CN102015529A - 纳米石墨片和组合物 - Google Patents

纳米石墨片和组合物 Download PDF

Info

Publication number
CN102015529A
CN102015529A CN2009801149311A CN200980114931A CN102015529A CN 102015529 A CN102015529 A CN 102015529A CN 2009801149311 A CN2009801149311 A CN 2009801149311A CN 200980114931 A CN200980114931 A CN 200980114931A CN 102015529 A CN102015529 A CN 102015529A
Authority
CN
China
Prior art keywords
graphite
graphite flakes
nano graphite
nano
flakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801149311A
Other languages
English (en)
Other versions
CN102015529B (zh
Inventor
M·马马克
U·L·施塔德勒
S·崔
E·科多拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN102015529A publication Critical patent/CN102015529A/zh
Application granted granted Critical
Publication of CN102015529B publication Critical patent/CN102015529B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/08Polyesters modified with higher fatty oils or their acids, or with resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了纳米石墨片,其通过包括下述步骤的方法制成:插层石墨的热等离子体膨胀以制造膨胀石墨,继之以该膨胀石墨的剥离,其中所述剥离步骤选自超声破碎、湿磨和受控空化,且其中大于95%的纳米石墨片具有大约0.34纳米至大约50纳米的厚度和大约500纳米至大约50微米的长度和宽度。所述插层石墨例如插入了硫酸和硝酸的混合物。等离子体反应器例如使用RF感应等离子炬。所有三种剥离法都在有机溶剂或水中进行。剥离步骤可以借助例如非离子型表面活性剂进行。本发明还公开了包含该纳米石墨片的塑料、油墨、涂料、润滑剂或油脂组合物。

