循环寿命。作为下一代锂离子电池的阳极材料,涂敷薄膜硅的碳粒子薄膜或者涂敷碳的硅粉是石墨粉可能的代替物。然而,通常用于施加硅涂层或者碳涂层的化学气相沉积工艺具有固有的缺点,包括慢的沉积速率和/或昂贵的沉积前体。相对于大量硅粉的成本,蒸气沉积硅薄膜可能是极其昂贵的。因此,需要另外的生产涂敷的硅粒子方法。
发明内容
本发明提供一种制造硅/碳复合材料的方法。所述硅/碳复合材料包括与涂敷碳粒子相结合的涂敷的硅粒子;其中得到的硅/碳复合粒子还涂有氧化的形成残炭材料的层。这些涂敷碳的硅/碳复合粒子可以用于制造蓄电池的电极,特别用于再充电式锂离子蓄电池。
本发明组合物提供源自于各式各样的碳源的,大容量、高效率的涂敷碳的硅/碳复合粒子。在本发明的一个另外的方面,所述硅/碳复合粒子可以涂有多个形成残炭材料的层。在本发明再一个方面,复合粒子的涂层可以任选被碳化。
本发明组合物提供具有基本上光滑涂层的涂敷碳的硅/碳复合粒子。另外,所述组合物特征在于良好的粉末流动性,这在将这些材料形成为有用的电极或者其它的本发明没有具体地描述的制品必要的处理或生产步骤期间特别有益。
在本发明另外的方面,提供一种制造此类涂敷碳的硅/碳复合粒子的方法。根据本发明制备的涂敷碳的粉末不仅可以增加充电效率,而且提供优异的电极构造加工性能。在本发明又一另外的方面,提供一种制造蓄电池,特别是包括所述的涂敷碳的复合粒子的可再充电电池的方法。本发明又一另外的方面涉及所述的涂敷碳的复合粒子在蓄电池,特别是再充电式电池中的用途。
本发明的这些及其他方面和特征从以下的发明说明书和其优选实施方式中显而易见。
附图说明
图1显示本发明复合碳-硅粒子的示意图。
图2显示对于硅/碳复合粒子和未涂敷的硅粒子,在不同的低截止电势第一循环的充电和放电电势曲线的对比。
图3显示如实施例2中制备的硅/碳复合粒子的扫描电子显微图象。
图4显示对于在实施例2中生产的硅/碳复合粒子,在最初5个循环期间,在0.09-1.5伏的充电/放电电势窗的放电容量和充电效率。
图5显示对于如实施例3制备的复合硅/碳粒子,在0.09-1.5伏之间充电/放电周期期间的容量和库仑效率。
在不同的附图中同样的标记表示相同的元件。
详细说明
本发明提供一种制造硅/碳复合粒子的方法,当用作蓄电池,特别是再充电式蓄电池中的电极时,该粒子显示出改进的操作性能。通常,所述方法设计使涂敷的细硅粉与涂敷的含碳粒子混合以形成硅/碳复合粒子,进一步用形成残炭材料的层涂敷所述复合粒子。
更具体地说,含碳材料基材粒子涂有可熔的形成残炭材料。已经涂有可熔的形成残炭材料的细硅粉粒子嵌入到涂敷的含碳粒子上以形成硅和含碳物质的复合粒子。所述硅/碳复合粒子进一步提供有至少单层的可熔的形成残炭材料。此后所述涂敷的硅/碳复合粒子通过使用氧化剂,使所述的涂敷复合粒子经氧化反应处理而稳定化。此后碳化所述稳定的涂敷复合粒子。
尽管可以将未涂敷硅粒子嵌入到涂敷含碳的基底材料上,但优选所述硅粒子在嵌入到含碳的基底材料上之前进行涂敷,以相对于包括未涂敷硅粉的复合粒子增加循环能力和机械强度。
所述硅/石墨复合粒子在稳定或者任选的碳化以后可以进一步涂有形成残炭材料的附加层。
优选在施加硅粒子之前,在含碳粒子上施加涂层。优选的将涂敷硅粒子嵌入到涂敷的含碳基材上。做为选择,未涂敷的硅粒子可以嵌入在涂敷的含碳基材上。进一步,优选涂敷硅/碳复合粒子以增强所述复合物的机械强度,得到更长持续时间的硅复合物电极。优选,所述方法提供具有基本上光滑涂层的涂敷碳的硅/碳复合粒子。任选,所述复合粒子可以重复用形成残炭材料涂敷,以进一步增加粒子的机械强度。
在优选实施方案中,需要含碳基底材料粒子以实施本发明。这些可以从各种各样的源得到,它的例子包括石油和煤焦油焦炭,合成和天然石墨,或者沥青以及其它的现有技术电极制造中已知的含碳物质源,尽管在这里没有阐明这些源。优选的含碳物质源包括焙烧或者未焙烧的石油焦炭以及人造石墨。优选的含碳物质源也包括焙烧或者未焙烧高度结晶的“针状体”焦炭。特别优选的含碳材料源包括天然石墨和薄片焦炭。因此,优选的含碳物质是石墨材料或者一经加热到2200℃或者更高的石墨化温度可形成石墨的材料。
诸如此类含碳的基底材料微粒可以通过碾磨,压碎,研磨或者通过任何其它的可用于提供粉状的含碳基底材料(具有适合用于形成电极尺寸大小粒子)的装置方便地提供。尽管本发明原理被认为可以适用于不同的尺寸和粒度分布的含碳基材粒子,但优选含碳的基材粒子的平均粒度达到约50μm,更优选约1-约30μm。
需要硅粒子以实施本发明;诸如此类粒子可以单独使用或者与含碳的基底材料同时使用。硅的纯度可以是普通的工业纯度即97-98wt%。尽管本发明原理被认为可以适用于不同尺寸和粒度分布的硅粒子,但优选硅粒子的平均粒度达到约50μm,更优选约0.03-约20μm。
根据有创造性的方法的步骤,所述硅粒子,含碳基材粒子和硅/碳复合粒子提供有可熔的形成残炭材料作为涂层材料。优选用作涂层材料的是能够与氧化剂起反应的形成残炭材料。优选的化合物包括具有高熔点的和热分解之后具有高的碳产率的那些。举例说明有用的涂料涂层材料包括重的石油芳香残余物,化学加工沥青;制浆工业的木质素;酚醛树脂;和碳水化合物材料比如糖和聚丙烯腈。尤其是优选用作涂层材料的是容易得到的和已经发现是有效的石油和煤焦油沥青和木质素作为可熔的形成残炭材料。
应理解提供的作为含碳的,硅或者硅/碳复合粒子涂层的形成残炭材料,视情况而定可以是,当氧化然后在惰性气氛中在850℃或者甚至更高碳化温度热分解可以形成“基本上是碳”的残余物的任何材料。应理解“基本上是碳”表示作为残余物至少95wt%是碳,也优选所述形成残炭材料一经碳化形成,基于含碳基材,硅或者硅/碳复合粒子的残碳形成涂层的初始质量,至少10%,优选至少40%,更优选至少60%的残碳。
应该理解用于一种类型粒子的涂层可能与用于另外类型粒子的涂层明显不同。作为非限制的例子,提供作为含碳基材粒子涂层的形成残炭材料可以由与提供作为硅粒子涂层或者提供作为复合粒子涂层完全不同的形成残炭材料组成。另外,随后提供给复合粒子的涂层可以由与施加到含碳的或者硅粒子的涂层,或者复合粒子上先前的涂层不同的形成残炭材料组成。
任何的可以被氧化然后热分解得到残碳的有机化合物可以用作涂层材料。然而,在涂覆工艺中,有机化合物溶解在溶剂中,优选包括不同分子量的芳香化合物,因为所述化合物与溶剂互溶。优选的化合物包括具有高熔点,而且热分解之后具有高碳产率的那些(例如石油和煤焦油沥青)。
可以使用任何有用的技术涂敷含碳的,硅或者复合粒子。作为非限制例子,有用的技术包括如下步骤:通过比如熔融或者与适当的溶剂形成溶液的手段液化所述形成残炭材料,结合涂敷步骤,比如将液化的形成残炭材料喷涂在目标粒子上,或者将所述粒子浸渍在液化的形成残炭材料中随后干燥掉任何溶剂。
根据以下方法通过在含碳的,硅或者硅/碳复合粒子表面上沉积材料,提供一种特别有用的形成形成残炭材料均匀涂层的方法。首先,在适当的溶剂中形成形成残炭材料的浓溶液。通过使形成残炭材料与溶剂或者混合溶剂混合制备形成残炭材料溶液。所述溶剂应该与所述形成残炭材料相容,应该可以溶解所有的或者大部分的涂层材料。溶剂包括纯有机化合物或者不同溶剂的混合物。溶剂的选择取决于使用的特定涂层材料。
用于溶解所述形成残炭材料的适当的溶剂包括例如苯,甲苯,二甲苯,喹啉,四氢呋喃,萘,丙酮,环己烷,和四氢萘(由Dupont以商标Tetralin销售),醚,水和甲基吡咯烷酮等。当石油或者煤焦油沥青用作形成残炭材料或者涂层材料时,例如优选溶剂比如甲苯,二甲苯,喹啉,四氢呋喃,1,2,3,4-四氢化萘,或者萘。要控制溶液中所述溶剂与含碳的,硅或者复合粒子的所述形成残炭材料的比例,和溶液的温度以使所述形成残炭材料全部或者几乎全部溶解进入溶剂中。通常,所述溶剂与形成残炭材料的比小于2,优选约1或更少,所述形成残炭材料在低于溶剂沸点温度下溶解在溶剂中。
其中溶剂与溶质比例小于2∶1的浓溶液通常被称为助熔剂溶液(flux solution)。许多的沥青类型材料形成浓的助熔剂溶液,其中所述沥青当与溶剂以溶剂沥青比为0.5-2.0混合时是高度可溶的。用同样的溶剂,或者其中所述形成残炭材料不太溶解的溶剂稀释这些助熔剂混合物时,导致残碳形成涂层材料的部分沉淀。当在含碳的,硅或者复合粒子的悬浮液存在下发生稀释和沉淀时,所述粒子作为沉淀的成核位。结果是在粒子上得到特别均匀的残碳材料涂层。
目标粒子的涂层,无论含碳基材,硅或者硅/碳复合材料,都可以通过将所述粒子混合入形成残炭材料溶液直接施加。当所述粒子直接加入到所述形成残炭材料溶液时,通常另外的溶剂加入到得到的混合物中以实现所述形成残炭材料的部分沉淀。所述另外的溶剂可以与用于制备形成残炭材料溶液的溶剂相同或者不同。
另外的沉淀方法需要含碳基材,硅或者硅/碳复合粒子的悬浮液,所述的悬浮液通过在与用于形成形成残炭材料溶液同样的溶剂,在混合溶剂,或者不同的溶剂中,在希望温度下优选低于溶剂沸点下,均一混合所述粒子制备。所述目标粒子的悬浮液然后与形成残炭材料溶液结合,从而使形成残炭材料的一定部分基本上均一地沉积在所述粒子表面上。
在粒子表面上沉积的形成残炭材料的总量和形态取决于从所述溶液中沉淀的形成残炭材料部分,这反过来取决于形成残炭材料在初始溶液和在最终溶液中的溶解性的差。当所述形成残炭材料是沥青时,通常含有宽范围分子量的物种。本领域普通技术人员意识到此类材料的部分沉淀将使所述材料分级,以使所述沉淀物具有相对高的分子量和具有高熔点,剩余的溶解物与初始沥青相比具有相对低的分子量和低的熔点。
在给定溶剂或者溶剂混合物中,所述形成残炭材料的溶解性取决于各种各样的因素例如包括浓度,温度和压力。如前所述,稀释浓助熔剂溶液可引起溶解度减少,因为在有机溶剂中形成残炭材料的溶解度随着温度而增加,由于在高温下开始所述过程并在涂敷操作期间逐渐地降低温度,从而进一步增加涂层的沉淀。所述形成残炭材料可以在环境或者减压和在约-5℃-约400℃温度下沉积。通过调节所述溶剂与所述形成残炭材料的总量比和溶解温度,可以控制在含碳的,硅或者复合粒子上沉淀的形成残炭材料的总量和硬度。
在最后的形成残炭材料稀释溶液中,含碳的基材,硅或者硅/碳复合粒子的悬浮液中,通常的溶剂与形成残炭材料比例大于约2;优选大于约4。本领域普通技术人员理解在涂敷过程结束时具体的溶剂与残碳形成沥青的比例取决于选择用于所述过程的形成残炭材料和溶剂。一方面,因为溶剂成本希望使用尽可能少的溶剂,而另一方面,需要足够的溶剂以使所述粒子可以分散在溶剂中。
沉淀步骤一旦完成,就使用常规方法,比如离心分离或者过滤使所述涂敷粒子从溶剂,粒子和形成残炭材料混合物中分离。任选用溶剂洗涤所述粒子以除去残余沥青(或者其它的残碳形成材料)溶液,并使用常规方法干燥。
根据所述创造性的方法,通过将沥青同时共沉淀在未涂敷细硅粉粒子和涂敷的相对粗糙的含碳粒子混合物上生产硅/碳复合粒子,因此使硅粒子有效地嵌入相对大量的含碳基材粒子的涂层中。之后用沥青涂敷得到的硅/碳复合粒子。
可选择地,所述硅/碳复合粒子可以通过如下步骤生产:在独立的容器中用沥青分别涂敷硅粒子和含碳的基材粒子;之后所述涂敷粒子在沥青和溶剂的溶液中一起混合,以使涂敷硅粒子嵌入涂敷的含碳基材粒子。
根据本发明方法的另外的步骤,优选通过氧化稳定,而使所述硅,碳和硅/碳复合粒子涂层部分或者全部的不可熔。通过使用氧化剂在适当的反应条件下,使所述的粒子经氧化反应处理而稳定粒子的涂层。通常,仅需要温和到中等的反应条件。通常,在温和条件下使所述涂敷粒子与氧化剂接触,在升高的条件下活化所述氧化剂满意地进行所述氧化反应。可在环境温度(接近20℃)或者在中等高温(达到接近400℃)下与所述氧化剂接触。通常在达到400℃的中等高温活化所述氧化剂。优选使氧化反应温度保持低于涂层材料的瞬时熔点,以确保在氧化反应期间不超过涂层材料熔点。
