CN101981225A - 低湿蚀刻速率的氮化硅膜 - Google Patents
低湿蚀刻速率的氮化硅膜 Download PDFInfo
- Publication number
- CN101981225A CN101981225A CN2008801214068A CN200880121406A CN101981225A CN 101981225 A CN101981225 A CN 101981225A CN 2008801214068 A CN2008801214068 A CN 2008801214068A CN 200880121406 A CN200880121406 A CN 200880121406A CN 101981225 A CN101981225 A CN 101981225A
- Authority
- CN
- China
- Prior art keywords
- flow rate
- silicon nitride
- nitride film
- substrate
- high density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 50
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000000151 deposition Methods 0.000 claims abstract description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000012423 maintenance Methods 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 94
- 230000008021 deposition Effects 0.000 claims description 33
- 238000005516 engineering process Methods 0.000 claims description 30
- 238000001039 wet etching Methods 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 12
- 239000008246 gaseous mixture Substances 0.000 claims description 10
- 125000004433 nitrogen atom Chemical class N* 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- NTQGILPNLZZOJH-UHFFFAOYSA-N disilicon Chemical compound [Si]#[Si] NTQGILPNLZZOJH-UHFFFAOYSA-N 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- -1 silicon amine Chemical class 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 11
- 239000001257 hydrogen Substances 0.000 description 29
- 229910052739 hydrogen Inorganic materials 0.000 description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 27
- 239000002243 precursor Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 13
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 13
- 238000005530 etching Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000001678 elastic recoil detection analysis Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000013022 venting Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000003064 anti-oxidating effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009279 wet oxidation reaction Methods 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000734468 Listera Species 0.000 description 1
- 241001503485 Mammuthus Species 0.000 description 1
- 241001584775 Tunga penetrans Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
- H01L21/3185—Inorganic layers composed of nitrides of siliconnitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
- Weting (AREA)
Abstract
本发明是关于利用高密度等离子体化学气相沉积技术,在基板温度低于600℃下沉积低湿蚀刻速率氮化硅膜至基板上的方法。该方法还包括维持等离子体中的氮与硅呈高比例及维持低处理压力。
Description
发明背景
本发明涉及纳米制造技术解决方案,包括用于沉积、图案化及处理薄膜与涂层的设备、工艺和材料,代表性实例应用包括(但不限于):半导体与介电材料和装置、硅基晶圆、平板显示器(如TFT)、掩模和滤光片、能量转换与储存器(如光伏电池、燃料电池和蓄电池)、固态照明设备(如LED和OLED)、磁光储存器、微机电系统(MEMS)与纳米机电系统(NEMS)、微光学与光电装置、建筑与汽车玻璃、用于金属与聚合物箔及封装的金属化系统、和微成型与纳米成型。较特别地,本发明涉及将薄膜施加于表面上。更特别地,本发明涉及利用化学气相沉积(CVD)形成高密度薄膜的方法。
传统热CVD工艺供应反应气体至基板表面,在此表面的热引发化学反应而产生膜。使用等离子体源促进化学反应可改善沉积速率和膜性质。等离子体增强化学气相沉积(PECVD)技术通过将射频(RF)能量施加到基板表面附近的反应区而产生等离子体,从而促使反应气体激发、离解及离子化。等离子体中的高反应性物种会降低活化化学反应所需的能量。相较于传统热CVD工艺,这有效地降低了PECVD工艺所需的基板温度。降低基板温度是有益的,因其可减少发生可能导致制造工艺产率降低的扩散或其它大量传输(masstransport)作用的机会。
利用高密度等离子体(HDP)CVD技术可进一步加以改善,其中密集等离子体在低真空压力下形成,因此等离子体物种更具反应性。HDP-CVD能采用较低的反应气体分压,同时维持高离子浓度。HDP-CVD也能与离子化能量无关地独立控制加速能量。除了与图案化晶圆处理相关的特点外,利用高密度等离子体沉积膜还有一些材料变化。以HDP-CVD方法沉积的薄膜的密度比用其它CVD方法高。较密集薄膜展现更好的均匀性(homogeneity),并更适合做为蚀刻或研磨终止层。
集成装置制造常用的材料为氮化硅。氮化硅膜用于集成电路前端处理工艺的两种常规应用包括在精密的集成装置周围形成间隔物结构及在金属前介电层(premetal dielectric layer)与半导体基板之间形成接触蚀刻终止层(如阻挡层)。当作为蚀刻终止层时,理想的是,在氧化硅蚀刻工艺期间,此膜具有呈低湿蚀刻速率(WER)的能力。
氮化硅膜内存有杂质常常与高蚀刻速率有关而降低做为蚀刻终止的效用。易并入生长的氮化硅膜的一种杂质为氢。以传统热CVD方法生长氮化硅已成功地减少其氢含量至10%以下,然而,此化学气相沉积的基板温度在700℃至1000℃的范围内。高温会降低、甚至破坏材料性质和先前处理步骤形成的装置。
因此,此技术仍需在低沉积温度下沉积低WER氮化硅膜至基板上的方法。
发明内容
本发明是关于利用HDP-CVD工艺,在低沉积温度下沉积高质量氮化硅膜至基板上的方法。在一些实施例中,平均基板温度低于或约为600℃;在其它实施例中,平均基板温度处于500℃或450℃、或者低于500℃或450℃。
根据本发明的一实施例,利用HDP-CVD工艺,沉积氮化硅膜至处理腔室内的基板上的方法包含将含氮与硅的处理气体混合物流入处理腔室中,同时维持氮原子流率与硅原子流率的平均比率为约50∶1或更大、维持处理腔室内的平均压力为约40毫托或更小、以及维持平均基板温度为约600℃或更低。高密度等离子体由处理气体产生,用以沉积氮化硅膜至基板上。在其它实施例中,氮原子流率与硅原子流率的平均比率大于或等于60∶1或90∶1,处理腔室内的平均压力为25毫托或以下、15毫托或以下、10毫托或以下、或5毫托或以下。处理气体混合物可包括双原子氮(N2)和甲硅烷(SiH4),但也可使用乙硅烷(Si2H6)和三硅胺(N(SiH3)3;TSA)、或其它适合的气体混合物。本发明的制造方法可以以大于约500埃/分钟的速率来沉积氮化硅膜,使用氢氟酸溶液(1%HF水溶液)处理时,沉积膜的湿蚀刻速率可以小于
相较于传统HDP沟填沉积(gapfill deposition)工艺,本发明的一些实施例在沉积时施加少许或不施加RF偏压功率,在不同实施例中,膜生长期间的沉积与溅射比率大于或等于50∶1、75∶1或100∶1。再者,在一些实施例中,沉积期间引进氩气流至处理腔室中,以促进高密度等离子体形成。氮原子流率与氩原子流率的比率可以维持在15∶1与15∶2之间,施加来产生高密度等离子体的RF功率可以为在每平方厘米5瓦与15瓦之间(5-15瓦/平方厘米)。
本发明的上述和其它实施例将进一步详述于后附的说明书其余部分和附图中。
附图说明
图1为部分完成的集成装置的局部截面图,装置制造受益于使用根据本发明一实施例生长的低湿蚀刻速率(WER)氮化硅膜;
图2为根据本发明一实施例,形成高密度且高抗氧化物蚀刻性的氮化硅膜的步骤流程图;
图3为RBS-HFS材料分析系统的示意图,用于测定氢含量;
图4为根据实施例改变N2∶SiH4气流比率所生长的氮化硅膜的湿蚀刻速率曲线图;
图5为根据实施例改变处理腔室压力所生长的氮化硅膜的湿蚀刻速率曲线图;
图6A为可施行本发明的方法的高密度等离子体化学气相沉积系统的一个实施例的简化示意图;以及
图6B为可与图6A的示例处理系统一起使用的气环的简化截面图。
具体实施方式
本发明涉及形成利用高密度等离子体CVD技术沉积的高质量氮化硅膜的方法。当二者接触同样的蚀刻剂时,高质量膜的WER比氧化硅低。通过减少氢含量可获得低WER。在不同实施例中,氮化硅膜的氢含量可以少于10%或可以少于7%。根据本发明的技术能沉积氢含量少的氮化硅膜,同时在沉积期间维持基板温度呈相对低温(<600℃)。
许多受惠于具高密度、低湿(或干)氧化物蚀刻速率、高介电常数、高光学折射率和其它相关物理特性的氮化硅膜的应用,会受惠于本发明各实施例的使用。
以先前CVD技术制得的氮化硅膜中的主要杂质为氢,其通常是处理气体混合物中的氢气留下所致。减少留在氮化硅膜中的氢可增加膜密度及提高氧化物蚀刻的氧化物/氮化物选择性。换句话说,密度增加可提升氮化硅膜的抗蚀能力一段时间,期间没有露出氮化硅的区域遭连续侵蚀。
举例来说,高密度动态随机存取存储器(DRAM)的制造采用电容器来储存信息。每个电容器需有一定阈值水平的电容,以于各刷新周期(refresh cycle)之间储存电荷。每个装置缩小对保持该阈值水平而言是一大挑战。一电容器结构涉及制造更高的圆柱,以补偿其在每个装置缩小中必须制作得更薄的情况。此种电容器形状易产生侧向偏移而降低产率。
金属连接制作在电容圆柱底下时,此工艺称为电容器覆位线(COB;capacitor over bit line)结构。氮化硅层可从上面支撑做为称作实际无限高的机械增强储存节点(MESH;mechanically enhanced storage node for vietually unlimitedheight)的结构。氮化硅MESH用来防止侧向偏移。图1显示此制造方法。移除氧化硅区域108时,电容器104未遭湿氧化物蚀刻。氮化硅层114的蚀刻速率期望比氧化硅区域108慢,使氮化物层得以防止湿氧化物蚀刻剂侵蚀构成电容器的介电层。因此,本发明的方法可用于制造采用图1所示结构的DRAM装置。
本发明的方法和技术不限于制造DRAM。其也可应用到其它蚀刻终止层(ESL),包括置于栅材料(如多晶硅)或金属前电介质(PMD)之上的蚀刻终止层。更广泛地说,本发明实施例将有益于任何可能受惠于低基板沉积温度和具有高抗氧化物蚀刻步骤能力的膜的应用。此外,光波导通过使用高折射率的密集膜而增大局限。由于所述沉积技术能采取较低的基板温度,所以倘若与芯片上电子装置整合,则特别适合光学应用。
在实施例中,等离子体激发为高密度等离子体,其可通过电感耦合(inductive coupling)产生。其它类型的等离子体源也可单独使用或与感应等离子体结合。使用高密度等离子体在选择处理气体方面有较大的灵活性。可使用非常惰性的气体,例如氮气做为HDP工艺的氮(N)源,而氨气(NH3)更常做为低密度PECVD工艺的氮源。
在此,高密度等离子体工艺为一种等离子体CVD工艺,其采用等离子体的离子密度达1011离子数/立方厘米或以上、离子化比例(离子/中性比)达10-4或以上。HDP-CVD工艺一般包括同时沉积及溅射组分。本发明实行的HDP-CVD工艺与传统的适合沟填的HDP-CVD工艺略有不同。在一些实施例中,施加实质微小或不施加偏压功率来形成高密度氮化硅膜,如此溅射程度比施加显著偏压功率以促进溅射的HDP-CVD工艺少。尽管这背离了传统的HDP-CVD工艺参数,然而溅射与沉积速率相关的特征仍是有帮助的,因此将在下面的描述中定义它。