Description

纳米石墨片和组合物
本发明涉及纳米石墨片,其通过插层石墨的热等离子体膨胀和之后的该膨胀石墨的借助各种方式的剥离而制成。本发明还涉及含有该纳米石墨片的聚合物、涂料、油墨、润滑剂和油脂。
背景技术
纳米级石墨的聚合物复合材料具有各种合意的特性,例如不寻常的电子性质和/或强度。研究和探索石墨烯片(1个原子厚的二维碳层)以及碳纳米管已有一段时间。还研究了纳米级石墨或纳米石墨片作为石墨烯片或碳纳米管的替代品。
纳米石墨片的聚合物复合材料是有用的。含纳米石墨片的涂料和油墨也有用。含纳米石墨片的润滑剂和油脂也有用。
本发明提供以连续和可规模化的方法制成的纳米石墨片。
Stankovich等人在Nature,第442卷,2006年7月,第282-286页中教导了聚苯乙烯-石墨烯复合材料。石墨烯通过用异氰酸苯酯处理氧化石墨而制备。在DMF中通过超声破碎而剥离该异氰酸酯官能化的氧化石墨。向在DMF中的所得分散体中加入聚苯乙烯。用二甲基肼还原该分散材料。通过将该DMF溶液添加到大量甲醇中,实现该聚合物复合材料的凝结。分离出该凝结的复合材料并压碎成粉末。
美国专利公开2007/0131915公开了制造聚合物涂布的还原的氧化石墨纳米片的分散体的方法。例如,将氧化石墨浸在水中并用超声破碎以将独立的氧化石墨纳米片剥离到水中。然后对该氧化石墨纳米片的分散体施以化学还原以除去至少一些氧官能。
美国专利6,872,330涉及制造纳米材料的方法。通过将离子插入层状化合物中、剥离产生单层并然后声处理以制造纳米管、纳米片等,制备该纳米材料。例如,通过在钾存在下加热石墨以形成一级插层石墨来制备碳纳米材料。在乙醇中的剥离产生碳片的分散体。经声处理而制备碳纳米管。该石墨可以插有碱金属、碱土金属或镧系金属。
美国专利公开2007/0284557涉及包含至少一个石墨烯薄片网络的透明导电膜。借助表面活性剂将市售石墨烯薄片分散在适当的溶剂或水中。将该分散体声处理,然后离心除去较大薄片。过滤后,回收石墨烯膜。将该膜压到塑料基底上。
美国专利7,071,258涉及制备石墨烯片的方法。该方法包括部分或完全碳化前体聚合物或热处理石油或煤焦油沥青以制造包含石墨微晶(其含有数片石墨平面)的聚合碳。剥离该聚合碳并施以机械研磨。该剥离处理包括化学处理、插层、发泡、加热和/或冷却步骤。例如,对该热解聚合物或沥青材料施以选自氧化或插层溶液,例如H2SO4、HNO3、KMnO4、FeCl3等的化学处理。然后使用发泡剂或起泡剂使该插层石墨膨胀。机械研磨包括粉碎、碾磨、研磨等。
Manning等人在Carbon,37(1999),第1159-1164页中教导了剥离石墨的合成。对氟插层的石墨施以大气压27.12MHz电感耦合氩等离子体。
美国专利公开2006/0241237和2004/0127621教导了通过微波或射频波使插层石墨膨胀。
美国专利5,776,372和6,024,900教导了包含膨胀石墨和热塑性或热固性树脂的碳复合材料。
美国专利6,395,199涉及通过将膨胀石墨粒子施加到基质中来为材料提供提高的电导率和/或热导率的方法。可将该石墨粒子并入基质中。
U.S.2008/0149363涉及包含聚烯烃聚合物和膨胀石墨的组合物。具体公开了用于电缆部件的导电配方。
WO 2008/060703教导了纳米结构的制造方法。
U.S.2004/0217332公开了由热塑性聚合物和膨胀石墨构成的导电组合物。
美国专利公开2007/0092432涉及热剥离的氧化石墨。
美国专利6,287,694涉及制备膨胀石墨的方法。
美国专利4,895,713公开了石墨插层法。
WO 2008/045778涉及石墨烯橡胶纳米复合材料。
美国专利5,330,680教导了制备细石墨粒子的方法。
U.S.2008/242566公开了纳米材料作为齿轮油和其它润滑油组合物的粘度改进剂和热导率改进剂的用途。
美国专利7,348,298教导了含有碳纳米材料的流体介质,如油或水,以提高该流体的热导率。
本文列举的美国专利和专利公开经此引用并入本文。
仍然需要连续的、可规模化的制造纳米石墨片的方法。
发明概要
本发明公开了纳米石墨片,其通过包括下述步骤的方法制成:
插层石墨的热等离子体膨胀以制造膨胀石墨,然后是
该膨胀石墨的剥离,
其中所述剥离步骤选自超声破碎(ultrasonication)、湿磨和受控空化(controlled caviation),且
其中大于95%的纳米石墨片具有大约0.34纳米至大约50纳米的厚度和大约500纳米至大约50微米的长度和宽度。
本发明还公开了包含塑料、油墨、涂料、润滑剂或油脂基质的组合物,所述基质中已合并有纳米石墨片,
其中所述纳米石墨片是通过包括下述步骤的方法制造的:
插层石墨的热等离子体膨胀以制造膨胀石墨,然后
该膨胀石墨的剥离,
其中所述剥离步骤选自超声破碎、湿磨和受控空化(controlled caviation),且
其中大于95%的纳米石墨片具有大约0.34纳米至大约50纳米的厚度和大约500纳米至大约50微米的长度和宽度。
发明内容
例如在美国专利4,895,713中公开了插层石墨,其内容经此引用并入本文。
插层石墨也被称作可膨胀的石墨片或膨胀的片状石墨。其可作为GRAFGUARD购自GrafTech Intern ational Ltd,Parma,Ohio。可膨胀石墨也可获自Asbury Carbons,Asbury,New Jersey。合适的等级是GRAFGUARD 220-80N、GRAFGUARD 160-50N、ASBURY 1721和ASBURY 3538。这些产品通过将硫酸和硝酸的混合物插入天然石墨来制备。
也可以用过氧化氢插入石墨。
氧化石墨也是合适的插层石墨,但还不可购得。其通过用发烟H2SO4+HNO3+强氧化剂(例如KClO3或KMnO4)处理天然石墨来制备(Hummer法)。
也可以使用合成石墨代替天然石墨。
可以使用其它形式的插层石墨,例如美国专利6,872,330中公开的那些。石墨可以被可气化物质(例如卤素)、碱金属或有机金属试剂(例如丁基锂)插层。
等离子体反应器是已知的,并例如公开在美国专利5,200,595中。本发明使用RF(射频)感应等离子炬。感应等离子炬可获自例如Tekna Plasma Systems Inc.,Sherbrooke,Quebec。
该等离子体反应器配有设计用于喷粉的喷射探针。粉末进料速率为大约0.4至大约20千克/小时。例如,粉末进料速率为大约5至大约10千克/小时。该粉末进料器是例如流化床进料器或振动、盘式或悬浮进料器。
使用氩气作为鞘气、载气、分散气和骤冷气。可以向各输入物中加入第二气体,例如氩气/氢气、氩气/氦气、氩气/氮气、氩气/氧气或氩气/空气。
该插层石墨粉的停留时间为毫秒级,例如大约0.005至大约0.5秒。
喷灯功率为大约15至大约80kW。最高可以达到200kW或更高。
可以使用RF以外的热等离子炬,例如直流电弧等离子炬或微波放电等离子体。
反应器压力范围为大约200托至大气压,或大约400至大约700托。
用该等离子体反应器实现的温度为大约5000K至大约10,000K或更高。
该等离子体膨胀法的优点在于,它是连续的高吞吐量方法。它比电/煤气炉或微波炉更有效。该等离子体法实现剧烈的热冲击。热冲击是指每单位时间实现的温度差。RF等离子体可实现大于8000K的温度。例如,如果插层石墨经过0.1秒停留时间,理论热冲击为大约80,000度/秒。
本方法能够控制纳米石墨片的C∶O(碳∶氧)比。C∶O比可决定在给定基质中的最终产物的电导率或分散的容易程度。可通过调节等离子体膨胀步骤中作为第二气体的氧的量来调节该C∶O比。
例如,C∶O摩尔比大于50,例如C∶O比为大约50至200,例如大约50至大约100。
用等离子体处理实现的膨胀比(即最终体积/原始体积)例如大于80或大于200。例如,由等离子体处理实现的膨胀体积比为大约80至大约180,或大约80至大约150。
用等离子体处理实现的比重为大约0.03至大约0.001克/立方厘米。例如,大约0.01至大约0.006克/立方厘米。
用等离子体处理实现的BET表面积大于大约30平方米/克,例如大约60至大约600平方米/克,例如大约70至大约150平方米/克。
剥离步骤通过超声破碎、湿磨或受控空化进行。所有三种方法都在有机溶剂或水中“湿”进行。也就是说,对等离子体膨胀石墨的溶剂分散体进行该剥离步骤。
膨胀石墨的水分散体要求使用合适的表面活性剂。合适的表面活性剂是阴离子型、阳离子型、非离子型或两性表面活性剂。非离子型表面活性剂是优选的。同样优选的是含有聚环氧乙烷单元的非离子型表面活性剂。该表面活性剂可以是例如聚氧乙烯山梨酸酯(或吐温)。表面活性剂也可以是聚环氧乙烷/聚环氧丙烷共聚物,可作为PLURONIC(BASF)获得。聚环氧乙烷/聚环氧丙烷共聚物可以是二嵌段或三嵌段共聚物。表面活性剂也可以是聚环氧乙烷/烃二嵌段化合物。表面活性剂可以是脂肪酸改性的聚环氧乙烷。它们可以是脂肪酸改性的聚酯。
有机溶剂分散体也可能需要表面活性剂,例如非离子型表面活性剂。
超声破碎在任何市售超声处理器或声波仪中进行。该声波仪可以是例如150W至750W型号。合适的是超声清洁浴,例如Fischer Scientific FS60或Sonics & Materials models。该声波仪可以是探针声波仪。
用任何标准珠磨装置进行湿磨。研磨珠的尺寸为例如大约0.15毫米至大约0.4毫米。研磨珠是氧化锆、玻璃或不锈钢。间隙尺寸为大约0.05毫米至大约0.1毫米。
受控空化(controlled cavitation)也被称作“水力空化”。例如在美国专利5,188,090、5,385,298、6,627,784和6,502,979和美国专利公开2006/0126428中教导了受控空化设备。
在每种情况下通过过滤收集纳米石墨片。湿滤饼可原样用于合并到适当的基质中,例如塑料、油墨、涂料、润滑剂或油脂中。也可以将滤饼干燥,并可以将纳米片再分散在水性或有机溶剂中以制备溶剂浓缩物。该溶剂浓缩物也适用于进一步合并到例如塑料、油墨、涂料、润滑剂或油脂中。滤饼或溶剂浓缩物可有利地含有残留的表面活性剂。
在某些情况下,可以将“干”纳米石墨片合并到合适的基质中。
还可以制备纳米石墨片的聚合物浓缩物或母料。这可以通过在可加热容器(例如捏合机、混合机或挤出机)中在熔融条件下将湿滤饼或溶剂浓缩物与合适的聚合物合并来实现。浓缩物中的纳米石墨片载量为例如基于组合物的大约20至大约60重量%。
也可以通过“冲洗(flushing)”法制备聚合物浓缩物。例如在美国专利3,668,172中公开了这种方法。借助分散剂将纳米石墨片分散在水中。加入低分子量聚烯烃或类似的蜡并对该混合物施以搅拌、热,如果必要则施加压力,以使聚烯烃熔融,由此使石墨从水相转移到聚烯烃中。将该内容物冷却和过滤。将包含聚烯烃/纳米石墨片浓缩物的滤饼干燥。这些浓缩物中的纳米石墨片载量为例如基于组合物的大约20至大约60重量%。
为了添加到塑料中,可以将滤饼、溶剂浓缩物或聚合物浓缩物例如在捏合机、混合机或挤出机中与聚合物进行熔体掺混。聚合物膜可以是由聚合物和滤饼或溶剂浓缩物的有机溶剂溶液流延的薄膜。可以由聚合物和滤饼或溶剂浓缩物或聚合物浓缩物的混合物加压模制聚合物板。
可以将滤饼、溶剂浓缩物或聚合物浓缩物与聚合物的原料单体混合;然后可以使所述单体聚合。
根据本方法制成的纳米石墨片为:大于95%具有大约0.34纳米至大约50纳米的厚度和大约500纳米至大约50微米的长度和宽度。例如,大于90%具有大约3纳米至大约20纳米的厚度和大约1微米至大约5微米的长度和宽度。例如,大于90%具有大约3纳米至大约20纳米的厚度和大约1至大约30微米的长度和宽度。例如,大于90%具有大约0.34纳米至大约20纳米的厚度和大约1至大约30微米的长度和宽度。
该纳米石墨片的纵横比(即最长维度与最短维度的比率)高。该纵横比为至少50并可高达50,000。也就是说,95%的粒子具有这种纵横比。例如,95%的粒子的纵横比为大约500至大约10,000,例如大约600至大约8000,或大约800至大约6000。
用原子力显微术(AFM)、透射电子显微术(TEM)或扫描电子显微术(SEM)测量和表征该薄片。
本纳米石墨片的硫含量按重量计小于1000ppm。例如,该硫含量小于500ppm,例如小于200ppm或大约100至大约200ppm。例如,该硫含量为大约50ppm至大约120ppm或大约100至大约120ppm。
本发明的纳米石墨片具有以拉曼光谱G与D峰比率大于1、例如10至120为特征的无序。
本纳米石墨片可以由六方和菱形多晶型物构成。
本纳米石墨片例如可以由下述六方多晶型物构成:在粉末X射线衍射图谱中观察,其具有位于3.34埃至3.4埃之间的002峰。
本发明的聚合物基质是,例如:
1.单烯烃和二烯烃的聚合物,例如聚丙烯、聚异丁烯、聚丁-1-烯、聚-4-甲基戊-1-烯、聚乙烯基环己烷、聚异戊二烯或聚丁二烯,以及环烯烃的聚合物,例如环戊烯或降冰片烯的聚合物、聚乙烯(其任选可以交联),例如高密度聚乙烯(HDPE)、高密度和高分子量聚乙烯(HDPE-HMW)、高密度和超高分子量聚乙烯(HDPE-UHMW)、中密度聚乙烯(MDPE)、低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、(VLDPE)和(ULDPE)。
聚烯烃,即前一段中例举的单烯烃的聚合物,优选聚乙烯和聚丙烯,可以通过不同方法制备,尤其是通过下列方法制备:
自由基聚合(通常在高压和高温下)。
b)使用通常含有一种或多于一种的周期表第IVb、Vb、VIb或VIII族的金属的催化剂的催化聚合。这些金属通常具有一个或多于一个可以π-或σ-配位的配体,通常氧化物、卤化物、醇化物、酯、醚、胺、烷基、链烯基和/或芳基。这些金属络合物可以是游离形式或固定在基底上,通常在活性氯化镁、氯化钛(III)、氧化铝或氧化硅上。这些催化剂可能可溶或不溶于聚合介质。这些催化剂可独自用在聚合中,或可以使用其它活化剂,通常烷基金属、金属氢化物、金属烷基卤化物、金属烷基氧化物或金属烷基噁烷,所述金属是周期表的第Ia、IIa和/或IIIa族的元素。活化剂可以方便地用其它酯、醚、胺或甲硅烷基醚基团改性。这些催化剂体系通常被称作Phillips、Standard Oil Indiana、Ziegler(-Natta)、TNZ(DuPont)、金属茂或单点催化剂(SSC)。
2.1)中提到的聚合物的混合物,例如聚丙烯与聚异丁烯的混合物、聚丙烯与聚乙烯的混合物(例如PP/HDPE、PP/LDPE)和不同类型的聚乙烯的混合物(例如LDPE/HDPE)。
3.单烯烃和二烯烃彼此之间或与其它乙烯基单体的共聚物,例如乙烯/丙烯共聚物、线型低密度聚乙烯(LLDPE)及其与低密度聚乙烯(LDPE)的混合物、丙烯/丁-1-烯共聚物、丙烯/异丁烯共聚物、乙烯/丁-1-烯共聚物、乙烯/己烯共聚物、乙烯/甲基戊烯共聚物、乙烯/庚烯共聚物、乙烯/辛烯共聚物、乙烯/乙烯基环己烷共聚物、乙烯/环烯烃共聚物(例如乙烯/降冰片烯,如COC)、乙烯/1-烯烃共聚物,其中该1-烯烃原位生成;丙烯/丁二烯共聚物、异丁烯/异戊二烯共聚物、乙烯/乙烯基环己烯共聚物、乙烯/丙烯酸烷基酯共聚物、乙烯/甲基丙烯酸烷基酯共聚物、乙烯/乙酸乙烯酯共聚物或乙烯/丙烯酸共聚物和它们的盐(离子交联聚合物)以及乙烯与丙烯和二烯(如己二烯、二环戊二烯或亚乙基-降冰片烯)的三元共聚物;和这类共聚物与彼此和与上文1)中提到的聚合物的混合物,例如聚丙烯/乙烯-丙烯共聚物、LDPE/乙烯-乙酸乙烯酯共聚物(EVA)、LDPE/乙烯-丙烯酸共聚物(EAA)、LLDPE/EVA、LLDPE/EAA和交替或无规聚烯/一氧化碳共聚物及其与其它聚合物,例如聚酰胺的混合物。
4.烃树脂(例如C5-C9),包括其氢化变体(例如增粘剂),以及聚烯和淀粉的混合物。