根据有创造性的方法的另外的步骤,可以任选碳化稳定的涂敷的硅,含碳的基材粒子或者硅/碳复合粒子。通过稳定化使涂层表面难熔的程度取决于使用的沥青类型以及使用的溶剂或者溶剂组合。进一步,如果希望多个涂层,则优选在稳定化或者碳化之后施加另外的涂层。具有多个涂层的复合粒子的最后涂层优选碳化。
进行本发明稳定化步骤,以使所述涂层表面对于随后的碳化难熔。氧化稳定化可以在本发明涂敷复合粒子中保存涂敷过程中产生的光滑表面,因为所述氧化稳定化可以使涂层表面对于后续加工步骤难熔。
希望以控制方式进行稳定涂敷粒子的热处理以使粒子熔合最小化。本领域普通技术人员意识到高度稳定的,难熔的涂敷粒子可以在碳化期间被相对过分和迅速地加热。相反,相对温和稳定的涂敷粒子需要缓慢的加热以免涂层过度的熔融和粒子的熔合。在稳定化和热处理期间使用流化床特别有益于防止涂敷粒子的结团和熔合。
对于确保涂敷粒子碳化需要的温度,希望通过以控制的方式从起始温度,通常环境温度升高到最后的碳化温度实现,所述的最后的碳化温度为上述范围之内,约400℃-约1500℃,优选约800℃-约1300℃,更优选约900℃-1200℃。
对于稳定的涂敷粒子的碳化过程的气氛条件,所述气氛可以是直到约850℃的环境空气,但是优选温度约400℃以上的惰性气氛。当在加热期间或者在真空下加热期间氧大量地被置换时,环境空气是可接受的气氛。适当的惰性气氛包括氮,氩气,氦等,它们与加热的涂敷粒子无反应性。
应理解在所述涂敷粒子加热期间,必须特别注意以保证在加热过程期间,既不能使达到的温度也不能使在加热过程任何部分期间使升温速率超过粒子涂层的瞬时熔点。更简单地说,通过控制温度从而实现涂层的热降解,其中保持处理温度等于或低于涂层瞬时熔点,其中所述的熔点通常在处理期间随时间增加。考虑到这个要求,优选的加热过程是显示缓慢温升速率的那些。
本发明最优选方面是在硅/碳复合粒子上提供光滑的涂层。优选所述硅/碳复合粒子涂层稳定化之后,进行涂敷稳定的硅/碳复合粒子的可控加热,以实现涂敷粒子的碳化,而有很少的或者没有各个粒子的结团或者自粘合。希望的结果是涂敷粒子具有很少的或者没有这种破裂的断裂面,所述的断裂面是当单个粒子熔合并必须压碎或者分裂以提供自由流动的粉末时形成的。这种断裂面希望减到最小或者避免,因为当所述粒子用作再充电式蓄电池,特别是再充电式锂离子电池的阳极材料时,它们被认为是电化学效率降低的因素。
根据本发明教导的有创造性方法的特别优选实施方案,所述形成残炭材料以流体形式提供。发明人已经注意到当所述形成残炭材料从液体中沉淀时,在单个含碳粒子和包围液体的界面处形成光滑涂层。当随后碳化时保留光滑涂层。
尽管不太有利,但当残碳形成涂层以固体提供时,希望它在所述粒子表面上熔化以在其上形成光滑涂层。本发明特别优选实施方式在碳化以后,得到自由流动的涂敷粒子粉末,其粒子显示出在所述粒子中间有很少的或者没有熔合,但是通常可以通过简单的机械搅拌,比如通过利用搅拌棒,或者通过大拇指和食指之间摩擦,破裂成为自由流动粉末。如果粒子之间发生一些熔合,则使用机械搅拌以分离这些可能导致形成新的断裂面的粒子,在本发明优选实施方式中,这些断裂面占所述粒子总表面积的不大于10%,优选不大于2%。这些被认为是基本上光滑的涂层。
本发明优选方面在于沥青涂层方法,或者形成残炭材料涂层方法。这种涂层方法不管粒子尺寸如何,都可在粒子上提供均匀的残碳形成涂层。所述涂层可以由许多的方法实现,但是特别有利的是在目标粒子,无论是硅,含碳基底材料或者硅/碳复合粒子的悬浮液存在下沉淀所述涂层材料。这种涂层方法可以得到控制组成的均匀涂层,并产生疏松的粒子粉末,因此沥青涂敷粒子不成团,在随后的工艺步骤中不需要进一步的粉碎过程。
本发明另外的优选方面在于氧化反应,其在所述涂层碳化之前在涂敷粒子上进行。所述氧化反应被认为可以提供一定的技术优点。首先,相信继氧化之后所述反应的涂敷粒子是相对难熔的,考虑到随后的工艺步骤和后续的粒子处理这是特别希望的。其次,当用作电极,特别当所述反应的涂敷粒子用于再充电式蓄电池,特别是再充电式锂离子电池中的阳极材料时,相信所述反应的涂敷粒子具有可以产生高效率的表面。
本发明另外的方面,设计将涂敷的硅或者涂敷的硅/碳复合粒子用于蓄电池,特别是再充电式电池的电极,特别是阳极。根据本发明这个方面,设计一种用于制造蓄电池的方法,所述的方法包括如下步骤:将包括硅/碳复合粒子的硅材料引入到蓄电池的阳极中,所述的硅/碳复合粒子具有由氧化的形成残炭材料形成的涂层。
根据本发明这个方面,从上面描述的方法中生产的涂敷硅/碳复合粒子使用常规方法形成为电极,特别是阳极。尽管本发明没有详细描述,但预期可以使用本领域已知的生产技术用于装配此类电极,及本领域已知的促进这种电极形成的设备。通过利用本发明教导的涂敷粒子得到的特别的优势在于,由于它们的涂层,因此它们很少熔合在一起从而得到流动的粉末。
在下面实施例中描述本发明的各个方面,包括特定的优选实施方式。
实施例1
材料制备
用于该实施例的硅粉的平均粒度为5μm(来自Johnson Matthey公司)。用于涂层的沥青是来自Conoco公司的石油沥青。所述的沥青在二甲苯中有接近27%不溶解度。在硅粉上涂敷沥青的过程如下。首先,在玻璃烧瓶中,将20克硅粉与约100ml的二甲苯混合,使得硅粒子均一地分散在二甲苯中。同时,在另外烧瓶中,混合14克沥青与等量的二甲苯,使得所述沥青全部溶解在二甲苯中。两种溶液都加热到接近110℃,所述沥青溶液加入到所述硅溶液中,同时连续混合。得到的溶液然后被加热到140℃,连续搅拌约15分钟。从加热器中除去溶液,所述溶液逐渐地冷却到环境温度(~25℃)。在所述溶液混合并冷却的时候,所述不溶解的沥青从溶液中沉淀并均一地涂敷在硅粒子上。在溶液中得到的固体粒子是涂敷沥青的硅粉。然后通过过滤从液体中分离所述粉末,用50ml二甲苯洗涤。
所述涂敷沥青的硅粉然后在~100℃的真空下干燥。干燥粉末的总重量约23.8g,导致16wt%的沥青涂敷在硅上。所述粉末然后转移到管式炉中,在气压降低的条件下(通常~22″Hg)以1℃/分钟的速率加热到300℃,并在300℃下加热另外的10小时。在这种热处理(稳定化)期间,硅粒子上的沥青重量增加约5%。稳定化之后,所述粉末以5℃/分钟的速率在氮气下加热到高于1150℃的温度,并保持2小时。通常,在碳化期间稳定的沥青重量减少约25%。基于在稳定化之前初始沥青的量,所述沥青的总重量减少在碳化以后保持为碳涂层的沥青的约20%,或者约80%。
如在以下所述“电池容量评价”部分的描述,然后测定得到的粉末作为锂离子电池阳极材料的性能。图2显示出在第一循环充电和放电期间,对于不同的截止电势的电势图的对比。为了对比,普通的硅和石墨粉的机械混合物的电势图也显示于图中。在该图中,Y轴是在充电和放电期间相对于金属锂的硅电极电势,X轴代表基于单位重量的复合材料,存储到电极并从所述电极迁移的电荷。所述材料的电势是锂掺合饱和程度的指标;电势越低,材料就越接近饱和。能够看出对于复合物碳/硅粒子库仑效率比值相当的高(>90%),而对于石墨和普通的硅的机械混合物则非常的低(<30%)。另外,对于涂敷碳的硅粉,在后续部分中定义的容量非常的大。
电容量的评价
通过以下方法测定根据实施例1-3以及对比例得到的粉末粒子的可逆电容量和库仑效率。
通过使粉末(5克)与包含0.382克聚偏二氟乙烯(PVDF,来自Aldrich Chemical Co.Inc.),3.44g1-甲基-吡咯烷酮(NMP,来自AldrichChemical Co.,Inc.)和0.082克乙炔黑(有效表面积为80m2/g,来自AlfaAesar)的溶液彻底混合形成均匀的浆料。然后使用刮刀人工浇铸,以在电沉积铜箔(10μm,来自Fuduka Metal Foil Powder Co.,Ltd.)的粗糙面上形成负载量为约6mg/cm2的薄膜。流延薄膜然后在加热板上在约100℃下干燥,用辊式压制机压制到希望的密度(约1.4g/cm2)。然后从薄膜冲压出面积为1.6cm2的圆片,称重以确定铜箔上准确的质量。随后,该圆片进一步在80℃的真空下干燥大约15分钟,转移到密封箱中不使圆片接触环境空气。所述密封箱充满超纯氩气,氧和水分含量小于1ppm。
随后,所述圆片在制造标准硬币电池(尺寸2025)中浇铸为正极,所述的硬币电池随后用作试验电池。试验电池的另一个电极是纯锂箔(100μm,来自Alfa Aesar)。双层的隔板用于试验电池中:玻璃垫(GF/B玻璃微纤维滤纸,Whatman International Ltd.)用作复合物碳/硅粉上的第一层,多孔的聚丙烯薄膜(可以Celgard 2300从Celgard Inc.得到)用作锂箔上的第二层。试验电池的电解质是在碳酸亚乙酯(EC)/碳酸二乙酯(DEC)/碳酸二甲基酯(DMC)溶剂混合物(40/30/30)(从EM Industrial购买)中的1M LiPF6。试验电池使用上面描述的组份根据常规方法生产,尽管要改变粉粒样品以保证生产的样品硬币电池的至少一种中引入根据说明性的实施例之一或者对比例之一的粉粒样品。在室温下(~25℃)试验这些粉末作为构造为碳/隔板/金属锂的硬币电池的阳极材料性能。对于每一个样品制造两个或三个电池;报道的充电容量和充电效率是电池的平均值。
根据以下规程确定具体的粉粒样品的容量和充电效率。使用标准的电化学试验台(Model BT-2043,Arbin Instrument Corp.),装配的试验电池首先以0.5mA(约52mA/g)放电(相当用锂搀合),以得到在第一循环中的电压。尔后,以0.5mA给装配的试验电池充电(去搀合)到1.5伏,在充电期间,充电期间通过的电荷用于计算复合粉末的比容量,而充电期间通过的总电荷与放电期间通过的总电荷的比值用于确定充电效率。
实施例2
20克自然片状石墨粉末(平均粒度5μm,来自中国),根据实施例1描述的过程涂敷10wt%的石油沥青。稳定,在氩气中3000℃下碳化和石墨化涂敷的石墨粉。同时,如实施例1所述,对硅粉(平均粒度2μm,购买自Johnson Matthey company),涂敷10wt%的沥青,稳定并在1050℃碳化。涂敷的天然石墨粉和涂敷的硅粉混合物以6份涂敷的石墨和4份涂敷的硅粉结合,并使用同样的方法涂敷15wt%同样的沥青溶液。在空气中稳定化以后,得到的复合粉末在氮保护气氛中在1050℃碳化。得到的石墨/硅/碳复合粒子粉末的形态如图3所示。能够看出小的硅粒子嵌入到大的石墨粒子的碳涂层中,类似的结构如图1所示。
然后评价复合粉末作为锂离子电池的阳极材料的性能,如名称为“电容量评价”部分中所述。循环电势窗在0.09-1.5伏之间。结果显示于图4中。可以注意到材料的容量为约850mAh/g,从循环到循环之间的可逆性相当好。
实施例3
20克天然的片状石墨粉末(平均粒度5μm,来自中国),根据如实施例1描述的方法,涂敷7wt%的石油沥青。对所述涂敷的石墨粉进行稳定,并在1200℃碳化。如实施例2描述,以同样的比例混合所述涂敷的石墨粉与涂敷的硅粉。然后如实施例1所述,对所述混合物涂敷15wt%沥青并稳定。随后,得到的复合粒子粉末用10wt%沥青再一次涂敷,稳定,并在氮保护气氛下1050℃碳化。用和先前描述一样的方法测定所述材料作为Li离子电池阳极材料的性能。对于该材料最初5次循环的容量和效率显示于图5中。表明硅粉的可再充电性显著增加。
比较例
为在同样的碳涂层水平比较涂敷碳的硅粉与未涂敷的硅粉,通过将20%石墨加入到未涂敷的硅,和7%同样的石墨加入到涂敷碳的硅中制造电极。使用的石墨是基于复合石墨粉的天然石墨。
图2显示对于涂敷碳的硅和未涂敷的硅粉的充电和放电的电池电压曲线。应当指出“充电”意思是锂以电化学的方式插入到电极中,“放电”表示所述锂从所述电极移去。基于除了粘合剂以外的总的电极材料计算充电和放电容量。如图所示,一经充电所述电池电压迅速下降到低的截止电压,对于所述硅/石墨混合物电极,放电容量和效率是非常小的。