高密度等离子体沉积和溅射特性的相对结合量可以视用于提供气体混合物的气体流率、施加来维持等离子体的源功率大小、施加至基板的偏压功率大小等而定。这些因素的结合可适当量化成“沉积/溅射比率”,有时以D/S表示来描述工艺特征。
沉积/溅射比率随沉积增加而提高,且随溅射增加而降低。在D/S定义中,“净沉积速率”是指同时发生沉积及溅射时测量的沉积速率。“毯覆溅射速率(blanket sputtering rate)”是在无沉积气体的情况下进行工艺配方(processrecipe)、处理腔室内的压力调整成沉积期间的压力时测量的溅射速率,并且是在毯覆热氧化物上测量的溅射速率。
如本领域的普通技术人员所知的,其它类似测量也可用来定量HDP工艺中沉积及溅射的相对贡献度。另一常用比例为“蚀刻/沉积比率”。
其随溅射增加而提高,且随沉积增加而降低。在E/D定义中,“净沉积速率”是指同时发生沉积及溅射时测量的沉积速率。“仅有来源的沉积速率”是指无溅射的情况下进行工艺配方时测量的沉积速率。本发明实施例在此是采用D/S比率。虽然D/S和E/D并非恰为倒数,但它们是反向关联的(inverselyrelated),本领域的技术人员应当理解二者之间的转换。
典型的HDP-CVD工艺适合进行几何结构的沟填。在这些工艺中,偏压功率用来加速离子往形成窄范围接近轨迹的生长表面前进。结合溅射作用的窄化造成在封闭通孔顶部转角而形成空隙前填充一些间隙。沟填应用的D/S比率通常在3至10的范围内,一些奇特应用的D/S比率甚至超过25。本发明的一实施例涉及利用HDP-CVD工艺并施加少许或不施加偏压功率来形成高密度氮化硅膜。这些条件下的毯覆溅射速率很低且难以测量,然而D/S比率通常预期会在约100以上。
为了更好地理解本发明,请参照图2,其为根据本发明的一实施例,形成高密度且高抗氧化物蚀刻性的氮化硅膜的步骤流程图。这些步骤将在后面详细描述,在此先概略说明。如图2所示,将基板传送到由真空泵排空的处理腔室(步骤204)。在流入气体前、后或期间(步骤212、216),施加功率至等离子体源(步骤208),并且持续开启直到停止流入气体前、后或期间(步骤226、230)。在步骤212中,输送前驱气体和流动气体(fluent gas)(图2中未示出)至反应区,以形成处理气体混合物。处理气体混合物提供氮与硅源,以在基板上形成氮化硅膜(步骤220)。前驱气体可以包括含硅气体(如甲硅烷(SiH4))和含氮(N)气体(如氮分子(N2))。其它气体也可使用。可采用包含硅与氮的分子做为一或多个前驱气体。
一般而言,硅源和氮源经由不同的输送通道引入,使其在反应区或附近混合。流动气体亦可引入用来协助处理气体混合物的其它组分产生离子物种。例如,氩气比N2更易被离子化,在一实施例中,其为等离子体提供电子而促进N2离解及离子化。此作用提高了化学反应的可能性和沉积速率。流动气体可经由与硅源或氮源相同或不同的输送通道引入。
本发明的实施例维持高氮(N)与硅(Si)原子流比率,以降低氮化硅膜的氢浓度。实质上,氮原子有助于从生长氮化硅网络中清除氢。在一实施例中,气流比率为在25∶1与40∶1(N2∶SiH4)之间,或更广泛地说,原子流比率为在50∶1与80∶1(N∶Si)之间时,从HFS的直接测量结果和WER的间接测量结果可发现氢含量减到最少。在不同实施例中,本发明采用的N2∶SiH4比率为25∶1、30∶1、或者45∶1或以上(或相当于N∶Si比率为50∶1、60∶1、或者90∶1或以上),用以使氢并入最少。
原子流比率(N∶Si)是从各前驱气体的流率和每一分子中各原子所占总数计算而得。在前驱物为N2和SiH4的实施例中,每一氮分子包括二个氮原子,而每一甲硅烷只包括一个硅原子。利用质量流量控制器维持气流比率如大于30∶1时,原子流比率将大于60∶1。在另一实施例中,前驱气体包括至少一含氮与硅的气体。计算原子流比率时,所有原子流率的贡献皆已涵盖。
除了N∶Si原子流比率外,氢的最小化还取决于反应前驱物的其它性质。氮气(N2)和三硅胺(N(SiH3)3;TSA)是合适的前驱物,因二分子中的氮(N)均未直接与氢原子键结。前驱气体具有N-H键会妨碍氮原子将氢移出生长膜。因此氨气(NH3)不是适当的氮源。含氧的氮源(如N2O)通过将氧并入网络而恶化氮化硅膜性质,这也将提高湿蚀刻速率。
保持反应区呈低压还有助于维持低氢含量。增加压力会缩短平均自由径(mean free path),进而改变离子化比例和气相动态特性,以及妨碍氢移出氮化硅网络。在不同实施例中,反应区的压力可为40毫托或以下、25毫托或以下、15毫托或以下、10毫托或以下、或者5毫托或以下。
在高流率比下维持低压需使用设有节流阀的大型泵,节流阀为完全或几乎完全打开以达到最小WER时的适当生长速率。泵的抽吸能力视腔室体积与结构和气流比等因素而定。若本发明用于应用材料公司制造的Ultima HDP室和300毫米(mm)晶圆,则抽吸速度大于或等于2800升/秒(liter/sec)可获得600埃/分钟的最佳膜的生长速率。本发明实施例采用美国专利号7,183,227、名称为“Use of Enhanced Turbomolecular Pump for Gapfill DepositionUsing High Flows of Low-Mass Fluent Gas”中所述的抽吸构造,在此引述其内容作为参考。采取较快的抽吸速度或使WER大于根据本发明实施例最佳化的值,可获得较快的生长速率。
在不同实施例中,基板温度维持为约600℃或以下、500℃或以下、或450℃或以下。施加至处理腔室顶部和侧边的RF功率在反应区产生等离子体,其将在后面详细描述。顶部RF功率一般小于侧边RF功率,就300mm晶圆来说,总体RF功率介于4000瓦与10000瓦之间(5瓦/平方厘米(watts/cm2)与15瓦/平方厘米之间)。在不同实施例中,总体RF功率为在约5瓦/平方厘米与15瓦/平方厘米之间,或在约5.5瓦/平方厘米与10瓦/平方厘米之间。在一实施例中,用来加速离子往晶圆前进的偏压RF功率为0或近似0。然而在不同实施例中,若偏压功率开启且相较于其它RF功率总和维持在低或最小功率使沉积与溅射比率在约50、75或100以上,则本发明实施例的许多优势仍在。
在本发明的一实施例中,将基板传送到沉积腔室(步骤204)。(步骤208)开始产生等离子体而步骤212流入含氮前驱物。进行步骤208和212后,流入含硅前驱物(步骤216)及开始生长膜(步骤220)。接着在流入含氮前驱物(步骤230)及中止等离子体(步骤238)前,停止流入含硅前驱物(步骤226)。在一些实施例中,理想的是在停止流入氮前驱物前先停止流入硅前驱物,使得N∶Si原子流比率至少维持像膜生长(步骤220)期间一样高。如此维持高N∶Si原子流比率可避免生长工艺结束时形成可能具有高氢含量和低WER的氮化硅薄层。理想的是在执行特征描述(characterization)步骤时仅探测外面数个单层。若最后数个单层具有不同物理特性,则体性质(bulk property)的推测可能有误。还理想的是,整个膜保持低湿蚀刻速率,以膜如做为蚀刻终止的利用性最大。在一实施例中,当存有含硅前驱物时,确保等离子体含有充足的氮可获得实质均匀的低湿蚀刻速率。
在另一实施例中,开始产生等离子体前先流入氮。同样地,在流入含氮前驱物前,中止等离子体。中止流入含氮前驱物及中止等离子体后,可以将晶圆移出沉积腔室(步骤244)。也可进行图2未示出的其它步骤,包括流入及终止流入流动气体来提高等离子体密度,但不以此为限。在又一实施例中,步骤226与步骤230间可以开始流入惰性物种及增加惰性物种流量并可减少氮流量。
本领域技术人员所熟知的氢前向散射光谱仪(HFS;Hydrogen ForwardScattering spectroscopy)和傅立叶变换红外线光谱仪(FTIR;Fourier TransformInfrared spectroscopy)用来定量膜的氢含量。HFS对低浓度氢的灵敏度相当高并更可靠。实验条件列于表I和图3。HFS定量探测测试沉积膜的散射氢(H),并与得自特征化的白云母样品的结果相比。接着以百分比表示氢含量。多个He++氦剂用来确保氢浓度在测试期间不会下降。也可采用傅立叶变换红外线光谱仪(FTIR)的更传统的技术,但灵敏度较低。
表I:氢前向散射(HFS)的实验条件
为证实本发明一些实施例的优点,实验比较根据这里所述的技术沉积的HDP-CVD氮化硅膜和以PECVD与LPCVD方法沉积的氮化硅膜的WER与氢含量。在装配300mm基板的Ultima HDP室内处理基板,氮化硅膜生长期间的抽吸速度为2800升/秒。HDP-CVD沉积期间的基板温度维持为约450℃,施加至顶部和侧边的等离子体RF功率为2000瓦和3000瓦。生长期间不施加偏压功率。硅烷气体流率为40sccm,氮气流率为1500sccm,氩气流率为300sccm。
除了直接从HFS测定残余氢含量外,还可测定WER来测量膜的耐化学性。分别于氢氟酸(1%HF水溶液)蚀刻前后,测量氮化硅膜的厚度。在25℃下持续进行湿蚀刻工艺一段时间后,计算蚀刻速率。膜的分析结果列于表II的HDP栏。现有技术的结果列于其它栏以供比较。1%HF水溶液蚀刻热生长氧化硅的速率为36埃/分钟
表II:膜特征vs.沉积技术
图4显示在SiH4流率固定为40sccm的情况下,随N2气体流率变化的湿蚀刻速率。N2气体流率较低时,湿蚀刻速率会先下降,这是因为工艺的氮源受限。在此区域中,添加额外的氮至等离子体中能更有效地在生长期间移除膜中的氢。湿蚀刻速率接着达到最小值,然后因腔室压力增加而开始上升。膜制备期间的抽吸速度保持不变。压力升高时,等离子体中的气体动态特性改变,导致降低氮移除氢的能力。该工艺显示当N2∶SiH4流率比率为约25∶1时,WER明显改善,流率比率为25∶1至40∶1之间达到最小值,然后因抽吸限制开始上升。
不同抽吸速度会改变WER急剧上升408的位置及可以改变WER的最小值418。假设有效抽吸速度从2800升/秒提高成4000升/秒,则图4的WER急剧上升位置将从50∶1周围移到70∶1附近。这一改变可改善膜生长速率和/或WER。按恒定气流比率增加气体流率可提高膜生长速率。同样地,按恒定硅烷气体流率增加N2∶SiH4气流比率可进一步降低WER。
图5显示在固定的N2(1500sccm)和SiH4(40sccm)流率的情况下,随腔室压力变化的湿蚀刻速率。通过改变节流阀位置,进而改变有效抽吸速度,可改变压力。随着腔室压力上升,膜质量显然会降低(湿蚀刻速率提高),原因如同参考图4的描述所述。提高抽吸速度可改善膜质量。
示例性基板处理系统
本发明利用位于美国加州圣克拉拉的应用材料公司(Applied Materials,Inc.)制造的ULTIMATM系统来实践本发明实施例,其概述于共同受让的美国专利号6,170,428、名称“SYMMETRIC TUNABLE INDUCTIVELY COUPLEDHDP-CVD REACTOR”、1996年7月15日申请、Fred C.Redeker、FarhadMoghadam、Hirogi Hanawa、Tetsuya Ishikawa、Dan Maydan、Shijian Li、BrianLue、Robert Steger、Yaxin Wang、Manus Wong和Ashok Sinha提出的申请案,其全文在此一并引入作为参考。该系统将结合图6A及6B概述于下。图6A为HDP-CVD系统610的一实施例的结构示意图。系统610包括腔室613、真空系统670、源等离子体系统680A、偏压等离子体系统680B、气体输送系统633和远程等离子体清洁系统650。
腔室613的上部包括圆顶614,其由陶瓷介电材料构成,例如氧化铝或氮化铝。圆顶614界定等离子体处理区616的上边界。等离子体处理区616的底部以基板617的上表面和基板支撑构件618为界。
加热板623和冷却板624装在圆顶614上且热耦接至圆顶614。加热板623和冷却板624能控制圆顶温度在约(100℃至200℃)±10℃的范围内。这样可最佳化圆顶温度以进行不同工艺。例如,理想的是,清洁或蚀刻工艺的圆顶温度大于沉积工艺。准确控制圆顶温度还能减少腔室内的剥落薄片或微粒数及改善沉积层与基板间的附着性。
腔室613的下部包括主体构件622,其连结腔室和真空系统。基板支撑构件618的基部621装在主体构件622上,并且一起构成连续的内表面。机械叶片(未示出)经由腔室613侧边的插入/移出开口(未示出)传送基板进出腔室613。举升销(未示出)在马达(未示出)的控制下升起及下降,从而将机械叶片上的基板从上部装载位置657移到较低处理位置656,在此基板放置到基板支撑构件618的基板接收部619。基板接收部619包括静电卡盘620,以在基板处理期间让基板固定到基板支撑构件618。在一优选实施例中,基板支撑构件618由氧化铝或铝陶瓷材料构成。
真空系统670包括用来容纳双叶片节流阀626的节流主体625,并且连接到闸阀(gate valve)627和涡轮分子泵628。应注意节流主体625最小程度地阻碍气流且容许对称抽吸。闸阀627能够隔开泵628和节流主体625,还能通过限制节流阀626完全打开时的排气流量来控制腔室压力。配设节流阀、闸阀和涡轮分子泵可精确及稳定地控制腔室压力高达约1毫托至约2托。
源等离子体系统680A包括设于圆顶614的顶部线圈629和侧边线圈630。对称接地屏蔽(未示出)可减少线圈间的电性耦合。顶部线圈629由顶部源射频(SRF)发生器631A供电,侧边线圈630由侧边SRF发生器631B供电,使得各线圈有独立的功率大小和操作频率。双线圈系统可控制腔室613内的径向离子密度,进而改善等离子体均匀度。侧边线圈630和顶部线圈629一般为感应驱动,其不需使用互补电极。在一特定实施例中,顶部源RF发生器631A以额定的2MHz供应高达2500瓦的RF功率,侧边源RF发生器631B以额定的2MHz供应高达5000瓦的RF功率。顶部和侧边RF发生器的操作频率可偏离额定操作频率(如分别为1.7-1.9MHz和1.9-2.1MHz),从而改善等离子体产生效率。