1.)-4.)中的均聚物和共聚物可以具有任何立体结构,包括间规立构、全同立构、半-全同立构或无规立构;其中无规立构聚合物是优选的。也包括立体嵌段聚合物。
5.聚苯乙烯、聚(对甲基苯乙烯)、聚(α-甲基苯乙烯)。
6.衍生自乙烯基芳族单体的芳族均聚物和共聚物,所述乙烯基芳族单体包括苯乙烯、α-甲基苯乙烯、乙烯基甲苯的所有异构体(尤其是对乙烯基甲苯)、乙基苯乙烯的所有异构体、丙基苯乙烯、乙烯基联苯、乙烯基萘和乙烯基蒽,及其混合物。均聚物和共聚物可具有任何立体结构,包括间规立构、全同立构、半-全同立构或无规立构;其中无规立构聚合物是优选的。也包括立体嵌段聚合物。
6a.包括前述乙烯基芳族单体和选自乙烯、丙烯、二烯、腈、酸、马来酸酐、马来酰亚胺、乙酸乙烯酯和氯乙烯或丙烯酸衍生物及其混合物的共聚单体的共聚物,例如苯乙烯/丁二烯、苯乙烯/丙烯腈、苯乙烯/乙烯(互聚物)、苯乙烯/甲基丙烯酸烷基酯、苯乙烯/丁二烯/丙烯酸烷基酯、苯乙烯/丁二烯/甲基丙烯酸烷基酯、苯乙烯/马来酸酐、苯乙烯/丙烯腈/丙烯酸甲酯;高抗冲强度的苯乙烯共聚物和另一聚合物,例如聚丙烯酸酯、二烯聚合物或乙烯/丙烯/二烯三元共聚物的混合物;以及苯乙烯的嵌段共聚物,如苯乙烯/丁二烯/苯乙烯、苯乙烯/异戊二烯/苯乙烯、苯乙烯/乙烯/丁烯/苯乙烯或苯乙烯/乙烯/丙烯/苯乙烯。
6b.由6.)中提到的聚合物的氢化生成的氢化芳族聚合物,尤其包括通过将无规立构聚苯乙烯氢化而制成的聚环己基乙烯(PCHE),通常被称作聚乙烯基环己烷(PVCH)。
6c.由6a.)中提到的聚合物的氢化生成的氢化芳族聚合物。
均聚物和共聚物可具有任何立体结构,包括间规立构、全同立构、半-全同立构或无规立构;其中无规立构聚合物是优选的。也包括立体嵌段聚合物。
7.乙烯基芳族单体(例如苯乙烯或α-甲基苯乙烯)的接枝共聚物,例如苯乙烯在聚丁二烯上、苯乙烯在聚丁二烯-苯乙烯或聚丁二烯-丙烯腈共聚物上;苯乙烯和丙烯腈(或甲基丙烯腈)在聚丁二烯上;苯乙烯、丙烯腈和甲基丙烯酸甲酯在聚丁二烯上;苯乙烯和马来酸酐在聚丁二烯上;苯乙烯、丙烯腈和马来酸酐或马来酰亚胺在聚丁二烯上;苯乙烯和马来酰亚胺在聚丁二烯上;苯乙烯和丙烯酸烷基酯或甲基丙烯酸烷基酯在聚丁二烯上;苯乙烯和丙烯腈在乙烯/丙烯/二烯三元共聚物上;苯乙烯和丙烯腈在聚丙烯酸烷基酯或聚甲基丙烯酸烷基酯上、苯乙烯和丙烯腈在丙烯酸酯/丁二烯共聚物上的接枝共聚物、以及它们与6)中列出的共聚物的混合物,例如被称作ABS、MBS、ASA或AES聚合物的共聚物混合物。
8.含卤素的聚合物,例如聚氯丁二烯、氯化橡胶、异丁烯-异戊二烯的氯化和溴化共聚物(卤代丁基橡胶)、氯化或磺基氯化聚乙烯、乙烯和氯化乙烯的共聚物、表氯醇均聚物和共聚物,尤其是含卤素的乙烯基化合物的聚合物,例如聚氯乙烯、聚偏二氯乙烯、聚氟乙烯、聚偏二氟乙烯、以及它们的共聚物,如氯乙烯/偏二氯乙烯、氯乙烯/乙酸乙烯酯或偏二氯乙烯/乙酸乙烯酯共聚物。
9.衍生自α,β-不饱和酸及其衍生物的聚合物,例如聚丙烯酸酯和聚甲基丙烯酸酯;用丙烯酸丁酯冲击改性的聚甲基丙烯酸甲酯、聚丙烯酰胺和聚丙烯腈。
10.9)中提到的单体彼此之间或与其它不饱和单体的共聚物,例如丙烯腈/丁二烯共聚物、丙烯腈/丙烯酸烷基酯共聚物、丙烯腈/丙烯酸烷氧基烷基酯或丙烯腈/卤乙烯共聚物或丙烯腈/甲基丙烯酸烷基酯/丁二烯三元共聚物。
11.由不饱和醇和胺或其酰基衍生物或缩醛生成的聚合物,例如聚乙烯基醇、聚乙酸乙烯酯、聚硬脂酸乙烯酯、聚苯甲酸乙烯酯、聚马来酸乙烯酯、聚乙烯醇缩丁醛、聚邻苯二甲酸烯丙酯或聚烯丙基三聚氰胺;以及它们与上文1)中提到的烯烃的共聚物。
12.环醚的均聚物和共聚物,例如聚亚烷基二醇、聚环氧乙烷、聚环氧丙烷或其与双缩水甘油醚的共聚物。
13.聚缩醛,如聚甲醛和含有环氧乙烷作为共聚单体的那些聚甲醛;用热塑性聚氨酯、丙烯酸酯或MBS改性的聚缩醛。
14.聚苯醚和聚苯硫醚,和聚苯醚与苯乙烯聚合物或聚酰胺的混合物。
15.由一方面羟基-封端聚醚、聚酯或聚丁二烯和另一方面脂族或芳族聚异氰酸酯生成的聚氨酯,及其前体。
16.由二胺和二羧酸和/或由氨基羧酸或相应的内酰胺生成的聚酰胺和共聚酰胺,例如聚酰胺4、聚酰胺6、聚酰胺6/6、6/10、6/9、6/12、4/6、12/12、聚酰胺11、聚酰胺12、以间二甲苯二胺和己二酸为原料的芳族聚酰胺;由己二胺和间苯二甲酸和/或对苯二甲酸在使用或不使用弹性体作为改性剂的情况下制成的聚酰胺,例如聚-2,4,4,-三甲基对苯二甲酰己二胺或聚间苯二甲酰间苯二胺;以及上述聚酰胺与聚烯烃、烯烃共聚物、离子交联聚合物或化学键合或接枝的弹性体;或与聚醚,例如与聚乙二醇、聚丙二醇或聚丁二醇的嵌段共聚物;以及用EPDM或ABS改性的聚酰胺或共聚酰胺;和在加工过程中缩合的聚酰胺(RIM聚酰胺体系)。
17.聚脲、聚酰亚胺、聚酰胺-酰亚胺、聚醚酰亚胺、聚酯酰亚胺、聚乙内酰脲和聚苯并咪唑。
18.由二羧酸和二醇和/或由羟基羧酸或相应的内酯生成的聚酯,例如聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚-1,4-二羟甲基环己烷对苯二甲酸酯、聚萘二甲酸亚烷基酯(PAN)和聚苯甲酸羟基酯,以及由羟基-封端的聚醚生成的共聚醚酯;以及用聚碳酸酯或MBS改性的聚酯。
19.聚碳酸酯和聚酯碳酸酯。
20.聚酮。
21.聚砜、聚醚砜和聚醚酮。
22.由一方面醛和另一方面酚、脲和三聚氰胺生成的交联聚合物,例如酚/甲醛树脂、脲/甲醛树脂和三聚氰胺/甲醛树脂。
23.干性和非干性醇酸树脂。
24.由饱和和不饱和二羧酸与作为交联剂的多元醇和乙烯基化合物的共聚酯生成的不饱和聚酯树脂,及其低可燃性含卤素的变体。
25.由取代丙烯酸酯,例如环氧丙烯酸酯、氨基甲酸酯丙烯酸酯或聚酯丙烯酸酯生成的可交联丙烯酸树脂。
26.与三聚氰胺树脂、脲树脂、异氰酸酯、异氰脲酸酯、聚异氰酸酯或环氧树脂交联的醇酸树脂、聚酯树脂和丙烯酸酯树脂。
27.由脂族、脂环族、杂环或芳族缩水甘油基化合物生成的交联环氧树脂,例如双酚A和双酚F的二缩水甘油醚产物,其在使用或不使用加速剂的情况下用常规硬化剂(例如酐或胺)交联。
28.天然聚合物,如纤维素、橡胶、明胶和它们的化学改性同源衍生物,例如乙酸纤维素、丙酸纤维素和丁酸纤维素,或纤维素醚,例如甲基纤维素;以及松香和它们的衍生物。
29.上述聚合物的共混物(共混聚合物),例如PP/EPDM、聚酰胺/EPDM或ABS、PVC/EVA、PVC/ABS、PVC/MBS、PC/ABS、PBTP/ABS、PC/ASA、PC/PBT、PVC/CPE、PVC/丙烯酸酯、POM/热塑性PUR、PC/热塑性PUR、POM/丙烯酸酯、POM/MBS、PPO/HIPS、PPO/PA 6.6和共聚物、PA/HDPE、PA/PP、PA/PPO、PBT/PC/ABS或PBT/PET/PC。
优选的聚合物基质是聚烯烃,例如聚丙烯和聚乙烯,以及聚苯乙烯。
包含本发明膨胀和剥离纳米石墨片的聚合物、涂料、油墨、润滑剂或油脂也是本发明的主题。包含本发明纳米石墨片的聚合物被称作聚合物复合材料。
该聚合物复合材料可以是薄膜、纤维或模制部件的形式。该模制部件可以例如通过转动模塑或注射成形或压模法制备。
本发明的聚合物、涂料、油墨、润滑剂或油脂基质中所用的石墨含量为例如基于基质重量的大约0.1至大约20重量%。例如,石墨含量为基于基质重量的大约0.5至大约15重量%,大约1至大约12重量%或大约2至大约10重量%。
例如在美国专利5,073,278中描述了润滑剂,该专利经此引用并入本文。
含有特定粘合剂的涂料组合物的实例是:
1.基于可冷或热交联的醇酸、丙烯酸酯、聚酯、环氧或三聚氰胺树脂或此类树脂的混合物的漆,如果需要,添加固化催化剂;
2.基于含羟基的丙烯酸酯、聚酯或聚醚树脂和脂族或芳族异氰酸酯、异氰脲酸酯或聚异氰酸酯的双组分聚氨酯漆;
3.基于在烘焙过程中解封端的封端异氰酸酯、异氰脲酸酯或聚异氰酸酯的单组分聚氨酯漆,如果需要,添加三聚氰胺树脂;
4.基于三烷氧基羰基三嗪交联剂和含羟基的树脂(例如丙烯酸酯、聚酯或聚醚树脂)的单组分聚氨酯漆;
5.基于在氨基甲酸乙酯结构内具有游离氨基的脂族或芳族氨基甲酸乙酯丙烯酸酯或聚氨酯丙烯酸酯,和三聚氰胺树脂或聚醚树脂的单组分聚氨酯漆,如果必要,使用固化催化剂;
6.基于(聚)酮亚胺和脂族或芳族异氰酸酯、异氰脲酸酯或聚异氰酸酯的双组分漆;
7.基于(聚)酮亚胺和不饱和丙烯酸酯树脂或聚乙酰乙酸酯树脂或甲基丙烯酰氨基乙醇酸甲酯的双组分漆;
8.基于含羧基或含氨基的聚丙烯酸酯和聚环氧化物的双组分漆;
9.基于含酐基团的丙烯酸酯树脂和基于聚羟基或聚氨基组分的双组分漆;
10.基于含酐的丙烯酸酯和聚环氧化物的双组分漆;
11.基于(聚)噁唑啉和含酐基团的丙烯酸酯树脂、或不饱和丙烯酸酯树脂、或脂族或芳族异氰酸酯、异氰脲酸酯或聚异氰酸酯的双组分漆;
12.基于不饱和聚丙烯酸酯和聚丙二酸酯的双组分漆;
13.基于热塑性丙烯酸酯树脂或外部交联的丙烯酸酯树脂以及醚化三聚氰胺树脂的热塑性聚丙烯酸酯漆;
14.基于硅氧烷改性或氟改性的丙烯酸酯树脂的漆体系。
本纳米石墨片具有下述性质:
高传导性(电、热)
润滑性
挠性
良好的热-氧化稳定性(最高达700℃)
阻隔性质
高纵横比(各向异性)
高表面积(吸附性质)
着色性
反射性
轻重量
可通过化学方式官能化
气体和水分阻隔性质
热导性
可能的用途包括:
热塑性聚合物、热固性聚合物、涂料和油墨中的导电添加剂,例如,纳米石墨片填充的聚合物可用于电子封装或工具,其中需要抗静电和静电耗散性质;
含纳米石墨片的涂料可用作导电底漆以促进漆与热塑性烯烃的粘合(例如车挡);
由于石墨的良好导热性质,用纳米石墨片填充的环氧树脂可用于电子用途中的热管理;
聚合物中的机械增强和/或阻隔添加剂;
替代聚合物复合材料中用于机械增强的纳米粘土;
用于电线和电缆用途或用于封装用途的氧和水分阻隔;
燃料电池、电池组和电容器(尤其是超级电容器)的电极;
涂料、油墨和聚合物中的效果颜料;
涂料或聚合物复合材料可用于屏蔽辐射,包括电磁(由于其高电导率)和红外(由于其反射性);
润滑剂用途,尤其是在高温油脂、发动机油、脱模涂料和金属加工液中;
吸附用途,例如水过滤和除去有机污染物和溢油清理;
聚合物的机械增强。
纳米石墨片的薄膜可用作替代氧化铟锡(ITO)的透明导电膜。
下列实施例举例说明本发明。除非另行指明,份数和百分比按重量计。
附图简述
图1是实施例4的纳米石墨片的9个粒子的拉曼表征。这9个粒子代表从单层石墨烯到多层石墨烯的一系列厚度。更充分描述在实施例10中。
图2是比较D和G峰的强度的拉曼光谱。D峰的低强度表明了低量的结构无序,例如折叠、线缺陷和氧官能团。更充分描述在实施例10中。
图3和4是实施例4和5的纳米石墨片的粉末X-射线衍射结果。更充分描述在实施例12中。
下列实施例举例说明本发明。除非另行指明,份数和百分比按重量计。实施例1-插层石墨的热等离子体膨胀
将可膨胀石墨粉(220-80N)以2千克/小时的速率送入等离子体反应器,该反应器带有在80kW功率下运行的Tekna PL-70等离子炬。鞘气是150slpm氩气[slpm=标准升/分钟;用于计算slpm的标准条件被规定为:Tn 0℃(32°F),Pn=1.01bara(14.72psi)],且中心气体是在40slpm下的氩气。为了制备具有提高的氧含量的膨胀石墨,将氧与氩鞘气掺合。精细调节引入该鞘气中的氧的量,以防止插层石墨的显著燃烧。工作压力保持在略低于大气压(700托)。将设计用于喷粉(伴随着分散)的喷射探针定位,以便在石墨片没有显著气化的情况下实现最大膨胀。该膨胀片在通过热交换区后收集在过滤器中。
通过燃烧对C、H、N和S进行元素分析和通过差异对O进行元素分析(Atlantic Microlab,Inc.),由此分析该膨胀片。该膨胀材料的硫含量为,用Ar/He或Ar/O2的鞘气混合物制成的样品的平均值为0.81%(810ppm)。用注入氩鞘气中的氧热处理的膨胀石墨片在鞘气中1.7slpm氧下得出198的C/O比,而用鞘气中5和9slpm氧处理的薄片产生了C/O摩尔比分别为67和58的膨胀石墨。
该膨胀石墨片的C/O摩尔比为例如>50,例如大约50至200,例如大约50至大约100。
使用多点法分析该膨胀片的氮BET表面积(5点,BET=BrunauerEmmettTeller)。通过燃烧对该膨胀片进行C、H、N和S的元素分析和通过差异进行O的元素分析(Atlantic Microlab,Inc.)。该膨胀材料的硫含量为,用Ar/He或Ar/O2的鞘气混合物制成的样品的平均值为0.81%(810ppm)。下表概括了在鞘气中的不同氧含量下制成的膨胀石墨样品的BET表面积和C/O比。已观察到表面积随鞘气的氧含量提高而提高,而C/O比被观察到降低。
  鞘气的氧含量(slpm)   BET表面积(平方米/克)   C/O比
  1.7   68.5   198
  5   83.4   67
  9   130.6   58
通过改变等离子体中的氧含量,可以改变材料的表面积和C/O比。
实施例2-膨胀石墨的湿磨
使用
Figure BPA00001250542300171
-Mill KDL搅拌器珠磨机剥离和分散等离子体膨胀石墨,其配有0.3毫米氧化锆研磨珠和0.01毫米间隙宽度。在研磨过程中使用蠕动泵向
Figure BPA00001250542300172
-Mill(600立方厘米容积)连续装料。
通常,以在
Figure BPA00001250542300173
34矿物油
Figure BPA00001250542300174
中0.5重量%最大浓度的等离子体处理过的石墨开始,制造稳定分散体。这种低重量%是由于混合物的初始粘性。如果需要高于0.5重量%的浓度,可以通过在第一道之后向之前研磨过的最终产物中加入追加量的等离子体膨胀石墨来重复该程序。可以通过以0.5重量%为增量加入等离子体处理过的石墨将浓度提高到最多2.0重量%(大于2.0重量%的浓度变得非常粘和难以泵送)。使该石墨/矿物油混合物通过-Mill至少两次。
1.向7升不锈钢烧杯中加入下述物质:
a.4升
Figure BPA00001250542300176
34矿物油
b.20.0克等离子体处理过的石墨
一开始,干的等离子体膨胀石墨难以“浸湿”(即,膨胀石墨会浮在矿物油上)。有必要用置顶机械搅拌器或用手搅拌以确保膨胀石墨被矿物油夹带泵入
Figure BPA00001250542300178
-Mill中。
2.以大约60-70毫升/分钟的泵送速度向
Figure BPA00001250542300179
-Mill连续装料。
3.将
Figure BPA000012505423001710
-Mill流出物收集在空的7升不锈钢烧杯中。
(如果需要更浓样品,向收集的第一道流出物中加入另外0.5重量%等离子体处理过的石墨)
4.一旦已研磨整个石墨/矿物油样品,重复该过程,总共两次通过
Figure BPA00001250542300181
-Mill。第二道留下的样品几乎或完全没有表现出石墨沉降。
5.使用WHATMAN#1滤纸真空过滤该石墨/矿物油样品,并收集研磨过的膨胀石墨。
6.该收集的石墨滤饼是固体,含有大约85重量%矿物油和15重量%剥离石墨。
7.该滤饼容易再分散在适当介质中。
实施例3-膨胀石墨的湿磨
通过重复实施例2的程序制备剥离石墨的水分散体,但将矿物油换成等体积的水。除水外,使用用于使石墨与水相容的分散剂。首先将PLURONIC P123(BASF)溶解在4升水中,以获得1∶1重量比的PLURONIC P123与等离子体膨胀石墨。通常,膨胀石墨在水中的初始浓度为1-2重量%,但由于粘性,使水分散体比矿物油分散体更浓(最多5重量%)。