Claims (64)

1.一种生产涂敷的硅/碳粒子的方法,包括:
提供形成残炭材料;
提供硅粒子;
用所述的形成残炭材料涂敷所述的硅粒子以形成涂敷的硅粒子;
提供含碳材料粒子;
用所述的形成残炭材料涂敷所述的含碳材料粒子以形成涂敷的含碳粒子;
将所述的涂敷的硅粒子嵌入到所述的涂敷的含碳粒子中,以形成硅/碳复合粒子;
用所述的形成残炭材料涂敷所述的硅/碳复合粒子以形成涂敷的硅/碳复合粒子;及
通过对所述的涂敷的复合粒子进行氧化反应处理,稳定所述涂敷的复合粒子。
2.权利要求1所述的方法,其中以包括一种或多种溶剂和所述的形成残炭材料的溶液的形式提供所述的形成残炭材料。
3.权利要求2的所述方法,其中在与所述的形成残炭材料溶液混合之前,以包括一种或多种溶剂的溶液中的悬浮物的形式提供所述硅粒子。
4.权利要求2的所述方法,其中在与所述的形成残炭材料溶液混合之前,以包括一种或多种溶剂的溶液中的悬浮物的形式提供所述含碳材料粒子。
5.权利要求2的所述方法,其中在与所述的形成残炭材料溶液混合之前,以包括一种或多种溶剂的溶液中的悬浮物形式提供所述硅/碳复合粒子。
6.权利要求2所述的方法,进一步包括将一种或多种溶剂加入到形成残炭材料和所述粒子溶液的混合物中。
7.权利要求1的所述方法,进一步包括在涂敷以后稳定所述硅粒子。
8.权利要求1的所述方法,进一步包括在涂敷以后稳定所述含碳粒子。
9.权利要求7所述的方法,进一步包括碳化所述硅粒子。
10.权利要求8所述的方法,进一步包括碳化所述含碳粒子。
11.权利要求9所述的方法,其中在惰性气氛下在约400℃-约1500℃的温度碳化所述粒子。
12.权利要求10所述的方法,其中涂敷粒子在惰性气氛下约400℃-约1500℃温度碳化,粒子加入到包括一种或多种溶剂和形成残炭材料的溶液中,以使所述涂敷的硅粒子嵌入所述涂敷含碳粒子。
13.权利要求2所述的方法,其中所述溶剂选自甲苯、苯、二甲苯、喹啉、四氢呋喃、四氢萘、萘、甲醇、丙酮、甲基吡咯烷酮、环己烷、醚和水。
14.权利要求2所述的方法,其中在高温下混合所述形成残炭材料的溶液,以使所述形成残炭材料溶解在一种或多种溶剂中。
15.权利要求2所述的方法,其中在高温下混合所述粒子的悬浮液。
16.权利要求2所述的方法,其中在所述形成残炭材料溶液和所述粒子悬浮液混合物中,一种或多种溶剂与所述形成残炭材料的比为2∶1或更大。
17.权利要求2所述的方法,其中在所述形成残炭材料溶液和所述粒子悬浮液的混合物中,一种或多种溶剂与所述形成残炭材料的比为4∶1或更大。
18.权利要求1所述的方法,其中所述涂敷的硅粒子和所述的涂敷的含碳粒子加入到形成残炭材料的溶液中,以使所述涂敷的硅粒子嵌入到所述含碳粒子上。
19.权利要求1所述的方法,其中在环境压力或者更高的压力下,沉积所述形成残炭材料的涂层。
20.权利要求19所述的方法,其中在约-5℃-约400℃的温度下沉积所述形成残炭材料涂层。
21.权利要求1所述的方法,其中所述形成残炭材料的涂层是均匀的,而且基本上是光滑的。
22.权利要求1所述的方法,其中用形成残炭材料进一步涂敷所述稳定的涂敷的硅/碳复合粒子,以形成形成残炭材料的另外的涂层。
23.权利要求22所述的方法,其中用形成残炭材料进一步涂敷所述多次涂敷的硅/碳复合粒子,以形成形成残炭材料的另外的涂层。
24.权利要求22所述的方法,其中碳化所述硅/碳复合粒子最后的涂层。
25.权利要求1所述的方法,其中所述含碳粒子包括选自石油沥青、焙烧的石油焦炭、未焙烧石油焦炭、高度结晶焦炭、煤焦油焦炭、人造石墨、天然石墨、来源于有机聚合物的软质炭黑和来源于天然聚合物的软质炭黑的粉状的含碳材料。
26.权利要求1所述的方法,其中所述含碳粒子的平均粒度高达约50μm。
27.权利要求1所述的方法,其中所述含碳粒子的平均粒度为约1μm-约30μm。
28.权利要求1所述的方法,其中所述硅粒子的平均粒度高达约50μm。
29.权利要求1所述的方法,其中所述硅粒子的平均粒度为约0.03μm-约20μm。
30.权利要求2所述的方法,其中通过在所述粒子上有选择地沉淀所述形成残炭材料,将所述形成残炭材料沉积在所述粒子表面上。
31.权利要求1所述的方法,其中所述形成残炭材料是选自来自化学加工的石油和煤的重的芳香残余物、来自制浆工业的木质素、酚醛树脂和碳水化合物材料的聚合材料。
32.权利要求1所述的方法,其中所述形成残炭材料选自石油沥青、煤焦油沥青或者通过化学方法生产的沥青。
33.权利要求1所述的方法,其中在氧化剂存在下进行所述氧化反应。
34.权利要求33所述的方法,其中在高温下进行所述氧化。
35.权利要求34所述的方法,其中以控制方式以一定的升温速度提供高温并保持一段时间。
36.权利要求33所述的方法,其中在减压下进行氧化。
37.一种涂敷的硅/碳复合粒子,包括涂敷的硅和涂敷的含碳粒子核,所述的核进一步涂敷有形成残炭材料的层。
38.权利要求37所述的涂敷复合粒子,其中所述复合粒子包括选自石油沥青、焙烧的石油焦炭、未焙烧石油焦炭、高度结晶焦炭、煤焦油焦炭、人造石墨、天然石墨、来源于有机聚合物的软质炭黑和来源于天然聚合物的软质炭黑的粉状的含碳材料。
39.根据权利要求37的涂敷含碳粒子,其中所述复合粒子是选自焙烧石油焦炭、未焙烧石油焦炭、高度结晶焦炭、人造石墨和天然石墨的粉状的含碳材料。
40.权利要求37所述涂敷的含碳粒子,其中所述涂层是石墨涂层。
41.一种制造Li离子电池的方法,其中权利要求37所述的涂敷的含碳粒子用作阳极材料,其中当用不包含碳酸亚丙基酯溶剂的电解质试验时,这种Li离子电池相对于Li在1伏的截止电势时,显示大于90%的第一循环充电效率。
42.一种蓄电池,包括权利要求37的涂敷的含碳粒子。
43.权利要求42的蓄电池,其中所述蓄电池是再充电式蓄电池。
44.一种制造蓄电池的方法,包括将权利要求37的涂敷的复合粒子引入蓄电池的阳极中。
45.一种制造涂敷的硅/碳复合粒子的方法,所述的粒子具有基本上由氧化的形成残炭材料形成的光滑的涂层,包括:
提供形成残炭材料的第一溶液,所述的形成残炭材料选自石油沥青和煤焦油沥青,其中第一溶液包括选自甲苯、二甲苯、喹啉、四氢呋喃、四氢萘和萘的一种或多种溶剂;
提供含碳材料的粒子,所述的含碳材料选自焙烧或者未焙烧的石油焦炭、天然石墨和人造石墨,其中以包括一种或多种溶剂的第二溶液提供所述粒子;
在高温下混合第一溶液和第二溶液;
在含碳粒子表面上沉积所述形成残炭材料涂层,以形成涂敷的含碳粒子;
提供硅粒子,其中以包括一种或多种溶剂的第三溶液提供所述硅粒子;
在高温下混合第一溶液和第三溶液;
在硅粒子表面上沉积所述形成残炭材料涂层,以形成涂敷的硅粒子;
在高温下混合第一溶液与涂敷的硅粒子和涂敷的含碳粒子,以形成硅/碳复合粒子;
在所述复合粒子表面上沉积形成残炭材料涂层,以形成涂敷的硅/碳复合粒子;
通过对所述的涂敷的复合粒子进行氧化反应处理,稳定所述涂敷的复合粒子;和
碳化所述涂敷的复合粒子。
46.权利要求45的方法,其中在惰性气氛下,在大于约400℃温度碳化所述涂敷粒子。
47.权利要求45所述的方法,其中在惰性气氛下,在约550℃-约1500℃的温度碳化所述涂敷粒子。
48.一种涂敷的硅/碳复合粒子,包括通过权利要求45的方法产生的氧化的形成残炭材料形成的涂层。
49.一种蓄电池,包括权利要求46的涂敷的粒子。
50.如权利要求49的蓄电池,其中所述蓄电池是再充电式蓄电池。
51.一种蓄电池阳极,包括权利要求50的涂敷的粒子。
52.权利要求50的蓄电池阳极,其中所述蓄电池是再充电式蓄电池。
53.一种制造蓄电池的方法,其中所述方法包括将涂敷的硅/碳复合材料引入到蓄电池的阳极中,所述的硅/碳复合材料包括具有由氧化的形成残炭材料形成的涂层的涂敷的硅粒子和涂敷的含碳粒子。
54.权利要求2的方法,其中通过使形成残炭材料部分沉淀在所述粒子表面上,从而加强所述粒子的涂层。
55.权利要求54的方法,其中通过加入更多相同的或者一种或多种不同的溶剂,稀释形成残炭材料的浓溶液,从而实现部分沉淀。
56.权利要求55的方法,其中所述浓溶液中溶剂与形成残炭材料的比是2∶1或更少,在所述稀释的溶液中溶剂与形成残炭材料的比大于2∶1。
57.权利要求55的方法,其中所述浓溶液中溶剂与形成残炭材料的比是2∶1或更少,在所述稀释的溶液中溶剂与形成残炭材料的比大于5∶1。
58.权利要求55的方法,其中在涂敷步骤期间,通过冷却所述硅和含碳粒子和形成残炭材料的混合物实现形成残炭材料的部分沉淀。
59.权利要求2所述的方法,其中在环境或者较高压力下沉积所述形成残炭材料的涂层。
60.权利要求46的涂敷的含碳材料,当用作锂离子电池的阳极材料时,相对于金属锂在0.5伏的截止电势时,显示出大于90%的第一次循环充电效率。
61.一种制造涂敷的硅/碳复合粒子的方法,所述的粒子具有基本上由氧化的形成残炭材料形成的光滑的涂层,包括:
提供形成残炭材料的第一溶液,所述的形成残炭材料选自石油沥青和煤焦油沥青,其中第一溶液包括选自甲苯、二甲苯、喹啉、四氢呋喃、四氢化萘和萘的一种或多种溶剂;
提供含碳材料的粒子,所述的含碳材料选自焙烧或者未焙烧的石油焦炭、天然石墨和人造石墨,其中以包括一种或多种溶剂的第二溶液提供所述粒子;
在高温下混合第一溶液和第二溶液;
在含碳粒子表面上沉积所述形成残炭材料涂层,以形成涂敷的含碳粒子;
提供硅粒子,其中以包括一种或多种溶剂的第三溶液提供所述硅粒子;
在高温下混合第一溶液与硅粒子和涂敷的含碳粒子,以形成硅/碳复合粒子;
在所述复合粒子表面上沉积所述形成残炭材料的涂层,以形成涂敷的硅/碳复合粒子;
通过对所述的粒子进行氧化反应处理,稳定所述涂敷的复合粒子;并
碳化所述涂敷的复合粒子。
62.权利要求61的方法,其中在惰性气氛下,在大于约400℃的温度碳化所述涂敷粒子。
63.权利要求61所述的方法,其中在惰性气氛下,在约550℃-约1500℃的温度碳化所述涂敷粒子。
64.一种涂敷的硅/碳复合粒子,包括通过权利要求61的方法产生的氧化的形成残炭材料形成的涂层。
CN2004800379008A 2003-12-19 2004-11-15 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法 Expired - Fee Related CN1894811B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/741,381 US7618678B2 (en) 2003-12-19 2003-12-19 Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US10/741,381 2003-12-19
PCT/US2004/038115 WO2005065082A2 (en) 2003-12-19 2004-11-15 Carbon-coated silicon particle power as the anode material for lithium ion batteries and the method of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2008101294844A Division CN101359734B (zh) 2003-12-19 2004-11-15 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法