偏压等离子体系统680B包括偏压RF(BRF)发生器631C和偏压匹配网络632C。偏压等离子体系统680B电容耦合基板部分617和主体构件622,其当作互补电极。偏压等离子体系统680B用来加强输送源等离子体系统680A产生的等离子体物种(如离子)至基板表面。在一特定实施例中,偏压RF发生器以小于5MHz的频率供应高达10000瓦的RF功率,其将在后面进一步说明。
RF发生器631A和631B包括数字控制合成器且操作频率介于约1.8至约2.1MHz之间。如同本领域的普通技术人员所理解的,每一发生器包括RF控制电路(未示出),用以测量从腔室和线圈反射回发生器的功率,以及调整操作频率而获得最小反射功率。RF发生器一般设计为操作成特征阻抗为50欧姆的负载。RF功率可从具有不同特征阻抗的负载反射回发生器。如此可减少传送到负载的功率。此外,从负载反射回发生器的功率可能过载而破坏发生器。由于等离子体的阻抗范围可在从小于5欧姆至大于900欧姆,视等离子体离子密度等因素而定,又由于反射功率可以为频率的函数,因此依据反射功率调整发生器频率可增加从RF发生器传送到等离子体的功率及保护发生器。另一减少反射功率及提高效率的方式为利用匹配网络。
匹配网络632A和632B匹配发生器631A和631B的输出阻抗和其对应线圈629和630。RF控制电路可以通过改变匹配网络内的电容值来调整二匹配网络,使发生器随负载变化而与负载匹配。当从负载反射回发生器的功率超过一定极限时,RF控制电路可调整匹配网络。提供固定匹配以及有效地使RF控制电路失去调整匹配网络的能力的方式为设定反射功率极限大于任一反射功率预定值。保持匹配网络固定处于其最新条件有助于在一些条件下稳定等离子体。
其它测量也可以有助于稳定等离子体。例如,RF控制电路可用来测定传送到负载(等离子体)的功率,及提高或降低发生器输出功率,以在沉积层期间维持传送功率实质不变。
气体输送系统633经由气体输送管线638(仅示出部分)提供来自数个源634A-634E的气体给腔室来处理基板。如同本领域的普通技术人员所熟知的,用于源634A-634E的实际源和输送管线638与腔室613的实际连接视腔室613内所执行的沉积和清洁工艺而定。气体经由气环637和/或顶部喷嘴645引进腔室613。图6B为腔室613的简化局部截面图,其示出气环637的细节。
在一实施例中,第一与第二气源634A、634B和第一与第二气体流量控制器635A’、635B’经由气体输送管线638(仅示出部分)供应气体至气环637的环形气室636。气环637设有多个源气体喷嘴639(仅示出其中一个以便于说明),用以提供遍及基板的均匀气流。可以改变喷嘴长度和喷嘴角度,以调整个别腔室内的均匀度分布轮廓和特定工艺的气体利用率。在一优选实施例中,气环637设有12个由氧化铝陶瓷构成的源气体喷嘴。
气环637还设有多个氧化气体喷嘴640(仅示出其一),在一优选实施例中,其与源气体喷嘴639呈共平面且比源气体喷嘴639短,在一实施例中,其接收来自主体气室641的气体。在一些实施例中,理想的是,气体注入腔室613前,不先混合源气体和氧化气体。在其它实施例中,气体注入腔室613前,可以先利用主体气室641与气环气室636间的孔洞(未示出)混合氧化气体和源气体。在一实施例中,第三、第四与第五气源634C、634D、634D’和第三与第四气流控制器635C、635D’经由气体输送管线638供应气体至主体气室。附加阀如阀643B(其它阀未示出)可关闭气体从流量控制器流向腔室。在执行本发明的一些实施例中,源634A包含甲硅烷SiH4源,源634B包含氮分子N2源,源634C包含TSA源,源634D包含氩Ar源,源634D’包含乙硅烷Si2H6源。
在使用易燃、有毒或腐蚀性气体的实施例中,理想的是,在沉积后清除残留在气体输送管线中的气体。实现方式可以例如为利用三通阀(如阀643B)来隔开腔室613和输送管线638A,及排放输送管线638A至真空前段管线644。如图6A所示,其它类似阀(如阀643A、643C)可设于其它气体输送管线。三通阀可尽量设置靠近腔室613,以减少未排放的气体输送管线体积(位于三通阀与腔室之间)。此外,双向(开-关)阀(未示出)可设在质量流量控制器(MFC)与腔室之间、或气源与MFC之间。
再次参照图6A,腔室613还设有顶部喷嘴645和顶部排气孔646。顶部喷嘴645和顶部排气孔646能独立控制顶部和侧边的气流以改善膜的均匀度,及微调膜的沉积和掺杂参数。顶部排气孔646为围绕顶部喷嘴645的环状开口。在一实施例中,第一气源634A供给源气体喷嘴639和顶部喷嘴645。源喷嘴MFC 635’控制输送到源气体喷嘴639的气体量,顶部喷嘴MFC 635A控制输送到顶部喷嘴645的气体量。同样地,两个MFC 635B和635B’可以用来控制自单一氧气源(如源634B)流向顶部排气孔646和氧化气体喷嘴640的氧气量。在一些实施例中,不从任一侧边喷嘴供给腔室氧气。供应给顶部喷嘴645和顶部排气孔646的气体在流入腔室613前可保持分开,或者气体流入腔室613前可先在顶部气室648混合。独立分开的相同气源也可用来供给腔室的不同区域。
远程微波产生的等离子体清洁系统650用来定期清洁腔室组件的沉积残余物。清洁系统包括远程微波产生器651,其由清洁气源634E(如氟分子、三氟化氮、其它碳氟化合物或等同物)在反应器腔体653内产生等离子体。等离子体产生的反应物种通过器具管655经由清洁气体入口654输送到腔室613。用来容纳清洁等离子体的材料(如腔体653和器具管655)必须能抵抗等离子体侵蚀。反应器腔体653与入口654间的距离应尽量短,因为理想的等离子体物种的浓度会随着远离反应器腔体653而降低。在远程腔体中产生清洁等离子体允许使用高效率微波产生器,且腔室组件不会受温度、辐射或等离子体中原位形成的辉光放电撞击的影响。因此,不像原位等离子体清洁工艺,诸如如静电卡盘620之类的较敏感的组件不需覆盖有仿制(dummy)晶圆或以其它方式保护。在图6A中,等离子体清洁系统650位于腔室613上方,然而其也可设在其它位置。
隔板661可以设置为邻接顶部喷嘴,用以引导顶部喷嘴供应的源气体流入腔室及引导远程产生等离子体流动。顶部喷嘴645供应的源气体经由中央通道662导向腔室,清洁气体入口654供应的远程产生的等离子体物种由隔板661引至腔室613旁。
本领域的普通技术人员将能理解,处理参数会因处理腔室和处理条件不同而不同,在不悖离本发明的精神的前提下也可使用不同的前驱物。本领域的普通技术人员可明白其它变化例。这些等同例和替代例涵盖在本发明的保护范围内。因此本发明的保护范围不应以实施例为限,而是视后附的申请专利范围所界定的为准。
Claims (25)
1.一种利用一高密度等离子体化学气相沉积工艺沉积一氮化硅膜至一处理腔室中的一基板上的方法,该方法包含:
将一包含氮与硅的处理气体混合物流入该处理腔室中,同时维持该氮原子流率与该硅原子流率的一平均比率为约50∶1或更大,维持该处理腔室中的一平均压力为约40毫托或更小,以及维持一平均基板温度为600℃或更低;以及
从该处理气体形成一高密度等离子体以沉积该氮化硅膜至该基板上。
2.根据权利要求1所述的方法,其中该氮原子流率与该硅原子流率的平均比率为约60∶1或更大。
3.根据权利要求1所述的方法,其中该氮原子流率与该硅原子流率的平均比率为约90∶1或更大。
4.根据权利要求1所述的方法,其中该平均基板温度维持在500℃或以下。
5.根据权利要求1所述的方法,其中该处理腔室中的该平均压力为约15毫托或更小。
8.根据权利要求1所述的方法,进一步包含将氩气流入该处理腔室中,以及维持该氮原子流率与该氩原子流率的一比率为在15∶1与15∶2之间。
9.根据权利要求1所述的方法,其中该高密度等离子体的一RF功率为在每平方厘米基板表面5与15瓦之间。
10.根据权利要求1所述的方法,其中该高密度等离子体的一RF功率为在每平方厘米基板表面5.5与10瓦之间。
11.根据权利要求1所述的方法,其中形成该高密度等离子体的步骤在沉积该氮化硅膜期间不朝向该基板偏压该等离子体。
12.根据权利要求1所述的方法,其中该高密度等离子体化学气相沉积工艺的一沉积与溅射比率大于约50∶1。
13.根据权利要求1所述的方法,其中该处理气体混合物包含双原子氮(N2)和至少一选自甲硅烷(SiH4)、乙硅烷(Si2H6)和三硅胺(N(SiH3)3;TSA)组成的群组的气体。
14.一种利用一高密度等离子体化学气相沉积工艺沉积一氮化硅膜至一处理腔室中的一基板上的方法,该方法包含:
以一第一气体流率将双原子氮(N2)流入该处理腔室中并以一第二气体流率将甲硅烷(SiH4)流入该处理腔室中,同时维持该第一气体流率与该第二气体流率的一平均比率为约25∶1或更大,维持该处理腔室中的一平均压力为约40毫托或更小,以及维持一平均基板温度为600℃或更低;以及
从该处理气体形成一高密度等离子体以沉积该氮化硅膜至该基板上。
15.根据权利要求14所述的方法,其中该第一气体流率与该第二气体流率的平均比率为约30或更大。
16.根据权利要求14所述的方法,其中该第一气体流率与该第二气体流率的平均比率为约40或更大。
17.根据权利要求14所述的方法,其中该平均基板温度维持在500℃或以下。
18.根据权利要求17所述的方法,其中该处理腔室中的该平均压力为约15毫托或更小。
21.根据权利要求18所述的方法,进一步包含以一第三气体流率将氩气流入该处理腔室中,同时维持该第一气体流率与该第三气体流率的一比率为在15∶2与15∶4之间。
22.根据权利要求18所述的方法,其中该高密度等离子体的一RF功率为在每平方厘米基板表面5与15瓦之间。
23.根据权利要求18所述的方法,其中该高密度等离子体的一RF功率为在每平方厘米基板表面5.5与10瓦之间。
24.根据权利要求18所述的方法,其中形成该高密度等离子体的步骤在沉积该氮化硅膜期间不朝向该基板偏压该等离子体。
25.根据权利要求18所述的方法,其中该高密度等离子体化学气相沉积工艺的一沉积与溅射比率大于约50。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/962,674 | 2007-12-21 | ||
US11/962,674 US7678715B2 (en) | 2007-12-21 | 2007-12-21 | Low wet etch rate silicon nitride film |
PCT/US2008/087465 WO2009085974A2 (en) | 2007-12-21 | 2008-12-18 | Low wet etch rate silicon nitride film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101981225A true CN101981225A (zh) | 2011-02-23 |
Family
ID=40789179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008801214068A Pending CN101981225A (zh) | 2007-12-21 | 2008-12-18 | 低湿蚀刻速率的氮化硅膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7678715B2 (zh) |
EP (1) | EP2238277A4 (zh) |
JP (1) | JP5269093B2 (zh) |
KR (1) | KR20100108398A (zh) |
CN (1) | CN101981225A (zh) |
TW (1) | TWI359459B (zh) |
WO (1) | WO2009085974A2 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258743A (zh) * | 2012-02-15 | 2013-08-21 | 乐金显示有限公司 | 薄膜晶体管、薄膜晶体管阵列基板及其制造方法 |
CN104094418A (zh) * | 2012-02-17 | 2014-10-08 | 应用材料公司 | 硅基太阳能电池的钝化薄膜堆叠 |
US8956984B2 (en) | 2011-10-07 | 2015-02-17 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and non-transitory computer-readable recording medium |
CN107235470A (zh) * | 2017-05-26 | 2017-10-10 | 中国计量大学 | 一种湿法腐蚀过程中芯片正面金属及多晶硅材料的保护技术 |
CN108028171A (zh) * | 2015-09-18 | 2018-05-11 | 应用材料公司 | 氮化硅在高深宽比结构上的低温保形沉积 |
CN109920721A (zh) * | 2017-12-12 | 2019-06-21 | Asm Ip控股有限公司 | 用于制造半导体器件的方法 |
CN109952632A (zh) * | 2016-11-11 | 2019-06-28 | 朗姆研究公司 | 降低SiN膜的湿法蚀刻速率而不损坏下伏衬底的方法 |
CN111229339A (zh) * | 2020-01-17 | 2020-06-05 | 上海新微技术研发中心有限公司 | 光栅波导微流体芯片的制造方法 |
US11832533B2 (en) | 2018-08-24 | 2023-11-28 | Lam Research Corporation | Conformal damage-free encapsulation of chalcogenide materials |