使用WHATMAN#1滤纸真空过滤该水分散体,以收集研磨过的膨胀石墨。该滤饼含有大约90%水、8%剥离石墨和2%残留PLURONIC P123。该滤饼可容易地再分散在适当的介质中。另外,可通过真空炉将该滤饼进一步干燥以除去水。该干滤饼可通过搅拌或短超声破碎再分散在适当介质中。
实施例4-膨胀石墨的超声破碎
使用超声破碎来剥离等离子体膨胀石墨,并制造在水或非水液体中的稳定分散体。向2升烧瓶中加入1.5升液体。如果该液体是矿物油,则不需要分散剂。对于水分散体,将4克PLURONIC P123添加到1.5升水中。对于甲苯,加入4克Efka 6220(脂肪酸改性的聚酯)。搅拌该混合物直至溶解。如果必要,施加温和加热。将4.0克等离子体膨胀石墨添加到1.5升液体中。然后搅拌该内容物以先润湿倾向于浮在该液体上的膨胀石墨。借助750瓦超声处理器(VCX 750Sonics & Materials,Inc.),将该液体/石墨混合物在40%强度下超声破碎总共40分钟。使用脉冲法(10秒开-10秒关)防止过热。在该超声波处理过程中,观察到显著的粒度降低且粒子变悬浮(在静置时不发生沉降)。如果需要固体材料,则使用WHATMAN#1滤纸真空过滤所述分散体。来自矿物油的滤饼含有85重量%矿物油和15重量%石墨,而甲苯和水滤饼含有大约90重量%液体、8重量%石墨和2重量%残留分散剂。
实施例5-膨胀石墨的受控空化
所用装置是HydroDynamics,Inc.SHOCKWAVE POWERTMREACTOR(SPR)。将17磅熔融PLURONIC P123添加到含有830磅水的200加仑不锈钢容器中。用机械搅拌器搅拌该内容物。以1-2磅增量装入17磅热等离子体膨胀石墨。开启再循环泵和SPR,以确保流过在不锈钢容器和SPR之间的再循环回路的10-15GPM的流速。一旦完全装入该热等离子体膨胀石墨,将SPR设定至3600rpm并保持5小时。在整个过程中通过提取石墨分散体样品和由光散射(Malvern Mastersizer 2000)测量粒度来监测产物。通过用Nutsche过滤器过滤3-8小时,从该水分散体中分离纳米级石墨粒子。该滤饼含有大约90%水、8%剥离石墨和2%残留PLURONIC P123。
通过燃烧(Atlantic Microlab,Inc.)进行C、H、N和S的元素分析,由此分析该干燥滤饼。氮不可检测,测得硫含量为0.11%(110ppm)。
实施例6-由纳米石墨片构成的自立膜的形成
在1英寸直径WHATMAN#1滤纸上真空过滤由等离子体膨胀石墨的超声波处理制成的纳米石墨片分散体、或通过实施例4中所述的方法制成的滤饼再悬浮液。以使得纳米石墨片可堆积成致密膜的速度进行过滤。在真空炉中在低温(50℃)下充分干燥该薄膜。在充分干燥后,通过用金属镊子在边缘拉起,从滤纸上取下该薄膜。通过相对于滤纸面积改变石墨分散体的浓度,实现20至200微米的膜厚度。据观察,所得自立式纳米石墨片薄膜机械牢固以抗弯曲和拉扯,同时在20微米厚的膜的情况下具有0.5ohm/square的低表面电阻率。
本发明的薄膜可用作燃料电池、电池组或超级电容器中的电极。它们可用作水净化中的膜。
实施例7-纳米石墨片合并到聚丙烯酸酯薄膜中
在100毫升试管中,加入下述物质:
a)6克PARALOID B-66热塑性丙烯酸树脂(Rohm & Haas,含有50%固体=3克固体重量)
b)5毫升甲苯
c)通过实施例4中所述的方法制成的干燥滤饼
通过750W超声探针处理该混合物30秒至1分钟,或直至该纳米石墨片看起来悬浮。使用20密耳涂施牵引棒(drawdown bar),在试纸(Garner byko-charts,reorder#AG5350)上制备20密耳薄膜。用加热枪在适度加热下将该干薄膜样品干燥。使用EST-842电阻/电流计以欧姆为单位测量表面电阻率。
  重量%纳米石墨片   表面电阻率(ohm/square)
  0.20   7.44E+12
  0.43   2.08E+12
  0.81   8.02E+08
  1.58   1.59E+04
  2.36   1.12E+03
  3.02   5.07E+02
实施例8-纳米石墨片合并到聚苯乙烯中
在2升烧瓶中,加入下述物质:
a)36.0克聚苯乙烯(Mn-260,000)
b)4.0克Efka-6220(脂肪酸改性的聚酯)
c)1.5升试剂级甲苯
搅拌该烧瓶的内容物直至溶解。将所选量的等离子体膨胀石墨添加到烧瓶中。借助750瓦超声探针,将该甲苯/Efka-6220/石墨混合物在40%强度下处理总共40分钟。使用脉冲法(10秒开-10秒关)防止过热。在该声处理过程中,观察到显著的粒度降低且粒子变悬浮(不发生沉降)。通过真空蒸馏,除去1升甲苯。将残留石墨/聚苯乙烯/甲苯混合物倒入平底12″×8″Pyrex玻璃皿,并在低氮气流下在60℃烘干过夜。从该Pyrex皿中取出残留固体。测得含有4重量%纳米石墨片的聚苯乙烯的表面电阻率为60ohm/sq。
实施例9-纳米石墨片合并到聚氨酯薄膜中
在100毫升试管中,加入下述物质:
a)20毫升5%PLURONIC P-123(表面活性剂)水溶液(1克固体重量的PLURONIC P-123)
b)10克WITCOBOND W-234(含有30%固体=3克固体重量)
c)实现所需总固体浓度的量的等离子体膨胀石墨*
将该混合物超声破碎20分钟,或直至没有观察到进一步剥离。在石墨粒子看起来非常细和悬浮时,达到这种状态。使用10密耳涂施牵引棒,在试纸(Garner byko-charts,reorder#AG5350)上流延10密耳薄膜。该薄膜样品在120℃下烘干。使用EST-842电阻/电流计以欧姆为单位测量表面电阻率。
WITCOBOND W-234含有:含水聚氨酯、水、N-聚甲基吡咯烷酮(含有30%固体)
总固体等于:
1)1克PLURONIC P-123
2)3克WITCOBOND聚氨酯基聚合物
3)添加量的剥离石墨
  重量%纳米石墨片   表面电阻率(ohm/square)
  1   0.1×109
  2   0.6×109
  3   28.4×103
  4   6.9×103
实施例10-纳米石墨片的共焦拉曼表征
通过短超声处理将通过实施例4中所述的超声破碎法制成的水滤饼再悬浮在水中。使该样品静置过夜。悬浮部分被称作上清液。将几滴上清液在1500rpm旋转浇注到硅片上。用配有共焦显微镜和XYZ样品台的T64000Jobin-Yvon拉曼光谱仪在室温下进行拉曼测量。以488纳米激光激发获取拉曼光谱。使用×50物镜(N.A.=0.5)在反散射几何中收集信号。通过将拉曼激光聚焦在分离的各个纳米石墨片上,获取光谱。在图1中,对于2400至3000cm-1的光谱区,叠加了来自九个粒子的九个光谱。这是一般观察到所谓2D峰的区域。为供参考,Ferrari等人Phys.Rev.Let.2006,97,187401已报道了通过拉曼光谱法识别石墨烯和多层石墨烯。在单层石墨烯的情况下,该光谱应由以~2700cm-1为中心的一个窄对称低频2D峰构成。通过将我们的光谱与Ferrari的参考光谱进行比较,可以确定,这9个粒子代表了包括单层石墨烯、双层石墨烯和多层石墨烯的一系列厚度。可如下概括这9个粒子的厚度:2个≥10石墨烯层,2个在10和5层之间,2个5层,2个在5和2层之间,1个是单层石墨烯。
拉曼光谱法也可用于通过比较D和G峰的强度来观察石墨材料的无序。图2中显示了10层厚和1层厚的纳米石墨片的存在D和G峰的1200-1800cm-1区域。与G峰相比,D峰的低密度表明该纳米片中低量的结构无序,例如折叠、线缺陷和氧官能团。如果D峰具有与G峰相当或更大的强度,该石墨的机械性质和电性质都会受到有害影响,因为干扰了共轭sp2碳网络。因此具有低强度D峰的纳米石墨片是合意的,以便利用石墨的高电导率和高机械强度。可能需要一定量的氧官能度以实现与所选基质的相容性,只要该氧官能度不会干扰石墨或石墨烯固有的性质即可。
实施例11-纳米石墨片的原子力显微术(AFM)表征
通过短超声处理将由实施例4和5中所述方法制成的滤饼再悬浮在水中。通过将该水分散体旋转浇注到来自Momentive Performance Materials的高取向热解石墨(HOPG)上,制备样品。该研究中所用的AFM是来自Asylum Research的MFD-3D-BIOTM。用于成像的悬臂探针是来自Veeco Probes的NP-S型,含有氧化物磨尖和金涂布的氮化硅(k=0.32,r=20nm)。在所有样品上进行接触式成像。
6个样品的厚度(t)分布列在下表中。样品McB1、McB2、McB3和McB4由实施例5中所述的受控空化法制备,而样品B17和G3907由实施例4中所述的超声破碎法制备。测得所有样品的平均厚度为大约7-8纳米。
Figure BPA00001250542300231
实施例12-纳米石墨片的粉末X-射线衍射(PXRD)表征
将通过实施例4(超声破碎)和5(受控空化)制成的湿滤饼(分别称作McB4和TcB6)切成2毫米高,并放入具有2毫米凹陷的聚碳酸酯样品支架中。有意地以湿滤饼形式处理该样品,以防止石墨片在干燥时的重新组装和使优选取向最小化。在标准Bragg-Brentano Siemens D5000衍射计系统上分析样品。使用在50kV/35mA下运行的高功率Cu靶。以步进扫描模式以0.02°2-θ步幅和1.5-2.0秒/步计数时间收集数据。通过Diffrae PlusTM软件EvaTM v.8.0进行数据加工。通过Bruker AXS TopasTM v.2.1进行曲线拟合。
McB4和TCB6的PXRD图分别显示在图3和4中。这两个样品都被发现由石墨的六方2H和菱形3R多晶型物构成。在图3和4中用箭头指出3R反射。进行使用TopasTM的曲线拟合/分解程序,以沿各反射测定晶畴尺寸。2H多晶型物的晶畴尺寸显示在下表中。McB4的晶畴尺寸(Lvol)沿00L方向为大约11纳米,在HKL方向上为6-15纳米。00L方向代表石墨片的厚度。测得3R多晶型物的晶畴尺寸在101方向上为5.5纳米,在012方向上为6.7纳米(未报道在表中)。
对于样品TcB6,00L峰看起来变形并需要解卷积以将其分离成宽00L峰和窄00L(A)峰。该宽00L峰与对石墨预期的(3.34)相比移向略高的d-间距(3.40
Figure BPA00001250542300242
),而窄00L(A)峰严格位于3.34
Figure BPA00001250542300243
00L的峰位移表明比天然范德华间距一般允许的量更进一步间隔开的无序石墨烯层。TcB6的晶畴尺寸(Lvol)对于00L反射为大约11纳米,对于00L(A)反射为30纳米。
Figure BPA00001250542300251
实施例13-由纳米石墨片构成的透明导电膜
通过短超声处理将通过实施例4中所述的方法制成的滤饼再悬浮在水中。将该纳米石墨片分散体真空过滤到多孔混合纤维素酯膜上。典型薄膜厚度为50纳米至300纳米。可以通过下列途径之一将该薄膜转移到优选基底(例如玻璃)上。
a)可以将该膜溶解在丙酮中,此后薄膜浮在该溶剂上,在此可将其取出到所选基底上。
b)可以通过在薄膜和基底之间施加压力,从纤维素膜上直接转移该薄膜。
100纳米的纳米石墨片膜可具有50ohm/square的表面电阻率和在可见光谱区中的大约70%透射率。
实施例14-纳米石墨片的导电膜
使用加热板将干净的玻璃显微镜载玻片加热至120℃。用喷枪将通过实施例4中所述方法制成的干燥滤饼的水分散体喷到载玻片上,直至达到所需涂布量。然后将载玻片在空气中在375℃加热以除去分散剂。使用4点探针(Lucas Labs)测量表面电阻率。所选实例的表面电阻率和在550纳米下测得的透射率列在下表中:
  样品   表面电阻率(ohm/square)   在550纳米下的透射率
  1   1.4E+3   27
  2   2.6E+3   41
  3   4.9E+3   43
  4   2.0E+4   61
通过由实施例4中所述的方法制成的1.0克干燥滤饼在400℃煅烧3小时,获得无表面活性剂的纳米石墨片。在加热后留下0.85克纳米石墨片。借助声处理将27毫克无表面活性剂的纳米石墨片分散在50毫升二甲基甲酰胺(DMF)中。使该分散体沉降10天以除去较大薄片。从所述较大薄片中滗析DMF分散体。使用加热板将干净的玻璃显微镜载玻片加热至160℃,并用喷枪将该DMF分散体喷到载玻片上直至达到所需涂布量。将载玻片在空气中在375℃加热以除去残留DMF。使用4点探针(Lucas Labs)测量表面电阻率。
所选实例的表面电阻率和在550纳米测得的透射率列在下表中:
  样品   表面电阻率(ohm/square)   在550纳米的透射率
  1   4.4E+2   33
  2   8.9E+2   40
实施例15-聚合物/纳米石墨片复合材料
制备一系列聚合物复合材料,以评估达到导电性所需的逾渗阈的纳米石墨片重量载量。概括而言,根据下述方法制备复合材料:
1.将本实施例4或5中所述的纳米石墨片滤饼与根据与最终聚合物基质的良好相容性而选择的低分子量聚合物载体合并。将该滤饼与该载体在可加热容器(例如捏合机、混合机或挤出机)中合并。或者,通过冲洗(flushing)法将该滤饼与该载体合并。所得粉末是聚合物/纳米石墨片浓缩物。
2.将粉末形式的聚合物树脂和所述聚合物浓缩物干混以获得例如含有2、4、6、8、10和12重量%纳米石墨片的一系列混合物。使用所选聚合物基质所需的加工条件用双螺杆或单螺杆挤出机配混所述混合物。
3.使用压缩、注射或转动模塑法,用所述挤出物制备板。
例如,如下所述制备聚丙烯/纳米石墨片板。由纳米石墨片和低分子量聚乙烯蜡(AC617A,Honeywell)制备50重量%浓缩物。通过熔体混合或冲洗(flushing)制备浓缩物。将该浓缩物和聚丙烯树脂(PROFAX 6301,Basell)粉末干混,以获得具有基于组合物的2、4、6、8和10重量%的石墨的粉末混合物。用DSM微15双螺杆挤出机(立式,共旋转)将该粉末混合物以150rpm熔体混合3分钟。熔融区温度为200℃。然后,使用DSM100cc注射成形机制备矩形板形式的样品。将熔融混合物收集在加热转移棒中,并在16巴注射到保持在60℃的模具中。
通过使板冷冻断裂以除去两个末端,由该聚合物复合材料获得体积电阻率。为获得良好接触,在末端上施用银漆(SPI FLASH-DRY银漆)。
聚丙烯、尼龙和聚碳酸酯的注射成形板的体积电阻率结果如下。
Figure BPA00001250542300281
实施例16-水基油墨
根据所述“冲洗”法制备聚乙烯蜡/纳米石墨片浓缩物。该浓缩物为80重量%聚乙烯蜡和20重量%石墨。使用实施例5的滤饼。
通过将含有100克1-乙氧基丙醇、760克甲乙酮和140克VMCH(羧基改性的乙烯基共聚物)的配制物在室温在3000rpm温和搅拌30分钟,制备1千克乙烯基酮型透明清漆。
通过在400毫升玻璃瓶中在SKANDEX摇振器中用230克玻璃珠(2毫米直径)分散1.5份蜡/石墨浓缩物和98.5份透明清漆2小时,制备乙烯基酮油墨。在离心和除去玻璃珠后,用手工涂布器在黑白对比纸上以50微米湿膜厚度施用该油墨。产生了具有非常细的闪光金属效果的不透明深灰色印刷品。
或者,可以使用来自实施例4的水滤饼代替蜡/石墨浓缩物。产生了具有非常细的闪光金属效果的不透明深灰色印刷品。
实施例17-润滑剂
制备0.25重量%石墨烯滤饼与脂肪酸改性聚酰胺分散剂在基础油中的掺合物。该基础油是第II类粘度级32烃油。使用四球ASTM D 4172法(75℃,1200rpm,60分钟,392N)测量磨损性能。磨痕的测量表明,与单独的基础油相比,尺寸降低。还根据高频往复钻探机(HFRR)试验法,使用200g载荷在160℃以20Hz振动频率测试该掺合物75分钟。与无添加剂的基础油相比,所得摩擦系数降低。制成的平均薄膜显著改进。较高的膜值通常与较低的摩擦系数和较低的磨损相关联。