Publications (2)

Publication Number Publication Date
CN1894811A true CN1894811A (zh) 2007-01-10
CN1894811B CN1894811B (zh) 2010-10-27

Family

ID=34678135

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2004800379008A Expired - Fee Related CN1894811B (zh) 2003-12-19 2004-11-15 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法
CN2008101294844A Expired - Fee Related CN101359734B (zh) 2003-12-19 2004-11-15 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2008101294844A Expired - Fee Related CN101359734B (zh) 2003-12-19 2004-11-15 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法

Country Status (9)

Country Link
US (2) US7618678B2 (zh)
EP (1) EP1702375B1 (zh)
JP (1) JP5064803B2 (zh)
KR (1) KR101167277B1 (zh)
CN (2) CN1894811B (zh)
CA (1) CA2548988C (zh)
ES (1) ES2405600T3 (zh)
TW (1) TWI361510B (zh)
WO (1) WO2005065082A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420024B (zh) * 2007-10-23 2011-10-26 三星Sdi株式会社 锂可再充电电池的负极和采用该负极的锂可再充电电池
CN102282110A (zh) * 2009-01-19 2011-12-14 科诺科菲利浦公司 通过从高挥发物焦炭中萃取沥青而生产涂覆的石墨阳极粉末和原位涂覆它
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
CN104538594A (zh) * 2007-02-21 2015-04-22 杰富意化学株式会社 锂离子二次电池用负极材料、其制备方法、锂离子二次电池用负极及锂离子二次电池
CN105765767A (zh) * 2013-08-12 2016-07-13 瓦尔达微创新有限责任公司 电化学活性材料及其制备
US9413003B2 (en) 2011-04-13 2016-08-09 Sei Corporation Electrode material for lithium secondary battery and lithium secondary battery
CN107408676A (zh) * 2014-12-23 2017-11-28 尤米科尔公司 用在锂离子蓄电池阳极中的复合粉末、制备这种复合粉末的方法及分析这种复合粉末的方法
CN107732158A (zh) * 2017-09-06 2018-02-23 深圳市比克动力电池有限公司 锂离子电池负极极片制备方法、负极极片及锂离子电池
CN108258230A (zh) * 2018-02-06 2018-07-06 深圳市普锐能源科技有限公司 一种锂离子电池用中空结构硅碳负极材料及其制备方法
CN113169319A (zh) * 2018-12-17 2021-07-23 韩国东海炭素株式会社 负极活性材料、其制备方法及包括其的锂二次电池