Families Citing this family (381)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8741788B2 (en) * | 2009-08-06 | 2014-06-03 | Applied Materials, Inc. | Formation of silicon oxide using non-carbon flowable CVD processes |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
JP5610850B2 (ja) * | 2010-05-28 | 2014-10-22 | 三菱重工業株式会社 | 窒化珪素膜の製造方法及び装置 |
JP5842173B2 (ja) * | 2011-03-28 | 2016-01-13 | パナソニックIpマネジメント株式会社 | 光電変換装置及び光電変換装置の製造方法 |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US8946830B2 (en) | 2012-04-04 | 2015-02-03 | Asm Ip Holdings B.V. | Metal oxide protective layer for a semiconductor device |
JP2013219198A (ja) * | 2012-04-09 | 2013-10-24 | Nissin Electric Co Ltd | 薄膜製造方法 |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
US20140186544A1 (en) * | 2013-01-02 | 2014-07-03 | Applied Materials, Inc. | Metal processing using high density plasma |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9824881B2 (en) * | 2013-03-14 | 2017-11-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9564309B2 (en) | 2013-03-14 | 2017-02-07 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US8993054B2 (en) | 2013-07-12 | 2015-03-31 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9018111B2 (en) | 2013-07-22 | 2015-04-28 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
US9543140B2 (en) | 2013-10-16 | 2017-01-10 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9576790B2 (en) | 2013-10-16 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9605343B2 (en) | 2013-11-13 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming conformal carbon films, structures conformal carbon film, and system of forming same |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
US9401273B2 (en) | 2013-12-11 | 2016-07-26 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102300403B1 (ko) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
US10354860B2 (en) | 2015-01-29 | 2019-07-16 | Versum Materials Us, Llc | Method and precursors for manufacturing 3D devices |
US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US10410857B2 (en) | 2015-08-24 | 2019-09-10 | Asm Ip Holding B.V. | Formation of SiN thin films |
US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
US9601693B1 (en) | 2015-09-24 | 2017-03-21 | Lam Research Corporation | Method for encapsulating a chalcogenide material |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
US20170178899A1 (en) | 2015-12-18 | 2017-06-22 | Lam Research Corporation | Directional deposition on patterned structures |
US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
EP3428959B1 (en) | 2016-03-11 | 2023-03-01 | Taiyo Nippon Sanso Corporation | Method for producing silicon nitride film, and silicon nitride film |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US20170323785A1 (en) | 2016-05-06 | 2017-11-09 | Lam Research Corporation | Method to deposit conformal and low wet etch rate encapsulation layer using pecvd |
KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10629435B2 (en) | 2016-07-29 | 2020-04-21 | Lam Research Corporation | Doped ALD films for semiconductor patterning applications |
US10074543B2 (en) | 2016-08-31 | 2018-09-11 | Lam Research Corporation | High dry etch rate materials for semiconductor patterning applications |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10832908B2 (en) | 2016-11-11 | 2020-11-10 | Lam Research Corporation | Self-aligned multi-patterning process flow with ALD gapfill spacer mask |
US10134579B2 (en) | 2016-11-14 | 2018-11-20 | Lam Research Corporation | Method for high modulus ALD SiO2 spacer |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
JP7404217B2 (ja) * | 2017-04-28 | 2023-12-25 | アプライド マテリアルズ インコーポレイテッド | Oledデバイスの製造に使用される真空システムを洗浄するための方法、oledデバイスを製造するための基板の上での真空堆積のための方法、及びoledデバイスを製造するための基板の上での真空堆積のための装置 |
JP6799601B2 (ja) | 2017-04-28 | 2020-12-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Oledデバイスの製造に使用される真空システムを洗浄するための方法、oledデバイスを製造するための基板の上での真空堆積のための方法、及びoledデバイスを製造するための基板の上での真空堆積のための装置 |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US11056353B2 (en) | 2017-06-01 | 2021-07-06 | Asm Ip Holding B.V. | Method and structure for wet etch utilizing etch protection layer comprising boron and carbon |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
CN110785866B (zh) * | 2017-07-25 | 2022-07-19 | 应用材料公司 | 改良的薄膜包封 |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
WO2019169335A1 (en) | 2018-03-02 | 2019-09-06 | Lam Research Corporation | Selective deposition using hydrolysis |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US10580645B2 (en) | 2018-04-30 | 2020-03-03 | Asm Ip Holding B.V. | Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR20190129718A (ko) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (zh) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料之循環沉積製程 |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
TWI830751B (zh) * | 2018-07-19 | 2024-02-01 | 美商應用材料股份有限公司 | 低溫高品質的介電膜及其形成方法 |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (zh) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | 基材保持裝置、含有此裝置之系統及其使用之方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
WO2020096722A1 (en) * | 2018-11-08 | 2020-05-14 | Lam Research Corporation | Nitride films with improved etch selectivity for 3d nand integration |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR20200091543A (ko) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
JP2020136678A (ja) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
KR20200102357A (ko) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
KR20200123380A (ko) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | 층 형성 방법 및 장치 |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
KR20210065848A (ko) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법 |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
TW202125596A (zh) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成氮化釩層之方法以及包括該氮化釩層之結構 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
KR20210089079A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 채널형 리프트 핀 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