Claims (14)

1.纳米石墨片,通过包括下述步骤的方法制成:
插层石墨的热等离子体膨胀以制造膨胀石墨,然后进行该膨胀石墨的剥离,
其中所述剥离步骤选自超声破碎、湿磨和受控空化,且
其中大于95%的纳米石墨片具有0.34纳米至50纳米的厚度和500纳米至50微米的长度和宽度。
2.根据权利要求1的纳米石墨片,其中所述插层石墨被硫酸和硝酸的混合物插入。
3.根据权利要求1至2任一项的纳米石墨片,其中在热等离子体膨胀中实现的膨胀比大于80,且其中所述膨胀石墨的比重为0.03至0.001克/立方厘米,例如0.01至0.006克/立方厘米。
4.根据权利要求1至3任一项的纳米石墨片,其中所述膨胀石墨的BET表面积为60至600平方米/克。
5.根据权利要求1至4任一项的纳米石墨片,其中所述剥离步骤是研磨珠尺寸为大约0.15毫米至大约0.4毫米的湿磨,且该研磨珠是氧化锆、玻璃或不锈钢。
6.根据权利要求1至4任一项的纳米石墨片,其中所述剥离步骤是超声破碎或受控空化。
7.根据权利要求1至6任一项的纳米石墨片,其中所述剥离步骤在水性或有机溶剂中进行。
8.根据权利要求1至7任一项的纳米石墨片,其中大于90%的纳米片具有大约3纳米至大约20纳米的厚度和大约1微米至大约30微米的宽度。
9.根据权利要求1至8任一项的纳米石墨片,其中95%的纳米片具有至少50的纵横比。
10.包含塑料、油墨、涂料、润滑剂或油脂基质的组合物,该基质中已合并有根据权利要求1至9任一项的纳米石墨片。
11.根据权利要求10的组合物,其包含塑料基质,尤其选自聚丙烯、聚乙烯和聚苯乙烯。
12.根据权利要求10的组合物,包含油墨或涂料基质。
13.根据权利要求10的组合物,包含润滑剂或油脂基质。
14.根据权利要求10的组合物,包含基于基质重量的0.1至20重量%的纳米石墨片。
CN200980114931.1A 2008-02-28 2009-02-23 纳米石墨片和组合物 Expired - Fee Related CN102015529B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6747808P 2008-02-28 2008-02-28
US61/067,478 2008-02-28
PCT/EP2009/052127 WO2009106507A2 (en) 2008-02-28 2009-02-23 Graphite nanoplatelets and compositions