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785661B2 (en) * 2003-12-19 2010-08-31 Conocophillips Company Methods of preparing composite carbon-graphite-silicon particles and using same
US20060008706A1 (en) * 2004-07-09 2006-01-12 Takitaro Yamaguchi Rechargeable lithium battery
KR100738054B1 (ko) * 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US7883801B2 (en) * 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US7914931B2 (en) * 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
US20070147214A1 (en) * 2005-12-22 2007-06-28 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
TW200746523A (en) * 2006-01-30 2007-12-16 Tokai Carbon Kk Negative electrode material for lithium ion secondary battery and process for producing the same
CN1913200B (zh) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 锂离子电池硅碳复合负极材料及其制备方法
TWI458676B (zh) * 2008-03-31 2014-11-01 派諾得公司 用於電池的陽極粉末
KR101075028B1 (ko) * 2008-04-24 2011-10-20 쇼와 덴코 가부시키가이샤 리튬 이차전지용 탄소 음극재 및 그 제조방법과 이를 이용한 리튬 이차전지
US8277974B2 (en) 2008-04-25 2012-10-02 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
KR101025278B1 (ko) * 2008-05-29 2011-03-29 삼성에스디아이 주식회사 음극활물질, 이를 구비하는 음극 및 리튬이차전지
JP5463772B2 (ja) * 2008-07-30 2014-04-09 住友化学株式会社 ナトリウム二次電池
WO2010041907A2 (en) * 2008-10-10 2010-04-15 Knu-Industry Cooperation Foundation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
KR101131937B1 (ko) * 2008-10-10 2012-04-03 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
EP2349614A4 (en) * 2008-10-24 2012-04-11 Primet Prec Materials Inc FINE-PARTICULAR COMPOSITIONS OF GROUP IVA AND RELATED METHODS
US9012073B2 (en) 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US8241793B2 (en) * 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
KR101066256B1 (ko) * 2009-02-05 2011-09-20 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지
ITRM20090161A1 (it) * 2009-04-08 2010-10-09 Jusef Hassoun Accumulatori litio-zolfo
CN101527357B (zh) * 2009-04-24 2012-05-16 清华大学 纳米硅无定型碳复合锂离子电池负极材料及其制备方法
KR101093705B1 (ko) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지
WO2011041468A1 (en) 2009-09-29 2011-04-07 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
CN102630355A (zh) * 2009-11-03 2012-08-08 安维亚系统公司 用于锂离子电池的高容量阳极材料
US8497359B2 (en) * 2010-02-26 2013-07-30 Ppg Industries Ohio, Inc. Cationic electrodepositable coating composition comprising lignin
JP5553180B2 (ja) * 2010-03-26 2014-07-16 トヨタ自動車株式会社 電極活物質の製造方法
TW201140920A (en) 2010-04-08 2011-11-16 Conocophillips Co Methods of preparing carbonaceous material
US20110256449A1 (en) * 2010-04-19 2011-10-20 Conocophillips Company Organic coated fine particle powders
KR101510510B1 (ko) * 2010-04-26 2015-04-08 도요타지도샤가부시키가이샤 전극 활물질의 제조 방법
WO2011140150A1 (en) 2010-05-03 2011-11-10 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
US9558860B2 (en) 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
KR101126202B1 (ko) 2010-11-04 2012-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP5881943B2 (ja) * 2010-12-10 2016-03-09 日立化成株式会社 リチウム二次電池
KR101334615B1 (ko) * 2010-12-27 2013-11-29 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
FR2970245B1 (fr) * 2011-01-07 2013-01-25 Commissariat Energie Atomique Materiau composite silicium/carbone, procede de synthese et utilisation d'un tel materiau
JP2012178224A (ja) * 2011-01-31 2012-09-13 Dow Corning Toray Co Ltd 表面炭素被覆ケイ素含有炭素系複合材料の製造方法
US9786947B2 (en) * 2011-02-07 2017-10-10 Sila Nanotechnologies Inc. Stabilization of Li-ion battery anodes
CN103329313B (zh) * 2011-02-15 2015-12-02 株式会社Lg化学 制备负极活性材料的方法
KR101342600B1 (ko) 2011-05-11 2013-12-17 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 전지
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US8642214B2 (en) 2011-08-25 2014-02-04 Uchicago Argonne, Llc Silicon-carbonaceous encapsulated materials
CN103022435B (zh) * 2011-09-20 2016-05-04 宁波杉杉新材料科技有限公司 一种锂离子电池硅碳复合负极材料及其制备方法
EP2573845B1 (de) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Strukturstabiles Aktivmaterial für Batterieelektroden
US20130115372A1 (en) * 2011-11-08 2013-05-09 Primestar Solar, Inc. High emissivity distribution plate in vapor deposition apparatus and processes
US8785034B2 (en) 2011-11-21 2014-07-22 Infineon Technologies Austria Ag Lithium battery, method for manufacturing a lithium battery, integrated circuit and method of manufacturing an integrated circuit
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
WO2013116711A1 (en) * 2012-02-01 2013-08-08 The Regents Of The University Of California Conductive polymer coated si nanoparticles composite and current collectors for lithium ion negative electrode
JP5604013B2 (ja) * 2012-05-02 2014-10-08 昭和電工株式会社 リチウムイオン電池用負極材およびその用途
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US9929400B2 (en) 2012-08-06 2018-03-27 Ut-Battelle, Llc High capacity monolithic composite Si/carbon fiber electrode architectures synthesized from low cost materials and process technologies
US9461309B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
CN107507968A (zh) 2012-08-21 2017-12-22 克雷多斯公司 Iva族官能化粒子及其使用方法
US9269949B2 (en) 2012-10-12 2016-02-23 The Penn State Research Foundation Synthesis of micro-sized interconnected Si-C composites
US10170746B2 (en) 2012-10-17 2019-01-01 Infineon Technologies Ag Battery electrode, battery, and method for manufacturing a battery electrode
JP5599527B1 (ja) * 2012-11-20 2014-10-01 昭和電工株式会社 リチウムイオン電池用負極材の製造方法
JP5520414B1 (ja) * 2012-11-21 2014-06-11 昭和電工株式会社 リチウムイオン電池用負極材の製造方法
WO2014084635A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR101906973B1 (ko) * 2012-12-05 2018-12-07 삼성전자주식회사 표면 개질된 음극 활물질용 실리콘 나노입자 및 그 제조방법
TWI625885B (zh) * 2013-01-07 2018-06-01 威廉馬許萊斯大學 用於多孔性矽顆粒生產之經結合之電化學及化學蝕刻方法
KR101708363B1 (ko) 2013-02-15 2017-02-20 삼성에스디아이 주식회사 음극 활물질, 및 이를 채용한 음극과 리튬 전지
DE102013204799A1 (de) * 2013-03-19 2014-09-25 Wacker Chemie Ag Si/C-Komposite als Anodenmaterialien für Lithium-Ionen-Batterien
US10020491B2 (en) 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
KR20140139294A (ko) * 2013-05-27 2014-12-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
CA2820468A1 (fr) 2013-06-21 2014-12-21 Hydro-Quebec Anode comprenant un alliage de lithium pour batteries a haute energie
WO2015016531A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 수명 특성이 향상된 이차전지용 음극 활물질
US9564630B2 (en) 2013-08-08 2017-02-07 Nantek Instuments, Inc. Anode active material-coated graphene sheets for lithium batteries and process for producing same
US10020494B2 (en) 2013-08-08 2018-07-10 Nanotek Instruments, Inc. Anode containing active material-coated graphene sheets and lithium-ion batteries containing same
WO2015024004A1 (en) 2013-08-16 2015-02-19 Envia Systems, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
CN103474631B (zh) * 2013-10-08 2017-01-11 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用氧化亚硅复合负极材料、制备方法及锂离子电池
KR102164001B1 (ko) * 2014-01-09 2020-10-12 삼성에스디아이 주식회사 리튬 이차 전지
KR102211528B1 (ko) * 2014-01-09 2021-02-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 및 이를 포함하는 리튬 이차 전지
DE102014202156A1 (de) 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
KR101572364B1 (ko) * 2014-03-19 2015-11-26 오씨아이 주식회사 탄소-실리콘 복합체, 이를 이용한 리튬 이차전지용 음극 및 리튬 이차전지
EP2966037A1 (en) * 2014-07-08 2016-01-13 Umicore SA A composite particle comprising a carbon-based matrix and silicon particles embedded therein, a powder consisting of such composite particles, use of such composite particles and an electrode for a battery
KR20160008041A (ko) * 2014-07-11 2016-01-21 오씨아이 주식회사 이차전지용 음극활물질 및 이의 제조방법
US10128496B2 (en) 2014-08-14 2018-11-13 Giner, Inc. Three-dimensional, porous anode for use in lithium-ion batteries and method of fabrication thereof
CN104810506B (zh) * 2014-09-15 2017-09-12 万向一二三股份公司 一种高能量密度的锂离子电池
JP6020533B2 (ja) * 2014-10-29 2016-11-02 日立化成株式会社 リチウムイオン二次電池
CN115275320A (zh) 2014-10-30 2022-11-01 科罗拉多州立大学董事会(法人团体) 稳定的硅-离子液体界面锂离子电池组
JP2017536676A (ja) 2014-11-25 2017-12-07 コーニング インコーポレイテッド リチウムイオン電池アノードのための方法および材料
KR101888230B1 (ko) * 2014-11-27 2018-08-13 주식회사 엘지화학 규소계 음극활물질 및 이의 제조방법
WO2016106487A1 (en) * 2014-12-29 2016-07-07 Robert Bosch Gmbh Silicon-carbon composite, a method for preparing said composite, and an electrode material and a battery comprising said composite
US10573884B2 (en) 2015-01-30 2020-02-25 Regents Of The University Of Colorado, A Body Corporate Ionic liquid-enabled high-energy Li-ion batteries
EP3309873B1 (en) * 2015-06-15 2020-05-27 UNIST (Ulsan National Institute of Science and Technology) Anode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery containing same
CN105047887B (zh) * 2015-06-19 2017-03-15 苏州大学 一种改善锂离子电池硅负极材料的方法
DE102016202458A1 (de) * 2016-02-17 2017-08-17 Wacker Chemie Ag Verfahren zur Herstellung von Si/C-Kompositpartikeln
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US10008723B1 (en) 2016-05-17 2018-06-26 Nanotek Instruments, Inc. Chemical-free production of graphene-wrapped electrode active material particles for battery applications
US9899672B2 (en) 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
WO2018009484A1 (en) 2016-07-05 2018-01-11 Kratos LLC Passivated pre-lithiated micron and sub-micron group iva particles and methods of preparation thereof