JP2021172884A (ja) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化バナジウム含有層を形成する方法および窒化バナジウム含有層を含む構造体 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (ko) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
KR20220081905A (ko) | 2020-12-09 | 2022-06-16 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 증착용 실리콘 전구체 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737379A (en) * | 1982-09-24 | 1988-04-12 | Energy Conversion Devices, Inc. | Plasma deposited coatings, and low temperature plasma method of making same |
DE3429899A1 (de) * | 1983-08-16 | 1985-03-07 | Canon K.K., Tokio/Tokyo | Verfahren zur bildung eines abscheidungsfilms |
KR890004881B1 (ko) * | 1983-10-19 | 1989-11-30 | 가부시기가이샤 히다찌세이사꾸쇼 | 플라즈마 처리 방법 및 그 장치 |
US4572841A (en) * | 1984-12-28 | 1986-02-25 | Rca Corporation | Low temperature method of deposition silicon dioxide |
US6673722B1 (en) * | 1985-10-14 | 2004-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Microwave enhanced CVD system under magnetic field |
US6230650B1 (en) * | 1985-10-14 | 2001-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Microwave enhanced CVD system under magnetic field |
US4690746A (en) | 1986-02-24 | 1987-09-01 | Genus, Inc. | Interlayer dielectric process |
KR900005118B1 (ko) * | 1986-07-14 | 1990-07-19 | 미쓰비시전기주식회사 | 박막 형성장치 |
US4872947A (en) | 1986-12-19 | 1989-10-10 | Applied Materials, Inc. | CVD of silicon oxide using TEOS decomposition and in-situ planarization process |
US4960488A (en) | 1986-12-19 | 1990-10-02 | Applied Materials, Inc. | Reactor chamber self-cleaning process |
US5000113A (en) * | 1986-12-19 | 1991-03-19 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
US4892753A (en) * | 1986-12-19 | 1990-01-09 | Applied Materials, Inc. | Process for PECVD of silicon oxide using TEOS decomposition |
DE3856483T2 (de) | 1987-03-18 | 2002-04-18 | Kabushiki Kaisha Toshiba, Kawasaki | Verfahren zur Herstellung von Dünnschichten |
US5874350A (en) * | 1987-03-20 | 1999-02-23 | Canon Kabushiki Kaisha | Process for preparing a functional thin film by way of the chemical reaction among active species |
US4878994A (en) | 1987-07-16 | 1989-11-07 | Texas Instruments Incorporated | Method for etching titanium nitride local interconnects |
EP0809283A3 (en) * | 1989-08-28 | 1998-02-25 | Hitachi, Ltd. | Method of treating wafers |
US5242561A (en) | 1989-12-15 | 1993-09-07 | Canon Kabushiki Kaisha | Plasma processing method and plasma processing apparatus |
JP2960466B2 (ja) * | 1990-03-19 | 1999-10-06 | 株式会社日立製作所 | 半導体デバイスの配線絶縁膜の形成方法及びその装置 |
US5089442A (en) * | 1990-09-20 | 1992-02-18 | At&T Bell Laboratories | Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd |
JP2640174B2 (ja) * | 1990-10-30 | 1997-08-13 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
EP0519079B1 (en) * | 1991-01-08 | 1999-03-03 | Fujitsu Limited | Process for forming silicon oxide film |
DE69224640T2 (de) | 1991-05-17 | 1998-10-01 | Lam Res Corp | VERFAHREN ZUR BESCHICHTUNG EINES SIOx FILMES MIT REDUZIERTER INTRINSISCHER SPANNUNG UND/ODER REDUZIERTEM WASSERSTOFFGEHALT |
US5525550A (en) * | 1991-05-21 | 1996-06-11 | Fujitsu Limited | Process for forming thin films by plasma CVD for use in the production of semiconductor devices |
US5279865A (en) * | 1991-06-28 | 1994-01-18 | Digital Equipment Corporation | High throughput interlevel dielectric gap filling process |
US5507881A (en) * | 1991-09-30 | 1996-04-16 | Fuji Electric Co., Ltd. | Thin-film solar cell and method of manufacturing same |
EP0539804B1 (en) | 1991-10-15 | 1998-03-04 | Canon Kabushiki Kaisha | A substrate for a liquid jet recording head, a manufacturing method for such a substrate, a liquid jet recording head, and a liquid jet recording apparatus |
GB2267291B (en) | 1992-05-27 | 1995-02-01 | Northern Telecom Ltd | Plasma deposition process |
US5271972A (en) | 1992-08-17 | 1993-12-21 | Applied Materials, Inc. | Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity |
JP2684942B2 (ja) * | 1992-11-30 | 1997-12-03 | 日本電気株式会社 | 化学気相成長法と化学気相成長装置および多層配線の製造方法 |
US5624582A (en) * | 1993-01-21 | 1997-04-29 | Vlsi Technology, Inc. | Optimization of dry etching through the control of helium backside pressure |
US5665167A (en) | 1993-02-16 | 1997-09-09 | Tokyo Electron Kabushiki Kaisha | Plasma treatment apparatus having a workpiece-side electrode grounding circuit |
US5401350A (en) * | 1993-03-08 | 1995-03-28 | Lsi Logic Corporation | Coil configurations for improved uniformity in inductively coupled plasma systems |
US5302233A (en) * | 1993-03-19 | 1994-04-12 | Micron Semiconductor, Inc. | Method for shaping features of a semiconductor structure using chemical mechanical planarization (CMP) |
US5416048A (en) * | 1993-04-16 | 1995-05-16 | Micron Semiconductor, Inc. | Method to slope conductor profile prior to dielectric deposition to improve dielectric step-coverage |
US5365057A (en) | 1993-07-02 | 1994-11-15 | Litton Systems, Inc. | Light-weight night vision device |
US5614055A (en) * | 1993-08-27 | 1997-03-25 | Applied Materials, Inc. | High density plasma CVD and etching reactor |
EP0660449A3 (en) | 1993-12-09 | 1997-01-08 | Santa Barbara Res Center | Electrical leadthrough and its manufacture, as well as device that uses the leadthrough. |
TW293983B (zh) * | 1993-12-17 | 1996-12-21 | Tokyo Electron Co Ltd | |
KR100241817B1 (ko) * | 1993-12-27 | 2000-02-01 | 니시무로 타이죠 | 박막형성법 |
DE69424759T2 (de) | 1993-12-28 | 2001-02-08 | Applied Materials, Inc. | Gasphasenabscheidungsverfahren in einer einzigen Kammer für Dünnfilmtransistoren |
US5403434A (en) * | 1994-01-06 | 1995-04-04 | Texas Instruments Incorporated | Low-temperature in-situ dry cleaning process for semiconductor wafer |
EP0668608A1 (en) | 1994-02-22 | 1995-08-23 | Applied Materials, Inc. | Electrostatic chuck with erosion-resistant electrode connection |
US5468342A (en) | 1994-04-28 | 1995-11-21 | Cypress Semiconductor Corp. | Method of etching an oxide layer |
EP0697467A1 (en) | 1994-07-21 | 1996-02-21 | Applied Materials, Inc. | Method and apparatus for cleaning a deposition chamber |