Publications (2)

Publication Number Publication Date
CN102015529A true CN102015529A (zh) 2011-04-13
CN102015529B CN102015529B (zh) 2014-04-30

Family

ID=40719977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980114931.1A Expired - Fee Related CN102015529B (zh) 2008-02-28 2009-02-23 纳米石墨片和组合物

Country Status (7)

Country Link
US (2) US20100147188A1 (zh)
EP (1) EP2262727A2 (zh)
JP (1) JP5649979B2 (zh)
KR (1) KR101600108B1 (zh)
CN (1) CN102015529B (zh)
TW (1) TWI462876B (zh)
WO (1) WO2009106507A2 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779990A (zh) * 2011-05-11 2012-11-14 三星Sdi株式会社 负极活性材料、其制备方法和包括其的锂电池
CN102942743A (zh) * 2012-09-26 2013-02-27 北京化工大学 一种简易的石墨烯薄片纳米复合材料制备方法
CN103359713A (zh) * 2012-03-31 2013-10-23 海洋王照明科技股份有限公司 一种石墨烯的制备方法
CN104071773A (zh) * 2013-03-25 2014-10-01 安炬科技股份有限公司 奈米石墨片结构
CN105121550A (zh) * 2013-02-13 2015-12-02 巴斯夫欧洲公司 含有石墨烯的聚酰胺复合物
CN105399081A (zh) * 2014-09-09 2016-03-16 石墨烯平台株式会社 石墨烯复合体及其制造方法
CN105518114A (zh) * 2014-09-09 2016-04-20 石墨烯平台株式会社 复合润滑原材料、发动机润滑油、润滑脂及润滑油
CN106283184A (zh) * 2016-08-31 2017-01-04 无锡东恒新能源科技有限公司 一种单晶体石墨材料制备装置
CN107033732A (zh) * 2016-12-07 2017-08-11 李光明 一种石墨烯涂料及其制备方法
CN107057505A (zh) * 2017-01-10 2017-08-18 滁州职业技术学院 一种用于电力金具防腐的耐磨损有机硅‑丙烯酸复合水性涂料及其制备方法
CN107709481A (zh) * 2015-06-22 2018-02-16 罗马大学 用于电磁和传感器应用的含石墨烯的水基压阻导电聚合物涂料
CN108531246A (zh) * 2018-06-15 2018-09-14 集美大学 一种氧化石墨烯复合润滑油的制备方法及复合润滑油
CN108587572A (zh) * 2018-05-14 2018-09-28 长沙理工大学 一种以超薄石墨片为定型基体的复合相变储热材料及制备方法
CN108690402A (zh) * 2017-04-12 2018-10-23 华瑞墨石丹阳有限公司 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途
CN110312601A (zh) * 2017-03-06 2019-10-08 比克维奥莱克斯公司 涂层
CN111500006A (zh) * 2019-01-30 2020-08-07 家登精密工业股份有限公司 复合材料及应用其的半导体容器
CN111962070A (zh) * 2020-09-08 2020-11-20 中国科学院上海应用物理研究所 一种无机盐纳米薄膜的制备方法以及由此得到的无机盐纳米薄膜
CN112351952A (zh) * 2018-06-29 2021-02-09 优尼基泰克联合股份公司科学与生产协会 石墨箔、基于其的片材料、密封件和制造方法