HUE055358T2 (hu) * 2016-09-19 2021-12-28 Umicore Nv Tölthetõ elektrokémiai cella és akkumulátor
US9997784B2 (en) 2016-10-06 2018-06-12 Nanotek Instruments, Inc. Lithium ion battery anode containing silicon nanowires grown in situ in pores of graphene foam and production process
CN106384825B (zh) * 2016-11-07 2019-02-19 北京壹金新能源科技有限公司 一种硅碳复合微球及其制备方法和应用
KR102219747B1 (ko) * 2017-02-07 2021-02-24 와커 헤미 아게 리튬 이온 배터리의 애노드 재료용 코어-셸 복합재 입자
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10211455B2 (en) 2017-02-20 2019-02-19 Nanotek Instruments, Inc. Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing
US10084182B2 (en) 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US10411264B2 (en) 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing
US11637280B2 (en) 2017-03-31 2023-04-25 Kratos LLC Precharged negative electrode material for secondary battery
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10770721B2 (en) 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10727479B2 (en) 2018-06-01 2020-07-28 Global Graphene Group, Inc. Method of producing multi-level graphene-protected anode active material particles for battery applications
US10734635B2 (en) 2018-06-01 2020-08-04 Global Graphene Group, Inc. Multi-level graphene-protected battery cathode active material particles
US10559815B2 (en) 2018-06-01 2020-02-11 Global Graphene Group, Inc. Method of producing multi-level graphene-protected cathode active material particles for battery applications
US11038195B2 (en) 2018-06-01 2021-06-15 Global Graphene Group, Inc. Multi-level graphene-protected anode active material particles for battery applications
US11018336B2 (en) 2018-06-06 2021-05-25 Global Graphene Group, Inc. Multi-level graphene-protected anode active material particles for fast-charging lithium-ion batteries
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10985376B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing an electrode-protecting layer
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10985365B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing two anode-protecting layers
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US10734646B2 (en) 2018-06-21 2020-08-04 Global Graphene Group, Inc. Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
US10727531B2 (en) 2018-06-21 2020-07-28 Global Graphene Group, Inc. Lithium metal secondary battery featuring an anode-protecting layer
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10784509B2 (en) 2018-06-21 2020-09-22 Global Graphene Group, Inc. Lithium metal secondary battery containing two anode-protecting layers
US10770748B2 (en) 2018-06-25 2020-09-08 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method for improving cycle-life
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10385075B1 (en) 2018-10-11 2019-08-20 Nanostar, Inc. Mechanochemical functionalization of silicon
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US11152620B2 (en) 2018-10-18 2021-10-19 Global Graphene Group, Inc. Process for producing porous graphene particulate-protected anode active materials for lithium batteries
TWI711209B (zh) * 2018-11-22 2020-11-21 國家中山科學研究院 一種矽碳負極材料及其應用
US10797306B2 (en) 2018-11-26 2020-10-06 Global Graphene Group, Inc. Chemical-free production method of graphene-protected porous anode particles for lithium batteries
US11289698B2 (en) 2018-11-26 2022-03-29 Global Graphene Group, Inc. Chemical-free production of graphene-protected porous anode particles for lithium batteries
US11289697B2 (en) 2018-11-26 2022-03-29 Global Graphene Group, Inc. Graphite protected anode active material particles for lithium batteries
US11031589B2 (en) 2018-11-26 2021-06-08 Global Graphene Group, Inc. Chemical-free production of protected anode active material particles for lithium batteries
US11063253B2 (en) 2018-11-30 2021-07-13 National Cheng Kung University Composite particle for electrode
US11189822B2 (en) 2019-01-02 2021-11-30 Global Graphene Group, Inc. Graphite protected anode active material particles for rechargeable lithium batteries
WO2020146264A2 (en) * 2019-01-07 2020-07-16 The Board of Regents for the Oklahoma Agricultural and Mechanical Colleges Preparation of silicon-based anode for use in a li-ion battery
US11641012B2 (en) 2019-01-14 2023-05-02 Global Graphene Group, Inc. Process for producing graphene/silicon nanowire hybrid material for a lithium-ion battery
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11038172B2 (en) 2019-03-08 2021-06-15 Global Graphene Group, Inc. Environmentally benign process for producing graphene-protected anode particles for lithium batteries
US11735722B2 (en) 2019-04-10 2023-08-22 Global Graphene Group, Inc. Method of producing conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
US10957910B2 (en) 2019-05-01 2021-03-23 Global Graphene Group, Inc. Particulates of conducting polymer network-protected cathode active material particles for lithium batteries
US11881564B2 (en) 2019-05-06 2024-01-23 Global Graphene Group, Inc. Method of improving the cycle stability of lithium metal secondary batteries
US11961998B2 (en) 2019-05-06 2024-04-16 Honeycomb Battery Company Method of producing protected anode active material particles for rechargeable lithium batteries
US11658290B2 (en) 2019-05-06 2023-05-23 Global Graphene Group, Inc. Lithium metal secondary battery containing a conducting polymer network-based anode-protecting layer
US11984580B2 (en) 2019-05-06 2024-05-14 Honeycomb Battery Company Protected anode active material particles for rechargeable lithium batteries
US11916223B2 (en) 2019-05-09 2024-02-27 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing conducting polymer network-protected cathode material particulates
US11302911B2 (en) 2019-05-13 2022-04-12 Global Graphene Group, Inc. Particulates of polymer electrolyte-protected anode active material particles for lithium-ion batteries
US20210020905A1 (en) * 2019-07-16 2021-01-21 Giga Solar Materials Corp. Lithium ion battery silicon carbon electrode material and preparation method thereof
TWI743847B (zh) * 2019-07-16 2021-10-21 碩禾電子材料股份有限公司 電極材料及其製備方法
CN110713186B (zh) * 2019-08-26 2023-03-14 浙江工业大学 一种制备非晶硅/碳复合材料的方法
CN112670459B (zh) * 2019-12-09 2022-11-08 宁波杉杉新材料科技有限公司 一种石墨负极材料及其制备和应用
US12009505B2 (en) 2020-05-12 2024-06-11 Honeycomb Battery Company Conducting polymer network/graphene-protected negative electrode for a lithium-ion battery
SE545277C2 (en) * 2020-07-03 2023-06-13 Stora Enso Oyj A method for producing a carbon-silicon composite material powder, a carbon-silicon composite material powder, and a negative electrode for a non-aqueous battery
US20220246936A1 (en) * 2021-02-03 2022-08-04 Global Graphene Group, Inc. Phosphazene compound-based elastic polymer-encapsulated anode particles for lithium batteries and method of manufacturing
EP4263910A1 (en) * 2021-02-18 2023-10-25 Ionobell, Inc. Silicon anode battery
CN113097487B (zh) * 2021-04-01 2022-11-22 广东凯金新能源科技股份有限公司 一种高度致密结构硅碳复合材料、其制备方法及其应用
WO2022251358A1 (en) 2021-05-25 2022-12-01 Ionobell, Inc. Silicon material and method of manufacture
CN113488649B (zh) * 2021-06-02 2022-11-18 江苏正力新能电池技术有限公司 包覆型负极材料及其制备方法、负极片及锂离子电池
WO2023064395A1 (en) 2021-10-12 2023-04-20 Ionobell, Inc Silicon battery and method for assembly
US11945726B2 (en) 2021-12-13 2024-04-02 Ionobell, Inc. Porous silicon material and method of manufacture
CN114447294B (zh) * 2021-12-28 2024-03-22 长沙矿冶研究院有限责任公司 一种高致密结构的硅碳复合负极材料及其制备方法
TWI805421B (zh) * 2022-06-27 2023-06-11 中國鋼鐵股份有限公司 矽碳複合材料顆粒及其製造方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE833512A (fr) * 1974-09-17 1976-03-17 Nouvelle composition de latex charge par un compose hydrophobe, sa preparation et son application photographique
US4064330A (en) 1976-09-01 1977-12-20 Gaines Jr Fredrick William Carbon electrode assembly for lithium fused salt battery
DE3305530A1 (de) * 1983-02-18 1984-08-23 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur herstellung poroeser, durchstroembarer formkoerper aus kohlenstoff
US4503026A (en) * 1983-03-14 1985-03-05 E. I. Du Pont De Nemours And Company Spinnable precursors from petroleum pitch, fibers spun therefrom and method of preparation thereof
US4550064A (en) 1983-12-08 1985-10-29 California Institute Of Technology High cycle life secondary lithium battery
JPS6134222A (ja) * 1984-07-20 1986-02-18 Osaka Gas Co Ltd 炭素繊維の製造方法
US4980250A (en) 1986-05-13 1990-12-25 Mitsubishi Gas Chemical Company, Inc. Secondary battery
JPH01305859A (ja) 1988-06-01 1989-12-11 Nkk Corp 高密度炭素材の製造方法
US5069683A (en) 1989-05-11 1991-12-03 Moli Energy Limited Process of making a rechargeable battery
US5028500A (en) 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
JP2592143B2 (ja) 1989-09-06 1997-03-19 シャープ株式会社 非水系リチウム二次電池用炭素電極およびその製造方法
US5162175A (en) 1989-10-13 1992-11-10 Visco Steven J Cell for making secondary batteries
JP2645756B2 (ja) * 1989-12-18 1997-08-25 日本カーボン株式会社 球状炭素材料の製造方法
US5053295A (en) 1990-03-26 1991-10-01 Hope Henry F Lightweight electroconductive solderless internal cell connector for alkaline or alkaline earth metal batteries