US5494854A (en) * | 1994-08-17 | 1996-02-27 | Texas Instruments Incorporated | Enhancement in throughput and planarity during CMP using a dielectric stack containing HDP-SiO2 films |
JP3247270B2 (ja) * | 1994-08-25 | 2002-01-15 | 東京エレクトロン株式会社 | 処理装置及びドライクリーニング方法 |
US5753044A (en) * | 1995-02-15 | 1998-05-19 | Applied Materials, Inc. | RF plasma reactor with hybrid conductor and multi-radius dome ceiling |
JPH08167605A (ja) * | 1994-12-15 | 1996-06-25 | Mitsubishi Electric Corp | シリコン窒化膜の製造方法 |
JPH08225947A (ja) | 1994-12-16 | 1996-09-03 | Canon Inc | プラズマ処理方法及びプラズマ処理装置 |
US5571576A (en) | 1995-02-10 | 1996-11-05 | Watkins-Johnson | Method of forming a fluorinated silicon oxide layer using plasma chemical vapor deposition |
US5688357A (en) | 1995-02-15 | 1997-11-18 | Applied Materials, Inc. | Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor |
US6039851A (en) * | 1995-03-22 | 2000-03-21 | Micron Technology, Inc. | Reactive sputter faceting of silicon dioxide to enhance gap fill of spaces between metal lines |
US5571577A (en) * | 1995-04-07 | 1996-11-05 | Board Of Trustees Operating Michigan State University | Method and apparatus for plasma treatment of a surface |
FR2734402B1 (fr) * | 1995-05-15 | 1997-07-18 | Brouquet Pierre | Procede pour l'isolement electrique en micro-electronique, applicable aux cavites etroites, par depot d'oxyde a l'etat visqueux et dispositif correspondant |
TW283250B (en) * | 1995-07-10 | 1996-08-11 | Watkins Johnson Co | Plasma enhanced chemical processing reactor and method |
US6228751B1 (en) * | 1995-09-08 | 2001-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US5719085A (en) * | 1995-09-29 | 1998-02-17 | Intel Corporation | Shallow trench isolation technique |
US5599740A (en) * | 1995-11-16 | 1997-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Deposit-etch-deposit ozone/teos insulator layer method |
US5756400A (en) * | 1995-12-08 | 1998-05-26 | Applied Materials, Inc. | Method and apparatus for cleaning by-products from plasma chamber surfaces |
US5767628A (en) * | 1995-12-20 | 1998-06-16 | International Business Machines Corporation | Helicon plasma processing tool utilizing a ferromagnetic induction coil with an internal cooling channel |
DE69623651T2 (de) * | 1995-12-27 | 2003-04-24 | Lam Research Corp., Fremont | Verfahren zur füllung von gräben auf einer halbleiterscheibe |
US5679606A (en) | 1995-12-27 | 1997-10-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | method of forming inter-metal-dielectric structure |
KR100267418B1 (ko) * | 1995-12-28 | 2000-10-16 | 엔도 마코토 | 플라스마처리방법및플라스마처리장치 |
US6191026B1 (en) * | 1996-01-09 | 2001-02-20 | Applied Materials, Inc. | Method for submicron gap filling on a semiconductor substrate |
US5872052A (en) * | 1996-02-12 | 1999-02-16 | Micron Technology, Inc. | Planarization using plasma oxidized amorphous silicon |
US6200412B1 (en) * | 1996-02-16 | 2001-03-13 | Novellus Systems, Inc. | Chemical vapor deposition system including dedicated cleaning gas injection |
US6042901A (en) * | 1996-02-20 | 2000-03-28 | Lam Research Corporation | Method for depositing fluorine doped silicon dioxide films |
US5669975A (en) | 1996-03-27 | 1997-09-23 | Sony Corporation | Plasma producing method and apparatus including an inductively-coupled plasma source |
US6106678A (en) | 1996-03-29 | 2000-08-22 | Lam Research Corporation | Method of high density plasma CVD gap-filling |
US5858876A (en) * | 1996-04-01 | 1999-01-12 | Chartered Semiconductor Manufacturing, Ltd. | Simultaneous deposit and etch method for forming a void-free and gap-filling insulator layer upon a patterned substrate layer |
US5712185A (en) * | 1996-04-23 | 1998-01-27 | United Microelectronics | Method for forming shallow trench isolation |
US6070551A (en) * | 1996-05-13 | 2000-06-06 | Applied Materials, Inc. | Deposition chamber and method for depositing low dielectric constant films |
TW388096B (en) | 1996-06-10 | 2000-04-21 | Texas Instruments Inc | Integrated circuit insulator and method |
US6342277B1 (en) | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US6170428B1 (en) * | 1996-07-15 | 2001-01-09 | Applied Materials, Inc. | Symmetric tunable inductively coupled HDP-CVD reactor |
US5807785A (en) | 1996-08-02 | 1998-09-15 | Applied Materials, Inc. | Low dielectric constant silicon dioxide sandwich layer |
US5804259A (en) | 1996-11-07 | 1998-09-08 | Applied Materials, Inc. | Method and apparatus for depositing a multilayered low dielectric constant film |
FR2756663B1 (fr) | 1996-12-04 | 1999-02-26 | Berenguer Marc | Procede de traitement d'un substrat semi-conducteur comprenant une etape de traitement de surface |
US5953635A (en) | 1996-12-19 | 1999-09-14 | Intel Corporation | Interlayer dielectric with a composite dielectric stack |
US6184158B1 (en) * | 1996-12-23 | 2001-02-06 | Lam Research Corporation | Inductively coupled plasma CVD |
US5913140A (en) * | 1996-12-23 | 1999-06-15 | Lam Research Corporation | Method for reduction of plasma charging damage during chemical vapor deposition |
US6013584A (en) * | 1997-02-19 | 2000-01-11 | Applied Materials, Inc. | Methods and apparatus for forming HDP-CVD PSG film used for advanced pre-metal dielectric layer applications |
US5990000A (en) | 1997-02-20 | 1999-11-23 | Applied Materials, Inc. | Method and apparatus for improving gap-fill capability using chemical and physical etchbacks |
US6190233B1 (en) * | 1997-02-20 | 2001-02-20 | Applied Materials, Inc. | Method and apparatus for improving gap-fill capability using chemical and physical etchbacks |
US6059643A (en) * | 1997-02-21 | 2000-05-09 | Aplex, Inc. | Apparatus and method for polishing a flat surface using a belted polishing pad |
JPH10242142A (ja) | 1997-02-21 | 1998-09-11 | Nippon Asm Kk | 半導体素子とその製造方法 |
US5850105A (en) | 1997-03-21 | 1998-12-15 | Advanced Micro Devices, Inc. | Substantially planar semiconductor topography using dielectrics and chemical mechanical polish |
US6030666A (en) * | 1997-03-31 | 2000-02-29 | Lam Research Corporation | Method for microwave plasma substrate heating |