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034297B2 (en) 2006-06-08 2015-05-19 Directa Plus S.P.A. Production of nano-structures
US20100052995A1 (en) * 2006-11-15 2010-03-04 Board Of Trustees Of Michigan State University Micropatterning of conductive graphite particles using microcontact printing
WO2009094277A2 (en) * 2008-01-14 2009-07-30 The Regents Of The University Of California High-throughput solution processing of large scale graphene and device applications
CN102076782B (zh) * 2008-06-24 2014-03-26 巴斯夫欧洲公司 颜料混合物
KR20110026494A (ko) * 2008-06-30 2011-03-15 다우 글로벌 테크놀로지스 엘엘씨 팽창성 그래핀을 갖는 중합체 복합재
US9067794B1 (en) * 2008-08-06 2015-06-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Highly thermal conductive nanocomposites
JP5278739B2 (ja) * 2008-11-17 2013-09-04 三菱瓦斯化学株式会社 導電体の製造方法
US7981501B2 (en) 2008-12-02 2011-07-19 GM Global Technology Operations LLC Laminated composites and methods of making the same
US20110088931A1 (en) * 2009-04-06 2011-04-21 Vorbeck Materials Corp. Multilayer Coatings and Coated Articles
US7999027B2 (en) * 2009-08-20 2011-08-16 Nanotek Instruments, Inc. Pristine nano graphene-modified tires
WO2012030415A1 (en) * 2010-09-03 2012-03-08 Board Of Regents, The University Of Texas System Ultracapacitor with a novel carbon
US9412484B2 (en) 2009-09-04 2016-08-09 Board Of Regents, The University Of Texas System Ultracapacitor with a novel carbon
IT1396918B1 (it) 2009-11-03 2012-12-20 Polimeri Europa Spa Procedimento per la preparazione di nanopiastrine grafeniche ad elevata disperdibilita' in matrici polimeriche a bassa polarita' e relative composizioni polimeriche
KR20110054766A (ko) * 2009-11-18 2011-05-25 삼성에스디아이 주식회사 수퍼도전성 나노입자, 수퍼도전성 나노입자의 분말 및 이를 구비한 리튬 전지
US20110220841A1 (en) * 2010-03-09 2011-09-15 Massachusetts Institute Of Technology Thermal and/or electrical conductivity control in suspensions
US8192643B2 (en) * 2009-12-15 2012-06-05 Massachusetts Institute Of Technology Graphite microfluids
WO2011115879A2 (en) * 2010-03-16 2011-09-22 Basf Se Method for marking polymer compositions containing graphite nanoplatelets
WO2011116369A2 (en) * 2010-03-19 2011-09-22 Board Of Regents, The University Of Texas System Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures
EP2374842B2 (en) * 2010-04-06 2019-09-18 Borealis AG Semiconductive polyolefin composition comprising conductive filler
KR101537638B1 (ko) * 2010-05-18 2015-07-17 삼성전자 주식회사 그라펜 박막을 이용한 수지의 도금 방법
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
EP2578534B1 (en) 2010-06-07 2016-05-11 Toyota Jidosha Kabushiki Kaisha Resin composite material
JP5002046B2 (ja) * 2010-06-16 2012-08-15 積水化学工業株式会社 ポリオレフィン系樹脂組成物
KR101805949B1 (ko) 2010-06-16 2017-12-06 세키스이가가쿠 고교가부시키가이샤 폴리올레핀계 수지 조성물 및 그의 제조 방법
TWI405802B (zh) * 2010-06-24 2013-08-21 Nat Univ Tsing Hua 官能基化石墨烯強化複合材料導電板之製備方法
US8443482B2 (en) * 2010-07-09 2013-05-21 GM Global Technology Operations LLC Windshield wipers and methods for producing windshield wiper materials
US9776874B1 (en) * 2010-08-24 2017-10-03 Lawrence T. Drzal Pi coupling agents for dispersion of graphene nanoplatelets in polymers
JP2012062453A (ja) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd 成形体及びその製造方法
TW201219447A (en) * 2010-10-12 2012-05-16 Solvay Polymer compositions comprising poly(arylether ketone)s and graphene materials
JP6279199B2 (ja) * 2010-10-28 2018-02-14 積水化学工業株式会社 樹脂複合材料及び樹脂複合材料の製造方法
JP5646962B2 (ja) * 2010-11-15 2014-12-24 積水化学工業株式会社 結晶性樹脂複合材料及びその製造方法
JP6124796B2 (ja) * 2010-12-08 2017-05-10 ヘイデール・グラフェン・インダストリーズ・ピーエルシー 粒状物質、それらを含む複合材料、それらの調製および使用
FR2974497A1 (fr) * 2011-04-27 2012-11-02 Centre Nat Rech Scient Prothese de disque intervertebral en materiau thermoplastique a gradient de proprietes mecaniques
WO2012165372A1 (ja) * 2011-06-03 2012-12-06 積水化学工業株式会社 複合材料及びその製造方法
JP2012250880A (ja) * 2011-06-03 2012-12-20 Semiconductor Energy Lab Co Ltd グラフェン、蓄電装置および電気機器
WO2012173111A1 (ja) * 2011-06-17 2012-12-20 出光興産株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形体
EP2734468B1 (en) * 2011-07-19 2020-09-09 Flex-G Pty Ltd Exfoliating laminar material by ultrasonication in surfactant
US10240052B2 (en) 2011-09-30 2019-03-26 Ppg Industries Ohio, Inc. Supercapacitor electrodes including graphenic carbon particles
US10294375B2 (en) 2011-09-30 2019-05-21 Ppg Industries Ohio, Inc. Electrically conductive coatings containing graphenic carbon particles
WO2013056177A1 (en) * 2011-10-12 2013-04-18 Honda Patents & Technologies North America, Llc Composite material and related methods
US8623784B2 (en) 2011-10-19 2014-01-07 Indian Institute Of Technology Madras Polyaniline-graphite nanoplatelet materials
CN102515146B (zh) * 2011-10-25 2013-09-18 合肥工业大学 聚乙烯基三苯乙炔基硅烷催化石墨化的方法
EP3266814B1 (en) 2011-10-27 2019-05-15 Garmor Inc. Method for preparing a composite comprising graphene structures and the composite
US9763287B2 (en) * 2011-11-30 2017-09-12 Michael R. Knox Single mode microwave device for producing exfoliated graphite
JP5800232B2 (ja) * 2011-12-06 2015-10-28 株式会社豊田中央研究所 黒鉛薄膜およびその製造方法
FR2983847B1 (fr) * 2011-12-12 2018-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de preparation de graphene
JP5735442B2 (ja) * 2012-03-02 2015-06-17 コリア インスティチュート オブ エナジー リサーチ 炭素ナノ物質でコーティングされた天然纎維補強材と高分子とを含むナノバイオ複合体
JP5877098B2 (ja) * 2012-03-22 2016-03-02 出光興産株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形体
US9206051B2 (en) * 2012-03-30 2015-12-08 Scott Murray Apparatus for mechanical exfoliation of particulate materials
DE102013210161A1 (de) 2012-06-14 2013-12-19 International Business Machines Corporation Strukturen auf Graphen-Basis und Verfahren für eine Absorption von elektromagnetischer Breitbandstrahlung bei den Mikrowellen- und Terahertz-Frequenzen
US9174413B2 (en) 2012-06-14 2015-11-03 International Business Machines Corporation Graphene based structures and methods for shielding electromagnetic radiation
US9413075B2 (en) 2012-06-14 2016-08-09 Globalfoundries Inc. Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies
EP2894127B1 (en) * 2012-09-03 2020-03-04 Sekisui Chemical Co., Ltd. Composite material, and method for producing same
KR101757084B1 (ko) * 2012-09-28 2017-07-26 피피지 인더스트리즈 오하이오 인코포레이티드 그래핀계 탄소 입자를 포함하는 전기 전도성 코팅
US11479652B2 (en) 2012-10-19 2022-10-25 Rutgers, The State University Of New Jersey Covalent conjugates of graphene nanoparticles and polymer chains and composite materials formed therefrom
WO2014062226A1 (en) 2012-10-19 2014-04-24 Rutgers, The State University Of New Jersey In situ exfoliation method to fabricate a graphene-reinforced polymer matrix composite
GB201218952D0 (en) * 2012-10-22 2012-12-05 Cambridge Entpr Ltd Functional inks based on layered materials and printed layered materials
US20150279504A1 (en) * 2012-11-15 2015-10-01 Solvay Sa Film forming composition comprising graphene material and conducting polymer
KR101739295B1 (ko) 2012-11-26 2017-05-24 삼성에스디아이 주식회사 복합음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법
US9865369B2 (en) * 2012-12-21 2018-01-09 University Of Exeter Graphene-based material
BR102012033306B1 (pt) * 2012-12-27 2022-02-15 Universidade Federal De Minas Gerais Processo de preparação de compósito para absorção e adsorção de hidrocarbonetos, produto e uso
US9469742B2 (en) * 2013-02-13 2016-10-18 Basf Se Polyamide composites containing graphene
JP6285643B2 (ja) * 2013-03-04 2018-02-28 積水化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、並びにリチウムイオン二次電池
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
CA2903987C (en) 2013-03-08 2018-05-01 Richard Blair Large scale oxidized graphene production for industrial applications
TWI504564B (zh) * 2013-03-15 2015-10-21 Nano-graphite sheet structure
CA2909715C (en) 2013-04-18 2022-05-24 Rutgers, The State University Of New Jersey In situ exfoliation method to fabricate a graphene-reinforced polymer matrix composite
US20140312263A1 (en) * 2013-04-22 2014-10-23 Uchicago Argonne, Llc Advanced thermal properties of a suspension with graphene nano-platelets (gnps) and custom functionalized f-gnps
WO2015065893A1 (en) * 2013-10-28 2015-05-07 Garmor, Inc. Ultra-low oxidized thin graphite flakes
CN103694790B (zh) * 2013-11-28 2015-07-29 福建省格林春天科技有限公司 一种阻燃墙纸专用的水性阻燃油墨及其制备方法
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
EP3100597B1 (en) 2014-01-31 2023-06-07 Monolith Materials, Inc. Plasma torch with graphite electrodes
US9315388B2 (en) * 2014-02-21 2016-04-19 Nanotek Instruments, Inc. Production of graphene materials in a cavitating fluid
EP3111496B1 (en) * 2014-02-27 2021-12-08 Doosan Fuel Cell America, Inc. Fuel cell component including flake graphite
JP6495065B2 (ja) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 薄片状カーボンの製造方法
JP6495066B2 (ja) * 2014-03-31 2019-04-03 大阪瓦斯株式会社 薄片状カーボンの製造方法
US10457557B2 (en) 2014-06-20 2019-10-29 Directa Plus S.P.A. Process for preparing graphene nanoplatelets
EP3157864B1 (en) 2014-06-20 2021-04-07 Directa Plus S.p.A. Continuous process for preparing pristine graphene nanoplatelets
CN104058396A (zh) * 2014-07-14 2014-09-24 复旦大学 一种层数可控的大尺寸、高质量石墨烯制备方法
WO2016012367A1 (en) 2014-07-22 2016-01-28 Basf Se Modification of carbon particles
MX2017001350A (es) * 2014-07-30 2018-01-17 Univ Rutgers Compuestos de matriz polimerica reforzados con grafeno.
WO2016057109A2 (en) * 2014-08-11 2016-04-14 Vorbeck Materials Corp. Graphene-based thin conductors
CA2958208C (en) 2014-08-18 2020-02-18 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
TWI505868B (zh) * 2014-08-18 2015-11-01 中原大學 阻水氣複合膜及其製備方法
JP5777195B1 (ja) * 2014-09-09 2015-09-09 グラフェンプラットフォーム株式会社 複合伝導素材体、蓄電デバイス、導電性分散液、導電デバイス、導電性コンポジット及び熱伝導性コンポジット並びに複合伝導素材の製造方法
US9552900B2 (en) 2014-09-09 2017-01-24 Graphene Platform Corporation Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite
GB2531652B (en) * 2014-09-09 2017-06-14 Graphene Platform Corp Graphene composite and method of producing the same
GB2530631B (en) * 2014-09-09 2017-04-12 Graphene Platform Corp A method of producing a composite conductive material
JP5914617B2 (ja) * 2014-11-06 2016-05-11 積水化学工業株式会社 結晶性樹脂複合材料及びその製造方法
KR101818703B1 (ko) 2014-12-11 2018-01-16 주식회사 엘지화학 고속 균질화 전처리 및 고압 균질화를 이용한 그래핀의 제조 방법
EP3253904B1 (en) 2015-02-03 2020-07-01 Monolith Materials, Inc. Regenerative cooling method and apparatus
CN107709474A (zh) 2015-02-03 2018-02-16 巨石材料公司 炭黑生成系统
US9598593B2 (en) 2015-02-27 2017-03-21 Graphene Platform Corporation Graphene composite and method of producing the same
WO2016137868A1 (en) 2015-02-27 2016-09-01 J.M. Huber Corporation Slurry compositions for use in flame retardant and hydrophobic coatings
EP3274295A4 (en) 2015-03-23 2018-04-04 Garmor Inc. Engineered composite structure using graphene oxide
EP3283448B1 (en) 2015-04-13 2022-06-01 Asbury Graphite of North Carolina, Inc. Graphite oxide reinforced fiber in hosts such as concrete or asphalt
WO2016200469A1 (en) 2015-06-09 2016-12-15 Garmor Inc. Graphite oxide and polyacrylonitrile based composite
CN108292826B (zh) 2015-07-29 2020-06-16 巨石材料公司 Dc等离子体焰炬电力设计方法和设备
CN105177589B (zh) * 2015-08-12 2017-11-03 北方工业大学 一种铁基纳米棒的制备方法
ITUB20153129A1 (it) * 2015-08-14 2017-02-14 Directa Plus Spa Composizione elastomerica comprendente grafene e componenti di pneumatico comprendenti detta composizione.
MX2018002943A (es) 2015-09-09 2018-09-28 Monolith Mat Inc Grafeno circular de pocas capas.
CN105177590B (zh) * 2015-09-10 2017-11-03 北方工业大学 一种尺寸可控的铁基纳米片的制备方法
JP6974307B2 (ja) 2015-09-14 2021-12-01 モノリス マテリアルズ インコーポレイテッド 天然ガス由来のカーボンブラック
CA2997109C (en) 2015-09-21 2021-05-11 Garmor Inc. Low-cost, high-performance composite bipolar plate
CN107921440B (zh) 2015-09-25 2019-11-01 株式会社Lg化学 包括优化出口的片材剥离装置
AU2016340023B2 (en) 2015-10-15 2021-06-24 Flex-G Pty Ltd Traction drive fluid
AU2016340018B2 (en) * 2015-10-15 2021-06-17 Flex-G Pty Ltd Extraction of platelet-like particles from aqueous to non-aqueous media
JP6560118B2 (ja) * 2015-12-25 2019-08-14 国立大学法人室蘭工業大学 グラフェン分散液の取得方法
US10204715B2 (en) * 2016-03-31 2019-02-12 Schlumberger Technology Corporation Submersible power cable
WO2017190015A1 (en) 2016-04-29 2017-11-02 Monolith Materials, Inc. Torch stinger method and apparatus
CA3060482C (en) 2016-04-29 2023-04-11 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US20190047325A1 (en) * 2016-06-29 2019-02-14 Exxonmobil Chemical Patents Inc. Graft Copolymers for Dispersing Graphene and Graphite
US11702518B2 (en) 2016-07-22 2023-07-18 Rutgers, The State University Of New Jersey In situ bonding of carbon fibers and nanotubes to polymer matrices
JP6996770B2 (ja) 2016-07-22 2022-01-17 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー 炭素繊維およびナノチューブのポリマーマトリックスへのin situ結合
WO2018046773A1 (en) * 2016-09-12 2018-03-15 Imerys Graphite & Carbon Switzerland Ltd. Wet-milled and dried carbonaceous sheared nano-leaves
CA3041315C (en) 2016-10-26 2021-06-01 Garmor Inc. Additive coated particles for low cost high performance materials
CA3055830A1 (en) 2017-03-08 2018-09-13 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
CN115637064A (zh) 2017-04-20 2023-01-24 巨石材料公司 颗粒系统和方法
KR102137032B1 (ko) 2017-05-10 2020-07-23 엘지전자 주식회사 탄소 복합체 조성물 및 이를 이용하여 제조되는 탄소 히터
KR102004035B1 (ko) 2017-05-26 2019-07-25 엘지전자 주식회사 탄소 발열체
US10858515B2 (en) * 2017-07-11 2020-12-08 Exxonmobil Chemical Patents Inc. Polyolefin-arylene-ether nanoplatelet composites
MX2020002215A (es) 2017-08-28 2020-08-20 Monolith Mat Inc Sistemas y metodos para generacion de particulas.
CA3116989C (en) 2017-10-24 2024-04-02 Monolith Materials, Inc. Particle systems and methods
WO2019143662A1 (en) 2018-01-16 2019-07-25 Rutgers The State University Of New Jersey Use of graphene-polymer composites to improve barrier resistance of polymers to liquid and gas permeants
JP7334231B2 (ja) * 2018-03-20 2023-08-28 グラファイト イノベーション アンド テクノロジーズ インコーポレイティド 湿った環境で使用するための多機能コーティング
WO2020027039A1 (ja) * 2018-07-30 2020-02-06 株式会社Adeka 複合材料
WO2020076138A1 (ko) * 2018-10-12 2020-04-16 한양대학교 에리카산학협력단 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
KR102153964B1 (ko) * 2018-10-12 2020-09-09 주식회사 멕스플로러 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법
DE202018106258U1 (de) 2018-10-15 2020-01-20 Rutgers, The State University Of New Jersey Nano-Graphitische Schwämme
JP2020139018A (ja) * 2019-02-27 2020-09-03 信越ポリマー株式会社 電池用カーボン部材及びその製造方法、レドックスフロー電池用双極板、並びに燃料電池用セパレータ
US11807757B2 (en) 2019-05-07 2023-11-07 Rutgers, The State University Of New Jersey Economical multi-scale reinforced composites
GB2585648B (en) * 2019-07-09 2021-12-01 Applied Graphene Mat Uk Ltd Waterborne coatings
CN110422840A (zh) * 2019-09-04 2019-11-08 河北医科大学 一种固体有机酸合成氮杂石墨烯的方法
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite
CN110467178B (zh) * 2019-09-29 2022-07-22 威海云山科技有限公司 一种制备石墨烯的方法
WO2021076667A1 (en) * 2019-10-14 2021-04-22 C-Crete Technologies, Llc Cementitious composites via carbon-based nanomaterials
CN111533123B (zh) * 2020-06-12 2024-03-15 黑龙江工业学院 一种等离子体制备无硫可膨胀石墨的装置及方法
KR102240358B1 (ko) * 2020-11-19 2021-04-14 주식회사 케이비엘러먼트 고온 플라즈마 방사법을 활용한 그래핀 연속 대량 제조 방법 및 이의 제조방법으로 제조된 그래핀
CN113213482B (zh) * 2021-04-29 2023-02-14 太原理工大学 一种等离子球磨加振动流态化煅烧活化煤矸石提取硅铝的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816927A (zh) * 2003-06-30 2006-08-09 Tdk株式会社 电极用碳素材料及其制造方法、电池用电极及其制造方法、电极及其制造方法
US20070092432A1 (en) * 2005-10-14 2007-04-26 Prud Homme Robert K Thermally exfoliated graphite oxide