JP2884746B2 (ja) 1990-09-03 1999-04-19 松下電器産業株式会社 非水電解液2次電池
US5196279A (en) 1991-01-28 1993-03-23 Bell Communications Research, Inc. Rechargeable battery including a Li1+x Mn2 O4 cathode and a carbon anode
JP3077218B2 (ja) 1991-03-13 2000-08-14 ソニー株式会社 非水電解液二次電池
JPH05101818A (ja) 1991-08-07 1993-04-23 Mitsubishi Gas Chem Co Inc 負極用炭素成形体及びリチウム二次電池
US5474862A (en) 1991-09-13 1995-12-12 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary batteries
US5256504A (en) 1991-09-13 1993-10-26 Matsushita Electric Industrial Co., Ltd. Monaqueous electrolyte secondary batteries
US5171413A (en) 1991-09-16 1992-12-15 Tufts University Methods for manufacturing solid state ionic devices
US5686138A (en) 1991-11-12 1997-11-11 Sanyo Electric Co., Ltd. Lithium secondary battery
CA2083001C (en) 1991-12-17 1996-12-17 Yuzuru Takahashi Lithium secondary battery using a non-aqueous solvent
EP0555080B1 (en) 1992-02-04 1996-05-15 Sharp Kabushiki Kaisha Carbon composite electrode material
JP3059832B2 (ja) 1992-07-27 2000-07-04 三洋電機株式会社 リチウム二次電池
US5639575A (en) 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
WO1994015374A1 (en) 1992-12-25 1994-07-07 Tdk Corporation Lithium secondary cell
US5510212A (en) 1993-01-13 1996-04-23 Delnick; Frank M. Structural micro-porous carbon anode for rechargeable lithium ion batteries
US5776610A (en) 1993-02-03 1998-07-07 Sharp Kabushiki Kaisha Carbon composite electrode material and method of making thereof
JPH08506689A (ja) 1993-02-12 1996-07-16 バレンス テクノロジー インコーポレイティッド 再充電可能リチウム電池の電極
JP2991884B2 (ja) 1993-02-16 1999-12-20 シャープ株式会社 非水系二次電池
US5436093A (en) 1993-04-30 1995-07-25 California Institute Of Technology Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell
DE69422854T2 (de) 1993-06-03 2000-10-19 Sony Corp Sekundärbatterie mit flüssigem nicht-wässerigen Elektrolyten
CA2098248C (en) 1993-06-11 1999-03-16 Jeffrey Raymond Dahn Electron acceptor substituted carbons for use as anodes in rechargeable lithium batteries
US5387479A (en) 1993-06-16 1995-02-07 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
US5497493A (en) * 1993-09-30 1996-03-05 Intel Corporation High byte right-shift apparatus with a register alias table
JP3556270B2 (ja) 1994-06-15 2004-08-18 株式会社東芝 リチウム二次電池
US5683834A (en) 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US5900336A (en) 1995-01-25 1999-05-04 Ricoh Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
DE69602637T2 (de) 1995-02-02 1999-09-30 Hitachi Ltd Sekundärbatterie und Material für negative Elektrode einer Sekundärbatterie
JP3069509B2 (ja) 1995-04-10 2000-07-24 株式会社日立製作所 非水系二次電池および黒鉛粉末製造方法
JPH09102318A (ja) 1995-10-06 1997-04-15 Sumitomo Electric Ind Ltd 金属多孔体の製造方法及びそれにより得られた電池用電極基板用金属多孔体
US5753387A (en) 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
US5705222A (en) * 1995-11-27 1998-01-06 The Trustees Of Columbia University In The City Of New York Process for preparing nanocomposite particles
US5863673A (en) 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
JP2983003B2 (ja) 1996-02-19 1999-11-29 日本カーボン株式会社 リチウム電池負極材料用カーボン
JP3873325B2 (ja) 1996-07-25 2007-01-24 大阪瓦斯株式会社 リチウム二次電池負極用炭素材及びその製造方法
EP0860887A4 (en) 1996-08-22 1999-09-08 Matsushita Electric Ind Co Ltd LITHIUM ION SECONDARY CELL AND THEIR CATHODE
DE69704042T2 (de) * 1996-09-24 2001-09-20 Petoca Ltd An der Oberfläche graphitiertes Kohlenstoffmaterial, Verfahren zu seiner Herstellung und dieses verwendende Negativelektrode für Lithium-Ionen-Sekundärbatterie
JPH10152311A (ja) * 1996-09-24 1998-06-09 Petoca:Kk 表面黒鉛化炭素材、その製造方法、およびそれを用いたリチウムイオン二次電池用負極
JP3372848B2 (ja) 1996-10-31 2003-02-04 キヤノン株式会社 電子放出素子及び画像表示装置及びそれらの製造方法
WO1998028806A1 (en) 1996-12-20 1998-07-02 Danionics A/S Lithium secondary battery with flake graphite negative electrode
JPH10239716A (ja) 1996-12-24 1998-09-11 Nippon Oil Co Ltd エレクトロクロミック素子用対向電極及び素子
US6066413A (en) 1997-03-06 2000-05-23 Telcordia Technologies, Inc. Method for increasing reversible lithium intercalation capacity in carbon electrode secondary batteries
US6342319B1 (en) 1997-03-13 2002-01-29 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode
US6123829A (en) * 1998-03-31 2000-09-26 Conoco Inc. High temperature, low oxidation stabilization of pitch fibers
TR199902448T2 (xx) * 1997-04-09 2000-01-21 Conoco Inc. Zift fiberlerinin y�ksek s�cakl�k, d���k oksitlenme dengelenmesi.
US5894403A (en) 1997-05-01 1999-04-13 Wilson Greatbatch Ltd. Ultrasonically coated substrate for use in a capacitor
CN1118880C (zh) 1997-05-30 2003-08-20 松下电器产业株式会社 非水电解质二次电池
US20020168574A1 (en) 1997-06-27 2002-11-14 Soon-Ho Ahn Lithium ion secondary battery and manufacturing method of the same
JP4461498B2 (ja) 1997-12-16 2010-05-12 パナソニック株式会社 非水電解液二次電池およびその負極
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP4081621B2 (ja) 1998-03-05 2008-04-30 大阪瓦斯株式会社 リチウム二次電池用負極炭素材およびリチウム二次電池
JP3949303B2 (ja) 1998-03-20 2007-07-25 三星エスディアイ株式会社 リチウム二次電池負極用炭素材及びこれを用いたリチウム二次電池
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP4446510B2 (ja) 1998-05-21 2010-04-07 三星エスディアイ株式会社 リチウム二次電池用負極活物質及びリチウム二次電池
US6432583B1 (en) 1998-07-31 2002-08-13 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
US6096454A (en) 1998-08-31 2000-08-01 The Regents Of The University Of California Surface modifications for carbon lithium intercalation anodes
JP3526223B2 (ja) 1998-09-17 2004-05-10 日本碍子株式会社 リチウム二次電池
US6391495B1 (en) 1998-11-25 2002-05-21 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
DE69938822D1 (de) 1998-12-02 2008-07-10 Matsushita Electric Ind Co Ltd Sekundärzelle mit nichtwässrigem elektrolyten und vefahren zu dessen aufladung
KR100609862B1 (ko) 1998-12-03 2006-08-09 카오 코퍼레이션 리튬 2차 전지 및 그의 제조방법
EP1020944B1 (en) * 1999-01-14 2011-12-07 Hitachi Chemical Company, Ltd. Lithium secondary battery, and process for producing the same
JP4393610B2 (ja) 1999-01-26 2010-01-06 日本コークス工業株式会社 リチウム二次電池用負極材料、リチウム二次電池、及び同二次電池の充電方法
JP2000239079A (ja) * 1999-02-19 2000-09-05 Nippon Carbon Co Ltd 表面を緻密化した炭素材料
US6589694B1 (en) 1999-05-14 2003-07-08 Mitsubishi Cable Industries, Ltd. Positive electrode active material, positive electrode active material composition and lithium ion secondary battery
US6528212B1 (en) 1999-09-13 2003-03-04 Sanyo Electric Co., Ltd. Lithium battery
JP3834746B2 (ja) 1999-09-22 2006-10-18 潤二 伊藤 多孔質ゴム系電極用バインダー、これを用いた多孔質ゴム系電極及び多孔質ゴム系電極基材
US6395427B1 (en) 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
US6541156B1 (en) 1999-11-16 2003-04-01 Mitsubishi Chemical Corporation Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
EP1101769A3 (en) * 1999-11-18 2001-10-24 Pfizer Products Inc. Nitrogen containing erythromycin derivatives
KR100350535B1 (ko) 1999-12-10 2002-08-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
US6623889B2 (en) 1999-12-20 2003-09-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery, carbon material for negative electrode, and method for manufacturing carbon material for negative electrode
WO2001045562A2 (en) * 1999-12-22 2001-06-28 Koninklijke Philips Electronics N.V. Medical apparatus provided with a collision detector
KR100358805B1 (ko) 2000-03-07 2002-10-25 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
US6749892B2 (en) 2000-03-22 2004-06-15 Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly
JP4137350B2 (ja) 2000-06-16 2008-08-20 三星エスディアイ株式会社 リチウム二次電池用の負極材料及びリチウム二次電池用の電極及びリチウム二次電池並びにリチウム二次電池用の負極材料の製造方法
JP2002008656A (ja) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd リチウム二次電池
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
US6503660B2 (en) 2000-12-06 2003-01-07 R. Terry K. Baker Lithium ion battery containing an anode comprised of graphitic carbon nanofibers
US6733922B2 (en) * 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
US20040042954A1 (en) * 2001-10-12 2004-03-04 Hong-Kyu Park Electrode material and preparation method thereof
US20030160215A1 (en) * 2002-01-31 2003-08-28 Zhenhua Mao Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538594A (zh) * 2007-02-21 2015-04-22 杰富意化学株式会社 锂离子二次电池用负极材料、其制备方法、锂离子二次电池用负极及锂离子二次电池
US8974966B2 (en) 2007-10-23 2015-03-10 Samsung Sdi Co., Ltd. Negative electrode for lithium rechargeable battery and lithium rechargeable battery adopting the same
CN101420024B (zh) * 2007-10-23 2011-10-26 三星Sdi株式会社 锂可再充电电池的负极和采用该负极的锂可再充电电池
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
CN102282110A (zh) * 2009-01-19 2011-12-14 科诺科菲利浦公司 通过从高挥发物焦炭中萃取沥青而生产涂覆的石墨阳极粉末和原位涂覆它
CN102282110B (zh) * 2009-01-19 2013-11-13 科诺科菲利浦公司 通过从高挥发物焦炭中萃取沥青而生产涂覆的石墨阳极粉末和原位涂覆它
US9413003B2 (en) 2011-04-13 2016-08-09 Sei Corporation Electrode material for lithium secondary battery and lithium secondary battery
CN105765767A (zh) * 2013-08-12 2016-07-13 瓦尔达微创新有限责任公司 电化学活性材料及其制备
CN105765767B (zh) * 2013-08-12 2018-07-03 瓦尔达微创新有限责任公司 电化学活性材料及其制备方法
CN107408676A (zh) * 2014-12-23 2017-11-28 尤米科尔公司 用在锂离子蓄电池阳极中的复合粉末、制备这种复合粉末的方法及分析这种复合粉末的方法
CN107732158A (zh) * 2017-09-06 2018-02-23 深圳市比克动力电池有限公司 锂离子电池负极极片制备方法、负极极片及锂离子电池
CN108258230A (zh) * 2018-02-06 2018-07-06 深圳市普锐能源科技有限公司 一种锂离子电池用中空结构硅碳负极材料及其制备方法
CN113169319A (zh) * 2018-12-17 2021-07-23 韩国东海炭素株式会社 负极活性材料、其制备方法及包括其的锂二次电池
CN113169319B (zh) * 2018-12-17 2024-06-07 韩国东海炭素株式会社 负极活性材料、其制备方法及包括其的锂二次电池