US5968610A (en) | 1997-04-02 | 1999-10-19 | United Microelectronics Corp. | Multi-step high density plasma chemical vapor deposition process |
KR100226751B1 (ko) | 1997-04-10 | 1999-10-15 | 구본준 | 반도체 소자의 금속 배선 형성방법 |
US6077786A (en) * | 1997-05-08 | 2000-06-20 | International Business Machines Corporation | Methods and apparatus for filling high aspect ratio structures with silicate glass |
US6189483B1 (en) * | 1997-05-29 | 2001-02-20 | Applied Materials, Inc. | Process kit |
US6136685A (en) | 1997-06-03 | 2000-10-24 | Applied Materials, Inc. | High deposition rate recipe for low dielectric constant films |
US5937323A (en) * | 1997-06-03 | 1999-08-10 | Applied Materials, Inc. | Sequencing of the recipe steps for the optimal low-k HDP-CVD processing |
US5872058A (en) * | 1997-06-17 | 1999-02-16 | Novellus Systems, Inc. | High aspect ratio gapfill process by using HDP |
US5869149A (en) * | 1997-06-30 | 1999-02-09 | Lam Research Corporation | Method for preparing nitrogen surface treated fluorine doped silicon dioxide films |
US6027601A (en) * | 1997-07-01 | 2000-02-22 | Applied Materials, Inc | Automatic frequency tuning of an RF plasma source of an inductively coupled plasma reactor |
US6531193B2 (en) * | 1997-07-07 | 2003-03-11 | The Penn State Research Foundation | Low temperature, high quality silicon dioxide thin films deposited using tetramethylsilane (TMS) for stress control and coverage applications |
US6074959A (en) * | 1997-09-19 | 2000-06-13 | Applied Materials, Inc. | Method manifesting a wide process window and using hexafluoropropane or other hydrofluoropropanes to selectively etch oxide |
US6013191A (en) * | 1997-10-27 | 2000-01-11 | Advanced Refractory Technologies, Inc. | Method of polishing CVD diamond films by oxygen plasma |
US5903106A (en) * | 1997-11-17 | 1999-05-11 | Wj Semiconductor Equipment Group, Inc. | Plasma generating apparatus having an electrostatic shield |
JP3141827B2 (ja) * | 1997-11-20 | 2001-03-07 | 日本電気株式会社 | 半導体装置の製造方法 |
US5976327A (en) | 1997-12-12 | 1999-11-02 | Applied Materials, Inc. | Step coverage and overhang improvement by pedestal bias voltage modulation |
US6071573A (en) * | 1997-12-30 | 2000-06-06 | Lam Research Corporation | Process for precoating plasma CVD reactors |
EP0928015A3 (en) * | 1997-12-31 | 2003-07-02 | Texas Instruments Incorporated | Method of preventing boron penetration |
US6287990B1 (en) * | 1998-02-11 | 2001-09-11 | Applied Materials, Inc. | CVD plasma assisted low dielectric constant films |
DE69923436T2 (de) * | 1998-03-06 | 2006-01-05 | Asm America Inc., Phoenix | Verfahren zum beschichten von silizium mit hoher kantenabdeckung |
US6194038B1 (en) * | 1998-03-20 | 2001-02-27 | Applied Materials, Inc. | Method for deposition of a conformal layer on a substrate |
US6171917B1 (en) * | 1998-03-25 | 2001-01-09 | Advanced Micro Devices, Inc. | Transistor sidewall spacers composed of silicon nitride CVD deposited from a high density plasma source |
US6395150B1 (en) * | 1998-04-01 | 2002-05-28 | Novellus Systems, Inc. | Very high aspect ratio gapfill using HDP |
US6030881A (en) * | 1998-05-05 | 2000-02-29 | Novellus Systems, Inc. | High throughput chemical vapor deposition process capable of filling high aspect ratio structures |
US6147009A (en) | 1998-06-29 | 2000-11-14 | International Business Machines Corporation | Hydrogenated oxidized silicon carbon material |
US6037018A (en) * | 1998-07-01 | 2000-03-14 | Taiwan Semiconductor Maufacturing Company | Shallow trench isolation filled by high density plasma chemical vapor deposition |
US6203863B1 (en) * | 1998-11-27 | 2001-03-20 | United Microelectronics Corp. | Method of gap filling |
US6197705B1 (en) * | 1999-03-18 | 2001-03-06 | Chartered Semiconductor Manufacturing Ltd. | Method of silicon oxide and silicon glass films deposition |
US6413871B2 (en) | 1999-06-22 | 2002-07-02 | Applied Materials, Inc. | Nitrogen treatment of polished halogen-doped silicon glass |
US6465044B1 (en) | 1999-07-09 | 2002-10-15 | Silicon Valley Group, Thermal Systems Llp | Chemical vapor deposition of silicon oxide films using alkylsiloxane oligomers with ozone |
US6174808B1 (en) * | 1999-08-04 | 2001-01-16 | Taiwan Semiconductor Manufacturing Company | Intermetal dielectric using HDP-CVD oxide and SACVD O3-TEOS |
US6503843B1 (en) * | 1999-09-21 | 2003-01-07 | Applied Materials, Inc. | Multistep chamber cleaning and film deposition process using a remote plasma that also enhances film gap fill |
US6399489B1 (en) * | 1999-11-01 | 2002-06-04 | Applied Materials, Inc. | Barrier layer deposition using HDP-CVD |
KR100343286B1 (ko) | 1999-11-05 | 2002-07-15 | 윤종용 | 웨이퍼 가장자리의 결함 요인 처리 방법 |
US6372291B1 (en) * | 1999-12-23 | 2002-04-16 | Applied Materials, Inc. | In situ deposition and integration of silicon nitride in a high density plasma reactor |
US20020192396A1 (en) | 2000-05-11 | 2002-12-19 | Shulin Wang | Method of titanium/titanium nitride integration |
US6559026B1 (en) * | 2000-05-25 | 2003-05-06 | Applied Materials, Inc | Trench fill with HDP-CVD process including coupled high power density plasma deposition |
TW584902B (en) * | 2000-06-19 | 2004-04-21 | Applied Materials Inc | Method of plasma processing silicon nitride using argon, nitrogen and silane gases |
US6335288B1 (en) * | 2000-08-24 | 2002-01-01 | Applied Materials, Inc. | Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD |
WO2002019363A2 (en) | 2000-08-28 | 2002-03-07 | Applied Materials, Inc. | Pre-polycoating of glass substrates |
US6740601B2 (en) | 2001-05-11 | 2004-05-25 | Applied Materials Inc. | HDP-CVD deposition process for filling high aspect ratio gaps |
US6596653B2 (en) | 2001-05-11 | 2003-07-22 | Applied Materials, Inc. | Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD |
US6626188B2 (en) | 2001-06-28 | 2003-09-30 | International Business Machines Corporation | Method for cleaning and preconditioning a chemical vapor deposition chamber dome |
US6596654B1 (en) * | 2001-08-24 | 2003-07-22 | Novellus Systems, Inc. | Gap fill for high aspect ratio structures |