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991581A (en) * 1962-03-21 1965-05-12 High Temperature Materials Inc Expanded pyrolytic graphite and process for producing the same
JPS6433096A (en) * 1987-04-03 1989-02-02 Fujitsu Ltd Gaseous phase synthesis for diamond
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
JPH064482B2 (ja) * 1988-06-08 1994-01-19 三井鉱山株式会社 葉片状黒鉛粉末及びその製造方法
JP3213193B2 (ja) * 1995-02-01 2001-10-02 大同メタル工業株式会社 摺動用組成物及ぴその摺動部材
JPH08217434A (ja) * 1995-02-13 1996-08-27 Mitsui Kozan Kasei Kk 薄片状黒鉛微粉末の製造方法
US5776372A (en) * 1995-05-29 1998-07-07 Nisshinbo Industries, Inc. Carbon composite material
JPH1017375A (ja) * 1996-06-28 1998-01-20 Nippon Kasei Chem Co Ltd 熱膨張黒鉛複合成形体、その製造方法および吸油材
US6287694B1 (en) * 1998-03-13 2001-09-11 Superior Graphite Co. Method for expanding lamellar forms of graphite and resultant product
US6395199B1 (en) * 2000-06-07 2002-05-28 Graftech Inc. Process for providing increased conductivity to a material
JP4798411B2 (ja) * 2000-08-09 2011-10-19 三菱瓦斯化学株式会社 炭素からなる骨格を持つ薄膜状粒子の合成方法
EP1407459A1 (de) * 2001-07-04 2004-04-14 Ticona GmbH Elekrisch leitfähige zusammensetzungen und verfahren zu deren herstellung und deren verwendung
JP2003231098A (ja) * 2002-02-08 2003-08-19 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ薄膜状粒子を含む複合体およびその作製方法
US7348298B2 (en) * 2002-05-30 2008-03-25 Ashland Licensing And Intellectual Property, Llc Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
US6872330B2 (en) * 2002-05-30 2005-03-29 The Regents Of The University Of California Chemical manufacture of nanostructured materials
US7105108B2 (en) * 2002-08-15 2006-09-12 Advanced Energy Technology Inc. Graphite intercalation and exfoliation process
US20060241237A1 (en) * 2002-09-12 2006-10-26 Board Of Trustees Of Michigan State University Continuous process for producing exfoliated nano-graphite platelets
US20040127621A1 (en) * 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US7071258B1 (en) * 2002-10-21 2006-07-04 Nanotek Instruments, Inc. Nano-scaled graphene plates
JP5082207B2 (ja) * 2004-06-30 2012-11-28 三菱化学株式会社 リチウム二次電池用負極材料の製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP2006297368A (ja) * 2004-11-15 2006-11-02 Osaka Gas Co Ltd 疎水性有機化合物の吸着剤及びその製造方法
JP5189730B2 (ja) * 2005-08-17 2013-04-24 富士フイルム株式会社 インク組成物
WO2008048295A2 (en) * 2005-11-18 2008-04-24 Northwestern University Stable dispersions of polymer-coated graphitic nanoplatelets
US7449432B2 (en) * 2006-03-07 2008-11-11 Ashland Licensing And Intellectual Property, Llc (Alip) Gear oil composition containing nanomaterial
US7754184B2 (en) * 2006-06-08 2010-07-13 Directa Plus Srl Production of nano-structures
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US7863522B2 (en) * 2006-12-20 2011-01-04 Dow Global Technologies Inc. Semi-conducting polymer compositions for the preparation of wire and cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816927A (zh) * 2003-06-30 2006-08-09 Tdk株式会社 电极用碳素材料及其制造方法、电池用电极及其制造方法、电极及其制造方法
US20070092432A1 (en) * 2005-10-14 2007-04-26 Prud Homme Robert K Thermally exfoliated graphite oxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H.FUKUSHIMA ET AL: "Thermal conductivity of exfoliated graphite nanocomposites", 《JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY》 *
KYRIAKI KALAITZIDOU ET AL: "Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites", 《COMPOSITES PART A:APPLIED SCIENCE AND MANUFACTURING》 *
Z.OSVATH: "Graphene layers from thermal oxidation of exfoliated graphite plates", 《CARBON》 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779990B (zh) * 2011-05-11 2016-10-05 三星Sdi株式会社 负极活性材料、其制备方法和包括其的锂电池
CN102779990A (zh) * 2011-05-11 2012-11-14 三星Sdi株式会社 负极活性材料、其制备方法和包括其的锂电池
CN103359713A (zh) * 2012-03-31 2013-10-23 海洋王照明科技股份有限公司 一种石墨烯的制备方法
CN102942743A (zh) * 2012-09-26 2013-02-27 北京化工大学 一种简易的石墨烯薄片纳米复合材料制备方法
CN105121550A (zh) * 2013-02-13 2015-12-02 巴斯夫欧洲公司 含有石墨烯的聚酰胺复合物
CN105121550B (zh) * 2013-02-13 2017-11-03 巴斯夫欧洲公司 含有石墨烯的聚酰胺复合物
CN104071773A (zh) * 2013-03-25 2014-10-01 安炬科技股份有限公司 奈米石墨片结构
US9862833B2 (en) 2014-09-09 2018-01-09 Graphene Platform Corporation Composite reinforcing material and method of producing a composite reinforcing material
CN105399081A (zh) * 2014-09-09 2016-03-16 石墨烯平台株式会社 石墨烯复合体及其制造方法
CN105517953A (zh) * 2014-09-09 2016-04-20 石墨烯平台株式会社 复合传导原材料体、蓄电装置、导电性分散液、导电装置、导电性复合物及导热性复合物
CN105518072A (zh) * 2014-09-09 2016-04-20 石墨烯平台株式会社 复合增强原材料及造型材料
CN105517953B (zh) * 2014-09-09 2017-07-04 石墨烯平台株式会社 复合传导原材料、蓄电装置、导电性分散液、导电装置、导电性复合物及导热性复合物以及复合传导原材料的制造方法
US10421863B2 (en) 2014-09-09 2019-09-24 Graphene Platform Corporation Composite reinforcing material and molding material
US9862834B2 (en) 2014-09-09 2018-01-09 Graphene Platform Corporation Composite reinforcing material and molding material
CN105399081B (zh) * 2014-09-09 2017-11-03 石墨烯平台株式会社 石墨烯复合体及其制造方法
CN105518114A (zh) * 2014-09-09 2016-04-20 石墨烯平台株式会社 复合润滑原材料、发动机润滑油、润滑脂及润滑油
CN105518114B (zh) * 2014-09-09 2017-11-07 石墨烯平台株式会社 复合润滑原材料、发动机润滑油、润滑脂及润滑油以及复合润滑原材料的制造方法
CN105518072B (zh) * 2014-09-09 2017-11-07 石墨烯平台株式会社 复合增强原材料及其制作方法
CN107709481A (zh) * 2015-06-22 2018-02-16 罗马大学 用于电磁和传感器应用的含石墨烯的水基压阻导电聚合物涂料
CN107709481B (zh) * 2015-06-22 2020-04-07 罗马大学 用于电磁和传感器应用的含石墨烯的水基压阻导电聚合物涂料
CN106283184B (zh) * 2016-08-31 2018-09-04 无锡东恒新能源科技有限公司 一种单晶体石墨材料制备装置
CN106283184A (zh) * 2016-08-31 2017-01-04 无锡东恒新能源科技有限公司 一种单晶体石墨材料制备装置
CN107033732A (zh) * 2016-12-07 2017-08-11 李光明 一种石墨烯涂料及其制备方法
CN107033732B (zh) * 2016-12-07 2019-10-25 李光明 一种石墨烯涂料及其制备方法
CN107057505A (zh) * 2017-01-10 2017-08-18 滁州职业技术学院 一种用于电力金具防腐的耐磨损有机硅‑丙烯酸复合水性涂料及其制备方法
CN110312601A (zh) * 2017-03-06 2019-10-08 比克维奥莱克斯公司 涂层
CN108690402A (zh) * 2017-04-12 2018-10-23 华瑞墨石丹阳有限公司 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途
CN108587572A (zh) * 2018-05-14 2018-09-28 长沙理工大学 一种以超薄石墨片为定型基体的复合相变储热材料及制备方法
CN108531246A (zh) * 2018-06-15 2018-09-14 集美大学 一种氧化石墨烯复合润滑油的制备方法及复合润滑油
CN108531246B (zh) * 2018-06-15 2021-02-02 集美大学 一种氧化石墨烯复合润滑油的制备方法及复合润滑油
CN112351952A (zh) * 2018-06-29 2021-02-09 优尼基泰克联合股份公司科学与生产协会 石墨箔、基于其的片材料、密封件和制造方法
CN112351952B (zh) * 2018-06-29 2024-04-26 优尼基泰克联合股份公司科学与生产协会 石墨箔、基于其的片材料、密封件和制造方法
CN111500006A (zh) * 2019-01-30 2020-08-07 家登精密工业股份有限公司 复合材料及应用其的半导体容器
CN111500005A (zh) * 2019-01-30 2020-08-07 家登精密工业股份有限公司 环烯烃组合物及应用其的半导体容器
CN111500006B (zh) * 2019-01-30 2022-12-09 家登精密工业股份有限公司 复合材料及应用其的半导体容器
CN111962070A (zh) * 2020-09-08 2020-11-20 中国科学院上海应用物理研究所 一种无机盐纳米薄膜的制备方法以及由此得到的无机盐纳米薄膜

Also Published As

Publication number Publication date
US20100147188A1 (en) 2010-06-17
US20150210551A1 (en) 2015-07-30
TWI462876B (zh) 2014-12-01
EP2262727A2 (en) 2010-12-22
WO2009106507A3 (en) 2010-07-29
KR20100117684A (ko) 2010-11-03
JP2011513167A (ja) 2011-04-28
CN102015529B (zh) 2014-04-30
KR101600108B1 (ko) 2016-03-04
TW201000398A (en) 2010-01-01
JP5649979B2 (ja) 2015-01-07
WO2009106507A2 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
CN102015529B (zh) 纳米石墨片和组合物
Abdolmaleki et al. Preparation, characterization and surface morphology of novel optically active poly (ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process
Reyes-Acosta et al. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings
Jimenez et al. Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing
CN109715555A (zh) 湿磨和干燥的碳质剪切的纳米叶
EP2766427B1 (en) Nanocomposite
WO2016040599A1 (en) Process for exfoliation and dispersion of boron nitride
KR20160008630A (ko) 탄소계 재료를 공유적으로 그래프트하기 위한 방법
CN102822243A (zh) 具有改善的均匀性的纳米复合材料
CA2569010A1 (en) Polymer blend of non-compatible polymers
WO2008048349A2 (en) Depositing nanometer-sized metal particles onto substrates
Anuar et al. Conducting polymer/clay composites: preparation and characterization
Namvari et al. Crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: a nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids
Ozdemir et al. Ethylene methyl acrylate copolymer (EMA) assisted dispersion of few-layer graphene nanoplatelets (GNP) in poly (ethylene terephthalate)(PET)
EP3981740A1 (en) Surface-modified nanodiamond and method for producing surface-modified nanodiamond
Greaves et al. Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges
Garcia et al. Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performance
Asadi et al. Process-structure-property relationship in polymer nanocomposites
Quigley et al. Enhanced electrical properties of polycarbonate/carbon nanotube nanocomposites prepared by a supercritical carbon dioxide aided melt blending method
EP2766416B1 (en) Process for preparing nanocomposite
Senturk et al. Exploring the tribological properties of PA6/GO nanocomposites produced by in situ polymerization
Krajnc et al. Poly (methyl methacrylate)/montmorillonite nanocomposites prepared by bulk polymerization and melt compounding
CN117157248A (zh) 共混的石墨烯分散体
JP5909053B2 (ja) 樹脂複合材料
Kiss-Pataki Study of Carbon Nanotube Filler Dispersion in Polymer Composites by Various Microscopic Methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20180223

CF01 Termination of patent right due to non-payment of annual fee