Also Published As

Publication number Publication date
JP5064803B2 (ja) 2012-10-31
CA2548988A1 (en) 2005-07-21
JP2007519182A (ja) 2007-07-12
KR20060111588A (ko) 2006-10-27
CA2548988C (en) 2013-08-13
EP1702375B1 (en) 2013-04-10
TW200532975A (en) 2005-10-01
WO2005065082A3 (en) 2005-09-09
US20090130562A1 (en) 2009-05-21
CN1894811B (zh) 2010-10-27
ES2405600T3 (es) 2013-05-31
TWI361510B (en) 2012-04-01
CN101359734A (zh) 2009-02-04
WO2005065082A2 (en) 2005-07-21
US20050136330A1 (en) 2005-06-23
KR101167277B1 (ko) 2012-07-27
EP1702375A2 (en) 2006-09-20
EP1702375A4 (en) 2009-11-04
US7618678B2 (en) 2009-11-17
CN101359734B (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
CN1894811B (zh) 作为锂离子电池阳极材料的涂敷碳的硅粒子粉末和其制造方法
KR100956251B1 (ko) 전기 저장 전지의 전극 물질로서 특히 유용한 코팅된탄소성 입자 및 이의 제조 방법
TWI458676B (zh) 用於電池的陽極粉末
CN108123111A (zh) 一种锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极
US20110256449A1 (en) Organic coated fine particle powders
TW201338253A (zh) 非水電解質二次電池用碳質材料
KR102022891B1 (ko) 이차전지용 음극소재의 제조 방법, 상기 이차전지용 음극소재의 제조 방법에 의하여 제조된 이차전지용 음극소재, 및 이를 포함하는 이차전지
CN111682183A (zh) 多元复合负极材料及其制备方法和锂离子电池
JP2000156230A (ja) リチウムイオン二次電池用の炭素材活物質
WO2020211848A1 (zh) 一种纳米复合负极材料及其制备方法与应用
CN109698333B (zh) 一种锂-硫电池正极材料及其制备方法和应用
Zhao et al. Modulating Internal Coordination Configurations for High‐Density Atomic Antimony toward Advanced Fast‐Charging Sodium‐Ion Batteries
Liu et al. Effect of the carbon source on facile synthesized Si/graphite composites and their electrochemical performance
KR20200072862A (ko) 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN110931766B (zh) 一种利用天然煤粉制备空气稳定锂金属负极的方法
KR20230096191A (ko) 가역성이 향상된 리튬 이차 전지용 음극재 및 이의 제조 방법
JPWO2020138233A1 (ja) 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス
KR20160148754A (ko) 건식 입자 코팅 기술을 이용한 실리콘 모녹사이드-카본 복합체의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PHILIPS 66 COMPANY

Free format text: FORMER OWNER: CONOCOPHILLIPS CO.

Effective date: 20140520

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140520

Address after: texas

Patentee after: PHILPS 66

Address before: texas

Patentee before: Conocophillips Co.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101027

Termination date: 20141115

EXPY Termination of patent right or utility model