JP3961247B2 (ja) * | 2001-08-17 | 2007-08-22 | 株式会社東芝 | プラズマ処理方法、プラズマ処理装置及び半導体装置の製造方法 |
US6812153B2 (en) | 2002-04-30 | 2004-11-02 | Applied Materials Inc. | Method for high aspect ratio HDP CVD gapfill |
US6653203B1 (en) | 2002-05-23 | 2003-11-25 | Taiwan Semiconductor Manufacturing Company | Thin sidewall multi-step HDP deposition method to achieve completely filled high aspect ratio trenches |
DE10223954A1 (de) * | 2002-05-29 | 2003-12-11 | Infineon Technologies Ag | Plasmaangeregtes chemisches Gasphasenabscheide-Verfahren zum Abscheiden von Siliziumnitrid oder Siliziumoxinitrid, Verfahren zum Herstellen einer Schicht-Anordnung und Schicht-Anordnung |
US6589611B1 (en) * | 2002-08-22 | 2003-07-08 | Micron Technology, Inc. | Deposition and chamber treatment methods |
US7172792B2 (en) * | 2002-12-20 | 2007-02-06 | Applied Materials, Inc. | Method for forming a high quality low temperature silicon nitride film |
US6808748B2 (en) * | 2003-01-23 | 2004-10-26 | Applied Materials, Inc. | Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology |
US6924241B2 (en) | 2003-02-24 | 2005-08-02 | Promos Technologies, Inc. | Method of making a silicon nitride film that is transmissive to ultraviolet light |
US7274038B2 (en) | 2003-06-30 | 2007-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Silicon nitride film, a semiconductor device, a display device and a method for manufacturing a silicon nitride film |
US7183227B1 (en) * | 2004-07-01 | 2007-02-27 | Applied Materials, Inc. | Use of enhanced turbomolecular pump for gapfill deposition using high flows of low-mass fluent gas |
US20060045986A1 (en) * | 2004-08-30 | 2006-03-02 | Hochberg Arthur K | Silicon nitride from aminosilane using PECVD |
JP2006120992A (ja) * | 2004-10-25 | 2006-05-11 | C Bui Res:Kk | シリコン窒化膜の製造方法及びその製造装置 |
US7271110B2 (en) * | 2005-01-05 | 2007-09-18 | Chartered Semiconductor Manufacturing, Ltd. | High density plasma and bias RF power process to make stable FSG with less free F and SiN with less H to enhance the FSG/SiN integration reliability |
JP4455381B2 (ja) * | 2005-03-28 | 2010-04-21 | 住友電工デバイス・イノベーション株式会社 | 半導体装置およびその製造方法、容量素子およびその製造方法、並びにmis型半導体装置およびその製造方法。 |
US7524750B2 (en) * | 2006-04-17 | 2009-04-28 | Applied Materials, Inc. | Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD |
CN101652843B (zh) * | 2007-03-26 | 2011-07-20 | 东京毅力科创株式会社 | 氮化硅膜的形成方法、非易失性半导体存储装置的制造方法、非易失性半导体存储装置和等离子体处理装置 |
-
2007
- 2007-12-21 US US11/962,674 patent/US7678715B2/en not_active Expired - Fee Related
-
2008
- 2008-12-18 EP EP08867320A patent/EP2238277A4/en not_active Withdrawn
- 2008-12-18 KR KR1020107016360A patent/KR20100108398A/ko not_active Application Discontinuation
- 2008-12-18 WO PCT/US2008/087465 patent/WO2009085974A2/en active Application Filing
- 2008-12-18 JP JP2010539811A patent/JP5269093B2/ja not_active Expired - Fee Related
- 2008-12-18 CN CN2008801214068A patent/CN101981225A/zh active Pending
- 2008-12-19 TW TW097149781A patent/TWI359459B/zh not_active IP Right Cessation
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8956984B2 (en) | 2011-10-07 | 2015-02-17 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and non-transitory computer-readable recording medium |
TWI475599B (zh) * | 2011-10-07 | 2015-03-01 | Hitachi Int Electric Inc | 半導體裝置之製造方法、基板處理方法、基板處理裝置及記錄媒體 |
CN103258743A (zh) * | 2012-02-15 | 2013-08-21 | 乐金显示有限公司 | 薄膜晶体管、薄膜晶体管阵列基板及其制造方法 |
CN103258743B (zh) * | 2012-02-15 | 2016-04-06 | 乐金显示有限公司 | 薄膜晶体管、薄膜晶体管阵列基板及其制造方法 |
CN104094418A (zh) * | 2012-02-17 | 2014-10-08 | 应用材料公司 | 硅基太阳能电池的钝化薄膜堆叠 |
CN108028171A (zh) * | 2015-09-18 | 2018-05-11 | 应用材料公司 | 氮化硅在高深宽比结构上的低温保形沉积 |
CN109952632A (zh) * | 2016-11-11 | 2019-06-28 | 朗姆研究公司 | 降低SiN膜的湿法蚀刻速率而不损坏下伏衬底的方法 |
CN109952632B (zh) * | 2016-11-11 | 2024-02-13 | 朗姆研究公司 | 降低SiN膜的湿法蚀刻速率而不损坏下伏衬底的方法 |
CN107235470A (zh) * | 2017-05-26 | 2017-10-10 | 中国计量大学 | 一种湿法腐蚀过程中芯片正面金属及多晶硅材料的保护技术 |
CN109920721A (zh) * | 2017-12-12 | 2019-06-21 | Asm Ip控股有限公司 | 用于制造半导体器件的方法 |
US11832533B2 (en) | 2018-08-24 | 2023-11-28 | Lam Research Corporation | Conformal damage-free encapsulation of chalcogenide materials |
CN111229339A (zh) * | 2020-01-17 | 2020-06-05 | 上海新微技术研发中心有限公司 | 光栅波导微流体芯片的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2009085974A2 (en) | 2009-07-09 |
WO2009085974A3 (en) | 2009-09-24 |
US20090163041A1 (en) | 2009-06-25 |
JP2011508434A (ja) | 2011-03-10 |
US7678715B2 (en) | 2010-03-16 |
EP2238277A2 (en) | 2010-10-13 |
TW200943419A (en) | 2009-10-16 |
EP2238277A4 (en) | 2013-03-06 |
TWI359459B (en) | 2012-03-01 |
JP5269093B2 (ja) | 2013-08-21 |
KR20100108398A (ko) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101981225A (zh) | 低湿蚀刻速率的氮化硅膜 | |
US7329586B2 (en) | Gapfill using deposition-etch sequence | |
US8450191B2 (en) | Polysilicon films by HDP-CVD | |
US7919416B2 (en) | Method of forming conformal dielectric film having Si-N bonds by PECVD | |
US6660662B2 (en) | Method of reducing plasma charge damage for plasma processes | |
CN100577865C (zh) | 为介质cvd膜实现晶片间厚度均匀性的高功率介质干燥 | |
US20140187045A1 (en) | Silicon nitride gapfill implementing high density plasma | |
US6514870B2 (en) | In situ wafer heat for reduced backside contamination | |
CN100483646C (zh) | 用于改进间隙填充应用的高产能hdp-cvd处理 | |
US7704897B2 (en) | HDP-CVD SiON films for gap-fill | |
US20110151142A1 (en) | Pecvd multi-step processing with continuous plasma | |
TW202217058A (zh) | 具有受控膜性質及高沉積速率的保形熱cvd | |
CN101414551B (zh) | 高密度等离子体工艺中蚀刻速率偏移的减小 | |
Ong et al. | A new fabrication method for low stress PECVD-SiNx layers | |
KR20150004651U (ko) | 분리된 가스 피드 라인들을 갖는 플라즈마 프로세스 챔버 | |
TWI278531B (en) | Microcontamination abatement in semiconductor processing | |
Lim et al. | High quality silicon-nitride thin films grown by helium plasma-enhanced chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: American California Applicant after: Applied Materials Inc. Address before: American California Applicant before: Applied Materials Inc. |
|
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110223 |